File: | root/firefox-clang/intl/icu/source/common/unisetspan.cpp |
Warning: | line 124, column 9 Undefined or garbage value returned to caller |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // © 2016 and later: Unicode, Inc. and others. | |||
2 | // License & terms of use: http://www.unicode.org/copyright.html | |||
3 | /* | |||
4 | ****************************************************************************** | |||
5 | * | |||
6 | * Copyright (C) 2007-2012, International Business Machines | |||
7 | * Corporation and others. All Rights Reserved. | |||
8 | * | |||
9 | ****************************************************************************** | |||
10 | * file name: unisetspan.cpp | |||
11 | * encoding: UTF-8 | |||
12 | * tab size: 8 (not used) | |||
13 | * indentation:4 | |||
14 | * | |||
15 | * created on: 2007mar01 | |||
16 | * created by: Markus W. Scherer | |||
17 | */ | |||
18 | ||||
19 | #include "unicode/utypes.h" | |||
20 | #include "unicode/uniset.h" | |||
21 | #include "unicode/ustring.h" | |||
22 | #include "unicode/utf8.h" | |||
23 | #include "unicode/utf16.h" | |||
24 | #include "cmemory.h" | |||
25 | #include "uvector.h" | |||
26 | #include "unisetspan.h" | |||
27 | ||||
28 | U_NAMESPACE_BEGINnamespace icu_77 { | |||
29 | ||||
30 | /* | |||
31 | * List of offsets from the current position from where to try matching | |||
32 | * a code point or a string. | |||
33 | * Store offsets rather than indexes to simplify the code and use the same list | |||
34 | * for both increments (in span()) and decrements (in spanBack()). | |||
35 | * | |||
36 | * Assumption: The maximum offset is limited, and the offsets that are stored | |||
37 | * at any one time are relatively dense, that is, there are normally no gaps of | |||
38 | * hundreds or thousands of offset values. | |||
39 | * | |||
40 | * The implementation uses a circular buffer of byte flags, | |||
41 | * each indicating whether the corresponding offset is in the list. | |||
42 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and | |||
43 | * physically moving part of the list. | |||
44 | * | |||
45 | * Note: In principle, the caller should setMaxLength() to the maximum of the | |||
46 | * max string length and U16_LENGTH/U8_LENGTH to account for | |||
47 | * "long" single code points. | |||
48 | * However, this implementation uses at least a staticList with more than | |||
49 | * U8_LENGTH entries anyway. | |||
50 | * | |||
51 | * Note: If maxLength were guaranteed to be no more than 32 or 64, | |||
52 | * the list could be stored as bit flags in a single integer. | |||
53 | * Rather than handling a circular buffer with a start list index, | |||
54 | * the integer would simply be shifted when lower offsets are removed. | |||
55 | * UnicodeSet does not have a limit on the lengths of strings. | |||
56 | */ | |||
57 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. | |||
58 | public: | |||
59 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} | |||
60 | ||||
61 | ~OffsetList() { | |||
62 | if(list!=staticList) { | |||
63 | uprv_freeuprv_free_77(list); | |||
64 | } | |||
65 | } | |||
66 | ||||
67 | // Call exactly once if the list is to be used. | |||
68 | void setMaxLength(int32_t maxLength) { | |||
69 | if (maxLength <= static_cast<int32_t>(sizeof(staticList))) { | |||
70 | capacity = static_cast<int32_t>(sizeof(staticList)); | |||
71 | } else { | |||
72 | UBool* l = static_cast<UBool*>(uprv_mallocuprv_malloc_77(maxLength)); | |||
73 | if(l!=nullptr) { | |||
74 | list=l; | |||
75 | capacity=maxLength; | |||
76 | } | |||
77 | } | |||
78 | uprv_memset(list, 0, capacity):: memset(list, 0, capacity); | |||
79 | } | |||
80 | ||||
81 | void clear() { | |||
82 | uprv_memset(list, 0, capacity):: memset(list, 0, capacity); | |||
83 | start=length=0; | |||
84 | } | |||
85 | ||||
86 | UBool isEmpty() const { | |||
87 | return length == 0; | |||
88 | } | |||
89 | ||||
90 | // Reduce all stored offsets by delta, used when the current position | |||
91 | // moves by delta. | |||
92 | // There must not be any offsets lower than delta. | |||
93 | // If there is an offset equal to delta, it is removed. | |||
94 | // delta=[1..maxLength] | |||
95 | void shift(int32_t delta) { | |||
96 | int32_t i=start+delta; | |||
97 | if(i>=capacity) { | |||
98 | i-=capacity; | |||
99 | } | |||
100 | if(list[i]) { | |||
101 | list[i]=false; | |||
102 | --length; | |||
103 | } | |||
104 | start=i; | |||
105 | } | |||
106 | ||||
107 | // Add an offset. The list must not contain it yet. | |||
108 | // offset=[1..maxLength] | |||
109 | void addOffset(int32_t offset) { | |||
110 | int32_t i=start+offset; | |||
111 | if(i>=capacity) { | |||
112 | i-=capacity; | |||
113 | } | |||
114 | list[i]=true; | |||
115 | ++length; | |||
116 | } | |||
117 | ||||
118 | // offset=[1..maxLength] | |||
119 | UBool containsOffset(int32_t offset) const { | |||
120 | int32_t i=start+offset; | |||
121 | if(i>=capacity) { | |||
122 | i-=capacity; | |||
123 | } | |||
124 | return list[i]; | |||
| ||||
125 | } | |||
126 | ||||
127 | // Find the lowest stored offset from a non-empty list, remove it, | |||
128 | // and reduce all other offsets by this minimum. | |||
129 | // Returns [1..maxLength]. | |||
130 | int32_t popMinimum() { | |||
131 | // Look for the next offset in list[start+1..capacity-1]. | |||
132 | int32_t i=start, result; | |||
133 | while(++i<capacity) { | |||
134 | if(list[i]) { | |||
135 | list[i]=false; | |||
136 | --length; | |||
137 | result=i-start; | |||
138 | start=i; | |||
139 | return result; | |||
140 | } | |||
141 | } | |||
142 | // i==capacity | |||
143 | ||||
144 | // Wrap around and look for the next offset in list[0..start]. | |||
145 | // Since the list is not empty, there will be one. | |||
146 | result=capacity-start; | |||
147 | i=0; | |||
148 | while(!list[i]) { | |||
149 | ++i; | |||
150 | } | |||
151 | list[i]=false; | |||
152 | --length; | |||
153 | start=i; | |||
154 | return result+=i; | |||
155 | } | |||
156 | ||||
157 | private: | |||
158 | UBool *list; | |||
159 | int32_t capacity; | |||
160 | int32_t length; | |||
161 | int32_t start; | |||
162 | ||||
163 | UBool staticList[16]; | |||
164 | }; | |||
165 | ||||
166 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. | |||
167 | static int32_t | |||
168 | getUTF8Length(const char16_t *s, int32_t length) { | |||
169 | UErrorCode errorCode=U_ZERO_ERROR; | |||
170 | int32_t length8=0; | |||
171 | u_strToUTF8u_strToUTF8_77(nullptr, 0, &length8, s, length, &errorCode); | |||
172 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { | |||
173 | return length8; | |||
174 | } else { | |||
175 | // The string contains an unpaired surrogate. | |||
176 | // Ignore this string. | |||
177 | return 0; | |||
178 | } | |||
179 | } | |||
180 | ||||
181 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. | |||
182 | static int32_t | |||
183 | appendUTF8(const char16_t *s, int32_t length, uint8_t *t, int32_t capacity) { | |||
184 | UErrorCode errorCode=U_ZERO_ERROR; | |||
185 | int32_t length8=0; | |||
186 | u_strToUTF8u_strToUTF8_77(reinterpret_cast<char*>(t), capacity, &length8, s, length, &errorCode); | |||
187 | if(U_SUCCESS(errorCode)) { | |||
188 | return length8; | |||
189 | } else { | |||
190 | // The string contains an unpaired surrogate. | |||
191 | // Ignore this string. | |||
192 | return 0; | |||
193 | } | |||
194 | } | |||
195 | ||||
196 | static inline uint8_t | |||
197 | makeSpanLengthByte(int32_t spanLength) { | |||
198 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN | |||
199 | return spanLength < 0xfe ? static_cast<uint8_t>(spanLength) : static_cast<uint8_t>(0xfe); | |||
200 | } | |||
201 | ||||
202 | // Construct for all variants of span(), or only for any one variant. | |||
203 | // Initialize as little as possible, for single use. | |||
204 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, | |||
205 | const UVector &setStrings, | |||
206 | uint32_t which) | |||
207 | : spanSet(0, 0x10ffff), pSpanNotSet(nullptr), strings(setStrings), | |||
208 | utf8Lengths(nullptr), spanLengths(nullptr), utf8(nullptr), | |||
209 | utf8Length(0), | |||
210 | maxLength16(0), maxLength8(0), | |||
211 | all(static_cast<UBool>(which == ALL)) { | |||
212 | spanSet.retainAll(set); | |||
213 | if(which&NOT_CONTAINED) { | |||
214 | // Default to the same sets. | |||
215 | // addToSpanNotSet() will create a separate set if necessary. | |||
216 | pSpanNotSet=&spanSet; | |||
217 | } | |||
218 | ||||
219 | // Determine if the strings even need to be taken into account at all for span() etc. | |||
220 | // If any string is relevant, then all strings need to be used for | |||
221 | // span(longest match) but only the relevant ones for span(while contained). | |||
222 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH | |||
223 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. | |||
224 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) | |||
225 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. | |||
226 | int32_t stringsLength=strings.size(); | |||
227 | ||||
228 | int32_t i, spanLength; | |||
229 | UBool someRelevant=false; | |||
230 | for(i=0; i<stringsLength; ++i) { | |||
231 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
232 | const char16_t *s16=string.getBuffer(); | |||
233 | int32_t length16=string.length(); | |||
234 | if (length16==0) { | |||
235 | continue; // skip the empty string | |||
236 | } | |||
237 | UBool thisRelevant; | |||
238 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |||
239 | if(spanLength<length16) { // Relevant string. | |||
240 | someRelevant=thisRelevant=true; | |||
241 | } else { | |||
242 | thisRelevant=false; | |||
243 | } | |||
244 | if((which&UTF16) && length16>maxLength16) { | |||
245 | maxLength16=length16; | |||
246 | } | |||
247 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { | |||
248 | int32_t length8=getUTF8Length(s16, length16); | |||
249 | utf8Length+=length8; | |||
250 | if(length8>maxLength8) { | |||
251 | maxLength8=length8; | |||
252 | } | |||
253 | } | |||
254 | } | |||
255 | if(!someRelevant) { | |||
256 | maxLength16=maxLength8=0; | |||
257 | return; | |||
258 | } | |||
259 | ||||
260 | // Freeze after checking for the need to use strings at all because freezing | |||
261 | // a set takes some time and memory which are wasted if there are no relevant strings. | |||
262 | if(all) { | |||
263 | spanSet.freeze(); | |||
264 | } | |||
265 | ||||
266 | uint8_t *spanBackLengths; | |||
267 | uint8_t *spanUTF8Lengths; | |||
268 | uint8_t *spanBackUTF8Lengths; | |||
269 | ||||
270 | // Allocate a block of meta data. | |||
271 | int32_t allocSize; | |||
272 | if(all) { | |||
273 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |||
274 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |||
275 | } else { | |||
276 | allocSize=stringsLength; // One set of span lengths. | |||
277 | if(which&UTF8) { | |||
278 | // UTF-8 lengths and UTF-8 strings. | |||
279 | allocSize+=stringsLength*4+utf8Length; | |||
280 | } | |||
281 | } | |||
282 | if (allocSize <= static_cast<int32_t>(sizeof(staticLengths))) { | |||
283 | utf8Lengths=staticLengths; | |||
284 | } else { | |||
285 | utf8Lengths = static_cast<int32_t*>(uprv_mallocuprv_malloc_77(allocSize)); | |||
286 | if(utf8Lengths==nullptr) { | |||
287 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return false. | |||
288 | return; // Out of memory. | |||
289 | } | |||
290 | } | |||
291 | ||||
292 | if(all) { | |||
293 | // Store span lengths for all span() variants. | |||
294 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths + stringsLength); | |||
295 | spanBackLengths=spanLengths+stringsLength; | |||
296 | spanUTF8Lengths=spanBackLengths+stringsLength; | |||
297 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; | |||
298 | utf8=spanBackUTF8Lengths+stringsLength; | |||
299 | } else { | |||
300 | // Store span lengths for only one span() variant. | |||
301 | if(which&UTF8) { | |||
302 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths + stringsLength); | |||
303 | utf8=spanLengths+stringsLength; | |||
304 | } else { | |||
305 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths); | |||
306 | } | |||
307 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; | |||
308 | } | |||
309 | ||||
310 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. | |||
311 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. | |||
312 | ||||
313 | for(i=0; i<stringsLength; ++i) { | |||
314 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
315 | const char16_t *s16=string.getBuffer(); | |||
316 | int32_t length16=string.length(); | |||
317 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |||
318 | if(spanLength<length16 && length16>0) { // Relevant string. | |||
319 | if(which&UTF16) { | |||
320 | if(which&CONTAINED) { | |||
321 | if(which&FWD) { | |||
322 | spanLengths[i]=makeSpanLengthByte(spanLength); | |||
323 | } | |||
324 | if(which&BACK) { | |||
325 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); | |||
326 | spanBackLengths[i]=makeSpanLengthByte(spanLength); | |||
327 | } | |||
328 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |||
329 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. | |||
330 | } | |||
331 | } | |||
332 | if(which&UTF8) { | |||
333 | uint8_t *s8=utf8+utf8Count; | |||
334 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |||
335 | utf8Count+=utf8Lengths[i]=length8; | |||
336 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. | |||
337 | spanUTF8Lengths[i] = spanBackUTF8Lengths[i] = static_cast<uint8_t>(ALL_CP_CONTAINED); | |||
338 | } else { // Relevant for UTF-8. | |||
339 | if(which&CONTAINED) { | |||
340 | if(which&FWD) { | |||
341 | spanLength = spanSet.spanUTF8(reinterpret_cast<const char*>(s8), length8, USET_SPAN_CONTAINED); | |||
342 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |||
343 | } | |||
344 | if(which&BACK) { | |||
345 | spanLength = length8 - spanSet.spanBackUTF8(reinterpret_cast<const char*>(s8), length8, USET_SPAN_CONTAINED); | |||
346 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |||
347 | } | |||
348 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |||
349 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. | |||
350 | } | |||
351 | } | |||
352 | } | |||
353 | if(which&NOT_CONTAINED) { | |||
354 | // Add string start and end code points to the spanNotSet so that | |||
355 | // a span(while not contained) stops before any string. | |||
356 | UChar32 c; | |||
357 | if(which&FWD) { | |||
358 | int32_t len=0; | |||
359 | U16_NEXT(s16, len, length16, c)do { (c)=(s16)[(len)++]; if((((c)&0xfffffc00)==0xd800)) { uint16_t __c2; if((len)!=(length16) && (((__c2=(s16) [(len)])&0xfffffc00)==0xdc00)) { ++(len); (c)=(((UChar32) ((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00 -0x10000)); } } } while (false); | |||
360 | addToSpanNotSet(c); | |||
361 | } | |||
362 | if(which&BACK) { | |||
363 | int32_t len=length16; | |||
364 | U16_PREV(s16, 0, len, c)do { (c)=(s16)[--(len)]; if((((c)&0xfffffc00)==0xdc00)) { uint16_t __c2; if((len)>(0) && (((__c2=(s16)[(len )-1])&0xfffffc00)==0xd800)) { --(len); (c)=(((UChar32)(__c2 )<<10UL)+(UChar32)((c))-((0xd800<<10UL)+0xdc00-0x10000 )); } } } while (false); | |||
365 | addToSpanNotSet(c); | |||
366 | } | |||
367 | } | |||
368 | } else { // Irrelevant string. (Also the empty string.) | |||
369 | if(which&UTF8) { | |||
370 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. | |||
371 | uint8_t *s8=utf8+utf8Count; | |||
372 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |||
373 | utf8Count+=utf8Lengths[i]=length8; | |||
374 | } else { | |||
375 | utf8Lengths[i]=0; | |||
376 | } | |||
377 | } | |||
378 | if(all) { | |||
379 | spanLengths[i]=spanBackLengths[i]= | |||
380 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= | |||
381 | static_cast<uint8_t>(ALL_CP_CONTAINED); | |||
382 | } else { | |||
383 | // All spanXYZLengths pointers contain the same address. | |||
384 | spanLengths[i] = static_cast<uint8_t>(ALL_CP_CONTAINED); | |||
385 | } | |||
386 | } | |||
387 | } | |||
388 | ||||
389 | // Finish. | |||
390 | if(all) { | |||
391 | pSpanNotSet->freeze(); | |||
392 | } | |||
393 | } | |||
394 | ||||
395 | // Copy constructor. Assumes which==ALL for a frozen set. | |||
396 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, | |||
397 | const UVector &newParentSetStrings) | |||
398 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(nullptr), strings(newParentSetStrings), | |||
399 | utf8Lengths(nullptr), spanLengths(nullptr), utf8(nullptr), | |||
400 | utf8Length(otherStringSpan.utf8Length), | |||
401 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), | |||
402 | all(true) { | |||
403 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { | |||
404 | pSpanNotSet=&spanSet; | |||
405 | } else { | |||
406 | pSpanNotSet=otherStringSpan.pSpanNotSet->clone(); | |||
407 | } | |||
408 | ||||
409 | // Allocate a block of meta data. | |||
410 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |||
411 | int32_t stringsLength=strings.size(); | |||
412 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |||
413 | if (allocSize <= static_cast<int32_t>(sizeof(staticLengths))) { | |||
414 | utf8Lengths=staticLengths; | |||
415 | } else { | |||
416 | utf8Lengths = static_cast<int32_t*>(uprv_mallocuprv_malloc_77(allocSize)); | |||
417 | if(utf8Lengths==nullptr) { | |||
418 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return false. | |||
419 | return; // Out of memory. | |||
420 | } | |||
421 | } | |||
422 | ||||
423 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths + stringsLength); | |||
424 | utf8=spanLengths+stringsLength*4; | |||
425 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize)do { clang diagnostic push
clang diagnostic ignored "-Waddress" (static_cast <bool> (utf8Lengths != __null) ? void (0 ) : __assert_fail ("utf8Lengths != __null", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); (static_cast <bool> (otherStringSpan.utf8Lengths != __null) ? void ( 0) : __assert_fail ("otherStringSpan.utf8Lengths != __null", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); clang diagnostic pop :: memcpy(utf8Lengths, otherStringSpan.utf8Lengths , allocSize); } while (false); | |||
426 | } | |||
427 | ||||
428 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { | |||
429 | if(pSpanNotSet!=nullptr && pSpanNotSet!=&spanSet) { | |||
430 | delete pSpanNotSet; | |||
431 | } | |||
432 | if(utf8Lengths!=nullptr && utf8Lengths!=staticLengths) { | |||
433 | uprv_freeuprv_free_77(utf8Lengths); | |||
434 | } | |||
435 | } | |||
436 | ||||
437 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { | |||
438 | if(pSpanNotSet==nullptr || pSpanNotSet==&spanSet) { | |||
439 | if(spanSet.contains(c)) { | |||
440 | return; // Nothing to do. | |||
441 | } | |||
442 | UnicodeSet *newSet=spanSet.cloneAsThawed(); | |||
443 | if(newSet==nullptr) { | |||
444 | return; // Out of memory. | |||
445 | } else { | |||
446 | pSpanNotSet=newSet; | |||
447 | } | |||
448 | } | |||
449 | pSpanNotSet->add(c); | |||
450 | } | |||
451 | ||||
452 | // Compare strings without any argument checks. Requires length>0. | |||
453 | static inline UBool | |||
454 | matches16(const char16_t *s, const char16_t *t, int32_t length) { | |||
455 | do { | |||
456 | if(*s++!=*t++) { | |||
457 | return false; | |||
458 | } | |||
459 | } while(--length>0); | |||
460 | return true; | |||
461 | } | |||
462 | ||||
463 | static inline UBool | |||
464 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { | |||
465 | do { | |||
466 | if(*s++!=*t++) { | |||
467 | return false; | |||
468 | } | |||
469 | } while(--length>0); | |||
470 | return true; | |||
471 | } | |||
472 | ||||
473 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) | |||
474 | // at code point boundaries. | |||
475 | // That is, each edge of a match must not be in the middle of a surrogate pair. | |||
476 | static inline UBool | |||
477 | matches16CPB(const char16_t *s, int32_t start, int32_t limit, const char16_t *t, int32_t length) { | |||
478 | s+=start; | |||
479 | limit-=start; | |||
480 | return matches16(s, t, length) && | |||
481 | !(0<start && U16_IS_LEAD(s[-1])(((s[-1])&0xfffffc00)==0xd800) && U16_IS_TRAIL(s[0])(((s[0])&0xfffffc00)==0xdc00)) && | |||
482 | !(length<limit && U16_IS_LEAD(s[length-1])(((s[length-1])&0xfffffc00)==0xd800) && U16_IS_TRAIL(s[length])(((s[length])&0xfffffc00)==0xdc00)); | |||
483 | } | |||
484 | ||||
485 | // Does the set contain the next code point? | |||
486 | // If so, return its length; otherwise return its negative length. | |||
487 | static inline int32_t | |||
488 | spanOne(const UnicodeSet &set, const char16_t *s, int32_t length) { | |||
489 | char16_t c=*s, c2; | |||
490 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])(((c2=s[1])&0xfffffc00)==0xdc00)) { | |||
491 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL )+0xdc00-0x10000))) ? 2 : -2; | |||
492 | } | |||
493 | return set.contains(c) ? 1 : -1; | |||
494 | } | |||
495 | ||||
496 | static inline int32_t | |||
497 | spanOneBack(const UnicodeSet &set, const char16_t *s, int32_t length) { | |||
498 | char16_t c=s[length-1], c2; | |||
499 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])(((c2=s[length-2])&0xfffffc00)==0xd800)) { | |||
500 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)(((UChar32)(c2)<<10UL)+(UChar32)(c)-((0xd800<<10UL )+0xdc00-0x10000))) ? 2 : -2; | |||
501 | } | |||
502 | return set.contains(c) ? 1 : -1; | |||
503 | } | |||
504 | ||||
505 | static inline int32_t | |||
506 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |||
507 | UChar32 c=*s; | |||
508 | if(U8_IS_SINGLE(c)(((c)&0x80)==0)) { | |||
509 | return set.contains(c) ? 1 : -1; | |||
510 | } | |||
511 | // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). | |||
512 | int32_t i=0; | |||
513 | U8_NEXT_OR_FFFD(s, i, length, c)do { (c)=(uint8_t)(s)[(i)++]; if(!(((c)&0x80)==0)) { uint8_t __t = 0; if((i)!=(length) && ((c)>=0xe0 ? ((c)< 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30" [(c)&=0xf]&(1<<((__t=(s)[i])>>5)) && (__t&=0x3f, 1) : ((c)-=0xf0)<=4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00" [(__t=(s)[i])>>4]&(1<<(c)) && ((c)=(( c)<<6)|(__t&0x3f), ++(i)!=(length)) && (__t =(s)[i]-0x80)<=0x3f) && ((c)=((c)<<6)|__t, ++ (i)!=(length)) : (c)>=0xc2 && ((c)&=0x1f, 1)) && (__t=(s)[i]-0x80)<=0x3f && ((c)=((c)<<6)|__t , ++(i), 1)) { } else { (c)=(0xfffd); } } } while (false); | |||
514 | return set.contains(c) ? i : -i; | |||
515 | } | |||
516 | ||||
517 | static inline int32_t | |||
518 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |||
519 | UChar32 c=s[length-1]; | |||
520 | if(U8_IS_SINGLE(c)(((c)&0x80)==0)) { | |||
521 | return set.contains(c) ? 1 : -1; | |||
522 | } | |||
523 | int32_t i=length-1; | |||
524 | c=utf8_prevCharSafeBodyutf8_prevCharSafeBody_77(s, 0, &i, c, -3); | |||
525 | length-=i; | |||
526 | return set.contains(c) ? length : -length; | |||
527 | } | |||
528 | ||||
529 | /* | |||
530 | * Note: In span() when spanLength==0 (after a string match, or at the beginning | |||
531 | * after an empty code point span) and in spanNot() and spanNotUTF8(), | |||
532 | * string matching could use a binary search | |||
533 | * because all string matches are done from the same start index. | |||
534 | * | |||
535 | * For UTF-8, this would require a comparison function that returns UTF-16 order. | |||
536 | * | |||
537 | * This optimization should not be necessary for normal UnicodeSets because | |||
538 | * most sets have no strings, and most sets with strings have | |||
539 | * very few very short strings. | |||
540 | * For cases with many strings, it might be better to use a different API | |||
541 | * and implementation with a DFA (state machine). | |||
542 | */ | |||
543 | ||||
544 | /* | |||
545 | * Algorithm for span(USET_SPAN_CONTAINED) | |||
546 | * | |||
547 | * Theoretical algorithm: | |||
548 | * - Iterate through the string, and at each code point boundary: | |||
549 | * + If the code point there is in the set, then remember to continue after it. | |||
550 | * + If a set string matches at the current position, then remember to continue after it. | |||
551 | * + Either recursively span for each code point or string match, | |||
552 | * or recursively span for all but the shortest one and | |||
553 | * iteratively continue the span with the shortest local match. | |||
554 | * + Remember the longest recursive span (the farthest end point). | |||
555 | * + If there is no match at the current position, neither for the code point there | |||
556 | * nor for any set string, then stop and return the longest recursive span length. | |||
557 | * | |||
558 | * Optimized implementation: | |||
559 | * | |||
560 | * (We assume that most sets will have very few very short strings. | |||
561 | * A span using a string-less set is extremely fast.) | |||
562 | * | |||
563 | * Create and cache a spanSet which contains all of the single code points | |||
564 | * of the original set but none of its strings. | |||
565 | * | |||
566 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
567 | * - Loop: | |||
568 | * + Try to match each set string at the end of the spanLength. | |||
569 | * ~ Set strings that start with set-contained code points must be matched | |||
570 | * with a partial overlap because the recursive algorithm would have tried | |||
571 | * to match them at every position. | |||
572 | * ~ Set strings that entirely consist of set-contained code points | |||
573 | * are irrelevant for span(USET_SPAN_CONTAINED) because the | |||
574 | * recursive algorithm would continue after them anyway | |||
575 | * and find the longest recursive match from their end. | |||
576 | * ~ Rather than recursing, note each end point of a set string match. | |||
577 | * + If no set string matched after spanSet.span(), then return | |||
578 | * with where the spanSet.span() ended. | |||
579 | * + If at least one set string matched after spanSet.span(), then | |||
580 | * pop the shortest string match end point and continue | |||
581 | * the loop, trying to match all set strings from there. | |||
582 | * + If at least one more set string matched after a previous string match, | |||
583 | * then test if the code point after the previous string match is also | |||
584 | * contained in the set. | |||
585 | * Continue the loop with the shortest end point of either this code point | |||
586 | * or a matching set string. | |||
587 | * + If no more set string matched after a previous string match, | |||
588 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
589 | * Stop if spanLength==0, otherwise continue the loop. | |||
590 | * | |||
591 | * By noting each end point of a set string match, | |||
592 | * the function visits each string position at most once and finishes | |||
593 | * in linear time. | |||
594 | * | |||
595 | * The recursive algorithm may visit the same string position many times | |||
596 | * if multiple paths lead to it and finishes in exponential time. | |||
597 | */ | |||
598 | ||||
599 | /* | |||
600 | * Algorithm for span(USET_SPAN_SIMPLE) | |||
601 | * | |||
602 | * Theoretical algorithm: | |||
603 | * - Iterate through the string, and at each code point boundary: | |||
604 | * + If the code point there is in the set, then remember to continue after it. | |||
605 | * + If a set string matches at the current position, then remember to continue after it. | |||
606 | * + Continue from the farthest match position and ignore all others. | |||
607 | * + If there is no match at the current position, | |||
608 | * then stop and return the current position. | |||
609 | * | |||
610 | * Optimized implementation: | |||
611 | * | |||
612 | * (Same assumption and spanSet as above.) | |||
613 | * | |||
614 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
615 | * - Loop: | |||
616 | * + Try to match each set string at the end of the spanLength. | |||
617 | * ~ Set strings that start with set-contained code points must be matched | |||
618 | * with a partial overlap because the standard algorithm would have tried | |||
619 | * to match them earlier. | |||
620 | * ~ Set strings that entirely consist of set-contained code points | |||
621 | * must be matched with a full overlap because the longest-match algorithm | |||
622 | * would hide set string matches that end earlier. | |||
623 | * Such set strings need not be matched earlier inside the code point span | |||
624 | * because the standard algorithm would then have continued after | |||
625 | * the set string match anyway. | |||
626 | * ~ Remember the longest set string match (farthest end point) from the earliest | |||
627 | * starting point. | |||
628 | * + If no set string matched after spanSet.span(), then return | |||
629 | * with where the spanSet.span() ended. | |||
630 | * + If at least one set string matched, then continue the loop after the | |||
631 | * longest match from the earliest position. | |||
632 | * + If no more set string matched after a previous string match, | |||
633 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
634 | * Stop if spanLength==0, otherwise continue the loop. | |||
635 | */ | |||
636 | ||||
637 | int32_t UnicodeSetStringSpan::span(const char16_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
638 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
| ||||
639 | return spanNot(s, length); | |||
640 | } | |||
641 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); | |||
642 | if(spanLength==length) { | |||
643 | return length; | |||
644 | } | |||
645 | ||||
646 | // Consider strings; they may overlap with the span. | |||
647 | OffsetList offsets; | |||
648 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
649 | // Use offset list to try all possibilities. | |||
650 | offsets.setMaxLength(maxLength16); | |||
651 | } | |||
652 | int32_t pos=spanLength, rest=length-pos; | |||
653 | int32_t i, stringsLength=strings.size(); | |||
654 | for(;;) { | |||
655 | if(spanCondition
| |||
656 | for(i=0; i<stringsLength; ++i) { | |||
657 | int32_t overlap=spanLengths[i]; | |||
658 | if(overlap==ALL_CP_CONTAINED) { | |||
659 | continue; // Irrelevant string. (Also the empty string.) | |||
660 | } | |||
661 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
662 | const char16_t *s16=string.getBuffer(); | |||
663 | int32_t length16=string.length(); | |||
664 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
665 | ||||
666 | // Try to match this string at pos-overlap..pos. | |||
667 | if(overlap>=LONG_SPAN) { | |||
668 | overlap=length16; | |||
669 | // While contained: No point matching fully inside the code point span. | |||
670 | U16_BACK_1(s16, 0, overlap)do { if(((((s16)[--(overlap)])&0xfffffc00)==0xdc00) && (overlap)>(0) && ((((s16)[(overlap)-1])&0xfffffc00 )==0xd800)) { --(overlap); } } while (false); // Length of the string minus the last code point. | |||
671 | } | |||
672 | if(overlap>spanLength) { | |||
673 | overlap=spanLength; | |||
674 | } | |||
675 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |||
676 | for(;;) { | |||
677 | if(inc>rest) { | |||
678 | break; | |||
679 | } | |||
680 | // Try to match if the increment is not listed already. | |||
681 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { | |||
682 | if(inc==rest) { | |||
683 | return length; // Reached the end of the string. | |||
684 | } | |||
685 | offsets.addOffset(inc); | |||
686 | } | |||
687 | if(overlap==0) { | |||
688 | break; | |||
689 | } | |||
690 | --overlap; | |||
691 | ++inc; | |||
692 | } | |||
693 | } | |||
694 | } else /* USET_SPAN_SIMPLE */ { | |||
695 | int32_t maxInc=0, maxOverlap=0; | |||
696 | for(i=0; i<stringsLength; ++i) { | |||
697 | int32_t overlap=spanLengths[i]; | |||
698 | // For longest match, we do need to try to match even an all-contained string | |||
699 | // to find the match from the earliest start. | |||
700 | ||||
701 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
702 | const char16_t *s16=string.getBuffer(); | |||
703 | int32_t length16=string.length(); | |||
704 | if (length16==0) { | |||
705 | continue; // skip the empty string | |||
706 | } | |||
707 | ||||
708 | // Try to match this string at pos-overlap..pos. | |||
709 | if(overlap>=LONG_SPAN) { | |||
710 | overlap=length16; | |||
711 | // Longest match: Need to match fully inside the code point span | |||
712 | // to find the match from the earliest start. | |||
713 | } | |||
714 | if(overlap>spanLength) { | |||
715 | overlap=spanLength; | |||
716 | } | |||
717 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |||
718 | for(;;) { | |||
719 | if(inc>rest || overlap<maxOverlap) { | |||
720 | break; | |||
721 | } | |||
722 | // Try to match if the string is longer or starts earlier. | |||
723 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && | |||
724 | matches16CPB(s, pos-overlap, length, s16, length16) | |||
725 | ) { | |||
726 | maxInc=inc; // Longest match from earliest start. | |||
727 | maxOverlap=overlap; | |||
728 | break; | |||
729 | } | |||
730 | --overlap; | |||
731 | ++inc; | |||
732 | } | |||
733 | } | |||
734 | ||||
735 | if(maxInc!=0 || maxOverlap!=0) { | |||
736 | // Longest-match algorithm, and there was a string match. | |||
737 | // Simply continue after it. | |||
738 | pos+=maxInc; | |||
739 | rest-=maxInc; | |||
740 | if(rest==0) { | |||
741 | return length; // Reached the end of the string. | |||
742 | } | |||
743 | spanLength=0; // Match strings from after a string match. | |||
744 | continue; | |||
745 | } | |||
746 | } | |||
747 | // Finished trying to match all strings at pos. | |||
748 | ||||
749 | if(spanLength!=0 || pos==0) { | |||
750 | // The position is after an unlimited code point span (spanLength!=0), | |||
751 | // not after a string match. | |||
752 | // The only position where spanLength==0 after a span is pos==0. | |||
753 | // Otherwise, an unlimited code point span is only tried again when no | |||
754 | // strings match, and if such a non-initial span fails we stop. | |||
755 | if(offsets.isEmpty()) { | |||
756 | return pos; // No strings matched after a span. | |||
757 | } | |||
758 | // Match strings from after the next string match. | |||
759 | } else { | |||
760 | // The position is after a string match (or a single code point). | |||
761 | if(offsets.isEmpty()) { | |||
762 | // No more strings matched after a previous string match. | |||
763 | // Try another code point span from after the last string match. | |||
764 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); | |||
765 | if( spanLength==rest || // Reached the end of the string, or | |||
766 | spanLength==0 // neither strings nor span progressed. | |||
767 | ) { | |||
768 | return pos+spanLength; | |||
769 | } | |||
770 | pos+=spanLength; | |||
771 | rest-=spanLength; | |||
772 | continue; // spanLength>0: Match strings from after a span. | |||
773 | } else { | |||
774 | // Try to match only one code point from after a string match if some | |||
775 | // string matched beyond it, so that we try all possible positions | |||
776 | // and don't overshoot. | |||
777 | spanLength=spanOne(spanSet, s+pos, rest); | |||
778 | if(spanLength>0) { | |||
779 | if(spanLength==rest) { | |||
780 | return length; // Reached the end of the string. | |||
781 | } | |||
782 | // Match strings after this code point. | |||
783 | // There cannot be any increments below it because UnicodeSet strings | |||
784 | // contain multiple code points. | |||
785 | pos+=spanLength; | |||
786 | rest-=spanLength; | |||
787 | offsets.shift(spanLength); | |||
788 | spanLength=0; | |||
789 | continue; // Match strings from after a single code point. | |||
790 | } | |||
791 | // Match strings from after the next string match. | |||
792 | } | |||
793 | } | |||
794 | int32_t minOffset=offsets.popMinimum(); | |||
795 | pos+=minOffset; | |||
796 | rest-=minOffset; | |||
797 | spanLength=0; // Match strings from after a string match. | |||
798 | } | |||
799 | } | |||
800 | ||||
801 | int32_t UnicodeSetStringSpan::spanBack(const char16_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
802 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
803 | return spanNotBack(s, length); | |||
804 | } | |||
805 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); | |||
806 | if(pos==0) { | |||
807 | return 0; | |||
808 | } | |||
809 | int32_t spanLength=length-pos; | |||
810 | ||||
811 | // Consider strings; they may overlap with the span. | |||
812 | OffsetList offsets; | |||
813 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
814 | // Use offset list to try all possibilities. | |||
815 | offsets.setMaxLength(maxLength16); | |||
816 | } | |||
817 | int32_t i, stringsLength=strings.size(); | |||
818 | uint8_t *spanBackLengths=spanLengths; | |||
819 | if(all) { | |||
820 | spanBackLengths+=stringsLength; | |||
821 | } | |||
822 | for(;;) { | |||
823 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
824 | for(i=0; i<stringsLength; ++i) { | |||
825 | int32_t overlap=spanBackLengths[i]; | |||
826 | if(overlap==ALL_CP_CONTAINED) { | |||
827 | continue; // Irrelevant string. (Also the empty string.) | |||
828 | } | |||
829 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
830 | const char16_t *s16=string.getBuffer(); | |||
831 | int32_t length16=string.length(); | |||
832 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
833 | ||||
834 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |||
835 | if(overlap>=LONG_SPAN) { | |||
836 | overlap=length16; | |||
837 | // While contained: No point matching fully inside the code point span. | |||
838 | int32_t len1=0; | |||
839 | U16_FWD_1(s16, len1, overlap)do { if(((((s16)[(len1)++])&0xfffffc00)==0xd800) && (len1)!=(overlap) && ((((s16)[len1])&0xfffffc00) ==0xdc00)) { ++(len1); } } while (false); | |||
840 | overlap-=len1; // Length of the string minus the first code point. | |||
841 | } | |||
842 | if(overlap>spanLength) { | |||
843 | overlap=spanLength; | |||
844 | } | |||
845 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |||
846 | for(;;) { | |||
847 | if(dec>pos) { | |||
848 | break; | |||
849 | } | |||
850 | // Try to match if the decrement is not listed already. | |||
851 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { | |||
852 | if(dec==pos) { | |||
853 | return 0; // Reached the start of the string. | |||
854 | } | |||
855 | offsets.addOffset(dec); | |||
856 | } | |||
857 | if(overlap==0) { | |||
858 | break; | |||
859 | } | |||
860 | --overlap; | |||
861 | ++dec; | |||
862 | } | |||
863 | } | |||
864 | } else /* USET_SPAN_SIMPLE */ { | |||
865 | int32_t maxDec=0, maxOverlap=0; | |||
866 | for(i=0; i<stringsLength; ++i) { | |||
867 | int32_t overlap=spanBackLengths[i]; | |||
868 | // For longest match, we do need to try to match even an all-contained string | |||
869 | // to find the match from the latest end. | |||
870 | ||||
871 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
872 | const char16_t *s16=string.getBuffer(); | |||
873 | int32_t length16=string.length(); | |||
874 | if (length16==0) { | |||
875 | continue; // skip the empty string | |||
876 | } | |||
877 | ||||
878 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |||
879 | if(overlap>=LONG_SPAN) { | |||
880 | overlap=length16; | |||
881 | // Longest match: Need to match fully inside the code point span | |||
882 | // to find the match from the latest end. | |||
883 | } | |||
884 | if(overlap>spanLength) { | |||
885 | overlap=spanLength; | |||
886 | } | |||
887 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |||
888 | for(;;) { | |||
889 | if(dec>pos || overlap<maxOverlap) { | |||
890 | break; | |||
891 | } | |||
892 | // Try to match if the string is longer or ends later. | |||
893 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |||
894 | matches16CPB(s, pos-dec, length, s16, length16) | |||
895 | ) { | |||
896 | maxDec=dec; // Longest match from latest end. | |||
897 | maxOverlap=overlap; | |||
898 | break; | |||
899 | } | |||
900 | --overlap; | |||
901 | ++dec; | |||
902 | } | |||
903 | } | |||
904 | ||||
905 | if(maxDec!=0 || maxOverlap!=0) { | |||
906 | // Longest-match algorithm, and there was a string match. | |||
907 | // Simply continue before it. | |||
908 | pos-=maxDec; | |||
909 | if(pos==0) { | |||
910 | return 0; // Reached the start of the string. | |||
911 | } | |||
912 | spanLength=0; // Match strings from before a string match. | |||
913 | continue; | |||
914 | } | |||
915 | } | |||
916 | // Finished trying to match all strings at pos. | |||
917 | ||||
918 | if(spanLength!=0 || pos==length) { | |||
919 | // The position is before an unlimited code point span (spanLength!=0), | |||
920 | // not before a string match. | |||
921 | // The only position where spanLength==0 before a span is pos==length. | |||
922 | // Otherwise, an unlimited code point span is only tried again when no | |||
923 | // strings match, and if such a non-initial span fails we stop. | |||
924 | if(offsets.isEmpty()) { | |||
925 | return pos; // No strings matched before a span. | |||
926 | } | |||
927 | // Match strings from before the next string match. | |||
928 | } else { | |||
929 | // The position is before a string match (or a single code point). | |||
930 | if(offsets.isEmpty()) { | |||
931 | // No more strings matched before a previous string match. | |||
932 | // Try another code point span from before the last string match. | |||
933 | int32_t oldPos=pos; | |||
934 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); | |||
935 | spanLength=oldPos-pos; | |||
936 | if( pos==0 || // Reached the start of the string, or | |||
937 | spanLength==0 // neither strings nor span progressed. | |||
938 | ) { | |||
939 | return pos; | |||
940 | } | |||
941 | continue; // spanLength>0: Match strings from before a span. | |||
942 | } else { | |||
943 | // Try to match only one code point from before a string match if some | |||
944 | // string matched beyond it, so that we try all possible positions | |||
945 | // and don't overshoot. | |||
946 | spanLength=spanOneBack(spanSet, s, pos); | |||
947 | if(spanLength>0) { | |||
948 | if(spanLength==pos) { | |||
949 | return 0; // Reached the start of the string. | |||
950 | } | |||
951 | // Match strings before this code point. | |||
952 | // There cannot be any decrements below it because UnicodeSet strings | |||
953 | // contain multiple code points. | |||
954 | pos-=spanLength; | |||
955 | offsets.shift(spanLength); | |||
956 | spanLength=0; | |||
957 | continue; // Match strings from before a single code point. | |||
958 | } | |||
959 | // Match strings from before the next string match. | |||
960 | } | |||
961 | } | |||
962 | pos-=offsets.popMinimum(); | |||
963 | spanLength=0; // Match strings from before a string match. | |||
964 | } | |||
965 | } | |||
966 | ||||
967 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
968 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
969 | return spanNotUTF8(s, length); | |||
970 | } | |||
971 | int32_t spanLength = spanSet.spanUTF8(reinterpret_cast<const char*>(s), length, USET_SPAN_CONTAINED); | |||
972 | if(spanLength==length) { | |||
973 | return length; | |||
974 | } | |||
975 | ||||
976 | // Consider strings; they may overlap with the span. | |||
977 | OffsetList offsets; | |||
978 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
979 | // Use offset list to try all possibilities. | |||
980 | offsets.setMaxLength(maxLength8); | |||
981 | } | |||
982 | int32_t pos=spanLength, rest=length-pos; | |||
983 | int32_t i, stringsLength=strings.size(); | |||
984 | uint8_t *spanUTF8Lengths=spanLengths; | |||
985 | if(all) { | |||
986 | spanUTF8Lengths+=2*stringsLength; | |||
987 | } | |||
988 | for(;;) { | |||
989 | const uint8_t *s8=utf8; | |||
990 | int32_t length8; | |||
991 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
992 | for(i=0; i<stringsLength; ++i) { | |||
993 | length8=utf8Lengths[i]; | |||
994 | if(length8==0) { | |||
995 | continue; // String not representable in UTF-8. | |||
996 | } | |||
997 | int32_t overlap=spanUTF8Lengths[i]; | |||
998 | if(overlap==ALL_CP_CONTAINED) { | |||
999 | s8+=length8; | |||
1000 | continue; // Irrelevant string. | |||
1001 | } | |||
1002 | ||||
1003 | // Try to match this string at pos-overlap..pos. | |||
1004 | if(overlap>=LONG_SPAN) { | |||
1005 | overlap=length8; | |||
1006 | // While contained: No point matching fully inside the code point span. | |||
1007 | U8_BACK_1(s8, 0, overlap)do { if(((int8_t)((s8)[--(overlap)])<-0x40)) { (overlap)=utf8_back1SafeBody_77 (s8, 0, (overlap)); } } while (false); // Length of the string minus the last code point. | |||
1008 | } | |||
1009 | if(overlap>spanLength) { | |||
1010 | overlap=spanLength; | |||
1011 | } | |||
1012 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |||
1013 | for(;;) { | |||
1014 | if(inc>rest) { | |||
1015 | break; | |||
1016 | } | |||
1017 | // Try to match if the increment is not listed already. | |||
1018 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
1019 | // from UTF-16 and are guaranteed to be well-formed.) | |||
1020 | if(!U8_IS_TRAIL(s[pos-overlap])((int8_t)(s[pos-overlap])<-0x40) && | |||
1021 | !offsets.containsOffset(inc) && | |||
1022 | matches8(s+pos-overlap, s8, length8)) { | |||
1023 | if(inc==rest) { | |||
1024 | return length; // Reached the end of the string. | |||
1025 | } | |||
1026 | offsets.addOffset(inc); | |||
1027 | } | |||
1028 | if(overlap==0) { | |||
1029 | break; | |||
1030 | } | |||
1031 | --overlap; | |||
1032 | ++inc; | |||
1033 | } | |||
1034 | s8+=length8; | |||
1035 | } | |||
1036 | } else /* USET_SPAN_SIMPLE */ { | |||
1037 | int32_t maxInc=0, maxOverlap=0; | |||
1038 | for(i=0; i<stringsLength; ++i) { | |||
1039 | length8=utf8Lengths[i]; | |||
1040 | if(length8==0) { | |||
1041 | continue; // String not representable in UTF-8. | |||
1042 | } | |||
1043 | int32_t overlap=spanUTF8Lengths[i]; | |||
1044 | // For longest match, we do need to try to match even an all-contained string | |||
1045 | // to find the match from the earliest start. | |||
1046 | ||||
1047 | // Try to match this string at pos-overlap..pos. | |||
1048 | if(overlap>=LONG_SPAN) { | |||
1049 | overlap=length8; | |||
1050 | // Longest match: Need to match fully inside the code point span | |||
1051 | // to find the match from the earliest start. | |||
1052 | } | |||
1053 | if(overlap>spanLength) { | |||
1054 | overlap=spanLength; | |||
1055 | } | |||
1056 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |||
1057 | for(;;) { | |||
1058 | if(inc>rest || overlap<maxOverlap) { | |||
1059 | break; | |||
1060 | } | |||
1061 | // Try to match if the string is longer or starts earlier. | |||
1062 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
1063 | // from UTF-16 and are guaranteed to be well-formed.) | |||
1064 | if(!U8_IS_TRAIL(s[pos-overlap])((int8_t)(s[pos-overlap])<-0x40) && | |||
1065 | (overlap>maxOverlap || | |||
1066 | /* redundant overlap==maxOverlap && */ inc>maxInc) && | |||
1067 | matches8(s+pos-overlap, s8, length8)) { | |||
1068 | maxInc=inc; // Longest match from earliest start. | |||
1069 | maxOverlap=overlap; | |||
1070 | break; | |||
1071 | } | |||
1072 | --overlap; | |||
1073 | ++inc; | |||
1074 | } | |||
1075 | s8+=length8; | |||
1076 | } | |||
1077 | ||||
1078 | if(maxInc!=0 || maxOverlap!=0) { | |||
1079 | // Longest-match algorithm, and there was a string match. | |||
1080 | // Simply continue after it. | |||
1081 | pos+=maxInc; | |||
1082 | rest-=maxInc; | |||
1083 | if(rest==0) { | |||
1084 | return length; // Reached the end of the string. | |||
1085 | } | |||
1086 | spanLength=0; // Match strings from after a string match. | |||
1087 | continue; | |||
1088 | } | |||
1089 | } | |||
1090 | // Finished trying to match all strings at pos. | |||
1091 | ||||
1092 | if(spanLength!=0 || pos==0) { | |||
1093 | // The position is after an unlimited code point span (spanLength!=0), | |||
1094 | // not after a string match. | |||
1095 | // The only position where spanLength==0 after a span is pos==0. | |||
1096 | // Otherwise, an unlimited code point span is only tried again when no | |||
1097 | // strings match, and if such a non-initial span fails we stop. | |||
1098 | if(offsets.isEmpty()) { | |||
1099 | return pos; // No strings matched after a span. | |||
1100 | } | |||
1101 | // Match strings from after the next string match. | |||
1102 | } else { | |||
1103 | // The position is after a string match (or a single code point). | |||
1104 | if(offsets.isEmpty()) { | |||
1105 | // No more strings matched after a previous string match. | |||
1106 | // Try another code point span from after the last string match. | |||
1107 | spanLength = spanSet.spanUTF8(reinterpret_cast<const char*>(s) + pos, rest, USET_SPAN_CONTAINED); | |||
1108 | if( spanLength==rest || // Reached the end of the string, or | |||
1109 | spanLength==0 // neither strings nor span progressed. | |||
1110 | ) { | |||
1111 | return pos+spanLength; | |||
1112 | } | |||
1113 | pos+=spanLength; | |||
1114 | rest-=spanLength; | |||
1115 | continue; // spanLength>0: Match strings from after a span. | |||
1116 | } else { | |||
1117 | // Try to match only one code point from after a string match if some | |||
1118 | // string matched beyond it, so that we try all possible positions | |||
1119 | // and don't overshoot. | |||
1120 | spanLength=spanOneUTF8(spanSet, s+pos, rest); | |||
1121 | if(spanLength>0) { | |||
1122 | if(spanLength==rest) { | |||
1123 | return length; // Reached the end of the string. | |||
1124 | } | |||
1125 | // Match strings after this code point. | |||
1126 | // There cannot be any increments below it because UnicodeSet strings | |||
1127 | // contain multiple code points. | |||
1128 | pos+=spanLength; | |||
1129 | rest-=spanLength; | |||
1130 | offsets.shift(spanLength); | |||
1131 | spanLength=0; | |||
1132 | continue; // Match strings from after a single code point. | |||
1133 | } | |||
1134 | // Match strings from after the next string match. | |||
1135 | } | |||
1136 | } | |||
1137 | int32_t minOffset=offsets.popMinimum(); | |||
1138 | pos+=minOffset; | |||
1139 | rest-=minOffset; | |||
1140 | spanLength=0; // Match strings from after a string match. | |||
1141 | } | |||
1142 | } | |||
1143 | ||||
1144 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
1145 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
1146 | return spanNotBackUTF8(s, length); | |||
1147 | } | |||
1148 | int32_t pos = spanSet.spanBackUTF8(reinterpret_cast<const char*>(s), length, USET_SPAN_CONTAINED); | |||
1149 | if(pos==0) { | |||
1150 | return 0; | |||
1151 | } | |||
1152 | int32_t spanLength=length-pos; | |||
1153 | ||||
1154 | // Consider strings; they may overlap with the span. | |||
1155 | OffsetList offsets; | |||
1156 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
1157 | // Use offset list to try all possibilities. | |||
1158 | offsets.setMaxLength(maxLength8); | |||
1159 | } | |||
1160 | int32_t i, stringsLength=strings.size(); | |||
1161 | uint8_t *spanBackUTF8Lengths=spanLengths; | |||
1162 | if(all) { | |||
1163 | spanBackUTF8Lengths+=3*stringsLength; | |||
1164 | } | |||
1165 | for(;;) { | |||
1166 | const uint8_t *s8=utf8; | |||
1167 | int32_t length8; | |||
1168 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
1169 | for(i=0; i<stringsLength; ++i) { | |||
1170 | length8=utf8Lengths[i]; | |||
1171 | if(length8==0) { | |||
1172 | continue; // String not representable in UTF-8. | |||
1173 | } | |||
1174 | int32_t overlap=spanBackUTF8Lengths[i]; | |||
1175 | if(overlap==ALL_CP_CONTAINED) { | |||
1176 | s8+=length8; | |||
1177 | continue; // Irrelevant string. | |||
1178 | } | |||
1179 | ||||
1180 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |||
1181 | if(overlap>=LONG_SPAN) { | |||
1182 | overlap=length8; | |||
1183 | // While contained: No point matching fully inside the code point span. | |||
1184 | int32_t len1=0; | |||
1185 | U8_FWD_1(s8, len1, overlap)do { uint8_t __b=(s8)[(len1)++]; if(((uint8_t)((__b)-0xc2)<= 0x32) && (len1)!=(overlap)) { uint8_t __t1=(s8)[len1] ; if((0xe0<=__b && __b<0xf0)) { if(("\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30" [(__b)&0xf]&(1<<((uint8_t)(__t1)>>5))) && ++(len1)!=(overlap) && ((int8_t)((s8)[len1])<-0x40 )) { ++(len1); } } else if(__b<0xe0) { if(((int8_t)(__t1)< -0x40)) { ++(len1); } } else { if(("\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00" [(uint8_t)(__t1)>>4]&(1<<((__b)&7))) && ++(len1)!=(overlap) && ((int8_t)((s8)[len1])<-0x40 ) && ++(len1)!=(overlap) && ((int8_t)((s8)[len1 ])<-0x40)) { ++(len1); } } } } while (false); | |||
1186 | overlap-=len1; // Length of the string minus the first code point. | |||
1187 | } | |||
1188 | if(overlap>spanLength) { | |||
1189 | overlap=spanLength; | |||
1190 | } | |||
1191 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |||
1192 | for(;;) { | |||
1193 | if(dec>pos) { | |||
1194 | break; | |||
1195 | } | |||
1196 | // Try to match if the decrement is not listed already. | |||
1197 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
1198 | // from UTF-16 and are guaranteed to be well-formed.) | |||
1199 | if( !U8_IS_TRAIL(s[pos-dec])((int8_t)(s[pos-dec])<-0x40) && | |||
1200 | !offsets.containsOffset(dec) && | |||
1201 | matches8(s+pos-dec, s8, length8) | |||
1202 | ) { | |||
1203 | if(dec==pos) { | |||
1204 | return 0; // Reached the start of the string. | |||
1205 | } | |||
1206 | offsets.addOffset(dec); | |||
1207 | } | |||
1208 | if(overlap==0) { | |||
1209 | break; | |||
1210 | } | |||
1211 | --overlap; | |||
1212 | ++dec; | |||
1213 | } | |||
1214 | s8+=length8; | |||
1215 | } | |||
1216 | } else /* USET_SPAN_SIMPLE */ { | |||
1217 | int32_t maxDec=0, maxOverlap=0; | |||
1218 | for(i=0; i<stringsLength; ++i) { | |||
1219 | length8=utf8Lengths[i]; | |||
1220 | if(length8==0) { | |||
1221 | continue; // String not representable in UTF-8. | |||
1222 | } | |||
1223 | int32_t overlap=spanBackUTF8Lengths[i]; | |||
1224 | // For longest match, we do need to try to match even an all-contained string | |||
1225 | // to find the match from the latest end. | |||
1226 | ||||
1227 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |||
1228 | if(overlap>=LONG_SPAN) { | |||
1229 | overlap=length8; | |||
1230 | // Longest match: Need to match fully inside the code point span | |||
1231 | // to find the match from the latest end. | |||
1232 | } | |||
1233 | if(overlap>spanLength) { | |||
1234 | overlap=spanLength; | |||
1235 | } | |||
1236 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |||
1237 | for(;;) { | |||
1238 | if(dec>pos || overlap<maxOverlap) { | |||
1239 | break; | |||
1240 | } | |||
1241 | // Try to match if the string is longer or ends later. | |||
1242 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
1243 | // from UTF-16 and are guaranteed to be well-formed.) | |||
1244 | if( !U8_IS_TRAIL(s[pos-dec])((int8_t)(s[pos-dec])<-0x40) && | |||
1245 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |||
1246 | matches8(s+pos-dec, s8, length8) | |||
1247 | ) { | |||
1248 | maxDec=dec; // Longest match from latest end. | |||
1249 | maxOverlap=overlap; | |||
1250 | break; | |||
1251 | } | |||
1252 | --overlap; | |||
1253 | ++dec; | |||
1254 | } | |||
1255 | s8+=length8; | |||
1256 | } | |||
1257 | ||||
1258 | if(maxDec!=0 || maxOverlap!=0) { | |||
1259 | // Longest-match algorithm, and there was a string match. | |||
1260 | // Simply continue before it. | |||
1261 | pos-=maxDec; | |||
1262 | if(pos==0) { | |||
1263 | return 0; // Reached the start of the string. | |||
1264 | } | |||
1265 | spanLength=0; // Match strings from before a string match. | |||
1266 | continue; | |||
1267 | } | |||
1268 | } | |||
1269 | // Finished trying to match all strings at pos. | |||
1270 | ||||
1271 | if(spanLength!=0 || pos==length) { | |||
1272 | // The position is before an unlimited code point span (spanLength!=0), | |||
1273 | // not before a string match. | |||
1274 | // The only position where spanLength==0 before a span is pos==length. | |||
1275 | // Otherwise, an unlimited code point span is only tried again when no | |||
1276 | // strings match, and if such a non-initial span fails we stop. | |||
1277 | if(offsets.isEmpty()) { | |||
1278 | return pos; // No strings matched before a span. | |||
1279 | } | |||
1280 | // Match strings from before the next string match. | |||
1281 | } else { | |||
1282 | // The position is before a string match (or a single code point). | |||
1283 | if(offsets.isEmpty()) { | |||
1284 | // No more strings matched before a previous string match. | |||
1285 | // Try another code point span from before the last string match. | |||
1286 | int32_t oldPos=pos; | |||
1287 | pos = spanSet.spanBackUTF8(reinterpret_cast<const char*>(s), oldPos, USET_SPAN_CONTAINED); | |||
1288 | spanLength=oldPos-pos; | |||
1289 | if( pos==0 || // Reached the start of the string, or | |||
1290 | spanLength==0 // neither strings nor span progressed. | |||
1291 | ) { | |||
1292 | return pos; | |||
1293 | } | |||
1294 | continue; // spanLength>0: Match strings from before a span. | |||
1295 | } else { | |||
1296 | // Try to match only one code point from before a string match if some | |||
1297 | // string matched beyond it, so that we try all possible positions | |||
1298 | // and don't overshoot. | |||
1299 | spanLength=spanOneBackUTF8(spanSet, s, pos); | |||
1300 | if(spanLength>0) { | |||
1301 | if(spanLength==pos) { | |||
1302 | return 0; // Reached the start of the string. | |||
1303 | } | |||
1304 | // Match strings before this code point. | |||
1305 | // There cannot be any decrements below it because UnicodeSet strings | |||
1306 | // contain multiple code points. | |||
1307 | pos-=spanLength; | |||
1308 | offsets.shift(spanLength); | |||
1309 | spanLength=0; | |||
1310 | continue; // Match strings from before a single code point. | |||
1311 | } | |||
1312 | // Match strings from before the next string match. | |||
1313 | } | |||
1314 | } | |||
1315 | pos-=offsets.popMinimum(); | |||
1316 | spanLength=0; // Match strings from before a string match. | |||
1317 | } | |||
1318 | } | |||
1319 | ||||
1320 | /* | |||
1321 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) | |||
1322 | * | |||
1323 | * Theoretical algorithm: | |||
1324 | * - Iterate through the string, and at each code point boundary: | |||
1325 | * + If the code point there is in the set, then return with the current position. | |||
1326 | * + If a set string matches at the current position, then return with the current position. | |||
1327 | * | |||
1328 | * Optimized implementation: | |||
1329 | * | |||
1330 | * (Same assumption as for span() above.) | |||
1331 | * | |||
1332 | * Create and cache a spanNotSet which contains all of the single code points | |||
1333 | * of the original set but none of its strings. | |||
1334 | * For each set string add its initial code point to the spanNotSet. | |||
1335 | * (Also add its final code point for spanNotBack().) | |||
1336 | * | |||
1337 | * - Loop: | |||
1338 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). | |||
1339 | * + If the current code point is in the original set, then | |||
1340 | * return the current position. | |||
1341 | * + If any set string matches at the current position, then | |||
1342 | * return the current position. | |||
1343 | * + If there is no match at the current position, neither for the code point there | |||
1344 | * nor for any set string, then skip this code point and continue the loop. | |||
1345 | * This happens for set-string-initial code points that were added to spanNotSet | |||
1346 | * when there is not actually a match for such a set string. | |||
1347 | */ | |||
1348 | ||||
1349 | int32_t UnicodeSetStringSpan::spanNot(const char16_t *s, int32_t length) const { | |||
1350 | int32_t pos=0, rest=length; | |||
1351 | int32_t i, stringsLength=strings.size(); | |||
1352 | do { | |||
1353 | // Span until we find a code point from the set, | |||
1354 | // or a code point that starts or ends some string. | |||
1355 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); | |||
1356 | if(i==rest) { | |||
1357 | return length; // Reached the end of the string. | |||
1358 | } | |||
1359 | pos+=i; | |||
1360 | rest-=i; | |||
1361 | ||||
1362 | // Check whether the current code point is in the original set, | |||
1363 | // without the string starts and ends. | |||
1364 | int32_t cpLength=spanOne(spanSet, s+pos, rest); | |||
1365 | if(cpLength>0) { | |||
1366 | return pos; // There is a set element at pos. | |||
1367 | } | |||
1368 | ||||
1369 | // Try to match the strings at pos. | |||
1370 | for(i=0; i<stringsLength; ++i) { | |||
1371 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |||
1372 | continue; // Irrelevant string. (Also the empty string.) | |||
1373 | } | |||
1374 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
1375 | const char16_t *s16=string.getBuffer(); | |||
1376 | int32_t length16=string.length(); | |||
1377 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
1378 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { | |||
1379 | return pos; // There is a set element at pos. | |||
1380 | } | |||
1381 | } | |||
1382 | ||||
1383 | // The span(while not contained) ended on a string start/end which is | |||
1384 | // not in the original set. Skip this code point and continue. | |||
1385 | // cpLength<0 | |||
1386 | pos-=cpLength; | |||
1387 | rest+=cpLength; | |||
1388 | } while(rest!=0); | |||
1389 | return length; // Reached the end of the string. | |||
1390 | } | |||
1391 | ||||
1392 | int32_t UnicodeSetStringSpan::spanNotBack(const char16_t *s, int32_t length) const { | |||
1393 | int32_t pos=length; | |||
1394 | int32_t i, stringsLength=strings.size(); | |||
1395 | do { | |||
1396 | // Span until we find a code point from the set, | |||
1397 | // or a code point that starts or ends some string. | |||
1398 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); | |||
1399 | if(pos==0) { | |||
1400 | return 0; // Reached the start of the string. | |||
1401 | } | |||
1402 | ||||
1403 | // Check whether the current code point is in the original set, | |||
1404 | // without the string starts and ends. | |||
1405 | int32_t cpLength=spanOneBack(spanSet, s, pos); | |||
1406 | if(cpLength>0) { | |||
1407 | return pos; // There is a set element at pos. | |||
1408 | } | |||
1409 | ||||
1410 | // Try to match the strings at pos. | |||
1411 | for(i=0; i<stringsLength; ++i) { | |||
1412 | // Use spanLengths rather than a spanBackLengths pointer because | |||
1413 | // it is easier and we only need to know whether the string is irrelevant | |||
1414 | // which is the same in either array. | |||
1415 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |||
1416 | continue; // Irrelevant string. (Also the empty string.) | |||
1417 | } | |||
1418 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
1419 | const char16_t *s16=string.getBuffer(); | |||
1420 | int32_t length16=string.length(); | |||
1421 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
1422 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { | |||
1423 | return pos; // There is a set element at pos. | |||
1424 | } | |||
1425 | } | |||
1426 | ||||
1427 | // The span(while not contained) ended on a string start/end which is | |||
1428 | // not in the original set. Skip this code point and continue. | |||
1429 | // cpLength<0 | |||
1430 | pos+=cpLength; | |||
1431 | } while(pos!=0); | |||
1432 | return 0; // Reached the start of the string. | |||
1433 | } | |||
1434 | ||||
1435 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { | |||
1436 | int32_t pos=0, rest=length; | |||
1437 | int32_t i, stringsLength=strings.size(); | |||
1438 | uint8_t *spanUTF8Lengths=spanLengths; | |||
1439 | if(all) { | |||
1440 | spanUTF8Lengths+=2*stringsLength; | |||
1441 | } | |||
1442 | do { | |||
1443 | // Span until we find a code point from the set, | |||
1444 | // or a code point that starts or ends some string. | |||
1445 | i = pSpanNotSet->spanUTF8(reinterpret_cast<const char*>(s) + pos, rest, USET_SPAN_NOT_CONTAINED); | |||
1446 | if(i==rest) { | |||
1447 | return length; // Reached the end of the string. | |||
1448 | } | |||
1449 | pos+=i; | |||
1450 | rest-=i; | |||
1451 | ||||
1452 | // Check whether the current code point is in the original set, | |||
1453 | // without the string starts and ends. | |||
1454 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); | |||
1455 | if(cpLength>0) { | |||
1456 | return pos; // There is a set element at pos. | |||
1457 | } | |||
1458 | ||||
1459 | // Try to match the strings at pos. | |||
1460 | const uint8_t *s8=utf8; | |||
1461 | int32_t length8; | |||
1462 | for(i=0; i<stringsLength; ++i) { | |||
1463 | length8=utf8Lengths[i]; | |||
1464 | // ALL_CP_CONTAINED: Irrelevant string. | |||
1465 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { | |||
1466 | return pos; // There is a set element at pos. | |||
1467 | } | |||
1468 | s8+=length8; | |||
1469 | } | |||
1470 | ||||
1471 | // The span(while not contained) ended on a string start/end which is | |||
1472 | // not in the original set. Skip this code point and continue. | |||
1473 | // cpLength<0 | |||
1474 | pos-=cpLength; | |||
1475 | rest+=cpLength; | |||
1476 | } while(rest!=0); | |||
1477 | return length; // Reached the end of the string. | |||
1478 | } | |||
1479 | ||||
1480 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { | |||
1481 | int32_t pos=length; | |||
1482 | int32_t i, stringsLength=strings.size(); | |||
1483 | uint8_t *spanBackUTF8Lengths=spanLengths; | |||
1484 | if(all) { | |||
1485 | spanBackUTF8Lengths+=3*stringsLength; | |||
1486 | } | |||
1487 | do { | |||
1488 | // Span until we find a code point from the set, | |||
1489 | // or a code point that starts or ends some string. | |||
1490 | pos = pSpanNotSet->spanBackUTF8(reinterpret_cast<const char*>(s), pos, USET_SPAN_NOT_CONTAINED); | |||
1491 | if(pos==0) { | |||
1492 | return 0; // Reached the start of the string. | |||
1493 | } | |||
1494 | ||||
1495 | // Check whether the current code point is in the original set, | |||
1496 | // without the string starts and ends. | |||
1497 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); | |||
1498 | if(cpLength>0) { | |||
1499 | return pos; // There is a set element at pos. | |||
1500 | } | |||
1501 | ||||
1502 | // Try to match the strings at pos. | |||
1503 | const uint8_t *s8=utf8; | |||
1504 | int32_t length8; | |||
1505 | for(i=0; i<stringsLength; ++i) { | |||
1506 | length8=utf8Lengths[i]; | |||
1507 | // ALL_CP_CONTAINED: Irrelevant string. | |||
1508 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { | |||
1509 | return pos; // There is a set element at pos. | |||
1510 | } | |||
1511 | s8+=length8; | |||
1512 | } | |||
1513 | ||||
1514 | // The span(while not contained) ended on a string start/end which is | |||
1515 | // not in the original set. Skip this code point and continue. | |||
1516 | // cpLength<0 | |||
1517 | pos+=cpLength; | |||
1518 | } while(pos!=0); | |||
1519 | return 0; // Reached the start of the string. | |||
1520 | } | |||
1521 | ||||
1522 | U_NAMESPACE_END} |