| File: | root/firefox-clang/intl/icu/source/common/unisetspan.cpp |
| Warning: | line 124, column 9 Undefined or garbage value returned to caller |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | // © 2016 and later: Unicode, Inc. and others. | |||
| 2 | // License & terms of use: http://www.unicode.org/copyright.html | |||
| 3 | /* | |||
| 4 | ****************************************************************************** | |||
| 5 | * | |||
| 6 | * Copyright (C) 2007-2012, International Business Machines | |||
| 7 | * Corporation and others. All Rights Reserved. | |||
| 8 | * | |||
| 9 | ****************************************************************************** | |||
| 10 | * file name: unisetspan.cpp | |||
| 11 | * encoding: UTF-8 | |||
| 12 | * tab size: 8 (not used) | |||
| 13 | * indentation:4 | |||
| 14 | * | |||
| 15 | * created on: 2007mar01 | |||
| 16 | * created by: Markus W. Scherer | |||
| 17 | */ | |||
| 18 | ||||
| 19 | #include "unicode/utypes.h" | |||
| 20 | #include "unicode/uniset.h" | |||
| 21 | #include "unicode/ustring.h" | |||
| 22 | #include "unicode/utf8.h" | |||
| 23 | #include "unicode/utf16.h" | |||
| 24 | #include "cmemory.h" | |||
| 25 | #include "uvector.h" | |||
| 26 | #include "unisetspan.h" | |||
| 27 | ||||
| 28 | U_NAMESPACE_BEGINnamespace icu_77 { | |||
| 29 | ||||
| 30 | /* | |||
| 31 | * List of offsets from the current position from where to try matching | |||
| 32 | * a code point or a string. | |||
| 33 | * Store offsets rather than indexes to simplify the code and use the same list | |||
| 34 | * for both increments (in span()) and decrements (in spanBack()). | |||
| 35 | * | |||
| 36 | * Assumption: The maximum offset is limited, and the offsets that are stored | |||
| 37 | * at any one time are relatively dense, that is, there are normally no gaps of | |||
| 38 | * hundreds or thousands of offset values. | |||
| 39 | * | |||
| 40 | * The implementation uses a circular buffer of byte flags, | |||
| 41 | * each indicating whether the corresponding offset is in the list. | |||
| 42 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and | |||
| 43 | * physically moving part of the list. | |||
| 44 | * | |||
| 45 | * Note: In principle, the caller should setMaxLength() to the maximum of the | |||
| 46 | * max string length and U16_LENGTH/U8_LENGTH to account for | |||
| 47 | * "long" single code points. | |||
| 48 | * However, this implementation uses at least a staticList with more than | |||
| 49 | * U8_LENGTH entries anyway. | |||
| 50 | * | |||
| 51 | * Note: If maxLength were guaranteed to be no more than 32 or 64, | |||
| 52 | * the list could be stored as bit flags in a single integer. | |||
| 53 | * Rather than handling a circular buffer with a start list index, | |||
| 54 | * the integer would simply be shifted when lower offsets are removed. | |||
| 55 | * UnicodeSet does not have a limit on the lengths of strings. | |||
| 56 | */ | |||
| 57 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. | |||
| 58 | public: | |||
| 59 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} | |||
| 60 | ||||
| 61 | ~OffsetList() { | |||
| 62 | if(list!=staticList) { | |||
| 63 | uprv_freeuprv_free_77(list); | |||
| 64 | } | |||
| 65 | } | |||
| 66 | ||||
| 67 | // Call exactly once if the list is to be used. | |||
| 68 | void setMaxLength(int32_t maxLength) { | |||
| 69 | if (maxLength <= static_cast<int32_t>(sizeof(staticList))) { | |||
| 70 | capacity = static_cast<int32_t>(sizeof(staticList)); | |||
| 71 | } else { | |||
| 72 | UBool* l = static_cast<UBool*>(uprv_mallocuprv_malloc_77(maxLength)); | |||
| 73 | if(l!=nullptr) { | |||
| 74 | list=l; | |||
| 75 | capacity=maxLength; | |||
| 76 | } | |||
| 77 | } | |||
| 78 | uprv_memset(list, 0, capacity):: memset(list, 0, capacity); | |||
| 79 | } | |||
| 80 | ||||
| 81 | void clear() { | |||
| 82 | uprv_memset(list, 0, capacity):: memset(list, 0, capacity); | |||
| 83 | start=length=0; | |||
| 84 | } | |||
| 85 | ||||
| 86 | UBool isEmpty() const { | |||
| 87 | return length == 0; | |||
| 88 | } | |||
| 89 | ||||
| 90 | // Reduce all stored offsets by delta, used when the current position | |||
| 91 | // moves by delta. | |||
| 92 | // There must not be any offsets lower than delta. | |||
| 93 | // If there is an offset equal to delta, it is removed. | |||
| 94 | // delta=[1..maxLength] | |||
| 95 | void shift(int32_t delta) { | |||
| 96 | int32_t i=start+delta; | |||
| 97 | if(i>=capacity) { | |||
| 98 | i-=capacity; | |||
| 99 | } | |||
| 100 | if(list[i]) { | |||
| 101 | list[i]=false; | |||
| 102 | --length; | |||
| 103 | } | |||
| 104 | start=i; | |||
| 105 | } | |||
| 106 | ||||
| 107 | // Add an offset. The list must not contain it yet. | |||
| 108 | // offset=[1..maxLength] | |||
| 109 | void addOffset(int32_t offset) { | |||
| 110 | int32_t i=start+offset; | |||
| 111 | if(i>=capacity) { | |||
| 112 | i-=capacity; | |||
| 113 | } | |||
| 114 | list[i]=true; | |||
| 115 | ++length; | |||
| 116 | } | |||
| 117 | ||||
| 118 | // offset=[1..maxLength] | |||
| 119 | UBool containsOffset(int32_t offset) const { | |||
| 120 | int32_t i=start+offset; | |||
| 121 | if(i>=capacity) { | |||
| 122 | i-=capacity; | |||
| 123 | } | |||
| 124 | return list[i]; | |||
| ||||
| 125 | } | |||
| 126 | ||||
| 127 | // Find the lowest stored offset from a non-empty list, remove it, | |||
| 128 | // and reduce all other offsets by this minimum. | |||
| 129 | // Returns [1..maxLength]. | |||
| 130 | int32_t popMinimum() { | |||
| 131 | // Look for the next offset in list[start+1..capacity-1]. | |||
| 132 | int32_t i=start, result; | |||
| 133 | while(++i<capacity) { | |||
| 134 | if(list[i]) { | |||
| 135 | list[i]=false; | |||
| 136 | --length; | |||
| 137 | result=i-start; | |||
| 138 | start=i; | |||
| 139 | return result; | |||
| 140 | } | |||
| 141 | } | |||
| 142 | // i==capacity | |||
| 143 | ||||
| 144 | // Wrap around and look for the next offset in list[0..start]. | |||
| 145 | // Since the list is not empty, there will be one. | |||
| 146 | result=capacity-start; | |||
| 147 | i=0; | |||
| 148 | while(!list[i]) { | |||
| 149 | ++i; | |||
| 150 | } | |||
| 151 | list[i]=false; | |||
| 152 | --length; | |||
| 153 | start=i; | |||
| 154 | return result+=i; | |||
| 155 | } | |||
| 156 | ||||
| 157 | private: | |||
| 158 | UBool *list; | |||
| 159 | int32_t capacity; | |||
| 160 | int32_t length; | |||
| 161 | int32_t start; | |||
| 162 | ||||
| 163 | UBool staticList[16]; | |||
| 164 | }; | |||
| 165 | ||||
| 166 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. | |||
| 167 | static int32_t | |||
| 168 | getUTF8Length(const char16_t *s, int32_t length) { | |||
| 169 | UErrorCode errorCode=U_ZERO_ERROR; | |||
| 170 | int32_t length8=0; | |||
| 171 | u_strToUTF8u_strToUTF8_77(nullptr, 0, &length8, s, length, &errorCode); | |||
| 172 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { | |||
| 173 | return length8; | |||
| 174 | } else { | |||
| 175 | // The string contains an unpaired surrogate. | |||
| 176 | // Ignore this string. | |||
| 177 | return 0; | |||
| 178 | } | |||
| 179 | } | |||
| 180 | ||||
| 181 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. | |||
| 182 | static int32_t | |||
| 183 | appendUTF8(const char16_t *s, int32_t length, uint8_t *t, int32_t capacity) { | |||
| 184 | UErrorCode errorCode=U_ZERO_ERROR; | |||
| 185 | int32_t length8=0; | |||
| 186 | u_strToUTF8u_strToUTF8_77(reinterpret_cast<char*>(t), capacity, &length8, s, length, &errorCode); | |||
| 187 | if(U_SUCCESS(errorCode)) { | |||
| 188 | return length8; | |||
| 189 | } else { | |||
| 190 | // The string contains an unpaired surrogate. | |||
| 191 | // Ignore this string. | |||
| 192 | return 0; | |||
| 193 | } | |||
| 194 | } | |||
| 195 | ||||
| 196 | static inline uint8_t | |||
| 197 | makeSpanLengthByte(int32_t spanLength) { | |||
| 198 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN | |||
| 199 | return spanLength < 0xfe ? static_cast<uint8_t>(spanLength) : static_cast<uint8_t>(0xfe); | |||
| 200 | } | |||
| 201 | ||||
| 202 | // Construct for all variants of span(), or only for any one variant. | |||
| 203 | // Initialize as little as possible, for single use. | |||
| 204 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, | |||
| 205 | const UVector &setStrings, | |||
| 206 | uint32_t which) | |||
| 207 | : spanSet(0, 0x10ffff), pSpanNotSet(nullptr), strings(setStrings), | |||
| 208 | utf8Lengths(nullptr), spanLengths(nullptr), utf8(nullptr), | |||
| 209 | utf8Length(0), | |||
| 210 | maxLength16(0), maxLength8(0), | |||
| 211 | all(static_cast<UBool>(which == ALL)) { | |||
| 212 | spanSet.retainAll(set); | |||
| 213 | if(which&NOT_CONTAINED) { | |||
| 214 | // Default to the same sets. | |||
| 215 | // addToSpanNotSet() will create a separate set if necessary. | |||
| 216 | pSpanNotSet=&spanSet; | |||
| 217 | } | |||
| 218 | ||||
| 219 | // Determine if the strings even need to be taken into account at all for span() etc. | |||
| 220 | // If any string is relevant, then all strings need to be used for | |||
| 221 | // span(longest match) but only the relevant ones for span(while contained). | |||
| 222 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH | |||
| 223 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. | |||
| 224 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) | |||
| 225 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. | |||
| 226 | int32_t stringsLength=strings.size(); | |||
| 227 | ||||
| 228 | int32_t i, spanLength; | |||
| 229 | UBool someRelevant=false; | |||
| 230 | for(i=0; i<stringsLength; ++i) { | |||
| 231 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 232 | const char16_t *s16=string.getBuffer(); | |||
| 233 | int32_t length16=string.length(); | |||
| 234 | if (length16==0) { | |||
| 235 | continue; // skip the empty string | |||
| 236 | } | |||
| 237 | UBool thisRelevant; | |||
| 238 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |||
| 239 | if(spanLength<length16) { // Relevant string. | |||
| 240 | someRelevant=thisRelevant=true; | |||
| 241 | } else { | |||
| 242 | thisRelevant=false; | |||
| 243 | } | |||
| 244 | if((which&UTF16) && length16>maxLength16) { | |||
| 245 | maxLength16=length16; | |||
| 246 | } | |||
| 247 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { | |||
| 248 | int32_t length8=getUTF8Length(s16, length16); | |||
| 249 | utf8Length+=length8; | |||
| 250 | if(length8>maxLength8) { | |||
| 251 | maxLength8=length8; | |||
| 252 | } | |||
| 253 | } | |||
| 254 | } | |||
| 255 | if(!someRelevant) { | |||
| 256 | maxLength16=maxLength8=0; | |||
| 257 | return; | |||
| 258 | } | |||
| 259 | ||||
| 260 | // Freeze after checking for the need to use strings at all because freezing | |||
| 261 | // a set takes some time and memory which are wasted if there are no relevant strings. | |||
| 262 | if(all) { | |||
| 263 | spanSet.freeze(); | |||
| 264 | } | |||
| 265 | ||||
| 266 | uint8_t *spanBackLengths; | |||
| 267 | uint8_t *spanUTF8Lengths; | |||
| 268 | uint8_t *spanBackUTF8Lengths; | |||
| 269 | ||||
| 270 | // Allocate a block of meta data. | |||
| 271 | int32_t allocSize; | |||
| 272 | if(all) { | |||
| 273 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |||
| 274 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |||
| 275 | } else { | |||
| 276 | allocSize=stringsLength; // One set of span lengths. | |||
| 277 | if(which&UTF8) { | |||
| 278 | // UTF-8 lengths and UTF-8 strings. | |||
| 279 | allocSize+=stringsLength*4+utf8Length; | |||
| 280 | } | |||
| 281 | } | |||
| 282 | if (allocSize <= static_cast<int32_t>(sizeof(staticLengths))) { | |||
| 283 | utf8Lengths=staticLengths; | |||
| 284 | } else { | |||
| 285 | utf8Lengths = static_cast<int32_t*>(uprv_mallocuprv_malloc_77(allocSize)); | |||
| 286 | if(utf8Lengths==nullptr) { | |||
| 287 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return false. | |||
| 288 | return; // Out of memory. | |||
| 289 | } | |||
| 290 | } | |||
| 291 | ||||
| 292 | if(all) { | |||
| 293 | // Store span lengths for all span() variants. | |||
| 294 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths + stringsLength); | |||
| 295 | spanBackLengths=spanLengths+stringsLength; | |||
| 296 | spanUTF8Lengths=spanBackLengths+stringsLength; | |||
| 297 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; | |||
| 298 | utf8=spanBackUTF8Lengths+stringsLength; | |||
| 299 | } else { | |||
| 300 | // Store span lengths for only one span() variant. | |||
| 301 | if(which&UTF8) { | |||
| 302 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths + stringsLength); | |||
| 303 | utf8=spanLengths+stringsLength; | |||
| 304 | } else { | |||
| 305 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths); | |||
| 306 | } | |||
| 307 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; | |||
| 308 | } | |||
| 309 | ||||
| 310 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. | |||
| 311 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. | |||
| 312 | ||||
| 313 | for(i=0; i<stringsLength; ++i) { | |||
| 314 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 315 | const char16_t *s16=string.getBuffer(); | |||
| 316 | int32_t length16=string.length(); | |||
| 317 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |||
| 318 | if(spanLength<length16 && length16>0) { // Relevant string. | |||
| 319 | if(which&UTF16) { | |||
| 320 | if(which&CONTAINED) { | |||
| 321 | if(which&FWD) { | |||
| 322 | spanLengths[i]=makeSpanLengthByte(spanLength); | |||
| 323 | } | |||
| 324 | if(which&BACK) { | |||
| 325 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); | |||
| 326 | spanBackLengths[i]=makeSpanLengthByte(spanLength); | |||
| 327 | } | |||
| 328 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |||
| 329 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. | |||
| 330 | } | |||
| 331 | } | |||
| 332 | if(which&UTF8) { | |||
| 333 | uint8_t *s8=utf8+utf8Count; | |||
| 334 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |||
| 335 | utf8Count+=utf8Lengths[i]=length8; | |||
| 336 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. | |||
| 337 | spanUTF8Lengths[i] = spanBackUTF8Lengths[i] = static_cast<uint8_t>(ALL_CP_CONTAINED); | |||
| 338 | } else { // Relevant for UTF-8. | |||
| 339 | if(which&CONTAINED) { | |||
| 340 | if(which&FWD) { | |||
| 341 | spanLength = spanSet.spanUTF8(reinterpret_cast<const char*>(s8), length8, USET_SPAN_CONTAINED); | |||
| 342 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |||
| 343 | } | |||
| 344 | if(which&BACK) { | |||
| 345 | spanLength = length8 - spanSet.spanBackUTF8(reinterpret_cast<const char*>(s8), length8, USET_SPAN_CONTAINED); | |||
| 346 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |||
| 347 | } | |||
| 348 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |||
| 349 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. | |||
| 350 | } | |||
| 351 | } | |||
| 352 | } | |||
| 353 | if(which&NOT_CONTAINED) { | |||
| 354 | // Add string start and end code points to the spanNotSet so that | |||
| 355 | // a span(while not contained) stops before any string. | |||
| 356 | UChar32 c; | |||
| 357 | if(which&FWD) { | |||
| 358 | int32_t len=0; | |||
| 359 | U16_NEXT(s16, len, length16, c)do { (c)=(s16)[(len)++]; if((((c)&0xfffffc00)==0xd800)) { uint16_t __c2; if((len)!=(length16) && (((__c2=(s16) [(len)])&0xfffffc00)==0xdc00)) { ++(len); (c)=(((UChar32) ((c))<<10UL)+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00 -0x10000)); } } } while (false); | |||
| 360 | addToSpanNotSet(c); | |||
| 361 | } | |||
| 362 | if(which&BACK) { | |||
| 363 | int32_t len=length16; | |||
| 364 | U16_PREV(s16, 0, len, c)do { (c)=(s16)[--(len)]; if((((c)&0xfffffc00)==0xdc00)) { uint16_t __c2; if((len)>(0) && (((__c2=(s16)[(len )-1])&0xfffffc00)==0xd800)) { --(len); (c)=(((UChar32)(__c2 )<<10UL)+(UChar32)((c))-((0xd800<<10UL)+0xdc00-0x10000 )); } } } while (false); | |||
| 365 | addToSpanNotSet(c); | |||
| 366 | } | |||
| 367 | } | |||
| 368 | } else { // Irrelevant string. (Also the empty string.) | |||
| 369 | if(which&UTF8) { | |||
| 370 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. | |||
| 371 | uint8_t *s8=utf8+utf8Count; | |||
| 372 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |||
| 373 | utf8Count+=utf8Lengths[i]=length8; | |||
| 374 | } else { | |||
| 375 | utf8Lengths[i]=0; | |||
| 376 | } | |||
| 377 | } | |||
| 378 | if(all) { | |||
| 379 | spanLengths[i]=spanBackLengths[i]= | |||
| 380 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= | |||
| 381 | static_cast<uint8_t>(ALL_CP_CONTAINED); | |||
| 382 | } else { | |||
| 383 | // All spanXYZLengths pointers contain the same address. | |||
| 384 | spanLengths[i] = static_cast<uint8_t>(ALL_CP_CONTAINED); | |||
| 385 | } | |||
| 386 | } | |||
| 387 | } | |||
| 388 | ||||
| 389 | // Finish. | |||
| 390 | if(all) { | |||
| 391 | pSpanNotSet->freeze(); | |||
| 392 | } | |||
| 393 | } | |||
| 394 | ||||
| 395 | // Copy constructor. Assumes which==ALL for a frozen set. | |||
| 396 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, | |||
| 397 | const UVector &newParentSetStrings) | |||
| 398 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(nullptr), strings(newParentSetStrings), | |||
| 399 | utf8Lengths(nullptr), spanLengths(nullptr), utf8(nullptr), | |||
| 400 | utf8Length(otherStringSpan.utf8Length), | |||
| 401 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), | |||
| 402 | all(true) { | |||
| 403 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { | |||
| 404 | pSpanNotSet=&spanSet; | |||
| 405 | } else { | |||
| 406 | pSpanNotSet=otherStringSpan.pSpanNotSet->clone(); | |||
| 407 | } | |||
| 408 | ||||
| 409 | // Allocate a block of meta data. | |||
| 410 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |||
| 411 | int32_t stringsLength=strings.size(); | |||
| 412 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |||
| 413 | if (allocSize <= static_cast<int32_t>(sizeof(staticLengths))) { | |||
| 414 | utf8Lengths=staticLengths; | |||
| 415 | } else { | |||
| 416 | utf8Lengths = static_cast<int32_t*>(uprv_mallocuprv_malloc_77(allocSize)); | |||
| 417 | if(utf8Lengths==nullptr) { | |||
| 418 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return false. | |||
| 419 | return; // Out of memory. | |||
| 420 | } | |||
| 421 | } | |||
| 422 | ||||
| 423 | spanLengths = reinterpret_cast<uint8_t*>(utf8Lengths + stringsLength); | |||
| 424 | utf8=spanLengths+stringsLength*4; | |||
| 425 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize)do { clang diagnostic push
clang diagnostic ignored "-Waddress" (static_cast <bool> (utf8Lengths != __null) ? void (0 ) : __assert_fail ("utf8Lengths != __null", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); (static_cast <bool> (otherStringSpan.utf8Lengths != __null) ? void ( 0) : __assert_fail ("otherStringSpan.utf8Lengths != __null", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); clang diagnostic pop :: memcpy(utf8Lengths, otherStringSpan.utf8Lengths , allocSize); } while (false); | |||
| 426 | } | |||
| 427 | ||||
| 428 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { | |||
| 429 | if(pSpanNotSet!=nullptr && pSpanNotSet!=&spanSet) { | |||
| 430 | delete pSpanNotSet; | |||
| 431 | } | |||
| 432 | if(utf8Lengths!=nullptr && utf8Lengths!=staticLengths) { | |||
| 433 | uprv_freeuprv_free_77(utf8Lengths); | |||
| 434 | } | |||
| 435 | } | |||
| 436 | ||||
| 437 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { | |||
| 438 | if(pSpanNotSet==nullptr || pSpanNotSet==&spanSet) { | |||
| 439 | if(spanSet.contains(c)) { | |||
| 440 | return; // Nothing to do. | |||
| 441 | } | |||
| 442 | UnicodeSet *newSet=spanSet.cloneAsThawed(); | |||
| 443 | if(newSet==nullptr) { | |||
| 444 | return; // Out of memory. | |||
| 445 | } else { | |||
| 446 | pSpanNotSet=newSet; | |||
| 447 | } | |||
| 448 | } | |||
| 449 | pSpanNotSet->add(c); | |||
| 450 | } | |||
| 451 | ||||
| 452 | // Compare strings without any argument checks. Requires length>0. | |||
| 453 | static inline UBool | |||
| 454 | matches16(const char16_t *s, const char16_t *t, int32_t length) { | |||
| 455 | do { | |||
| 456 | if(*s++!=*t++) { | |||
| 457 | return false; | |||
| 458 | } | |||
| 459 | } while(--length>0); | |||
| 460 | return true; | |||
| 461 | } | |||
| 462 | ||||
| 463 | static inline UBool | |||
| 464 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { | |||
| 465 | do { | |||
| 466 | if(*s++!=*t++) { | |||
| 467 | return false; | |||
| 468 | } | |||
| 469 | } while(--length>0); | |||
| 470 | return true; | |||
| 471 | } | |||
| 472 | ||||
| 473 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) | |||
| 474 | // at code point boundaries. | |||
| 475 | // That is, each edge of a match must not be in the middle of a surrogate pair. | |||
| 476 | static inline UBool | |||
| 477 | matches16CPB(const char16_t *s, int32_t start, int32_t limit, const char16_t *t, int32_t length) { | |||
| 478 | s+=start; | |||
| 479 | limit-=start; | |||
| 480 | return matches16(s, t, length) && | |||
| 481 | !(0<start && U16_IS_LEAD(s[-1])(((s[-1])&0xfffffc00)==0xd800) && U16_IS_TRAIL(s[0])(((s[0])&0xfffffc00)==0xdc00)) && | |||
| 482 | !(length<limit && U16_IS_LEAD(s[length-1])(((s[length-1])&0xfffffc00)==0xd800) && U16_IS_TRAIL(s[length])(((s[length])&0xfffffc00)==0xdc00)); | |||
| 483 | } | |||
| 484 | ||||
| 485 | // Does the set contain the next code point? | |||
| 486 | // If so, return its length; otherwise return its negative length. | |||
| 487 | static inline int32_t | |||
| 488 | spanOne(const UnicodeSet &set, const char16_t *s, int32_t length) { | |||
| 489 | char16_t c=*s, c2; | |||
| 490 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])(((c2=s[1])&0xfffffc00)==0xdc00)) { | |||
| 491 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL )+0xdc00-0x10000))) ? 2 : -2; | |||
| 492 | } | |||
| 493 | return set.contains(c) ? 1 : -1; | |||
| 494 | } | |||
| 495 | ||||
| 496 | static inline int32_t | |||
| 497 | spanOneBack(const UnicodeSet &set, const char16_t *s, int32_t length) { | |||
| 498 | char16_t c=s[length-1], c2; | |||
| 499 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])(((c2=s[length-2])&0xfffffc00)==0xd800)) { | |||
| 500 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)(((UChar32)(c2)<<10UL)+(UChar32)(c)-((0xd800<<10UL )+0xdc00-0x10000))) ? 2 : -2; | |||
| 501 | } | |||
| 502 | return set.contains(c) ? 1 : -1; | |||
| 503 | } | |||
| 504 | ||||
| 505 | static inline int32_t | |||
| 506 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |||
| 507 | UChar32 c=*s; | |||
| 508 | if(U8_IS_SINGLE(c)(((c)&0x80)==0)) { | |||
| 509 | return set.contains(c) ? 1 : -1; | |||
| 510 | } | |||
| 511 | // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). | |||
| 512 | int32_t i=0; | |||
| 513 | U8_NEXT_OR_FFFD(s, i, length, c)do { (c)=(uint8_t)(s)[(i)++]; if(!(((c)&0x80)==0)) { uint8_t __t = 0; if((i)!=(length) && ((c)>=0xe0 ? ((c)< 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30" [(c)&=0xf]&(1<<((__t=(s)[i])>>5)) && (__t&=0x3f, 1) : ((c)-=0xf0)<=4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00" [(__t=(s)[i])>>4]&(1<<(c)) && ((c)=(( c)<<6)|(__t&0x3f), ++(i)!=(length)) && (__t =(s)[i]-0x80)<=0x3f) && ((c)=((c)<<6)|__t, ++ (i)!=(length)) : (c)>=0xc2 && ((c)&=0x1f, 1)) && (__t=(s)[i]-0x80)<=0x3f && ((c)=((c)<<6)|__t , ++(i), 1)) { } else { (c)=(0xfffd); } } } while (false); | |||
| 514 | return set.contains(c) ? i : -i; | |||
| 515 | } | |||
| 516 | ||||
| 517 | static inline int32_t | |||
| 518 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |||
| 519 | UChar32 c=s[length-1]; | |||
| 520 | if(U8_IS_SINGLE(c)(((c)&0x80)==0)) { | |||
| 521 | return set.contains(c) ? 1 : -1; | |||
| 522 | } | |||
| 523 | int32_t i=length-1; | |||
| 524 | c=utf8_prevCharSafeBodyutf8_prevCharSafeBody_77(s, 0, &i, c, -3); | |||
| 525 | length-=i; | |||
| 526 | return set.contains(c) ? length : -length; | |||
| 527 | } | |||
| 528 | ||||
| 529 | /* | |||
| 530 | * Note: In span() when spanLength==0 (after a string match, or at the beginning | |||
| 531 | * after an empty code point span) and in spanNot() and spanNotUTF8(), | |||
| 532 | * string matching could use a binary search | |||
| 533 | * because all string matches are done from the same start index. | |||
| 534 | * | |||
| 535 | * For UTF-8, this would require a comparison function that returns UTF-16 order. | |||
| 536 | * | |||
| 537 | * This optimization should not be necessary for normal UnicodeSets because | |||
| 538 | * most sets have no strings, and most sets with strings have | |||
| 539 | * very few very short strings. | |||
| 540 | * For cases with many strings, it might be better to use a different API | |||
| 541 | * and implementation with a DFA (state machine). | |||
| 542 | */ | |||
| 543 | ||||
| 544 | /* | |||
| 545 | * Algorithm for span(USET_SPAN_CONTAINED) | |||
| 546 | * | |||
| 547 | * Theoretical algorithm: | |||
| 548 | * - Iterate through the string, and at each code point boundary: | |||
| 549 | * + If the code point there is in the set, then remember to continue after it. | |||
| 550 | * + If a set string matches at the current position, then remember to continue after it. | |||
| 551 | * + Either recursively span for each code point or string match, | |||
| 552 | * or recursively span for all but the shortest one and | |||
| 553 | * iteratively continue the span with the shortest local match. | |||
| 554 | * + Remember the longest recursive span (the farthest end point). | |||
| 555 | * + If there is no match at the current position, neither for the code point there | |||
| 556 | * nor for any set string, then stop and return the longest recursive span length. | |||
| 557 | * | |||
| 558 | * Optimized implementation: | |||
| 559 | * | |||
| 560 | * (We assume that most sets will have very few very short strings. | |||
| 561 | * A span using a string-less set is extremely fast.) | |||
| 562 | * | |||
| 563 | * Create and cache a spanSet which contains all of the single code points | |||
| 564 | * of the original set but none of its strings. | |||
| 565 | * | |||
| 566 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
| 567 | * - Loop: | |||
| 568 | * + Try to match each set string at the end of the spanLength. | |||
| 569 | * ~ Set strings that start with set-contained code points must be matched | |||
| 570 | * with a partial overlap because the recursive algorithm would have tried | |||
| 571 | * to match them at every position. | |||
| 572 | * ~ Set strings that entirely consist of set-contained code points | |||
| 573 | * are irrelevant for span(USET_SPAN_CONTAINED) because the | |||
| 574 | * recursive algorithm would continue after them anyway | |||
| 575 | * and find the longest recursive match from their end. | |||
| 576 | * ~ Rather than recursing, note each end point of a set string match. | |||
| 577 | * + If no set string matched after spanSet.span(), then return | |||
| 578 | * with where the spanSet.span() ended. | |||
| 579 | * + If at least one set string matched after spanSet.span(), then | |||
| 580 | * pop the shortest string match end point and continue | |||
| 581 | * the loop, trying to match all set strings from there. | |||
| 582 | * + If at least one more set string matched after a previous string match, | |||
| 583 | * then test if the code point after the previous string match is also | |||
| 584 | * contained in the set. | |||
| 585 | * Continue the loop with the shortest end point of either this code point | |||
| 586 | * or a matching set string. | |||
| 587 | * + If no more set string matched after a previous string match, | |||
| 588 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
| 589 | * Stop if spanLength==0, otherwise continue the loop. | |||
| 590 | * | |||
| 591 | * By noting each end point of a set string match, | |||
| 592 | * the function visits each string position at most once and finishes | |||
| 593 | * in linear time. | |||
| 594 | * | |||
| 595 | * The recursive algorithm may visit the same string position many times | |||
| 596 | * if multiple paths lead to it and finishes in exponential time. | |||
| 597 | */ | |||
| 598 | ||||
| 599 | /* | |||
| 600 | * Algorithm for span(USET_SPAN_SIMPLE) | |||
| 601 | * | |||
| 602 | * Theoretical algorithm: | |||
| 603 | * - Iterate through the string, and at each code point boundary: | |||
| 604 | * + If the code point there is in the set, then remember to continue after it. | |||
| 605 | * + If a set string matches at the current position, then remember to continue after it. | |||
| 606 | * + Continue from the farthest match position and ignore all others. | |||
| 607 | * + If there is no match at the current position, | |||
| 608 | * then stop and return the current position. | |||
| 609 | * | |||
| 610 | * Optimized implementation: | |||
| 611 | * | |||
| 612 | * (Same assumption and spanSet as above.) | |||
| 613 | * | |||
| 614 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
| 615 | * - Loop: | |||
| 616 | * + Try to match each set string at the end of the spanLength. | |||
| 617 | * ~ Set strings that start with set-contained code points must be matched | |||
| 618 | * with a partial overlap because the standard algorithm would have tried | |||
| 619 | * to match them earlier. | |||
| 620 | * ~ Set strings that entirely consist of set-contained code points | |||
| 621 | * must be matched with a full overlap because the longest-match algorithm | |||
| 622 | * would hide set string matches that end earlier. | |||
| 623 | * Such set strings need not be matched earlier inside the code point span | |||
| 624 | * because the standard algorithm would then have continued after | |||
| 625 | * the set string match anyway. | |||
| 626 | * ~ Remember the longest set string match (farthest end point) from the earliest | |||
| 627 | * starting point. | |||
| 628 | * + If no set string matched after spanSet.span(), then return | |||
| 629 | * with where the spanSet.span() ended. | |||
| 630 | * + If at least one set string matched, then continue the loop after the | |||
| 631 | * longest match from the earliest position. | |||
| 632 | * + If no more set string matched after a previous string match, | |||
| 633 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |||
| 634 | * Stop if spanLength==0, otherwise continue the loop. | |||
| 635 | */ | |||
| 636 | ||||
| 637 | int32_t UnicodeSetStringSpan::span(const char16_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
| 638 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
| ||||
| 639 | return spanNot(s, length); | |||
| 640 | } | |||
| 641 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); | |||
| 642 | if(spanLength==length) { | |||
| 643 | return length; | |||
| 644 | } | |||
| 645 | ||||
| 646 | // Consider strings; they may overlap with the span. | |||
| 647 | OffsetList offsets; | |||
| 648 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 649 | // Use offset list to try all possibilities. | |||
| 650 | offsets.setMaxLength(maxLength16); | |||
| 651 | } | |||
| 652 | int32_t pos=spanLength, rest=length-pos; | |||
| 653 | int32_t i, stringsLength=strings.size(); | |||
| 654 | for(;;) { | |||
| 655 | if(spanCondition
| |||
| 656 | for(i=0; i<stringsLength; ++i) { | |||
| 657 | int32_t overlap=spanLengths[i]; | |||
| 658 | if(overlap==ALL_CP_CONTAINED) { | |||
| 659 | continue; // Irrelevant string. (Also the empty string.) | |||
| 660 | } | |||
| 661 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 662 | const char16_t *s16=string.getBuffer(); | |||
| 663 | int32_t length16=string.length(); | |||
| 664 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 665 | ||||
| 666 | // Try to match this string at pos-overlap..pos. | |||
| 667 | if(overlap>=LONG_SPAN) { | |||
| 668 | overlap=length16; | |||
| 669 | // While contained: No point matching fully inside the code point span. | |||
| 670 | U16_BACK_1(s16, 0, overlap)do { if(((((s16)[--(overlap)])&0xfffffc00)==0xdc00) && (overlap)>(0) && ((((s16)[(overlap)-1])&0xfffffc00 )==0xd800)) { --(overlap); } } while (false); // Length of the string minus the last code point. | |||
| 671 | } | |||
| 672 | if(overlap>spanLength) { | |||
| 673 | overlap=spanLength; | |||
| 674 | } | |||
| 675 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |||
| 676 | for(;;) { | |||
| 677 | if(inc>rest) { | |||
| 678 | break; | |||
| 679 | } | |||
| 680 | // Try to match if the increment is not listed already. | |||
| 681 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { | |||
| 682 | if(inc==rest) { | |||
| 683 | return length; // Reached the end of the string. | |||
| 684 | } | |||
| 685 | offsets.addOffset(inc); | |||
| 686 | } | |||
| 687 | if(overlap==0) { | |||
| 688 | break; | |||
| 689 | } | |||
| 690 | --overlap; | |||
| 691 | ++inc; | |||
| 692 | } | |||
| 693 | } | |||
| 694 | } else /* USET_SPAN_SIMPLE */ { | |||
| 695 | int32_t maxInc=0, maxOverlap=0; | |||
| 696 | for(i=0; i<stringsLength; ++i) { | |||
| 697 | int32_t overlap=spanLengths[i]; | |||
| 698 | // For longest match, we do need to try to match even an all-contained string | |||
| 699 | // to find the match from the earliest start. | |||
| 700 | ||||
| 701 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 702 | const char16_t *s16=string.getBuffer(); | |||
| 703 | int32_t length16=string.length(); | |||
| 704 | if (length16==0) { | |||
| 705 | continue; // skip the empty string | |||
| 706 | } | |||
| 707 | ||||
| 708 | // Try to match this string at pos-overlap..pos. | |||
| 709 | if(overlap>=LONG_SPAN) { | |||
| 710 | overlap=length16; | |||
| 711 | // Longest match: Need to match fully inside the code point span | |||
| 712 | // to find the match from the earliest start. | |||
| 713 | } | |||
| 714 | if(overlap>spanLength) { | |||
| 715 | overlap=spanLength; | |||
| 716 | } | |||
| 717 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |||
| 718 | for(;;) { | |||
| 719 | if(inc>rest || overlap<maxOverlap) { | |||
| 720 | break; | |||
| 721 | } | |||
| 722 | // Try to match if the string is longer or starts earlier. | |||
| 723 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && | |||
| 724 | matches16CPB(s, pos-overlap, length, s16, length16) | |||
| 725 | ) { | |||
| 726 | maxInc=inc; // Longest match from earliest start. | |||
| 727 | maxOverlap=overlap; | |||
| 728 | break; | |||
| 729 | } | |||
| 730 | --overlap; | |||
| 731 | ++inc; | |||
| 732 | } | |||
| 733 | } | |||
| 734 | ||||
| 735 | if(maxInc!=0 || maxOverlap!=0) { | |||
| 736 | // Longest-match algorithm, and there was a string match. | |||
| 737 | // Simply continue after it. | |||
| 738 | pos+=maxInc; | |||
| 739 | rest-=maxInc; | |||
| 740 | if(rest==0) { | |||
| 741 | return length; // Reached the end of the string. | |||
| 742 | } | |||
| 743 | spanLength=0; // Match strings from after a string match. | |||
| 744 | continue; | |||
| 745 | } | |||
| 746 | } | |||
| 747 | // Finished trying to match all strings at pos. | |||
| 748 | ||||
| 749 | if(spanLength!=0 || pos==0) { | |||
| 750 | // The position is after an unlimited code point span (spanLength!=0), | |||
| 751 | // not after a string match. | |||
| 752 | // The only position where spanLength==0 after a span is pos==0. | |||
| 753 | // Otherwise, an unlimited code point span is only tried again when no | |||
| 754 | // strings match, and if such a non-initial span fails we stop. | |||
| 755 | if(offsets.isEmpty()) { | |||
| 756 | return pos; // No strings matched after a span. | |||
| 757 | } | |||
| 758 | // Match strings from after the next string match. | |||
| 759 | } else { | |||
| 760 | // The position is after a string match (or a single code point). | |||
| 761 | if(offsets.isEmpty()) { | |||
| 762 | // No more strings matched after a previous string match. | |||
| 763 | // Try another code point span from after the last string match. | |||
| 764 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); | |||
| 765 | if( spanLength==rest || // Reached the end of the string, or | |||
| 766 | spanLength==0 // neither strings nor span progressed. | |||
| 767 | ) { | |||
| 768 | return pos+spanLength; | |||
| 769 | } | |||
| 770 | pos+=spanLength; | |||
| 771 | rest-=spanLength; | |||
| 772 | continue; // spanLength>0: Match strings from after a span. | |||
| 773 | } else { | |||
| 774 | // Try to match only one code point from after a string match if some | |||
| 775 | // string matched beyond it, so that we try all possible positions | |||
| 776 | // and don't overshoot. | |||
| 777 | spanLength=spanOne(spanSet, s+pos, rest); | |||
| 778 | if(spanLength>0) { | |||
| 779 | if(spanLength==rest) { | |||
| 780 | return length; // Reached the end of the string. | |||
| 781 | } | |||
| 782 | // Match strings after this code point. | |||
| 783 | // There cannot be any increments below it because UnicodeSet strings | |||
| 784 | // contain multiple code points. | |||
| 785 | pos+=spanLength; | |||
| 786 | rest-=spanLength; | |||
| 787 | offsets.shift(spanLength); | |||
| 788 | spanLength=0; | |||
| 789 | continue; // Match strings from after a single code point. | |||
| 790 | } | |||
| 791 | // Match strings from after the next string match. | |||
| 792 | } | |||
| 793 | } | |||
| 794 | int32_t minOffset=offsets.popMinimum(); | |||
| 795 | pos+=minOffset; | |||
| 796 | rest-=minOffset; | |||
| 797 | spanLength=0; // Match strings from after a string match. | |||
| 798 | } | |||
| 799 | } | |||
| 800 | ||||
| 801 | int32_t UnicodeSetStringSpan::spanBack(const char16_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
| 802 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
| 803 | return spanNotBack(s, length); | |||
| 804 | } | |||
| 805 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); | |||
| 806 | if(pos==0) { | |||
| 807 | return 0; | |||
| 808 | } | |||
| 809 | int32_t spanLength=length-pos; | |||
| 810 | ||||
| 811 | // Consider strings; they may overlap with the span. | |||
| 812 | OffsetList offsets; | |||
| 813 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 814 | // Use offset list to try all possibilities. | |||
| 815 | offsets.setMaxLength(maxLength16); | |||
| 816 | } | |||
| 817 | int32_t i, stringsLength=strings.size(); | |||
| 818 | uint8_t *spanBackLengths=spanLengths; | |||
| 819 | if(all) { | |||
| 820 | spanBackLengths+=stringsLength; | |||
| 821 | } | |||
| 822 | for(;;) { | |||
| 823 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 824 | for(i=0; i<stringsLength; ++i) { | |||
| 825 | int32_t overlap=spanBackLengths[i]; | |||
| 826 | if(overlap==ALL_CP_CONTAINED) { | |||
| 827 | continue; // Irrelevant string. (Also the empty string.) | |||
| 828 | } | |||
| 829 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 830 | const char16_t *s16=string.getBuffer(); | |||
| 831 | int32_t length16=string.length(); | |||
| 832 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 833 | ||||
| 834 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |||
| 835 | if(overlap>=LONG_SPAN) { | |||
| 836 | overlap=length16; | |||
| 837 | // While contained: No point matching fully inside the code point span. | |||
| 838 | int32_t len1=0; | |||
| 839 | U16_FWD_1(s16, len1, overlap)do { if(((((s16)[(len1)++])&0xfffffc00)==0xd800) && (len1)!=(overlap) && ((((s16)[len1])&0xfffffc00) ==0xdc00)) { ++(len1); } } while (false); | |||
| 840 | overlap-=len1; // Length of the string minus the first code point. | |||
| 841 | } | |||
| 842 | if(overlap>spanLength) { | |||
| 843 | overlap=spanLength; | |||
| 844 | } | |||
| 845 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |||
| 846 | for(;;) { | |||
| 847 | if(dec>pos) { | |||
| 848 | break; | |||
| 849 | } | |||
| 850 | // Try to match if the decrement is not listed already. | |||
| 851 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { | |||
| 852 | if(dec==pos) { | |||
| 853 | return 0; // Reached the start of the string. | |||
| 854 | } | |||
| 855 | offsets.addOffset(dec); | |||
| 856 | } | |||
| 857 | if(overlap==0) { | |||
| 858 | break; | |||
| 859 | } | |||
| 860 | --overlap; | |||
| 861 | ++dec; | |||
| 862 | } | |||
| 863 | } | |||
| 864 | } else /* USET_SPAN_SIMPLE */ { | |||
| 865 | int32_t maxDec=0, maxOverlap=0; | |||
| 866 | for(i=0; i<stringsLength; ++i) { | |||
| 867 | int32_t overlap=spanBackLengths[i]; | |||
| 868 | // For longest match, we do need to try to match even an all-contained string | |||
| 869 | // to find the match from the latest end. | |||
| 870 | ||||
| 871 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 872 | const char16_t *s16=string.getBuffer(); | |||
| 873 | int32_t length16=string.length(); | |||
| 874 | if (length16==0) { | |||
| 875 | continue; // skip the empty string | |||
| 876 | } | |||
| 877 | ||||
| 878 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |||
| 879 | if(overlap>=LONG_SPAN) { | |||
| 880 | overlap=length16; | |||
| 881 | // Longest match: Need to match fully inside the code point span | |||
| 882 | // to find the match from the latest end. | |||
| 883 | } | |||
| 884 | if(overlap>spanLength) { | |||
| 885 | overlap=spanLength; | |||
| 886 | } | |||
| 887 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |||
| 888 | for(;;) { | |||
| 889 | if(dec>pos || overlap<maxOverlap) { | |||
| 890 | break; | |||
| 891 | } | |||
| 892 | // Try to match if the string is longer or ends later. | |||
| 893 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |||
| 894 | matches16CPB(s, pos-dec, length, s16, length16) | |||
| 895 | ) { | |||
| 896 | maxDec=dec; // Longest match from latest end. | |||
| 897 | maxOverlap=overlap; | |||
| 898 | break; | |||
| 899 | } | |||
| 900 | --overlap; | |||
| 901 | ++dec; | |||
| 902 | } | |||
| 903 | } | |||
| 904 | ||||
| 905 | if(maxDec!=0 || maxOverlap!=0) { | |||
| 906 | // Longest-match algorithm, and there was a string match. | |||
| 907 | // Simply continue before it. | |||
| 908 | pos-=maxDec; | |||
| 909 | if(pos==0) { | |||
| 910 | return 0; // Reached the start of the string. | |||
| 911 | } | |||
| 912 | spanLength=0; // Match strings from before a string match. | |||
| 913 | continue; | |||
| 914 | } | |||
| 915 | } | |||
| 916 | // Finished trying to match all strings at pos. | |||
| 917 | ||||
| 918 | if(spanLength!=0 || pos==length) { | |||
| 919 | // The position is before an unlimited code point span (spanLength!=0), | |||
| 920 | // not before a string match. | |||
| 921 | // The only position where spanLength==0 before a span is pos==length. | |||
| 922 | // Otherwise, an unlimited code point span is only tried again when no | |||
| 923 | // strings match, and if such a non-initial span fails we stop. | |||
| 924 | if(offsets.isEmpty()) { | |||
| 925 | return pos; // No strings matched before a span. | |||
| 926 | } | |||
| 927 | // Match strings from before the next string match. | |||
| 928 | } else { | |||
| 929 | // The position is before a string match (or a single code point). | |||
| 930 | if(offsets.isEmpty()) { | |||
| 931 | // No more strings matched before a previous string match. | |||
| 932 | // Try another code point span from before the last string match. | |||
| 933 | int32_t oldPos=pos; | |||
| 934 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); | |||
| 935 | spanLength=oldPos-pos; | |||
| 936 | if( pos==0 || // Reached the start of the string, or | |||
| 937 | spanLength==0 // neither strings nor span progressed. | |||
| 938 | ) { | |||
| 939 | return pos; | |||
| 940 | } | |||
| 941 | continue; // spanLength>0: Match strings from before a span. | |||
| 942 | } else { | |||
| 943 | // Try to match only one code point from before a string match if some | |||
| 944 | // string matched beyond it, so that we try all possible positions | |||
| 945 | // and don't overshoot. | |||
| 946 | spanLength=spanOneBack(spanSet, s, pos); | |||
| 947 | if(spanLength>0) { | |||
| 948 | if(spanLength==pos) { | |||
| 949 | return 0; // Reached the start of the string. | |||
| 950 | } | |||
| 951 | // Match strings before this code point. | |||
| 952 | // There cannot be any decrements below it because UnicodeSet strings | |||
| 953 | // contain multiple code points. | |||
| 954 | pos-=spanLength; | |||
| 955 | offsets.shift(spanLength); | |||
| 956 | spanLength=0; | |||
| 957 | continue; // Match strings from before a single code point. | |||
| 958 | } | |||
| 959 | // Match strings from before the next string match. | |||
| 960 | } | |||
| 961 | } | |||
| 962 | pos-=offsets.popMinimum(); | |||
| 963 | spanLength=0; // Match strings from before a string match. | |||
| 964 | } | |||
| 965 | } | |||
| 966 | ||||
| 967 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
| 968 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
| 969 | return spanNotUTF8(s, length); | |||
| 970 | } | |||
| 971 | int32_t spanLength = spanSet.spanUTF8(reinterpret_cast<const char*>(s), length, USET_SPAN_CONTAINED); | |||
| 972 | if(spanLength==length) { | |||
| 973 | return length; | |||
| 974 | } | |||
| 975 | ||||
| 976 | // Consider strings; they may overlap with the span. | |||
| 977 | OffsetList offsets; | |||
| 978 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 979 | // Use offset list to try all possibilities. | |||
| 980 | offsets.setMaxLength(maxLength8); | |||
| 981 | } | |||
| 982 | int32_t pos=spanLength, rest=length-pos; | |||
| 983 | int32_t i, stringsLength=strings.size(); | |||
| 984 | uint8_t *spanUTF8Lengths=spanLengths; | |||
| 985 | if(all) { | |||
| 986 | spanUTF8Lengths+=2*stringsLength; | |||
| 987 | } | |||
| 988 | for(;;) { | |||
| 989 | const uint8_t *s8=utf8; | |||
| 990 | int32_t length8; | |||
| 991 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 992 | for(i=0; i<stringsLength; ++i) { | |||
| 993 | length8=utf8Lengths[i]; | |||
| 994 | if(length8==0) { | |||
| 995 | continue; // String not representable in UTF-8. | |||
| 996 | } | |||
| 997 | int32_t overlap=spanUTF8Lengths[i]; | |||
| 998 | if(overlap==ALL_CP_CONTAINED) { | |||
| 999 | s8+=length8; | |||
| 1000 | continue; // Irrelevant string. | |||
| 1001 | } | |||
| 1002 | ||||
| 1003 | // Try to match this string at pos-overlap..pos. | |||
| 1004 | if(overlap>=LONG_SPAN) { | |||
| 1005 | overlap=length8; | |||
| 1006 | // While contained: No point matching fully inside the code point span. | |||
| 1007 | U8_BACK_1(s8, 0, overlap)do { if(((int8_t)((s8)[--(overlap)])<-0x40)) { (overlap)=utf8_back1SafeBody_77 (s8, 0, (overlap)); } } while (false); // Length of the string minus the last code point. | |||
| 1008 | } | |||
| 1009 | if(overlap>spanLength) { | |||
| 1010 | overlap=spanLength; | |||
| 1011 | } | |||
| 1012 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |||
| 1013 | for(;;) { | |||
| 1014 | if(inc>rest) { | |||
| 1015 | break; | |||
| 1016 | } | |||
| 1017 | // Try to match if the increment is not listed already. | |||
| 1018 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
| 1019 | // from UTF-16 and are guaranteed to be well-formed.) | |||
| 1020 | if(!U8_IS_TRAIL(s[pos-overlap])((int8_t)(s[pos-overlap])<-0x40) && | |||
| 1021 | !offsets.containsOffset(inc) && | |||
| 1022 | matches8(s+pos-overlap, s8, length8)) { | |||
| 1023 | if(inc==rest) { | |||
| 1024 | return length; // Reached the end of the string. | |||
| 1025 | } | |||
| 1026 | offsets.addOffset(inc); | |||
| 1027 | } | |||
| 1028 | if(overlap==0) { | |||
| 1029 | break; | |||
| 1030 | } | |||
| 1031 | --overlap; | |||
| 1032 | ++inc; | |||
| 1033 | } | |||
| 1034 | s8+=length8; | |||
| 1035 | } | |||
| 1036 | } else /* USET_SPAN_SIMPLE */ { | |||
| 1037 | int32_t maxInc=0, maxOverlap=0; | |||
| 1038 | for(i=0; i<stringsLength; ++i) { | |||
| 1039 | length8=utf8Lengths[i]; | |||
| 1040 | if(length8==0) { | |||
| 1041 | continue; // String not representable in UTF-8. | |||
| 1042 | } | |||
| 1043 | int32_t overlap=spanUTF8Lengths[i]; | |||
| 1044 | // For longest match, we do need to try to match even an all-contained string | |||
| 1045 | // to find the match from the earliest start. | |||
| 1046 | ||||
| 1047 | // Try to match this string at pos-overlap..pos. | |||
| 1048 | if(overlap>=LONG_SPAN) { | |||
| 1049 | overlap=length8; | |||
| 1050 | // Longest match: Need to match fully inside the code point span | |||
| 1051 | // to find the match from the earliest start. | |||
| 1052 | } | |||
| 1053 | if(overlap>spanLength) { | |||
| 1054 | overlap=spanLength; | |||
| 1055 | } | |||
| 1056 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |||
| 1057 | for(;;) { | |||
| 1058 | if(inc>rest || overlap<maxOverlap) { | |||
| 1059 | break; | |||
| 1060 | } | |||
| 1061 | // Try to match if the string is longer or starts earlier. | |||
| 1062 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
| 1063 | // from UTF-16 and are guaranteed to be well-formed.) | |||
| 1064 | if(!U8_IS_TRAIL(s[pos-overlap])((int8_t)(s[pos-overlap])<-0x40) && | |||
| 1065 | (overlap>maxOverlap || | |||
| 1066 | /* redundant overlap==maxOverlap && */ inc>maxInc) && | |||
| 1067 | matches8(s+pos-overlap, s8, length8)) { | |||
| 1068 | maxInc=inc; // Longest match from earliest start. | |||
| 1069 | maxOverlap=overlap; | |||
| 1070 | break; | |||
| 1071 | } | |||
| 1072 | --overlap; | |||
| 1073 | ++inc; | |||
| 1074 | } | |||
| 1075 | s8+=length8; | |||
| 1076 | } | |||
| 1077 | ||||
| 1078 | if(maxInc!=0 || maxOverlap!=0) { | |||
| 1079 | // Longest-match algorithm, and there was a string match. | |||
| 1080 | // Simply continue after it. | |||
| 1081 | pos+=maxInc; | |||
| 1082 | rest-=maxInc; | |||
| 1083 | if(rest==0) { | |||
| 1084 | return length; // Reached the end of the string. | |||
| 1085 | } | |||
| 1086 | spanLength=0; // Match strings from after a string match. | |||
| 1087 | continue; | |||
| 1088 | } | |||
| 1089 | } | |||
| 1090 | // Finished trying to match all strings at pos. | |||
| 1091 | ||||
| 1092 | if(spanLength!=0 || pos==0) { | |||
| 1093 | // The position is after an unlimited code point span (spanLength!=0), | |||
| 1094 | // not after a string match. | |||
| 1095 | // The only position where spanLength==0 after a span is pos==0. | |||
| 1096 | // Otherwise, an unlimited code point span is only tried again when no | |||
| 1097 | // strings match, and if such a non-initial span fails we stop. | |||
| 1098 | if(offsets.isEmpty()) { | |||
| 1099 | return pos; // No strings matched after a span. | |||
| 1100 | } | |||
| 1101 | // Match strings from after the next string match. | |||
| 1102 | } else { | |||
| 1103 | // The position is after a string match (or a single code point). | |||
| 1104 | if(offsets.isEmpty()) { | |||
| 1105 | // No more strings matched after a previous string match. | |||
| 1106 | // Try another code point span from after the last string match. | |||
| 1107 | spanLength = spanSet.spanUTF8(reinterpret_cast<const char*>(s) + pos, rest, USET_SPAN_CONTAINED); | |||
| 1108 | if( spanLength==rest || // Reached the end of the string, or | |||
| 1109 | spanLength==0 // neither strings nor span progressed. | |||
| 1110 | ) { | |||
| 1111 | return pos+spanLength; | |||
| 1112 | } | |||
| 1113 | pos+=spanLength; | |||
| 1114 | rest-=spanLength; | |||
| 1115 | continue; // spanLength>0: Match strings from after a span. | |||
| 1116 | } else { | |||
| 1117 | // Try to match only one code point from after a string match if some | |||
| 1118 | // string matched beyond it, so that we try all possible positions | |||
| 1119 | // and don't overshoot. | |||
| 1120 | spanLength=spanOneUTF8(spanSet, s+pos, rest); | |||
| 1121 | if(spanLength>0) { | |||
| 1122 | if(spanLength==rest) { | |||
| 1123 | return length; // Reached the end of the string. | |||
| 1124 | } | |||
| 1125 | // Match strings after this code point. | |||
| 1126 | // There cannot be any increments below it because UnicodeSet strings | |||
| 1127 | // contain multiple code points. | |||
| 1128 | pos+=spanLength; | |||
| 1129 | rest-=spanLength; | |||
| 1130 | offsets.shift(spanLength); | |||
| 1131 | spanLength=0; | |||
| 1132 | continue; // Match strings from after a single code point. | |||
| 1133 | } | |||
| 1134 | // Match strings from after the next string match. | |||
| 1135 | } | |||
| 1136 | } | |||
| 1137 | int32_t minOffset=offsets.popMinimum(); | |||
| 1138 | pos+=minOffset; | |||
| 1139 | rest-=minOffset; | |||
| 1140 | spanLength=0; // Match strings from after a string match. | |||
| 1141 | } | |||
| 1142 | } | |||
| 1143 | ||||
| 1144 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |||
| 1145 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |||
| 1146 | return spanNotBackUTF8(s, length); | |||
| 1147 | } | |||
| 1148 | int32_t pos = spanSet.spanBackUTF8(reinterpret_cast<const char*>(s), length, USET_SPAN_CONTAINED); | |||
| 1149 | if(pos==0) { | |||
| 1150 | return 0; | |||
| 1151 | } | |||
| 1152 | int32_t spanLength=length-pos; | |||
| 1153 | ||||
| 1154 | // Consider strings; they may overlap with the span. | |||
| 1155 | OffsetList offsets; | |||
| 1156 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 1157 | // Use offset list to try all possibilities. | |||
| 1158 | offsets.setMaxLength(maxLength8); | |||
| 1159 | } | |||
| 1160 | int32_t i, stringsLength=strings.size(); | |||
| 1161 | uint8_t *spanBackUTF8Lengths=spanLengths; | |||
| 1162 | if(all) { | |||
| 1163 | spanBackUTF8Lengths+=3*stringsLength; | |||
| 1164 | } | |||
| 1165 | for(;;) { | |||
| 1166 | const uint8_t *s8=utf8; | |||
| 1167 | int32_t length8; | |||
| 1168 | if(spanCondition==USET_SPAN_CONTAINED) { | |||
| 1169 | for(i=0; i<stringsLength; ++i) { | |||
| 1170 | length8=utf8Lengths[i]; | |||
| 1171 | if(length8==0) { | |||
| 1172 | continue; // String not representable in UTF-8. | |||
| 1173 | } | |||
| 1174 | int32_t overlap=spanBackUTF8Lengths[i]; | |||
| 1175 | if(overlap==ALL_CP_CONTAINED) { | |||
| 1176 | s8+=length8; | |||
| 1177 | continue; // Irrelevant string. | |||
| 1178 | } | |||
| 1179 | ||||
| 1180 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |||
| 1181 | if(overlap>=LONG_SPAN) { | |||
| 1182 | overlap=length8; | |||
| 1183 | // While contained: No point matching fully inside the code point span. | |||
| 1184 | int32_t len1=0; | |||
| 1185 | U8_FWD_1(s8, len1, overlap)do { uint8_t __b=(s8)[(len1)++]; if(((uint8_t)((__b)-0xc2)<= 0x32) && (len1)!=(overlap)) { uint8_t __t1=(s8)[len1] ; if((0xe0<=__b && __b<0xf0)) { if(("\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30" [(__b)&0xf]&(1<<((uint8_t)(__t1)>>5))) && ++(len1)!=(overlap) && ((int8_t)((s8)[len1])<-0x40 )) { ++(len1); } } else if(__b<0xe0) { if(((int8_t)(__t1)< -0x40)) { ++(len1); } } else { if(("\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00" [(uint8_t)(__t1)>>4]&(1<<((__b)&7))) && ++(len1)!=(overlap) && ((int8_t)((s8)[len1])<-0x40 ) && ++(len1)!=(overlap) && ((int8_t)((s8)[len1 ])<-0x40)) { ++(len1); } } } } while (false); | |||
| 1186 | overlap-=len1; // Length of the string minus the first code point. | |||
| 1187 | } | |||
| 1188 | if(overlap>spanLength) { | |||
| 1189 | overlap=spanLength; | |||
| 1190 | } | |||
| 1191 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |||
| 1192 | for(;;) { | |||
| 1193 | if(dec>pos) { | |||
| 1194 | break; | |||
| 1195 | } | |||
| 1196 | // Try to match if the decrement is not listed already. | |||
| 1197 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
| 1198 | // from UTF-16 and are guaranteed to be well-formed.) | |||
| 1199 | if( !U8_IS_TRAIL(s[pos-dec])((int8_t)(s[pos-dec])<-0x40) && | |||
| 1200 | !offsets.containsOffset(dec) && | |||
| 1201 | matches8(s+pos-dec, s8, length8) | |||
| 1202 | ) { | |||
| 1203 | if(dec==pos) { | |||
| 1204 | return 0; // Reached the start of the string. | |||
| 1205 | } | |||
| 1206 | offsets.addOffset(dec); | |||
| 1207 | } | |||
| 1208 | if(overlap==0) { | |||
| 1209 | break; | |||
| 1210 | } | |||
| 1211 | --overlap; | |||
| 1212 | ++dec; | |||
| 1213 | } | |||
| 1214 | s8+=length8; | |||
| 1215 | } | |||
| 1216 | } else /* USET_SPAN_SIMPLE */ { | |||
| 1217 | int32_t maxDec=0, maxOverlap=0; | |||
| 1218 | for(i=0; i<stringsLength; ++i) { | |||
| 1219 | length8=utf8Lengths[i]; | |||
| 1220 | if(length8==0) { | |||
| 1221 | continue; // String not representable in UTF-8. | |||
| 1222 | } | |||
| 1223 | int32_t overlap=spanBackUTF8Lengths[i]; | |||
| 1224 | // For longest match, we do need to try to match even an all-contained string | |||
| 1225 | // to find the match from the latest end. | |||
| 1226 | ||||
| 1227 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |||
| 1228 | if(overlap>=LONG_SPAN) { | |||
| 1229 | overlap=length8; | |||
| 1230 | // Longest match: Need to match fully inside the code point span | |||
| 1231 | // to find the match from the latest end. | |||
| 1232 | } | |||
| 1233 | if(overlap>spanLength) { | |||
| 1234 | overlap=spanLength; | |||
| 1235 | } | |||
| 1236 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |||
| 1237 | for(;;) { | |||
| 1238 | if(dec>pos || overlap<maxOverlap) { | |||
| 1239 | break; | |||
| 1240 | } | |||
| 1241 | // Try to match if the string is longer or ends later. | |||
| 1242 | // Match at code point boundaries. (The UTF-8 strings were converted | |||
| 1243 | // from UTF-16 and are guaranteed to be well-formed.) | |||
| 1244 | if( !U8_IS_TRAIL(s[pos-dec])((int8_t)(s[pos-dec])<-0x40) && | |||
| 1245 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |||
| 1246 | matches8(s+pos-dec, s8, length8) | |||
| 1247 | ) { | |||
| 1248 | maxDec=dec; // Longest match from latest end. | |||
| 1249 | maxOverlap=overlap; | |||
| 1250 | break; | |||
| 1251 | } | |||
| 1252 | --overlap; | |||
| 1253 | ++dec; | |||
| 1254 | } | |||
| 1255 | s8+=length8; | |||
| 1256 | } | |||
| 1257 | ||||
| 1258 | if(maxDec!=0 || maxOverlap!=0) { | |||
| 1259 | // Longest-match algorithm, and there was a string match. | |||
| 1260 | // Simply continue before it. | |||
| 1261 | pos-=maxDec; | |||
| 1262 | if(pos==0) { | |||
| 1263 | return 0; // Reached the start of the string. | |||
| 1264 | } | |||
| 1265 | spanLength=0; // Match strings from before a string match. | |||
| 1266 | continue; | |||
| 1267 | } | |||
| 1268 | } | |||
| 1269 | // Finished trying to match all strings at pos. | |||
| 1270 | ||||
| 1271 | if(spanLength!=0 || pos==length) { | |||
| 1272 | // The position is before an unlimited code point span (spanLength!=0), | |||
| 1273 | // not before a string match. | |||
| 1274 | // The only position where spanLength==0 before a span is pos==length. | |||
| 1275 | // Otherwise, an unlimited code point span is only tried again when no | |||
| 1276 | // strings match, and if such a non-initial span fails we stop. | |||
| 1277 | if(offsets.isEmpty()) { | |||
| 1278 | return pos; // No strings matched before a span. | |||
| 1279 | } | |||
| 1280 | // Match strings from before the next string match. | |||
| 1281 | } else { | |||
| 1282 | // The position is before a string match (or a single code point). | |||
| 1283 | if(offsets.isEmpty()) { | |||
| 1284 | // No more strings matched before a previous string match. | |||
| 1285 | // Try another code point span from before the last string match. | |||
| 1286 | int32_t oldPos=pos; | |||
| 1287 | pos = spanSet.spanBackUTF8(reinterpret_cast<const char*>(s), oldPos, USET_SPAN_CONTAINED); | |||
| 1288 | spanLength=oldPos-pos; | |||
| 1289 | if( pos==0 || // Reached the start of the string, or | |||
| 1290 | spanLength==0 // neither strings nor span progressed. | |||
| 1291 | ) { | |||
| 1292 | return pos; | |||
| 1293 | } | |||
| 1294 | continue; // spanLength>0: Match strings from before a span. | |||
| 1295 | } else { | |||
| 1296 | // Try to match only one code point from before a string match if some | |||
| 1297 | // string matched beyond it, so that we try all possible positions | |||
| 1298 | // and don't overshoot. | |||
| 1299 | spanLength=spanOneBackUTF8(spanSet, s, pos); | |||
| 1300 | if(spanLength>0) { | |||
| 1301 | if(spanLength==pos) { | |||
| 1302 | return 0; // Reached the start of the string. | |||
| 1303 | } | |||
| 1304 | // Match strings before this code point. | |||
| 1305 | // There cannot be any decrements below it because UnicodeSet strings | |||
| 1306 | // contain multiple code points. | |||
| 1307 | pos-=spanLength; | |||
| 1308 | offsets.shift(spanLength); | |||
| 1309 | spanLength=0; | |||
| 1310 | continue; // Match strings from before a single code point. | |||
| 1311 | } | |||
| 1312 | // Match strings from before the next string match. | |||
| 1313 | } | |||
| 1314 | } | |||
| 1315 | pos-=offsets.popMinimum(); | |||
| 1316 | spanLength=0; // Match strings from before a string match. | |||
| 1317 | } | |||
| 1318 | } | |||
| 1319 | ||||
| 1320 | /* | |||
| 1321 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) | |||
| 1322 | * | |||
| 1323 | * Theoretical algorithm: | |||
| 1324 | * - Iterate through the string, and at each code point boundary: | |||
| 1325 | * + If the code point there is in the set, then return with the current position. | |||
| 1326 | * + If a set string matches at the current position, then return with the current position. | |||
| 1327 | * | |||
| 1328 | * Optimized implementation: | |||
| 1329 | * | |||
| 1330 | * (Same assumption as for span() above.) | |||
| 1331 | * | |||
| 1332 | * Create and cache a spanNotSet which contains all of the single code points | |||
| 1333 | * of the original set but none of its strings. | |||
| 1334 | * For each set string add its initial code point to the spanNotSet. | |||
| 1335 | * (Also add its final code point for spanNotBack().) | |||
| 1336 | * | |||
| 1337 | * - Loop: | |||
| 1338 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). | |||
| 1339 | * + If the current code point is in the original set, then | |||
| 1340 | * return the current position. | |||
| 1341 | * + If any set string matches at the current position, then | |||
| 1342 | * return the current position. | |||
| 1343 | * + If there is no match at the current position, neither for the code point there | |||
| 1344 | * nor for any set string, then skip this code point and continue the loop. | |||
| 1345 | * This happens for set-string-initial code points that were added to spanNotSet | |||
| 1346 | * when there is not actually a match for such a set string. | |||
| 1347 | */ | |||
| 1348 | ||||
| 1349 | int32_t UnicodeSetStringSpan::spanNot(const char16_t *s, int32_t length) const { | |||
| 1350 | int32_t pos=0, rest=length; | |||
| 1351 | int32_t i, stringsLength=strings.size(); | |||
| 1352 | do { | |||
| 1353 | // Span until we find a code point from the set, | |||
| 1354 | // or a code point that starts or ends some string. | |||
| 1355 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); | |||
| 1356 | if(i==rest) { | |||
| 1357 | return length; // Reached the end of the string. | |||
| 1358 | } | |||
| 1359 | pos+=i; | |||
| 1360 | rest-=i; | |||
| 1361 | ||||
| 1362 | // Check whether the current code point is in the original set, | |||
| 1363 | // without the string starts and ends. | |||
| 1364 | int32_t cpLength=spanOne(spanSet, s+pos, rest); | |||
| 1365 | if(cpLength>0) { | |||
| 1366 | return pos; // There is a set element at pos. | |||
| 1367 | } | |||
| 1368 | ||||
| 1369 | // Try to match the strings at pos. | |||
| 1370 | for(i=0; i<stringsLength; ++i) { | |||
| 1371 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |||
| 1372 | continue; // Irrelevant string. (Also the empty string.) | |||
| 1373 | } | |||
| 1374 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 1375 | const char16_t *s16=string.getBuffer(); | |||
| 1376 | int32_t length16=string.length(); | |||
| 1377 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 1378 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { | |||
| 1379 | return pos; // There is a set element at pos. | |||
| 1380 | } | |||
| 1381 | } | |||
| 1382 | ||||
| 1383 | // The span(while not contained) ended on a string start/end which is | |||
| 1384 | // not in the original set. Skip this code point and continue. | |||
| 1385 | // cpLength<0 | |||
| 1386 | pos-=cpLength; | |||
| 1387 | rest+=cpLength; | |||
| 1388 | } while(rest!=0); | |||
| 1389 | return length; // Reached the end of the string. | |||
| 1390 | } | |||
| 1391 | ||||
| 1392 | int32_t UnicodeSetStringSpan::spanNotBack(const char16_t *s, int32_t length) const { | |||
| 1393 | int32_t pos=length; | |||
| 1394 | int32_t i, stringsLength=strings.size(); | |||
| 1395 | do { | |||
| 1396 | // Span until we find a code point from the set, | |||
| 1397 | // or a code point that starts or ends some string. | |||
| 1398 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); | |||
| 1399 | if(pos==0) { | |||
| 1400 | return 0; // Reached the start of the string. | |||
| 1401 | } | |||
| 1402 | ||||
| 1403 | // Check whether the current code point is in the original set, | |||
| 1404 | // without the string starts and ends. | |||
| 1405 | int32_t cpLength=spanOneBack(spanSet, s, pos); | |||
| 1406 | if(cpLength>0) { | |||
| 1407 | return pos; // There is a set element at pos. | |||
| 1408 | } | |||
| 1409 | ||||
| 1410 | // Try to match the strings at pos. | |||
| 1411 | for(i=0; i<stringsLength; ++i) { | |||
| 1412 | // Use spanLengths rather than a spanBackLengths pointer because | |||
| 1413 | // it is easier and we only need to know whether the string is irrelevant | |||
| 1414 | // which is the same in either array. | |||
| 1415 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |||
| 1416 | continue; // Irrelevant string. (Also the empty string.) | |||
| 1417 | } | |||
| 1418 | const UnicodeString& string = *static_cast<const UnicodeString*>(strings.elementAt(i)); | |||
| 1419 | const char16_t *s16=string.getBuffer(); | |||
| 1420 | int32_t length16=string.length(); | |||
| 1421 | U_ASSERT(length>0)(static_cast <bool> (length>0) ? void (0) : __assert_fail ("length>0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 1422 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { | |||
| 1423 | return pos; // There is a set element at pos. | |||
| 1424 | } | |||
| 1425 | } | |||
| 1426 | ||||
| 1427 | // The span(while not contained) ended on a string start/end which is | |||
| 1428 | // not in the original set. Skip this code point and continue. | |||
| 1429 | // cpLength<0 | |||
| 1430 | pos+=cpLength; | |||
| 1431 | } while(pos!=0); | |||
| 1432 | return 0; // Reached the start of the string. | |||
| 1433 | } | |||
| 1434 | ||||
| 1435 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { | |||
| 1436 | int32_t pos=0, rest=length; | |||
| 1437 | int32_t i, stringsLength=strings.size(); | |||
| 1438 | uint8_t *spanUTF8Lengths=spanLengths; | |||
| 1439 | if(all) { | |||
| 1440 | spanUTF8Lengths+=2*stringsLength; | |||
| 1441 | } | |||
| 1442 | do { | |||
| 1443 | // Span until we find a code point from the set, | |||
| 1444 | // or a code point that starts or ends some string. | |||
| 1445 | i = pSpanNotSet->spanUTF8(reinterpret_cast<const char*>(s) + pos, rest, USET_SPAN_NOT_CONTAINED); | |||
| 1446 | if(i==rest) { | |||
| 1447 | return length; // Reached the end of the string. | |||
| 1448 | } | |||
| 1449 | pos+=i; | |||
| 1450 | rest-=i; | |||
| 1451 | ||||
| 1452 | // Check whether the current code point is in the original set, | |||
| 1453 | // without the string starts and ends. | |||
| 1454 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); | |||
| 1455 | if(cpLength>0) { | |||
| 1456 | return pos; // There is a set element at pos. | |||
| 1457 | } | |||
| 1458 | ||||
| 1459 | // Try to match the strings at pos. | |||
| 1460 | const uint8_t *s8=utf8; | |||
| 1461 | int32_t length8; | |||
| 1462 | for(i=0; i<stringsLength; ++i) { | |||
| 1463 | length8=utf8Lengths[i]; | |||
| 1464 | // ALL_CP_CONTAINED: Irrelevant string. | |||
| 1465 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { | |||
| 1466 | return pos; // There is a set element at pos. | |||
| 1467 | } | |||
| 1468 | s8+=length8; | |||
| 1469 | } | |||
| 1470 | ||||
| 1471 | // The span(while not contained) ended on a string start/end which is | |||
| 1472 | // not in the original set. Skip this code point and continue. | |||
| 1473 | // cpLength<0 | |||
| 1474 | pos-=cpLength; | |||
| 1475 | rest+=cpLength; | |||
| 1476 | } while(rest!=0); | |||
| 1477 | return length; // Reached the end of the string. | |||
| 1478 | } | |||
| 1479 | ||||
| 1480 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { | |||
| 1481 | int32_t pos=length; | |||
| 1482 | int32_t i, stringsLength=strings.size(); | |||
| 1483 | uint8_t *spanBackUTF8Lengths=spanLengths; | |||
| 1484 | if(all) { | |||
| 1485 | spanBackUTF8Lengths+=3*stringsLength; | |||
| 1486 | } | |||
| 1487 | do { | |||
| 1488 | // Span until we find a code point from the set, | |||
| 1489 | // or a code point that starts or ends some string. | |||
| 1490 | pos = pSpanNotSet->spanBackUTF8(reinterpret_cast<const char*>(s), pos, USET_SPAN_NOT_CONTAINED); | |||
| 1491 | if(pos==0) { | |||
| 1492 | return 0; // Reached the start of the string. | |||
| 1493 | } | |||
| 1494 | ||||
| 1495 | // Check whether the current code point is in the original set, | |||
| 1496 | // without the string starts and ends. | |||
| 1497 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); | |||
| 1498 | if(cpLength>0) { | |||
| 1499 | return pos; // There is a set element at pos. | |||
| 1500 | } | |||
| 1501 | ||||
| 1502 | // Try to match the strings at pos. | |||
| 1503 | const uint8_t *s8=utf8; | |||
| 1504 | int32_t length8; | |||
| 1505 | for(i=0; i<stringsLength; ++i) { | |||
| 1506 | length8=utf8Lengths[i]; | |||
| 1507 | // ALL_CP_CONTAINED: Irrelevant string. | |||
| 1508 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { | |||
| 1509 | return pos; // There is a set element at pos. | |||
| 1510 | } | |||
| 1511 | s8+=length8; | |||
| 1512 | } | |||
| 1513 | ||||
| 1514 | // The span(while not contained) ended on a string start/end which is | |||
| 1515 | // not in the original set. Skip this code point and continue. | |||
| 1516 | // cpLength<0 | |||
| 1517 | pos+=cpLength; | |||
| 1518 | } while(pos!=0); | |||
| 1519 | return 0; // Reached the start of the string. | |||
| 1520 | } | |||
| 1521 | ||||
| 1522 | U_NAMESPACE_END} |