File: | root/firefox-clang/nsprpub/pr/src/misc/prtime.c |
Warning: | line 1601, column 5 Value stored to 'zone' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | /* This Source Code Form is subject to the terms of the Mozilla Public |
3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
5 | |
6 | /* |
7 | * prtime.c -- |
8 | * |
9 | * NSPR date and time functions |
10 | * |
11 | */ |
12 | |
13 | #include "prinit.h" |
14 | #include "prtime.h" |
15 | #include "prlock.h" |
16 | #include "prprf.h" |
17 | #include "prlog.h" |
18 | |
19 | #include <string.h> |
20 | #include <ctype.h> |
21 | #include <errno(*__errno_location ()).h> /* for EINVAL */ |
22 | #include <time.h> |
23 | |
24 | /* |
25 | * The COUNT_LEAPS macro counts the number of leap years passed by |
26 | * till the start of the given year Y. At the start of the year 4 |
27 | * A.D. the number of leap years passed by is 0, while at the start of |
28 | * the year 5 A.D. this count is 1. The number of years divisible by |
29 | * 100 but not divisible by 400 (the non-leap years) is deducted from |
30 | * the count to get the correct number of leap years. |
31 | * |
32 | * The COUNT_DAYS macro counts the number of days since 01/01/01 till the |
33 | * start of the given year Y. The number of days at the start of the year |
34 | * 1 is 0 while the number of days at the start of the year 2 is 365 |
35 | * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 |
36 | * midnight 00:00:00. |
37 | */ |
38 | |
39 | #define COUNT_LEAPS(Y)(((Y) - 1) / 4 - ((Y) - 1) / 100 + ((Y) - 1) / 400) (((Y) - 1) / 4 - ((Y) - 1) / 100 + ((Y) - 1) / 400) |
40 | #define COUNT_DAYS(Y)(((Y) - 1) * 365 + (((Y) - 1) / 4 - ((Y) - 1) / 100 + ((Y) - 1 ) / 400)) (((Y) - 1) * 365 + COUNT_LEAPS(Y)(((Y) - 1) / 4 - ((Y) - 1) / 100 + ((Y) - 1) / 400)) |
41 | #define DAYS_BETWEEN_YEARS(A, B)((((B) - 1) * 365 + (((B) - 1) / 4 - ((B) - 1) / 100 + ((B) - 1) / 400)) - (((A) - 1) * 365 + (((A) - 1) / 4 - ((A) - 1) / 100 + ((A) - 1) / 400))) (COUNT_DAYS(B)(((B) - 1) * 365 + (((B) - 1) / 4 - ((B) - 1) / 100 + ((B) - 1 ) / 400)) - COUNT_DAYS(A)(((A) - 1) * 365 + (((A) - 1) / 4 - ((A) - 1) / 100 + ((A) - 1 ) / 400))) |
42 | |
43 | /* |
44 | * Static variables used by functions in this file |
45 | */ |
46 | |
47 | /* |
48 | * The following array contains the day of year for the last day of |
49 | * each month, where index 1 is January, and day 0 is January 1. |
50 | */ |
51 | |
52 | static const int lastDayOfMonth[2][13] = { |
53 | {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, |
54 | {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}}; |
55 | |
56 | /* |
57 | * The number of days in a month |
58 | */ |
59 | |
60 | static const PRInt8 nDays[2][12] = { |
61 | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
62 | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}}; |
63 | |
64 | /* |
65 | * Declarations for internal functions defined later in this file. |
66 | */ |
67 | |
68 | static void ComputeGMT(PRTime time, PRExplodedTime* gmt); |
69 | static int IsLeapYear(PRInt16 year); |
70 | static void ApplySecOffset(PRExplodedTime* time, PRInt32 secOffset); |
71 | |
72 | /* |
73 | *------------------------------------------------------------------------ |
74 | * |
75 | * ComputeGMT -- |
76 | * |
77 | * Caveats: |
78 | * - we ignore leap seconds |
79 | * |
80 | *------------------------------------------------------------------------ |
81 | */ |
82 | |
83 | static void ComputeGMT(PRTime time, PRExplodedTime* gmt) { |
84 | PRInt32 tmp, rem; |
85 | PRInt32 numDays; |
86 | PRInt64 numDays64, rem64; |
87 | int isLeap; |
88 | PRInt64 sec; |
89 | PRInt64 usec; |
90 | PRInt64 usecPerSec; |
91 | PRInt64 secPerDay; |
92 | |
93 | /* |
94 | * We first do the usec, sec, min, hour thing so that we do not |
95 | * have to do LL arithmetic. |
96 | */ |
97 | |
98 | LL_I2L(usecPerSec, 1000000L)((usecPerSec) = (PRInt64)(1000000L)); |
99 | LL_DIV(sec, time, usecPerSec)((sec) = (time) / (usecPerSec)); |
100 | LL_MOD(usec, time, usecPerSec)((usec) = (time) % (usecPerSec)); |
101 | LL_L2I(gmt->tm_usec, usec)((gmt->tm_usec) = (PRInt32)(usec)); |
102 | /* Correct for weird mod semantics so the remainder is always positive */ |
103 | if (gmt->tm_usec < 0) { |
104 | PRInt64 one; |
105 | |
106 | LL_I2L(one, 1L)((one) = (PRInt64)(1L)); |
107 | LL_SUB(sec, sec, one)((sec) = (sec) - (one)); |
108 | gmt->tm_usec += 1000000L; |
109 | } |
110 | |
111 | LL_I2L(secPerDay, 86400L)((secPerDay) = (PRInt64)(86400L)); |
112 | LL_DIV(numDays64, sec, secPerDay)((numDays64) = (sec) / (secPerDay)); |
113 | LL_MOD(rem64, sec, secPerDay)((rem64) = (sec) % (secPerDay)); |
114 | /* We are sure both of these numbers can fit into PRInt32 */ |
115 | LL_L2I(numDays, numDays64)((numDays) = (PRInt32)(numDays64)); |
116 | LL_L2I(rem, rem64)((rem) = (PRInt32)(rem64)); |
117 | if (rem < 0) { |
118 | numDays--; |
119 | rem += 86400L; |
120 | } |
121 | |
122 | /* Compute day of week. Epoch started on a Thursday. */ |
123 | |
124 | gmt->tm_wday = (numDays + 4) % 7; |
125 | if (gmt->tm_wday < 0) { |
126 | gmt->tm_wday += 7; |
127 | } |
128 | |
129 | /* Compute the time of day. */ |
130 | |
131 | gmt->tm_hour = rem / 3600; |
132 | rem %= 3600; |
133 | gmt->tm_min = rem / 60; |
134 | gmt->tm_sec = rem % 60; |
135 | |
136 | /* |
137 | * Compute the year by finding the 400 year period, then working |
138 | * down from there. |
139 | * |
140 | * Since numDays is originally the number of days since January 1, 1970, |
141 | * we must change it to be the number of days from January 1, 0001. |
142 | */ |
143 | |
144 | numDays += 719162; /* 719162 = days from year 1 up to 1970 */ |
145 | tmp = numDays / 146097; /* 146097 = days in 400 years */ |
146 | rem = numDays % 146097; |
147 | gmt->tm_year = tmp * 400 + 1; |
148 | |
149 | /* Compute the 100 year period. */ |
150 | |
151 | tmp = rem / 36524; /* 36524 = days in 100 years */ |
152 | rem %= 36524; |
153 | if (tmp == 4) { /* the 400th year is a leap year */ |
154 | tmp = 3; |
155 | rem = 36524; |
156 | } |
157 | gmt->tm_year += tmp * 100; |
158 | |
159 | /* Compute the 4 year period. */ |
160 | |
161 | tmp = rem / 1461; /* 1461 = days in 4 years */ |
162 | rem %= 1461; |
163 | gmt->tm_year += tmp * 4; |
164 | |
165 | /* Compute which year in the 4. */ |
166 | |
167 | tmp = rem / 365; |
168 | rem %= 365; |
169 | if (tmp == 4) { /* the 4th year is a leap year */ |
170 | tmp = 3; |
171 | rem = 365; |
172 | } |
173 | |
174 | gmt->tm_year += tmp; |
175 | gmt->tm_yday = rem; |
176 | isLeap = IsLeapYear(gmt->tm_year); |
177 | |
178 | /* Compute the month and day of month. */ |
179 | |
180 | for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) { |
181 | } |
182 | gmt->tm_month = --tmp; |
183 | gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp]; |
184 | |
185 | gmt->tm_params.tp_gmt_offset = 0; |
186 | gmt->tm_params.tp_dst_offset = 0; |
187 | } |
188 | |
189 | /* |
190 | *------------------------------------------------------------------------ |
191 | * |
192 | * PR_ExplodeTime -- |
193 | * |
194 | * Cf. struct tm *gmtime(const time_t *tp) and |
195 | * struct tm *localtime(const time_t *tp) |
196 | * |
197 | *------------------------------------------------------------------------ |
198 | */ |
199 | |
200 | PR_IMPLEMENT(void)__attribute__((visibility("default"))) void |
201 | PR_ExplodeTime(PRTime usecs, PRTimeParamFn params, PRExplodedTime* exploded) { |
202 | ComputeGMT(usecs, exploded); |
203 | exploded->tm_params = params(exploded); |
204 | ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset + |
205 | exploded->tm_params.tp_dst_offset); |
206 | } |
207 | |
208 | /* |
209 | *------------------------------------------------------------------------ |
210 | * |
211 | * PR_ImplodeTime -- |
212 | * |
213 | * Cf. time_t mktime(struct tm *tp) |
214 | * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. |
215 | * |
216 | *------------------------------------------------------------------------ |
217 | */ |
218 | PR_IMPLEMENT(PRTime)__attribute__((visibility("default"))) PRTime |
219 | PR_ImplodeTime(const PRExplodedTime* exploded) { |
220 | PRExplodedTime copy; |
221 | PRTime retVal; |
222 | PRInt64 secPerDay, usecPerSec; |
223 | PRInt64 temp; |
224 | PRInt64 numSecs64; |
225 | PRInt32 numDays; |
226 | PRInt32 numSecs; |
227 | |
228 | /* Normalize first. Do this on our copy */ |
229 | copy = *exploded; |
230 | PR_NormalizeTime(©, PR_GMTParameters); |
231 | |
232 | numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year)((((copy.tm_year) - 1) * 365 + (((copy.tm_year) - 1) / 4 - (( copy.tm_year) - 1) / 100 + ((copy.tm_year) - 1) / 400)) - ((( 1970) - 1) * 365 + (((1970) - 1) / 4 - ((1970) - 1) / 100 + ( (1970) - 1) / 400))); |
233 | |
234 | numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 + copy.tm_min * 60 + |
235 | copy.tm_sec; |
236 | |
237 | LL_I2L(temp, numDays)((temp) = (PRInt64)(numDays)); |
238 | LL_I2L(secPerDay, 86400)((secPerDay) = (PRInt64)(86400)); |
239 | LL_MUL(temp, temp, secPerDay)((temp) = (temp) * (secPerDay)); |
240 | LL_I2L(numSecs64, numSecs)((numSecs64) = (PRInt64)(numSecs)); |
241 | LL_ADD(numSecs64, numSecs64, temp)((numSecs64) = (numSecs64) + (temp)); |
242 | |
243 | /* apply the GMT and DST offsets */ |
244 | LL_I2L(temp, copy.tm_params.tp_gmt_offset)((temp) = (PRInt64)(copy.tm_params.tp_gmt_offset)); |
245 | LL_SUB(numSecs64, numSecs64, temp)((numSecs64) = (numSecs64) - (temp)); |
246 | LL_I2L(temp, copy.tm_params.tp_dst_offset)((temp) = (PRInt64)(copy.tm_params.tp_dst_offset)); |
247 | LL_SUB(numSecs64, numSecs64, temp)((numSecs64) = (numSecs64) - (temp)); |
248 | |
249 | LL_I2L(usecPerSec, 1000000L)((usecPerSec) = (PRInt64)(1000000L)); |
250 | LL_MUL(temp, numSecs64, usecPerSec)((temp) = (numSecs64) * (usecPerSec)); |
251 | LL_I2L(retVal, copy.tm_usec)((retVal) = (PRInt64)(copy.tm_usec)); |
252 | LL_ADD(retVal, retVal, temp)((retVal) = (retVal) + (temp)); |
253 | |
254 | return retVal; |
255 | } |
256 | |
257 | /* |
258 | *------------------------------------------------------------------------- |
259 | * |
260 | * IsLeapYear -- |
261 | * |
262 | * Returns 1 if the year is a leap year, 0 otherwise. |
263 | * |
264 | *------------------------------------------------------------------------- |
265 | */ |
266 | |
267 | static int IsLeapYear(PRInt16 year) { |
268 | if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) { |
269 | return 1; |
270 | } |
271 | return 0; |
272 | } |
273 | |
274 | /* |
275 | * 'secOffset' should be less than 86400 (i.e., a day). |
276 | * 'time' should point to a normalized PRExplodedTime. |
277 | */ |
278 | |
279 | static void ApplySecOffset(PRExplodedTime* time, PRInt32 secOffset) { |
280 | time->tm_sec += secOffset; |
281 | |
282 | /* Note that in this implementation we do not count leap seconds */ |
283 | if (time->tm_sec < 0 || time->tm_sec >= 60) { |
284 | time->tm_min += time->tm_sec / 60; |
285 | time->tm_sec %= 60; |
286 | if (time->tm_sec < 0) { |
287 | time->tm_sec += 60; |
288 | time->tm_min--; |
289 | } |
290 | } |
291 | |
292 | if (time->tm_min < 0 || time->tm_min >= 60) { |
293 | time->tm_hour += time->tm_min / 60; |
294 | time->tm_min %= 60; |
295 | if (time->tm_min < 0) { |
296 | time->tm_min += 60; |
297 | time->tm_hour--; |
298 | } |
299 | } |
300 | |
301 | if (time->tm_hour < 0) { |
302 | /* Decrement mday, yday, and wday */ |
303 | time->tm_hour += 24; |
304 | time->tm_mday--; |
305 | time->tm_yday--; |
306 | if (time->tm_mday < 1) { |
307 | time->tm_month--; |
308 | if (time->tm_month < 0) { |
309 | time->tm_month = 11; |
310 | time->tm_year--; |
311 | if (IsLeapYear(time->tm_year)) { |
312 | time->tm_yday = 365; |
313 | } else { |
314 | time->tm_yday = 364; |
315 | } |
316 | } |
317 | time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
318 | } |
319 | time->tm_wday--; |
320 | if (time->tm_wday < 0) { |
321 | time->tm_wday = 6; |
322 | } |
323 | } else if (time->tm_hour > 23) { |
324 | /* Increment mday, yday, and wday */ |
325 | time->tm_hour -= 24; |
326 | time->tm_mday++; |
327 | time->tm_yday++; |
328 | if (time->tm_mday > nDays[IsLeapYear(time->tm_year)][time->tm_month]) { |
329 | time->tm_mday = 1; |
330 | time->tm_month++; |
331 | if (time->tm_month > 11) { |
332 | time->tm_month = 0; |
333 | time->tm_year++; |
334 | time->tm_yday = 0; |
335 | } |
336 | } |
337 | time->tm_wday++; |
338 | if (time->tm_wday > 6) { |
339 | time->tm_wday = 0; |
340 | } |
341 | } |
342 | } |
343 | |
344 | PR_IMPLEMENT(void)__attribute__((visibility("default"))) void |
345 | PR_NormalizeTime(PRExplodedTime* time, PRTimeParamFn params) { |
346 | int daysInMonth; |
347 | PRInt32 numDays; |
348 | |
349 | /* Get back to GMT */ |
350 | time->tm_sec -= time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset; |
351 | time->tm_params.tp_gmt_offset = 0; |
352 | time->tm_params.tp_dst_offset = 0; |
353 | |
354 | /* Now normalize GMT */ |
355 | |
356 | if (time->tm_usec < 0 || time->tm_usec >= 1000000) { |
357 | time->tm_sec += time->tm_usec / 1000000; |
358 | time->tm_usec %= 1000000; |
359 | if (time->tm_usec < 0) { |
360 | time->tm_usec += 1000000; |
361 | time->tm_sec--; |
362 | } |
363 | } |
364 | |
365 | /* Note that we do not count leap seconds in this implementation */ |
366 | if (time->tm_sec < 0 || time->tm_sec >= 60) { |
367 | time->tm_min += time->tm_sec / 60; |
368 | time->tm_sec %= 60; |
369 | if (time->tm_sec < 0) { |
370 | time->tm_sec += 60; |
371 | time->tm_min--; |
372 | } |
373 | } |
374 | |
375 | if (time->tm_min < 0 || time->tm_min >= 60) { |
376 | time->tm_hour += time->tm_min / 60; |
377 | time->tm_min %= 60; |
378 | if (time->tm_min < 0) { |
379 | time->tm_min += 60; |
380 | time->tm_hour--; |
381 | } |
382 | } |
383 | |
384 | if (time->tm_hour < 0 || time->tm_hour >= 24) { |
385 | time->tm_mday += time->tm_hour / 24; |
386 | time->tm_hour %= 24; |
387 | if (time->tm_hour < 0) { |
388 | time->tm_hour += 24; |
389 | time->tm_mday--; |
390 | } |
391 | } |
392 | |
393 | /* Normalize month and year before mday */ |
394 | if (time->tm_month < 0 || time->tm_month >= 12) { |
395 | time->tm_year += time->tm_month / 12; |
396 | time->tm_month %= 12; |
397 | if (time->tm_month < 0) { |
398 | time->tm_month += 12; |
399 | time->tm_year--; |
400 | } |
401 | } |
402 | |
403 | /* Now that month and year are in proper range, normalize mday */ |
404 | |
405 | if (time->tm_mday < 1) { |
406 | /* mday too small */ |
407 | do { |
408 | /* the previous month */ |
409 | time->tm_month--; |
410 | if (time->tm_month < 0) { |
411 | time->tm_month = 11; |
412 | time->tm_year--; |
413 | } |
414 | time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
415 | } while (time->tm_mday < 1); |
416 | } else { |
417 | daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
418 | while (time->tm_mday > daysInMonth) { |
419 | /* mday too large */ |
420 | time->tm_mday -= daysInMonth; |
421 | time->tm_month++; |
422 | if (time->tm_month > 11) { |
423 | time->tm_month = 0; |
424 | time->tm_year++; |
425 | } |
426 | daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
427 | } |
428 | } |
429 | |
430 | /* Recompute yday and wday */ |
431 | time->tm_yday = |
432 | time->tm_mday + lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; |
433 | |
434 | numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year)((((time->tm_year) - 1) * 365 + (((time->tm_year) - 1) / 4 - ((time->tm_year) - 1) / 100 + ((time->tm_year) - 1 ) / 400)) - (((1970) - 1) * 365 + (((1970) - 1) / 4 - ((1970) - 1) / 100 + ((1970) - 1) / 400))) + time->tm_yday; |
435 | time->tm_wday = (numDays + 4) % 7; |
436 | if (time->tm_wday < 0) { |
437 | time->tm_wday += 7; |
438 | } |
439 | |
440 | /* Recompute time parameters */ |
441 | |
442 | time->tm_params = params(time); |
443 | |
444 | ApplySecOffset(time, |
445 | time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset); |
446 | } |
447 | |
448 | /* |
449 | *------------------------------------------------------------------------- |
450 | * |
451 | * PR_LocalTimeParameters -- |
452 | * |
453 | * returns the time parameters for the local time zone |
454 | * |
455 | * The following uses localtime() from the standard C library. |
456 | * (time.h) This is our fallback implementation. Unix, PC, and BeOS |
457 | * use this version. A platform may have its own machine-dependent |
458 | * implementation of this function. |
459 | * |
460 | *------------------------------------------------------------------------- |
461 | */ |
462 | |
463 | #if defined(HAVE_INT_LOCALTIME_R) |
464 | |
465 | /* |
466 | * In this case we could define the macro as |
467 | * #define MT_safe_localtime(timer, result) \ |
468 | * (localtime_r(timer, result) == 0 ? result : NULL) |
469 | * I chose to compare the return value of localtime_r with -1 so |
470 | * that I can catch the cases where localtime_r returns a pointer |
471 | * to struct tm. The macro definition above would not be able to |
472 | * detect such mistakes because it is legal to compare a pointer |
473 | * with 0. |
474 | */ |
475 | |
476 | # define MT_safe_localtimelocaltime_r(timer, result) \ |
477 | (localtime_r(timer, result) == -1 ? NULL((void*)0) : result) |
478 | |
479 | #elif defined(HAVE_POINTER_LOCALTIME_R1) |
480 | |
481 | # define MT_safe_localtimelocaltime_r localtime_r |
482 | |
483 | #elif defined(_MSC_VER) |
484 | |
485 | /* Visual C++ has had localtime_s() since Visual C++ 2005. */ |
486 | |
487 | static struct tm* MT_safe_localtimelocaltime_r(const time_t* clock, struct tm* result) { |
488 | errno_t err = localtime_s(result, clock); |
489 | if (err != 0) { |
490 | errno(*__errno_location ()) = err; |
491 | return NULL((void*)0); |
492 | } |
493 | return result; |
494 | } |
495 | |
496 | #else |
497 | |
498 | # define HAVE_LOCALTIME_MONITOR \ |
499 | 1 /* We use 'monitor' to serialize our calls \ |
500 | * to localtime(). */ |
501 | static PRLock* monitor = NULL((void*)0); |
502 | |
503 | static struct tm* MT_safe_localtimelocaltime_r(const time_t* clock, struct tm* result) { |
504 | struct tm* tmPtr; |
505 | int needLock = PR_Initialized(); /* We need to use a lock to protect |
506 | * against NSPR threads only when the |
507 | * NSPR thread system is activated. */ |
508 | |
509 | if (needLock) { |
510 | PR_Lock(monitor); |
511 | } |
512 | |
513 | /* |
514 | * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock' |
515 | * represents a time before midnight January 1, 1970. In |
516 | * that case, we also return a NULL pointer and the struct tm |
517 | * object pointed to by 'result' is not modified. |
518 | * |
519 | */ |
520 | |
521 | tmPtr = localtime(clock); |
522 | |
523 | if (tmPtr) { |
524 | *result = *tmPtr; |
525 | } else { |
526 | result = NULL((void*)0); |
527 | } |
528 | |
529 | if (needLock) { |
530 | PR_Unlock(monitor); |
531 | } |
532 | |
533 | return result; |
534 | } |
535 | |
536 | #endif /* definition of MT_safe_localtime() */ |
537 | |
538 | void _PR_InitTime(void) { |
539 | #ifdef HAVE_LOCALTIME_MONITOR |
540 | monitor = PR_NewLock(); |
541 | #endif |
542 | #ifdef WINCE |
543 | _MD_InitTime(); |
544 | #endif |
545 | } |
546 | |
547 | void _PR_CleanupTime(void) { |
548 | #ifdef HAVE_LOCALTIME_MONITOR |
549 | if (monitor) { |
550 | PR_DestroyLock(monitor); |
551 | monitor = NULL((void*)0); |
552 | } |
553 | #endif |
554 | #ifdef WINCE |
555 | _MD_CleanupTime(); |
556 | #endif |
557 | } |
558 | |
559 | #if defined(XP_UNIX1) || defined(XP_PC) |
560 | |
561 | PR_IMPLEMENT(PRTimeParameters)__attribute__((visibility("default"))) PRTimeParameters |
562 | PR_LocalTimeParameters(const PRExplodedTime* gmt) { |
563 | PRTimeParameters retVal; |
564 | struct tm localTime; |
565 | struct tm* localTimeResult; |
566 | time_t secs; |
567 | PRTime secs64; |
568 | PRInt64 usecPerSec; |
569 | PRInt64 usecPerSec_1; |
570 | PRInt64 maxInt32; |
571 | PRInt64 minInt32; |
572 | PRInt32 dayOffset; |
573 | PRInt32 offset2Jan1970; |
574 | PRInt32 offsetNew; |
575 | int isdst2Jan1970; |
576 | |
577 | /* |
578 | * Calculate the GMT offset. First, figure out what is |
579 | * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400 |
580 | * seconds, since the epoch) in local time. Then we calculate |
581 | * the difference between local time and GMT in seconds: |
582 | * gmt_offset = local_time - GMT |
583 | * |
584 | * Caveat: the validity of this calculation depends on two |
585 | * assumptions: |
586 | * 1. Daylight saving time was not in effect on Jan. 2, 1970. |
587 | * 2. The time zone of the geographic location has not changed |
588 | * since Jan. 2, 1970. |
589 | */ |
590 | |
591 | secs = 86400L; |
592 | localTimeResult = MT_safe_localtimelocaltime_r(&secs, &localTime); |
593 | PR_ASSERT(localTimeResult != NULL)((localTimeResult != ((void*)0))?((void)0):PR_Assert("localTimeResult != NULL" ,"/root/firefox-clang/nsprpub/pr/src/misc/prtime.c",593)); |
594 | if (localTimeResult == NULL((void*)0)) { |
595 | /* Shouldn't happen. Use safe fallback for optimized builds. */ |
596 | return PR_GMTParameters(gmt); |
597 | } |
598 | |
599 | /* GMT is 00:00:00, 2nd of Jan. */ |
600 | |
601 | offset2Jan1970 = (PRInt32)localTime.tm_sec + 60L * (PRInt32)localTime.tm_min + |
602 | 3600L * (PRInt32)localTime.tm_hour + |
603 | 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L); |
604 | |
605 | isdst2Jan1970 = localTime.tm_isdst; |
606 | |
607 | /* |
608 | * Now compute DST offset. We calculate the overall offset |
609 | * of local time from GMT, similar to above. The overall |
610 | * offset has two components: gmt offset and dst offset. |
611 | * We subtract gmt offset from the overall offset to get |
612 | * the dst offset. |
613 | * overall_offset = local_time - GMT |
614 | * overall_offset = gmt_offset + dst_offset |
615 | * ==> dst_offset = local_time - GMT - gmt_offset |
616 | */ |
617 | |
618 | secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */ |
619 | LL_I2L(usecPerSec, PR_USEC_PER_SEC)((usecPerSec) = (PRInt64)(1000000L)); |
620 | LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1)((usecPerSec_1) = (PRInt64)(1000000L - 1)); |
621 | /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */ |
622 | if (LL_GE_ZERO(secs64)((secs64) >= 0)) { |
623 | LL_DIV(secs64, secs64, usecPerSec)((secs64) = (secs64) / (usecPerSec)); |
624 | } else { |
625 | LL_NEG(secs64, secs64)((secs64) = -(secs64)); |
626 | LL_ADD(secs64, secs64, usecPerSec_1)((secs64) = (secs64) + (usecPerSec_1)); |
627 | LL_DIV(secs64, secs64, usecPerSec)((secs64) = (secs64) / (usecPerSec)); |
628 | LL_NEG(secs64, secs64)((secs64) = -(secs64)); |
629 | } |
630 | LL_I2L(maxInt32, PR_INT32_MAX)((maxInt32) = (PRInt64)(2147483647)); |
631 | LL_I2L(minInt32, PR_INT32_MIN)((minInt32) = (PRInt64)((-2147483647 - 1))); |
632 | if (LL_CMP(secs64, >, maxInt32)((PRInt64)(secs64) > (PRInt64)(maxInt32)) || LL_CMP(secs64, <, minInt32)((PRInt64)(secs64) < (PRInt64)(minInt32))) { |
633 | /* secs64 is too large or too small for time_t (32-bit integer) */ |
634 | retVal.tp_gmt_offset = offset2Jan1970; |
635 | retVal.tp_dst_offset = 0; |
636 | return retVal; |
637 | } |
638 | LL_L2I(secs, secs64)((secs) = (PRInt32)(secs64)); |
639 | |
640 | /* |
641 | * On Windows, localtime() (and our MT_safe_localtime() too) |
642 | * returns a NULL pointer for time before midnight January 1, |
643 | * 1970 GMT. In that case, we just use the GMT offset for |
644 | * Jan 2, 1970 and assume that DST was not in effect. |
645 | */ |
646 | |
647 | if (MT_safe_localtimelocaltime_r(&secs, &localTime) == NULL((void*)0)) { |
648 | retVal.tp_gmt_offset = offset2Jan1970; |
649 | retVal.tp_dst_offset = 0; |
650 | return retVal; |
651 | } |
652 | |
653 | /* |
654 | * dayOffset is the offset between local time and GMT in |
655 | * the day component, which can only be -1, 0, or 1. We |
656 | * use the day of the week to compute dayOffset. |
657 | */ |
658 | |
659 | dayOffset = (PRInt32)localTime.tm_wday - gmt->tm_wday; |
660 | |
661 | /* |
662 | * Need to adjust for wrapping around of day of the week from |
663 | * 6 back to 0. |
664 | */ |
665 | |
666 | if (dayOffset == -6) { |
667 | /* Local time is Sunday (0) and GMT is Saturday (6) */ |
668 | dayOffset = 1; |
669 | } else if (dayOffset == 6) { |
670 | /* Local time is Saturday (6) and GMT is Sunday (0) */ |
671 | dayOffset = -1; |
672 | } |
673 | |
674 | offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec + |
675 | 60L * ((PRInt32)localTime.tm_min - gmt->tm_min) + |
676 | 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) + |
677 | 86400L * (PRInt32)dayOffset; |
678 | |
679 | if (localTime.tm_isdst <= 0) { |
680 | /* DST is not in effect */ |
681 | retVal.tp_gmt_offset = offsetNew; |
682 | retVal.tp_dst_offset = 0; |
683 | } else { |
684 | /* DST is in effect */ |
685 | if (isdst2Jan1970 <= 0) { |
686 | /* |
687 | * DST was not in effect back in 2 Jan. 1970. |
688 | * Use the offset back then as the GMT offset, |
689 | * assuming the time zone has not changed since then. |
690 | */ |
691 | retVal.tp_gmt_offset = offset2Jan1970; |
692 | retVal.tp_dst_offset = offsetNew - offset2Jan1970; |
693 | } else { |
694 | /* |
695 | * DST was also in effect back in 2 Jan. 1970. |
696 | * Then our clever trick (or rather, ugly hack) fails. |
697 | * We will just assume DST offset is an hour. |
698 | */ |
699 | retVal.tp_gmt_offset = offsetNew - 3600; |
700 | retVal.tp_dst_offset = 3600; |
701 | } |
702 | } |
703 | |
704 | return retVal; |
705 | } |
706 | |
707 | #endif /* defined(XP_UNIX) || defined(XP_PC) */ |
708 | |
709 | /* |
710 | *------------------------------------------------------------------------ |
711 | * |
712 | * PR_USPacificTimeParameters -- |
713 | * |
714 | * The time parameters function for the US Pacific Time Zone. |
715 | * |
716 | *------------------------------------------------------------------------ |
717 | */ |
718 | |
719 | /* |
720 | * Returns the mday of the first sunday of the month, where |
721 | * mday and wday are for a given day in the month. |
722 | * mdays start with 1 (e.g. 1..31). |
723 | * wdays start with 0 and are in the range 0..6. 0 = Sunday. |
724 | */ |
725 | #define firstSunday(mday, wday)(((mday - wday + 7 - 1) % 7) + 1) (((mday - wday + 7 - 1) % 7) + 1) |
726 | |
727 | /* |
728 | * Returns the mday for the N'th Sunday of the month, where |
729 | * mday and wday are for a given day in the month. |
730 | * mdays start with 1 (e.g. 1..31). |
731 | * wdays start with 0 and are in the range 0..6. 0 = Sunday. |
732 | * N has the following values: 0 = first, 1 = second (etc), -1 = last. |
733 | * ndays is the number of days in that month, the same value as the |
734 | * mday of the last day of the month. |
735 | */ |
736 | static PRInt32 NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) { |
737 | PRInt32 firstSun = firstSunday(mday, wday)(((mday - wday + 7 - 1) % 7) + 1); |
738 | |
739 | if (N < 0) { |
740 | N = (ndays - firstSun) / 7; |
741 | } |
742 | return firstSun + (7 * N); |
743 | } |
744 | |
745 | typedef struct DSTParams { |
746 | PRInt8 dst_start_month; /* 0 = January */ |
747 | PRInt8 dst_start_Nth_Sunday; /* N as defined above */ |
748 | PRInt8 dst_start_month_ndays; /* ndays as defined above */ |
749 | PRInt8 dst_end_month; /* 0 = January */ |
750 | PRInt8 dst_end_Nth_Sunday; /* N as defined above */ |
751 | PRInt8 dst_end_month_ndays; /* ndays as defined above */ |
752 | } DSTParams; |
753 | |
754 | static const DSTParams dstParams[2] = { |
755 | /* year < 2007: First April Sunday - Last October Sunday */ |
756 | {3, 0, 30, 9, -1, 31}, |
757 | /* year >= 2007: Second March Sunday - First November Sunday */ |
758 | {2, 1, 31, 10, 0, 30}}; |
759 | |
760 | PR_IMPLEMENT(PRTimeParameters)__attribute__((visibility("default"))) PRTimeParameters |
761 | PR_USPacificTimeParameters(const PRExplodedTime* gmt) { |
762 | const DSTParams* dst; |
763 | PRTimeParameters retVal; |
764 | PRExplodedTime st; |
765 | |
766 | /* |
767 | * Based on geographic location and GMT, figure out offset of |
768 | * standard time from GMT. In this example implementation, we |
769 | * assume the local time zone is US Pacific Time. |
770 | */ |
771 | |
772 | retVal.tp_gmt_offset = -8L * 3600L; |
773 | |
774 | /* |
775 | * Make a copy of GMT. Note that the tm_params field of this copy |
776 | * is ignored. |
777 | */ |
778 | |
779 | st.tm_usec = gmt->tm_usec; |
780 | st.tm_sec = gmt->tm_sec; |
781 | st.tm_min = gmt->tm_min; |
782 | st.tm_hour = gmt->tm_hour; |
783 | st.tm_mday = gmt->tm_mday; |
784 | st.tm_month = gmt->tm_month; |
785 | st.tm_year = gmt->tm_year; |
786 | st.tm_wday = gmt->tm_wday; |
787 | st.tm_yday = gmt->tm_yday; |
788 | |
789 | /* Apply the offset to GMT to obtain the local standard time */ |
790 | ApplySecOffset(&st, retVal.tp_gmt_offset); |
791 | |
792 | if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */ |
793 | dst = &dstParams[0]; |
794 | } else { /* Second March Sunday - First November Sunday */ |
795 | dst = &dstParams[1]; |
796 | } |
797 | |
798 | /* |
799 | * Apply the rules on standard time or GMT to obtain daylight saving |
800 | * time offset. In this implementation, we use the US DST rule. |
801 | */ |
802 | if (st.tm_month < dst->dst_start_month) { |
803 | retVal.tp_dst_offset = 0L; |
804 | } else if (st.tm_month == dst->dst_start_month) { |
805 | int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_start_Nth_Sunday, |
806 | dst->dst_start_month_ndays); |
807 | if (st.tm_mday < NthSun) { /* Before starting Sunday */ |
808 | retVal.tp_dst_offset = 0L; |
809 | } else if (st.tm_mday == NthSun) { /* Starting Sunday */ |
810 | /* 01:59:59 PST -> 03:00:00 PDT */ |
811 | if (st.tm_hour < 2) { |
812 | retVal.tp_dst_offset = 0L; |
813 | } else { |
814 | retVal.tp_dst_offset = 3600L; |
815 | } |
816 | } else { /* After starting Sunday */ |
817 | retVal.tp_dst_offset = 3600L; |
818 | } |
819 | } else if (st.tm_month < dst->dst_end_month) { |
820 | retVal.tp_dst_offset = 3600L; |
821 | } else if (st.tm_month == dst->dst_end_month) { |
822 | int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_end_Nth_Sunday, |
823 | dst->dst_end_month_ndays); |
824 | if (st.tm_mday < NthSun) { /* Before ending Sunday */ |
825 | retVal.tp_dst_offset = 3600L; |
826 | } else if (st.tm_mday == NthSun) { /* Ending Sunday */ |
827 | /* 01:59:59 PDT -> 01:00:00 PST */ |
828 | if (st.tm_hour < 1) { |
829 | retVal.tp_dst_offset = 3600L; |
830 | } else { |
831 | retVal.tp_dst_offset = 0L; |
832 | } |
833 | } else { /* After ending Sunday */ |
834 | retVal.tp_dst_offset = 0L; |
835 | } |
836 | } else { |
837 | retVal.tp_dst_offset = 0L; |
838 | } |
839 | return retVal; |
840 | } |
841 | |
842 | /* |
843 | *------------------------------------------------------------------------ |
844 | * |
845 | * PR_GMTParameters -- |
846 | * |
847 | * Returns the PRTimeParameters for Greenwich Mean Time. |
848 | * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. |
849 | * |
850 | *------------------------------------------------------------------------ |
851 | */ |
852 | |
853 | PR_IMPLEMENT(PRTimeParameters)__attribute__((visibility("default"))) PRTimeParameters |
854 | PR_GMTParameters(const PRExplodedTime* gmt) { |
855 | PRTimeParameters retVal = {0, 0}; |
856 | return retVal; |
857 | } |
858 | |
859 | /* |
860 | * The following code implements PR_ParseTimeString(). It is based on |
861 | * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>. |
862 | */ |
863 | |
864 | /* |
865 | * We only recognize the abbreviations of a small subset of time zones |
866 | * in North America, Europe, and Japan. |
867 | * |
868 | * PST/PDT: Pacific Standard/Daylight Time |
869 | * MST/MDT: Mountain Standard/Daylight Time |
870 | * CST/CDT: Central Standard/Daylight Time |
871 | * EST/EDT: Eastern Standard/Daylight Time |
872 | * AST: Atlantic Standard Time |
873 | * NST: Newfoundland Standard Time |
874 | * GMT: Greenwich Mean Time |
875 | * BST: British Summer Time |
876 | * MET: Middle Europe Time |
877 | * EET: Eastern Europe Time |
878 | * JST: Japan Standard Time |
879 | */ |
880 | |
881 | typedef enum { |
882 | TT_UNKNOWN, |
883 | |
884 | TT_SUN, |
885 | TT_MON, |
886 | TT_TUE, |
887 | TT_WED, |
888 | TT_THU, |
889 | TT_FRI, |
890 | TT_SAT, |
891 | |
892 | TT_JAN, |
893 | TT_FEB, |
894 | TT_MAR, |
895 | TT_APR, |
896 | TT_MAY, |
897 | TT_JUN, |
898 | TT_JUL, |
899 | TT_AUG, |
900 | TT_SEP, |
901 | TT_OCT, |
902 | TT_NOV, |
903 | TT_DEC, |
904 | |
905 | TT_PST, |
906 | TT_PDT, |
907 | TT_MST, |
908 | TT_MDT, |
909 | TT_CST, |
910 | TT_CDT, |
911 | TT_EST, |
912 | TT_EDT, |
913 | TT_AST, |
914 | TT_NST, |
915 | TT_GMT, |
916 | TT_BST, |
917 | TT_MET, |
918 | TT_EET, |
919 | TT_JST |
920 | } TIME_TOKEN; |
921 | |
922 | /* |
923 | * This parses a time/date string into a PRTime |
924 | * (microseconds after "1-Jan-1970 00:00:00 GMT"). |
925 | * It returns PR_SUCCESS on success, and PR_FAILURE |
926 | * if the time/date string can't be parsed. |
927 | * |
928 | * Many formats are handled, including: |
929 | * |
930 | * 14 Apr 89 03:20:12 |
931 | * 14 Apr 89 03:20 GMT |
932 | * Fri, 17 Mar 89 4:01:33 |
933 | * Fri, 17 Mar 89 4:01 GMT |
934 | * Mon Jan 16 16:12 PDT 1989 |
935 | * Mon Jan 16 16:12 +0130 1989 |
936 | * 6 May 1992 16:41-JST (Wednesday) |
937 | * 22-AUG-1993 10:59:12.82 |
938 | * 22-AUG-1993 10:59pm |
939 | * 22-AUG-1993 12:59am |
940 | * 22-AUG-1993 12:59 PM |
941 | * Friday, August 04, 1995 3:54 PM |
942 | * 06/21/95 04:24:34 PM |
943 | * 20/06/95 21:07 |
944 | * 95-06-08 19:32:48 EDT |
945 | * |
946 | * If the input string doesn't contain a description of the timezone, |
947 | * we consult the `default_to_gmt' to decide whether the string should |
948 | * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). |
949 | * The correct value for this argument depends on what standard specified |
950 | * the time string which you are parsing. |
951 | */ |
952 | |
953 | PR_IMPLEMENT(PRStatus)__attribute__((visibility("default"))) PRStatus |
954 | PR_ParseTimeStringToExplodedTime(const char* string, PRBool default_to_gmt, |
955 | PRExplodedTime* result) { |
956 | TIME_TOKEN dotw = TT_UNKNOWN; |
957 | TIME_TOKEN month = TT_UNKNOWN; |
958 | TIME_TOKEN zone = TT_UNKNOWN; |
959 | int zone_offset = -1; |
960 | int dst_offset = 0; |
961 | int date = -1; |
962 | PRInt32 year = -1; |
963 | int hour = -1; |
964 | int min = -1; |
965 | int sec = -1; |
966 | struct tm* localTimeResult; |
967 | |
968 | const char* rest = string; |
969 | |
970 | int iterations = 0; |
971 | |
972 | PR_ASSERT(string && result)((string && result)?((void)0):PR_Assert("string && result" ,"/root/firefox-clang/nsprpub/pr/src/misc/prtime.c",972)); |
973 | if (!string || !result) { |
974 | return PR_FAILURE; |
975 | } |
976 | |
977 | while (*rest) { |
978 | if (iterations++ > 1000) { |
979 | return PR_FAILURE; |
980 | } |
981 | |
982 | switch (*rest) { |
983 | case 'a': |
984 | case 'A': |
985 | if (month == TT_UNKNOWN && (rest[1] == 'p' || rest[1] == 'P') && |
986 | (rest[2] == 'r' || rest[2] == 'R')) { |
987 | month = TT_APR; |
988 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
989 | (rest[2] == 't' || rest[2] == 'T')) { |
990 | zone = TT_AST; |
991 | } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && |
992 | (rest[2] == 'g' || rest[2] == 'G')) { |
993 | month = TT_AUG; |
994 | } |
995 | break; |
996 | case 'b': |
997 | case 'B': |
998 | if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
999 | (rest[2] == 't' || rest[2] == 'T')) { |
1000 | zone = TT_BST; |
1001 | } |
1002 | break; |
1003 | case 'c': |
1004 | case 'C': |
1005 | if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && |
1006 | (rest[2] == 't' || rest[2] == 'T')) { |
1007 | zone = TT_CDT; |
1008 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
1009 | (rest[2] == 't' || rest[2] == 'T')) { |
1010 | zone = TT_CST; |
1011 | } |
1012 | break; |
1013 | case 'd': |
1014 | case 'D': |
1015 | if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && |
1016 | (rest[2] == 'c' || rest[2] == 'C')) { |
1017 | month = TT_DEC; |
1018 | } |
1019 | break; |
1020 | case 'e': |
1021 | case 'E': |
1022 | if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && |
1023 | (rest[2] == 't' || rest[2] == 'T')) { |
1024 | zone = TT_EDT; |
1025 | } else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && |
1026 | (rest[2] == 't' || rest[2] == 'T')) { |
1027 | zone = TT_EET; |
1028 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
1029 | (rest[2] == 't' || rest[2] == 'T')) { |
1030 | zone = TT_EST; |
1031 | } |
1032 | break; |
1033 | case 'f': |
1034 | case 'F': |
1035 | if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && |
1036 | (rest[2] == 'b' || rest[2] == 'B')) { |
1037 | month = TT_FEB; |
1038 | } else if (dotw == TT_UNKNOWN && (rest[1] == 'r' || rest[1] == 'R') && |
1039 | (rest[2] == 'i' || rest[2] == 'I')) { |
1040 | dotw = TT_FRI; |
1041 | } |
1042 | break; |
1043 | case 'g': |
1044 | case 'G': |
1045 | if (zone == TT_UNKNOWN && (rest[1] == 'm' || rest[1] == 'M') && |
1046 | (rest[2] == 't' || rest[2] == 'T')) { |
1047 | zone = TT_GMT; |
1048 | } |
1049 | break; |
1050 | case 'j': |
1051 | case 'J': |
1052 | if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && |
1053 | (rest[2] == 'n' || rest[2] == 'N')) { |
1054 | month = TT_JAN; |
1055 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
1056 | (rest[2] == 't' || rest[2] == 'T')) { |
1057 | zone = TT_JST; |
1058 | } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && |
1059 | (rest[2] == 'l' || rest[2] == 'L')) { |
1060 | month = TT_JUL; |
1061 | } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && |
1062 | (rest[2] == 'n' || rest[2] == 'N')) { |
1063 | month = TT_JUN; |
1064 | } |
1065 | break; |
1066 | case 'm': |
1067 | case 'M': |
1068 | if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && |
1069 | (rest[2] == 'r' || rest[2] == 'R')) { |
1070 | month = TT_MAR; |
1071 | } else if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && |
1072 | (rest[2] == 'y' || rest[2] == 'Y')) { |
1073 | month = TT_MAY; |
1074 | } else if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && |
1075 | (rest[2] == 't' || rest[2] == 'T')) { |
1076 | zone = TT_MDT; |
1077 | } else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && |
1078 | (rest[2] == 't' || rest[2] == 'T')) { |
1079 | zone = TT_MET; |
1080 | } else if (dotw == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') && |
1081 | (rest[2] == 'n' || rest[2] == 'N')) { |
1082 | dotw = TT_MON; |
1083 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
1084 | (rest[2] == 't' || rest[2] == 'T')) { |
1085 | zone = TT_MST; |
1086 | } |
1087 | break; |
1088 | case 'n': |
1089 | case 'N': |
1090 | if (month == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') && |
1091 | (rest[2] == 'v' || rest[2] == 'V')) { |
1092 | month = TT_NOV; |
1093 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
1094 | (rest[2] == 't' || rest[2] == 'T')) { |
1095 | zone = TT_NST; |
1096 | } |
1097 | break; |
1098 | case 'o': |
1099 | case 'O': |
1100 | if (month == TT_UNKNOWN && (rest[1] == 'c' || rest[1] == 'C') && |
1101 | (rest[2] == 't' || rest[2] == 'T')) { |
1102 | month = TT_OCT; |
1103 | } |
1104 | break; |
1105 | case 'p': |
1106 | case 'P': |
1107 | if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && |
1108 | (rest[2] == 't' || rest[2] == 'T')) { |
1109 | zone = TT_PDT; |
1110 | } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && |
1111 | (rest[2] == 't' || rest[2] == 'T')) { |
1112 | zone = TT_PST; |
1113 | } |
1114 | break; |
1115 | case 's': |
1116 | case 'S': |
1117 | if (dotw == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && |
1118 | (rest[2] == 't' || rest[2] == 'T')) { |
1119 | dotw = TT_SAT; |
1120 | } else if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && |
1121 | (rest[2] == 'p' || rest[2] == 'P')) { |
1122 | month = TT_SEP; |
1123 | } else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && |
1124 | (rest[2] == 'n' || rest[2] == 'N')) { |
1125 | dotw = TT_SUN; |
1126 | } |
1127 | break; |
1128 | case 't': |
1129 | case 'T': |
1130 | if (dotw == TT_UNKNOWN && (rest[1] == 'h' || rest[1] == 'H') && |
1131 | (rest[2] == 'u' || rest[2] == 'U')) { |
1132 | dotw = TT_THU; |
1133 | } else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && |
1134 | (rest[2] == 'e' || rest[2] == 'E')) { |
1135 | dotw = TT_TUE; |
1136 | } |
1137 | break; |
1138 | case 'u': |
1139 | case 'U': |
1140 | if (zone == TT_UNKNOWN && (rest[1] == 't' || rest[1] == 'T') && |
1141 | !(rest[2] >= 'A' && rest[2] <= 'Z') && |
1142 | !(rest[2] >= 'a' && rest[2] <= 'z')) |
1143 | /* UT is the same as GMT but UTx is not. */ |
1144 | { |
1145 | zone = TT_GMT; |
1146 | } |
1147 | break; |
1148 | case 'w': |
1149 | case 'W': |
1150 | if (dotw == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && |
1151 | (rest[2] == 'd' || rest[2] == 'D')) { |
1152 | dotw = TT_WED; |
1153 | } |
1154 | break; |
1155 | |
1156 | case '+': |
1157 | case '-': { |
1158 | const char* end; |
1159 | int sign; |
1160 | if (zone_offset != -1) { |
1161 | /* already got one... */ |
1162 | rest++; |
1163 | break; |
1164 | } |
1165 | if (zone != TT_UNKNOWN && zone != TT_GMT) { |
1166 | /* GMT+0300 is legal, but PST+0300 is not. */ |
1167 | rest++; |
1168 | break; |
1169 | } |
1170 | |
1171 | sign = ((*rest == '+') ? 1 : -1); |
1172 | rest++; /* move over sign */ |
1173 | end = rest; |
1174 | while (*end >= '0' && *end <= '9') { |
1175 | end++; |
1176 | } |
1177 | if (rest == end) { /* no digits here */ |
1178 | break; |
1179 | } |
1180 | |
1181 | if ((end - rest) == 4) /* offset in HHMM */ |
1182 | zone_offset = (((((rest[0] - '0') * 10) + (rest[1] - '0')) * 60) + |
1183 | (((rest[2] - '0') * 10) + (rest[3] - '0'))); |
1184 | else if ((end - rest) == 2) |
1185 | /* offset in hours */ |
1186 | { |
1187 | zone_offset = (((rest[0] - '0') * 10) + (rest[1] - '0')) * 60; |
1188 | } else if ((end - rest) == 1) |
1189 | /* offset in hours */ |
1190 | { |
1191 | zone_offset = (rest[0] - '0') * 60; |
1192 | } else |
1193 | /* 3 or >4 */ |
1194 | { |
1195 | break; |
1196 | } |
1197 | |
1198 | zone_offset *= sign; |
1199 | zone = TT_GMT; |
1200 | break; |
1201 | } |
1202 | |
1203 | case '0': |
1204 | case '1': |
1205 | case '2': |
1206 | case '3': |
1207 | case '4': |
1208 | case '5': |
1209 | case '6': |
1210 | case '7': |
1211 | case '8': |
1212 | case '9': { |
1213 | int tmp_hour = -1; |
1214 | int tmp_min = -1; |
1215 | int tmp_sec = -1; |
1216 | const char* end = rest + 1; |
1217 | while (*end >= '0' && *end <= '9') { |
1218 | end++; |
1219 | } |
1220 | |
1221 | /* end is now the first character after a range of digits. */ |
1222 | |
1223 | if (*end == ':') { |
1224 | if (hour >= 0 && min >= 0) { /* already got it */ |
1225 | break; |
1226 | } |
1227 | |
1228 | /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ |
1229 | if ((end - rest) > 2) |
1230 | /* it is [0-9][0-9][0-9]+: */ |
1231 | { |
1232 | break; |
1233 | } |
1234 | if ((end - rest) == 2) |
1235 | tmp_hour = ((rest[0] - '0') * 10 + (rest[1] - '0')); |
1236 | else { |
1237 | tmp_hour = (rest[0] - '0'); |
1238 | } |
1239 | |
1240 | /* move over the colon, and parse minutes */ |
1241 | |
1242 | rest = ++end; |
1243 | while (*end >= '0' && *end <= '9') { |
1244 | end++; |
1245 | } |
1246 | |
1247 | if (end == rest) |
1248 | /* no digits after first colon? */ |
1249 | { |
1250 | break; |
1251 | } |
1252 | if ((end - rest) > 2) |
1253 | /* it is [0-9][0-9][0-9]+: */ |
1254 | { |
1255 | break; |
1256 | } |
1257 | if ((end - rest) == 2) |
1258 | tmp_min = ((rest[0] - '0') * 10 + (rest[1] - '0')); |
1259 | else { |
1260 | tmp_min = (rest[0] - '0'); |
1261 | } |
1262 | |
1263 | /* now go for seconds */ |
1264 | rest = end; |
1265 | if (*rest == ':') { |
1266 | rest++; |
1267 | } |
1268 | end = rest; |
1269 | while (*end >= '0' && *end <= '9') { |
1270 | end++; |
1271 | } |
1272 | |
1273 | if (end == rest) /* no digits after second colon - that's ok. */ |
1274 | ; |
1275 | else if ((end - rest) > 2) |
1276 | /* it is [0-9][0-9][0-9]+: */ |
1277 | { |
1278 | break; |
1279 | } |
1280 | if ((end - rest) == 2) |
1281 | tmp_sec = ((rest[0] - '0') * 10 + (rest[1] - '0')); |
1282 | else { |
1283 | tmp_sec = (rest[0] - '0'); |
1284 | } |
1285 | |
1286 | /* If we made it here, we've parsed hour and min, |
1287 | and possibly sec, so it worked as a unit. */ |
1288 | |
1289 | /* skip over whitespace and see if there's an AM or PM |
1290 | directly following the time. |
1291 | */ |
1292 | if (tmp_hour <= 12) { |
1293 | const char* s = end; |
1294 | while (*s && (*s == ' ' || *s == '\t')) { |
1295 | s++; |
1296 | } |
1297 | if ((s[0] == 'p' || s[0] == 'P') && (s[1] == 'm' || s[1] == 'M')) |
1298 | /* 10:05pm == 22:05, and 12:05pm == 12:05 */ |
1299 | { |
1300 | tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); |
1301 | } else if (tmp_hour == 12 && (s[0] == 'a' || s[0] == 'A') && |
1302 | (s[1] == 'm' || s[1] == 'M')) |
1303 | /* 12:05am == 00:05 */ |
1304 | { |
1305 | tmp_hour = 0; |
1306 | } |
1307 | } |
1308 | |
1309 | hour = tmp_hour; |
1310 | min = tmp_min; |
1311 | sec = tmp_sec; |
1312 | rest = end; |
1313 | break; |
1314 | } |
1315 | if ((*end == '/' || *end == '-') && end[1] >= '0' && end[1] <= '9') { |
1316 | /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 |
1317 | or even 95-06-05... |
1318 | #### But it doesn't handle 1995-06-22. |
1319 | */ |
1320 | int n1, n2, n3; |
1321 | const char* s; |
1322 | |
1323 | if (month != TT_UNKNOWN) |
1324 | /* if we saw a month name, this can't be. */ |
1325 | { |
1326 | break; |
1327 | } |
1328 | |
1329 | s = rest; |
1330 | |
1331 | n1 = (*s++ - '0'); /* first 1 or 2 digits */ |
1332 | if (*s >= '0' && *s <= '9') { |
1333 | n1 = n1 * 10 + (*s++ - '0'); |
1334 | } |
1335 | |
1336 | if (*s != '/' && *s != '-') { /* slash */ |
1337 | break; |
1338 | } |
1339 | s++; |
1340 | |
1341 | if (*s < '0' || *s > '9') { /* second 1 or 2 digits */ |
1342 | break; |
1343 | } |
1344 | n2 = (*s++ - '0'); |
1345 | if (*s >= '0' && *s <= '9') { |
1346 | n2 = n2 * 10 + (*s++ - '0'); |
1347 | } |
1348 | |
1349 | if (*s != '/' && *s != '-') { /* slash */ |
1350 | break; |
1351 | } |
1352 | s++; |
1353 | |
1354 | if (*s < '0' || *s > '9') { /* third 1, 2, 4, or 5 digits */ |
1355 | break; |
1356 | } |
1357 | n3 = (*s++ - '0'); |
1358 | if (*s >= '0' && *s <= '9') { |
1359 | n3 = n3 * 10 + (*s++ - '0'); |
1360 | } |
1361 | |
1362 | if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ |
1363 | { |
1364 | n3 = n3 * 10 + (*s++ - '0'); |
1365 | if (*s < '0' || *s > '9') { |
1366 | break; |
1367 | } |
1368 | n3 = n3 * 10 + (*s++ - '0'); |
1369 | if (*s >= '0' && *s <= '9') { |
1370 | n3 = n3 * 10 + (*s++ - '0'); |
1371 | } |
1372 | } |
1373 | |
1374 | if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ |
1375 | (*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z')) { |
1376 | break; |
1377 | } |
1378 | |
1379 | /* Ok, we parsed three 1-2 digit numbers, with / or - |
1380 | between them. Now decide what the hell they are |
1381 | (DD/MM/YY or MM/DD/YY or YY/MM/DD.) |
1382 | */ |
1383 | |
1384 | if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ |
1385 | { |
1386 | if (n2 > 12) { |
1387 | break; |
1388 | } |
1389 | if (n3 > 31) { |
1390 | break; |
1391 | } |
1392 | year = n1; |
1393 | if (year < 70) { |
1394 | year += 2000; |
1395 | } else if (year < 100) { |
1396 | year += 1900; |
1397 | } |
1398 | month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
1399 | date = n3; |
1400 | rest = s; |
1401 | break; |
1402 | } |
1403 | |
1404 | if (n1 > 12 && n2 > 12) /* illegal */ |
1405 | { |
1406 | rest = s; |
1407 | break; |
1408 | } |
1409 | |
1410 | if (n3 < 70) { |
1411 | n3 += 2000; |
1412 | } else if (n3 < 100) { |
1413 | n3 += 1900; |
1414 | } |
1415 | |
1416 | if (n1 > 12) /* must be DD/MM/YY */ |
1417 | { |
1418 | date = n1; |
1419 | month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
1420 | year = n3; |
1421 | } else /* assume MM/DD/YY */ |
1422 | { |
1423 | /* #### In the ambiguous case, should we consult the |
1424 | locale to find out the local default? */ |
1425 | month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); |
1426 | date = n2; |
1427 | year = n3; |
1428 | } |
1429 | rest = s; |
1430 | } else if ((*end >= 'A' && *end <= 'Z') || (*end >= 'a' && *end <= 'z')) |
1431 | /* Digits followed by non-punctuation - what's that? */ |
1432 | ; |
1433 | else if ((end - rest) == 5) /* five digits is a year */ |
1434 | year = (year < 0 ? ((rest[0] - '0') * 10000L + |
1435 | (rest[1] - '0') * 1000L + (rest[2] - '0') * 100L + |
1436 | (rest[3] - '0') * 10L + (rest[4] - '0')) |
1437 | : year); |
1438 | else if ((end - rest) == 4) /* four digits is a year */ |
1439 | year = (year < 0 ? ((rest[0] - '0') * 1000L + (rest[1] - '0') * 100L + |
1440 | (rest[2] - '0') * 10L + (rest[3] - '0')) |
1441 | : year); |
1442 | else if ((end - rest) == 2) /* two digits - date or year */ |
1443 | { |
1444 | int n = ((rest[0] - '0') * 10 + (rest[1] - '0')); |
1445 | /* If we don't have a date (day of the month) and we see a number |
1446 | less than 32, then assume that is the date. |
1447 | |
1448 | Otherwise, if we have a date and not a year, assume this is |
1449 | the year. If it is less than 70, then assume it refers to the 21st |
1450 | century. If it is two digits (>= 70), assume it refers to |
1451 | this century. Otherwise, assume it refers to an unambiguous year. |
1452 | |
1453 | The world will surely end soon. |
1454 | */ |
1455 | if (date < 0 && n < 32) { |
1456 | date = n; |
1457 | } else if (year < 0) { |
1458 | if (n < 70) { |
1459 | year = 2000 + n; |
1460 | } else if (n < 100) { |
1461 | year = 1900 + n; |
1462 | } else { |
1463 | year = n; |
1464 | } |
1465 | } |
1466 | /* else what the hell is this. */ |
1467 | } else if ((end - rest) == 1) { /* one digit - date */ |
1468 | date = (date < 0 ? (rest[0] - '0') : date); |
1469 | } |
1470 | /* else, three or more than five digits - what's that? */ |
1471 | |
1472 | break; |
1473 | } |
1474 | } |
1475 | |
1476 | /* Skip to the end of this token, whether we parsed it or not. |
1477 | Tokens are delimited by whitespace, or ,;-/ |
1478 | But explicitly not :+-. |
1479 | */ |
1480 | while (*rest && *rest != ' ' && *rest != '\t' && *rest != ',' && |
1481 | *rest != ';' && *rest != '-' && *rest != '+' && *rest != '/' && |
1482 | *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') { |
1483 | rest++; |
1484 | } |
1485 | /* skip over uninteresting chars. */ |
1486 | SKIP_MORE: |
1487 | while (*rest && (*rest == ' ' || *rest == '\t' || *rest == ',' || |
1488 | *rest == ';' || *rest == '/' || *rest == '(' || |
1489 | *rest == ')' || *rest == '[' || *rest == ']')) { |
1490 | rest++; |
1491 | } |
1492 | |
1493 | /* "-" is ignored at the beginning of a token if we have not yet |
1494 | parsed a year (e.g., the second "-" in "30-AUG-1966"), or if |
1495 | the character after the dash is not a digit. */ |
1496 | if (*rest == '-' && |
1497 | ((rest > string && isalpha((unsigned char)rest[-1])((*__ctype_b_loc ())[(int) (((unsigned char)rest[-1]))] & (unsigned short int) _ISalpha) && year < 0) || |
1498 | rest[1] < '0' || rest[1] > '9')) { |
1499 | rest++; |
1500 | goto SKIP_MORE; |
1501 | } |
1502 | } |
1503 | |
1504 | if (zone != TT_UNKNOWN && zone_offset == -1) { |
1505 | switch (zone) { |
1506 | case TT_PST: |
1507 | zone_offset = -8 * 60; |
1508 | break; |
1509 | case TT_PDT: |
1510 | zone_offset = -8 * 60; |
1511 | dst_offset = 1 * 60; |
1512 | break; |
1513 | case TT_MST: |
1514 | zone_offset = -7 * 60; |
1515 | break; |
1516 | case TT_MDT: |
1517 | zone_offset = -7 * 60; |
1518 | dst_offset = 1 * 60; |
1519 | break; |
1520 | case TT_CST: |
1521 | zone_offset = -6 * 60; |
1522 | break; |
1523 | case TT_CDT: |
1524 | zone_offset = -6 * 60; |
1525 | dst_offset = 1 * 60; |
1526 | break; |
1527 | case TT_EST: |
1528 | zone_offset = -5 * 60; |
1529 | break; |
1530 | case TT_EDT: |
1531 | zone_offset = -5 * 60; |
1532 | dst_offset = 1 * 60; |
1533 | break; |
1534 | case TT_AST: |
1535 | zone_offset = -4 * 60; |
1536 | break; |
1537 | case TT_NST: |
1538 | zone_offset = -3 * 60 - 30; |
1539 | break; |
1540 | case TT_GMT: |
1541 | zone_offset = 0 * 60; |
1542 | break; |
1543 | case TT_BST: |
1544 | zone_offset = 0 * 60; |
1545 | dst_offset = 1 * 60; |
1546 | break; |
1547 | case TT_MET: |
1548 | zone_offset = 1 * 60; |
1549 | break; |
1550 | case TT_EET: |
1551 | zone_offset = 2 * 60; |
1552 | break; |
1553 | case TT_JST: |
1554 | zone_offset = 9 * 60; |
1555 | break; |
1556 | default: |
1557 | PR_ASSERT(0)((0)?((void)0):PR_Assert("0","/root/firefox-clang/nsprpub/pr/src/misc/prtime.c" ,1557)); |
1558 | break; |
1559 | } |
1560 | } |
1561 | |
1562 | /* If we didn't find a year, month, or day-of-the-month, we can't |
1563 | possibly parse this, and in fact, mktime() will do something random |
1564 | (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt |
1565 | a numerologically significant date... */ |
1566 | if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX32767) { |
1567 | return PR_FAILURE; |
1568 | } |
1569 | |
1570 | memset(result, 0, sizeof(*result)); |
1571 | if (sec != -1) { |
1572 | result->tm_sec = sec; |
1573 | } |
1574 | if (min != -1) { |
1575 | result->tm_min = min; |
1576 | } |
1577 | if (hour != -1) { |
1578 | result->tm_hour = hour; |
1579 | } |
1580 | if (date != -1) { |
1581 | result->tm_mday = date; |
1582 | } |
1583 | if (month != TT_UNKNOWN) { |
1584 | result->tm_month = (((int)month) - ((int)TT_JAN)); |
1585 | } |
1586 | if (year != -1) { |
1587 | result->tm_year = year; |
1588 | } |
1589 | if (dotw != TT_UNKNOWN) { |
1590 | result->tm_wday = (((int)dotw) - ((int)TT_SUN)); |
1591 | } |
1592 | /* |
1593 | * Mainly to compute wday and yday, but normalized time is also required |
1594 | * by the check below that works around a Visual C++ 2005 mktime problem. |
1595 | */ |
1596 | PR_NormalizeTime(result, PR_GMTParameters); |
1597 | /* The remaining work is to set the gmt and dst offsets in tm_params. */ |
1598 | |
1599 | if (zone == TT_UNKNOWN && default_to_gmt) { |
1600 | /* No zone was specified, so pretend the zone was GMT. */ |
1601 | zone = TT_GMT; |
Value stored to 'zone' is never read | |
1602 | zone_offset = 0; |
1603 | } |
1604 | |
1605 | if (zone_offset == -1) { |
1606 | /* no zone was specified, and we're to assume that everything |
1607 | is local. */ |
1608 | struct tm localTime; |
1609 | time_t secs; |
1610 | |
1611 | PR_ASSERT(result->tm_month > -1 && result->tm_mday > 0 &&((result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result-> tm_min > -1 && result->tm_sec > -1)?((void)0 ):PR_Assert("result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result->tm_min > -1 && result->tm_sec > -1" ,"/root/firefox-clang/nsprpub/pr/src/misc/prtime.c",1613)) |
1612 | result->tm_hour > -1 && result->tm_min > -1 &&((result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result-> tm_min > -1 && result->tm_sec > -1)?((void)0 ):PR_Assert("result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result->tm_min > -1 && result->tm_sec > -1" ,"/root/firefox-clang/nsprpub/pr/src/misc/prtime.c",1613)) |
1613 | result->tm_sec > -1)((result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result-> tm_min > -1 && result->tm_sec > -1)?((void)0 ):PR_Assert("result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result->tm_min > -1 && result->tm_sec > -1" ,"/root/firefox-clang/nsprpub/pr/src/misc/prtime.c",1613)); |
1614 | |
1615 | /* |
1616 | * To obtain time_t from a tm structure representing the local |
1617 | * time, we call mktime(). However, we need to see if we are |
1618 | * on 1-Jan-1970 or before. If we are, we can't call mktime() |
1619 | * because mktime() will crash on win16. In that case, we |
1620 | * calculate zone_offset based on the zone offset at |
1621 | * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the |
1622 | * date we are parsing to transform the date to GMT. We also |
1623 | * do so if mktime() returns (time_t) -1 (time out of range). |
1624 | */ |
1625 | |
1626 | /* month, day, hours, mins and secs are always non-negative |
1627 | so we dont need to worry about them. */ |
1628 | if (result->tm_year >= 1970) { |
1629 | PRInt64 usec_per_sec; |
1630 | |
1631 | localTime.tm_sec = result->tm_sec; |
1632 | localTime.tm_min = result->tm_min; |
1633 | localTime.tm_hour = result->tm_hour; |
1634 | localTime.tm_mday = result->tm_mday; |
1635 | localTime.tm_mon = result->tm_month; |
1636 | localTime.tm_year = result->tm_year - 1900; |
1637 | /* Set this to -1 to tell mktime "I don't care". If you set |
1638 | it to 0 or 1, you are making assertions about whether the |
1639 | date you are handing it is in daylight savings mode or not; |
1640 | and if you're wrong, it will "fix" it for you. */ |
1641 | localTime.tm_isdst = -1; |
1642 | |
1643 | #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ |
1644 | /* |
1645 | * mktime will return (time_t) -1 if the input is a date |
1646 | * after 23:59:59, December 31, 3000, US Pacific Time (not |
1647 | * UTC as documented): |
1648 | * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx |
1649 | * But if the year is 3001, mktime also invokes the invalid |
1650 | * parameter handler, causing the application to crash. This |
1651 | * problem has been reported in |
1652 | * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. |
1653 | * We avoid this crash by not calling mktime if the date is |
1654 | * out of range. To use a simple test that works in any time |
1655 | * zone, we consider year 3000 out of range as well. (See |
1656 | * bug 480740.) |
1657 | */ |
1658 | if (result->tm_year >= 3000) { |
1659 | /* Emulate what mktime would have done. */ |
1660 | errno(*__errno_location ()) = EINVAL22; |
1661 | secs = (time_t)-1; |
1662 | } else { |
1663 | secs = mktime(&localTime); |
1664 | } |
1665 | #else |
1666 | secs = mktime(&localTime); |
1667 | #endif |
1668 | if (secs != (time_t)-1) { |
1669 | PRTime usecs64; |
1670 | LL_I2L(usecs64, secs)((usecs64) = (PRInt64)(secs)); |
1671 | LL_I2L(usec_per_sec, PR_USEC_PER_SEC)((usec_per_sec) = (PRInt64)(1000000L)); |
1672 | LL_MUL(usecs64, usecs64, usec_per_sec)((usecs64) = (usecs64) * (usec_per_sec)); |
1673 | PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result); |
1674 | return PR_SUCCESS; |
1675 | } |
1676 | } |
1677 | |
1678 | /* So mktime() can't handle this case. We assume the |
1679 | zone_offset for the date we are parsing is the same as |
1680 | the zone offset on 00:00:00 2 Jan 1970 GMT. */ |
1681 | secs = 86400; |
1682 | localTimeResult = MT_safe_localtimelocaltime_r(&secs, &localTime); |
1683 | PR_ASSERT(localTimeResult != NULL)((localTimeResult != ((void*)0))?((void)0):PR_Assert("localTimeResult != NULL" ,"/root/firefox-clang/nsprpub/pr/src/misc/prtime.c",1683)); |
1684 | if (localTimeResult == NULL((void*)0)) { |
1685 | return PR_FAILURE; |
1686 | } |
1687 | zone_offset = localTime.tm_min + 60 * localTime.tm_hour + |
1688 | 1440 * (localTime.tm_mday - 2); |
1689 | } |
1690 | |
1691 | result->tm_params.tp_gmt_offset = zone_offset * 60; |
1692 | result->tm_params.tp_dst_offset = dst_offset * 60; |
1693 | |
1694 | return PR_SUCCESS; |
1695 | } |
1696 | |
1697 | PR_IMPLEMENT(PRStatus)__attribute__((visibility("default"))) PRStatus |
1698 | PR_ParseTimeString(const char* string, PRBool default_to_gmt, PRTime* result) { |
1699 | PRExplodedTime tm; |
1700 | PRStatus rv; |
1701 | |
1702 | rv = PR_ParseTimeStringToExplodedTime(string, default_to_gmt, &tm); |
1703 | if (rv != PR_SUCCESS) { |
1704 | return rv; |
1705 | } |
1706 | |
1707 | *result = PR_ImplodeTime(&tm); |
1708 | |
1709 | return PR_SUCCESS; |
1710 | } |
1711 | |
1712 | /* |
1713 | ******************************************************************* |
1714 | ******************************************************************* |
1715 | ** |
1716 | ** OLD COMPATIBILITY FUNCTIONS |
1717 | ** |
1718 | ******************************************************************* |
1719 | ******************************************************************* |
1720 | */ |
1721 | |
1722 | /* |
1723 | *----------------------------------------------------------------------- |
1724 | * |
1725 | * PR_FormatTime -- |
1726 | * |
1727 | * Format a time value into a buffer. Same semantics as strftime(). |
1728 | * |
1729 | *----------------------------------------------------------------------- |
1730 | */ |
1731 | |
1732 | PR_IMPLEMENT(PRUint32)__attribute__((visibility("default"))) PRUint32 |
1733 | PR_FormatTime(char* buf, int buflen, const char* fmt, |
1734 | const PRExplodedTime* time) { |
1735 | size_t rv; |
1736 | struct tm a; |
1737 | struct tm* ap; |
1738 | |
1739 | if (time) { |
1740 | ap = &a; |
1741 | a.tm_sec = time->tm_sec; |
1742 | a.tm_min = time->tm_min; |
1743 | a.tm_hour = time->tm_hour; |
1744 | a.tm_mday = time->tm_mday; |
1745 | a.tm_mon = time->tm_month; |
1746 | a.tm_wday = time->tm_wday; |
1747 | a.tm_year = time->tm_year - 1900; |
1748 | a.tm_yday = time->tm_yday; |
1749 | a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0; |
1750 | |
1751 | /* |
1752 | * On some platforms, for example SunOS 4, struct tm has two |
1753 | * additional fields: tm_zone and tm_gmtoff. |
1754 | */ |
1755 | |
1756 | #if (__GLIBC__2 >= 2) || defined(NETBSD) || defined(OPENBSD) || \ |
1757 | defined(FREEBSD) || defined(DARWIN) || defined(ANDROID) |
1758 | a.tm_zone = NULL((void*)0); |
1759 | a.tm_gmtoff = time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset; |
1760 | #endif |
1761 | } else { |
1762 | ap = NULL((void*)0); |
1763 | } |
1764 | |
1765 | rv = strftime(buf, buflen, fmt, ap); |
1766 | if (!rv && buf && buflen > 0) { |
1767 | /* |
1768 | * When strftime fails, the contents of buf are indeterminate. |
1769 | * Some callers don't check the return value from this function, |
1770 | * so store an empty string in buf in case they try to print it. |
1771 | */ |
1772 | buf[0] = '\0'; |
1773 | } |
1774 | return rv; |
1775 | } |
1776 | |
1777 | /* |
1778 | * The following string arrays and macros are used by PR_FormatTimeUSEnglish(). |
1779 | */ |
1780 | |
1781 | static const char* abbrevDays[] = {"Sun", "Mon", "Tue", "Wed", |
1782 | "Thu", "Fri", "Sat"}; |
1783 | |
1784 | static const char* days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", |
1785 | "Thursday", "Friday", "Saturday"}; |
1786 | |
1787 | static const char* abbrevMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", |
1788 | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; |
1789 | |
1790 | static const char* months[] = {"January", "February", "March", "April", |
1791 | "May", "June", "July", "August", |
1792 | "September", "October", "November", "December"}; |
1793 | |
1794 | /* |
1795 | * Add a single character to the given buffer, incrementing the buffer pointer |
1796 | * and decrementing the buffer size. Return 0 on error. |
1797 | */ |
1798 | #define ADDCHAR(buf, bufSize, ch)do { if (bufSize < 1) { *(--buf) = '\0'; return 0; } *buf++ = ch; bufSize--; } while (0) \ |
1799 | do { \ |
1800 | if (bufSize < 1) { \ |
1801 | *(--buf) = '\0'; \ |
1802 | return 0; \ |
1803 | } \ |
1804 | *buf++ = ch; \ |
1805 | bufSize--; \ |
1806 | } while (0) |
1807 | |
1808 | /* |
1809 | * Add a string to the given buffer, incrementing the buffer pointer |
1810 | * and decrementing the buffer size appropriately. Return 0 on error. |
1811 | */ |
1812 | #define ADDSTR(buf, bufSize, str)do { PRUint32 strSize = strlen(str); if (strSize > bufSize ) { if (bufSize == 0) *(--buf) = '\0'; else *buf = '\0'; return 0; } memcpy(buf, str, strSize); buf += strSize; bufSize -= strSize ; } while (0) \ |
1813 | do { \ |
1814 | PRUint32 strSize = strlen(str); \ |
1815 | if (strSize > bufSize) { \ |
1816 | if (bufSize == 0) \ |
1817 | *(--buf) = '\0'; \ |
1818 | else \ |
1819 | *buf = '\0'; \ |
1820 | return 0; \ |
1821 | } \ |
1822 | memcpy(buf, str, strSize); \ |
1823 | buf += strSize; \ |
1824 | bufSize -= strSize; \ |
1825 | } while (0) |
1826 | |
1827 | /* Needed by PR_FormatTimeUSEnglish() */ |
1828 | static unsigned int pr_WeekOfYear(const PRExplodedTime* time, |
1829 | unsigned int firstDayOfWeek); |
1830 | |
1831 | /*********************************************************************************** |
1832 | * |
1833 | * Description: |
1834 | * This is a dumbed down version of strftime that will format the date in US |
1835 | * English regardless of the setting of the global locale. This functionality |
1836 | *is needed to write things like MIME headers which must always be in US |
1837 | *English. |
1838 | * |
1839 | **********************************************************************************/ |
1840 | |
1841 | PR_IMPLEMENT(PRUint32)__attribute__((visibility("default"))) PRUint32 |
1842 | PR_FormatTimeUSEnglish(char* buf, PRUint32 bufSize, const char* format, |
1843 | const PRExplodedTime* time) { |
1844 | char* bufPtr = buf; |
1845 | const char* fmtPtr; |
1846 | char tmpBuf[40]; |
1847 | const int tmpBufSize = sizeof(tmpBuf); |
1848 | |
1849 | for (fmtPtr = format; *fmtPtr != '\0'; fmtPtr++) { |
1850 | if (*fmtPtr != '%') { |
1851 | ADDCHAR(bufPtr, bufSize, *fmtPtr)do { if (bufSize < 1) { *(--bufPtr) = '\0'; return 0; } *bufPtr ++ = *fmtPtr; bufSize--; } while (0); |
1852 | } else { |
1853 | switch (*(++fmtPtr)) { |
1854 | case '%': |
1855 | /* escaped '%' character */ |
1856 | ADDCHAR(bufPtr, bufSize, '%')do { if (bufSize < 1) { *(--bufPtr) = '\0'; return 0; } *bufPtr ++ = '%'; bufSize--; } while (0); |
1857 | break; |
1858 | |
1859 | case 'a': |
1860 | /* abbreviated weekday name */ |
1861 | ADDSTR(bufPtr, bufSize, abbrevDays[time->tm_wday])do { PRUint32 strSize = strlen(abbrevDays[time->tm_wday]); if (strSize > bufSize) { if (bufSize == 0) *(--bufPtr) = '\0' ; else *bufPtr = '\0'; return 0; } memcpy(bufPtr, abbrevDays[ time->tm_wday], strSize); bufPtr += strSize; bufSize -= strSize ; } while (0); |
1862 | break; |
1863 | |
1864 | case 'A': |
1865 | /* full weekday name */ |
1866 | ADDSTR(bufPtr, bufSize, days[time->tm_wday])do { PRUint32 strSize = strlen(days[time->tm_wday]); if (strSize > bufSize) { if (bufSize == 0) *(--bufPtr) = '\0'; else * bufPtr = '\0'; return 0; } memcpy(bufPtr, days[time->tm_wday ], strSize); bufPtr += strSize; bufSize -= strSize; } while ( 0); |
1867 | break; |
1868 | |
1869 | case 'b': |
1870 | /* abbreviated month name */ |
1871 | ADDSTR(bufPtr, bufSize, abbrevMonths[time->tm_month])do { PRUint32 strSize = strlen(abbrevMonths[time->tm_month ]); if (strSize > bufSize) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0'; return 0; } memcpy(bufPtr, abbrevMonths [time->tm_month], strSize); bufPtr += strSize; bufSize -= strSize ; } while (0); |
1872 | break; |
1873 | |
1874 | case 'B': |
1875 | /* full month name */ |
1876 | ADDSTR(bufPtr, bufSize, months[time->tm_month])do { PRUint32 strSize = strlen(months[time->tm_month]); if (strSize > bufSize) { if (bufSize == 0) *(--bufPtr) = '\0' ; else *bufPtr = '\0'; return 0; } memcpy(bufPtr, months[time ->tm_month], strSize); bufPtr += strSize; bufSize -= strSize ; } while (0); |
1877 | break; |
1878 | |
1879 | case 'c': |
1880 | /* Date and time. */ |
1881 | PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", |
1882 | time); |
1883 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1884 | break; |
1885 | |
1886 | case 'd': |
1887 | /* day of month ( 01 - 31 ) */ |
1888 | PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_mday); |
1889 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1890 | break; |
1891 | |
1892 | case 'H': |
1893 | /* hour ( 00 - 23 ) */ |
1894 | PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_hour); |
1895 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1896 | break; |
1897 | |
1898 | case 'I': |
1899 | /* hour ( 01 - 12 ) */ |
1900 | PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", |
1901 | (time->tm_hour % 12) ? time->tm_hour % 12 : (PRInt32)12); |
1902 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1903 | break; |
1904 | |
1905 | case 'j': |
1906 | /* day number of year ( 001 - 366 ) */ |
1907 | PR_snprintf(tmpBuf, tmpBufSize, "%.3d", time->tm_yday + 1); |
1908 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1909 | break; |
1910 | |
1911 | case 'm': |
1912 | /* month number ( 01 - 12 ) */ |
1913 | PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_month + 1); |
1914 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1915 | break; |
1916 | |
1917 | case 'M': |
1918 | /* minute ( 00 - 59 ) */ |
1919 | PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_min); |
1920 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1921 | break; |
1922 | |
1923 | case 'p': |
1924 | /* locale's equivalent of either AM or PM */ |
1925 | ADDSTR(bufPtr, bufSize, (time->tm_hour < 12) ? "AM" : "PM")do { PRUint32 strSize = strlen((time->tm_hour < 12) ? "AM" : "PM"); if (strSize > bufSize) { if (bufSize == 0) *(--bufPtr ) = '\0'; else *bufPtr = '\0'; return 0; } memcpy(bufPtr, (time ->tm_hour < 12) ? "AM" : "PM", strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1926 | break; |
1927 | |
1928 | case 'S': |
1929 | /* seconds ( 00 - 61 ), allows for leap seconds */ |
1930 | PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_sec); |
1931 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1932 | break; |
1933 | |
1934 | case 'U': |
1935 | /* week number of year ( 00 - 53 ), Sunday is the first day of |
1936 | * week 1 */ |
1937 | PR_snprintf(tmpBuf, tmpBufSize, "%.2d", pr_WeekOfYear(time, 0)); |
1938 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1939 | break; |
1940 | |
1941 | case 'w': |
1942 | /* weekday number ( 0 - 6 ), Sunday = 0 */ |
1943 | PR_snprintf(tmpBuf, tmpBufSize, "%d", time->tm_wday); |
1944 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1945 | break; |
1946 | |
1947 | case 'W': |
1948 | /* Week number of year ( 00 - 53 ), Monday is the first day of |
1949 | * week 1 */ |
1950 | PR_snprintf(tmpBuf, tmpBufSize, "%.2d", pr_WeekOfYear(time, 1)); |
1951 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1952 | break; |
1953 | |
1954 | case 'x': |
1955 | /* Date representation */ |
1956 | PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%m/%d/%y", time); |
1957 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1958 | break; |
1959 | |
1960 | case 'X': |
1961 | /* Time representation. */ |
1962 | PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%H:%M:%S", time); |
1963 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1964 | break; |
1965 | |
1966 | case 'y': |
1967 | /* year within century ( 00 - 99 ) */ |
1968 | PR_snprintf(tmpBuf, tmpBufSize, "%.2d", time->tm_year % 100); |
1969 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1970 | break; |
1971 | |
1972 | case 'Y': |
1973 | /* year as ccyy ( for example 1986 ) */ |
1974 | PR_snprintf(tmpBuf, tmpBufSize, "%.4d", time->tm_year); |
1975 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1976 | break; |
1977 | |
1978 | case 'Z': |
1979 | /* Time zone name or no characters if no time zone exists. |
1980 | * Since time zone name is supposed to be independant of locale, we |
1981 | * defer to PR_FormatTime() for this option. |
1982 | */ |
1983 | PR_FormatTime(tmpBuf, tmpBufSize, "%Z", time); |
1984 | ADDSTR(bufPtr, bufSize, tmpBuf)do { PRUint32 strSize = strlen(tmpBuf); if (strSize > bufSize ) { if (bufSize == 0) *(--bufPtr) = '\0'; else *bufPtr = '\0' ; return 0; } memcpy(bufPtr, tmpBuf, strSize); bufPtr += strSize ; bufSize -= strSize; } while (0); |
1985 | break; |
1986 | |
1987 | default: |
1988 | /* Unknown format. Simply copy format into output buffer. */ |
1989 | ADDCHAR(bufPtr, bufSize, '%')do { if (bufSize < 1) { *(--bufPtr) = '\0'; return 0; } *bufPtr ++ = '%'; bufSize--; } while (0); |
1990 | ADDCHAR(bufPtr, bufSize, *fmtPtr)do { if (bufSize < 1) { *(--bufPtr) = '\0'; return 0; } *bufPtr ++ = *fmtPtr; bufSize--; } while (0); |
1991 | break; |
1992 | } |
1993 | } |
1994 | } |
1995 | |
1996 | ADDCHAR(bufPtr, bufSize, '\0')do { if (bufSize < 1) { *(--bufPtr) = '\0'; return 0; } *bufPtr ++ = '\0'; bufSize--; } while (0); |
1997 | return (PRUint32)(bufPtr - buf - 1); |
1998 | } |
1999 | |
2000 | /*********************************************************************************** |
2001 | * |
2002 | * Description: |
2003 | * Returns the week number of the year (0-53) for the given time. |
2004 | *firstDayOfWeek is the day on which the week is considered to start (0=Sun, |
2005 | *1=Mon, ...). Week 1 starts the first time firstDayOfWeek occurs in the year. |
2006 | *In other words, a partial week at the start of the year is considered week 0. |
2007 | * |
2008 | **********************************************************************************/ |
2009 | |
2010 | static unsigned int pr_WeekOfYear(const PRExplodedTime* time, |
2011 | unsigned int firstDayOfWeek) { |
2012 | int dayOfWeek; |
2013 | int dayOfYear; |
2014 | |
2015 | /* Get the day of the year for the given time then adjust it to represent the |
2016 | * first day of the week containing the given time. |
2017 | */ |
2018 | dayOfWeek = time->tm_wday - firstDayOfWeek; |
2019 | if (dayOfWeek < 0) { |
2020 | dayOfWeek += 7; |
2021 | } |
2022 | |
2023 | dayOfYear = time->tm_yday - dayOfWeek; |
2024 | |
2025 | if (dayOfYear <= 0) { |
2026 | /* If dayOfYear is <= 0, it is in the first partial week of the year. */ |
2027 | return 0; |
2028 | } |
2029 | |
2030 | /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there |
2031 | * are any days left over ( dayOfYear % 7 ). Because we are only counting to |
2032 | * the first day of the week containing the given time, rather than to the |
2033 | * actual day representing the given time, any days in week 0 will be |
2034 | * "absorbed" as extra days in the given week. |
2035 | */ |
2036 | return (dayOfYear / 7) + ((dayOfYear % 7) == 0 ? 0 : 1); |
2037 | } |