File: | root/firefox-clang/nsprpub/pr/src/misc/prdtoa.c |
Warning: | line 2376, column 5 Value stored to 'dsign' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | /* This Source Code Form is subject to the terms of the Mozilla Public |
3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
5 | |
6 | /* |
7 | * This file is based on the third-party code dtoa.c. We minimize our |
8 | * modifications to third-party code to make it easy to merge new versions. |
9 | * The author of dtoa.c was not willing to add the parentheses suggested by |
10 | * GCC, so we suppress these warnings. |
11 | */ |
12 | #if (__GNUC__4 > 4) || (__GNUC__4 == 4 && __GNUC_MINOR__2 >= 2) |
13 | # pragma GCC diagnostic ignored "-Wparentheses" |
14 | #endif |
15 | |
16 | #include "primpl.h" |
17 | #include "prbit.h" |
18 | |
19 | #define MULTIPLE_THREADS |
20 | #define ACQUIRE_DTOA_LOCK(n)PR_Lock(dtoa_lock[n]) PR_Lock(dtoa_lock[n]) |
21 | #define FREE_DTOA_LOCK(n)PR_Unlock(dtoa_lock[n]) PR_Unlock(dtoa_lock[n]) |
22 | |
23 | static PRLock* dtoa_lock[2]; |
24 | |
25 | void _PR_InitDtoa(void) { |
26 | dtoa_lock[0] = PR_NewLock(); |
27 | dtoa_lock[1] = PR_NewLock(); |
28 | } |
29 | |
30 | void _PR_CleanupDtoa(void) { |
31 | PR_DestroyLock(dtoa_lock[0]); |
32 | dtoa_lock[0] = NULL((void*)0); |
33 | PR_DestroyLock(dtoa_lock[1]); |
34 | dtoa_lock[1] = NULL((void*)0); |
35 | |
36 | /* FIXME: deal with freelist and p5s. */ |
37 | } |
38 | |
39 | #if !defined(__ARM_EABI__) && (defined(__arm) || defined(__arm__) || \ |
40 | defined(__arm26__) || defined(__arm32__)) |
41 | # define IEEE_ARM |
42 | #elif defined(IS_LITTLE_ENDIAN1) |
43 | # define IEEE_8087 |
44 | #else |
45 | # define IEEE_MC68k |
46 | #endif |
47 | |
48 | #define LongPRInt32 PRInt32 |
49 | #define ULongPRUint32 PRUint32 |
50 | #define NO_LONG_LONG |
51 | |
52 | #define No_Hex_NaN |
53 | |
54 | /**************************************************************** |
55 | * |
56 | * The author of this software is David M. Gay. |
57 | * |
58 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
59 | * |
60 | * Permission to use, copy, modify, and distribute this software for any |
61 | * purpose without fee is hereby granted, provided that this entire notice |
62 | * is included in all copies of any software which is or includes a copy |
63 | * or modification of this software and in all copies of the supporting |
64 | * documentation for such software. |
65 | * |
66 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
67 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
68 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
69 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
70 | * |
71 | ***************************************************************/ |
72 | |
73 | /* Please send bug reports to David M. Gay (dmg at acm dot org, |
74 | * with " at " changed at "@" and " dot " changed to "."). */ |
75 | |
76 | /* On a machine with IEEE extended-precision registers, it is |
77 | * necessary to specify double-precision (53-bit) rounding precision |
78 | * before invoking strtod or dtoa. If the machine uses (the equivalent |
79 | * of) Intel 80x87 arithmetic, the call |
80 | * _control87(PC_53, MCW_PC); |
81 | * does this with many compilers. Whether this or another call is |
82 | * appropriate depends on the compiler; for this to work, it may be |
83 | * necessary to #include "float.h" or another system-dependent header |
84 | * file. |
85 | */ |
86 | |
87 | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
88 | * |
89 | * This strtod returns a nearest machine number to the input decimal |
90 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
91 | * broken by the IEEE round-even rule. Otherwise ties are broken by |
92 | * biased rounding (add half and chop). |
93 | * |
94 | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
95 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
96 | * |
97 | * Modifications: |
98 | * |
99 | * 1. We only require IEEE, IBM, or VAX double-precision |
100 | * arithmetic (not IEEE double-extended). |
101 | * 2. We get by with floating-point arithmetic in a case that |
102 | * Clinger missed -- when we're computing d * 10^n |
103 | * for a small integer d and the integer n is not too |
104 | * much larger than 22 (the maximum integer k for which |
105 | * we can represent 10^k exactly), we may be able to |
106 | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
107 | * 3. Rather than a bit-at-a-time adjustment of the binary |
108 | * result in the hard case, we use floating-point |
109 | * arithmetic to determine the adjustment to within |
110 | * one bit; only in really hard cases do we need to |
111 | * compute a second residual. |
112 | * 4. Because of 3., we don't need a large table of powers of 10 |
113 | * for ten-to-e (just some small tables, e.g. of 10^k |
114 | * for 0 <= k <= 22). |
115 | */ |
116 | |
117 | /* |
118 | * #define IEEE_8087 for IEEE-arithmetic machines where the least |
119 | * significant byte has the lowest address. |
120 | * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
121 | * significant byte has the lowest address. |
122 | * #define IEEE_ARM for IEEE-arithmetic machines where the two words |
123 | * in a double are stored in big endian order but the two shorts |
124 | * in a word are still stored in little endian order. |
125 | * #define Long int on machines with 32-bit ints and 64-bit longs. |
126 | * #define IBM for IBM mainframe-style floating-point arithmetic. |
127 | * #define VAX for VAX-style floating-point arithmetic (D_floating). |
128 | * #define No_leftright to omit left-right logic in fast floating-point |
129 | * computation of dtoa. |
130 | * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
131 | * and strtod and dtoa should round accordingly. |
132 | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
133 | * and Honor_FLT_ROUNDS is not #defined. |
134 | * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines |
135 | * that use extended-precision instructions to compute rounded |
136 | * products and quotients) with IBM. |
137 | * #define ROUND_BIASED for IEEE-format with biased rounding. |
138 | * #define Inaccurate_Divide for IEEE-format with correctly rounded |
139 | * products but inaccurate quotients, e.g., for Intel i860. |
140 | * #define NO_LONG_LONG on machines that do not have a "long long" |
141 | * integer type (of >= 64 bits). On such machines, you can |
142 | * #define Just_16 to store 16 bits per 32-bit Long when doing |
143 | * high-precision integer arithmetic. Whether this speeds things |
144 | * up or slows things down depends on the machine and the number |
145 | * being converted. If long long is available and the name is |
146 | * something other than "long long", #define Llong to be the name, |
147 | * and if "unsigned Llong" does not work as an unsigned version of |
148 | * Llong, #define #ULLong to be the corresponding unsigned type. |
149 | * #define KR_headers for old-style C function headers. |
150 | * #define Bad_float_h if your system lacks a float.h or if it does not |
151 | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
152 | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
153 | * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) |
154 | * if memory is available and otherwise does something you deem |
155 | * appropriate. If MALLOC is undefined, malloc will be invoked |
156 | * directly -- and assumed always to succeed. Similarly, if you |
157 | * want something other than the system's free() to be called to |
158 | * recycle memory acquired from MALLOC, #define FREE to be the |
159 | * name of the alternate routine. (FREE or free is only called in |
160 | * pathological cases, e.g., in a dtoa call after a dtoa return in |
161 | * mode 3 with thousands of digits requested.) |
162 | * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
163 | * memory allocations from a private pool of memory when possible. |
164 | * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, |
165 | * unless #defined to be a different length. This default length |
166 | * suffices to get rid of MALLOC calls except for unusual cases, |
167 | * such as decimal-to-binary conversion of a very long string of |
168 | * digits. The longest string dtoa can return is about 751 bytes |
169 | * long. For conversions by strtod of strings of 800 digits and |
170 | * all dtoa conversions in single-threaded executions with 8-byte |
171 | * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte |
172 | * pointers, PRIVATE_MEM >= 7112 appears adequate. |
173 | * #define INFNAN_CHECK on IEEE systems to cause strtod to check for |
174 | * Infinity and NaN (case insensitively). On some systems (e.g., |
175 | * some HP systems), it may be necessary to #define NAN_WORD0 |
176 | * appropriately -- to the most significant word of a quiet NaN. |
177 | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
178 | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
179 | * strtod also accepts (case insensitively) strings of the form |
180 | * NaN(x), where x is a string of hexadecimal digits and spaces; |
181 | * if there is only one string of hexadecimal digits, it is taken |
182 | * for the 52 fraction bits of the resulting NaN; if there are two |
183 | * or more strings of hex digits, the first is for the high 20 bits, |
184 | * the second and subsequent for the low 32 bits, with intervening |
185 | * white space ignored; but if this results in none of the 52 |
186 | * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
187 | * and NAN_WORD1 are used instead. |
188 | * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
189 | * multiple threads. In this case, you must provide (or suitably |
190 | * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed |
191 | * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed |
192 | * in pow5mult, ensures lazy evaluation of only one copy of high |
193 | * powers of 5; omitting this lock would introduce a small |
194 | * probability of wasting memory, but would otherwise be harmless.) |
195 | * You must also invoke freedtoa(s) to free the value s returned by |
196 | * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. |
197 | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
198 | * avoids underflows on inputs whose result does not underflow. |
199 | * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
200 | * floating-point numbers and flushes underflows to zero rather |
201 | * than implementing gradual underflow, then you must also #define |
202 | * Sudden_Underflow. |
203 | * #define USE_LOCALE to use the current locale's decimal_point value. |
204 | * #define SET_INEXACT if IEEE arithmetic is being used and extra |
205 | * computation should be done to set the inexact flag when the |
206 | * result is inexact and avoid setting inexact when the result |
207 | * is exact. In this case, dtoa.c must be compiled in |
208 | * an environment, perhaps provided by #include "dtoa.c" in a |
209 | * suitable wrapper, that defines two functions, |
210 | * int get_inexact(void); |
211 | * void clear_inexact(void); |
212 | * such that get_inexact() returns a nonzero value if the |
213 | * inexact bit is already set, and clear_inexact() sets the |
214 | * inexact bit to 0. When SET_INEXACT is #defined, strtod |
215 | * also does extra computations to set the underflow and overflow |
216 | * flags when appropriate (i.e., when the result is tiny and |
217 | * inexact or when it is a numeric value rounded to +-infinity). |
218 | * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
219 | * the result overflows to +-Infinity or underflows to 0. |
220 | */ |
221 | |
222 | #ifndef LongPRInt32 |
223 | # define LongPRInt32 long |
224 | #endif |
225 | #ifndef ULongPRUint32 |
226 | typedef unsigned LongPRInt32 ULongPRUint32; |
227 | #endif |
228 | |
229 | #ifdef DEBUG1 |
230 | # include "stdio.h" |
231 | # define Bug(x){ fprintf(stderr, "%s\n", x); exit(1); } \ |
232 | { \ |
233 | fprintf(stderrstderr, "%s\n", x); \ |
234 | exit(1); \ |
235 | } |
236 | #endif |
237 | |
238 | #include "stdlib.h" |
239 | #include "string.h" |
240 | |
241 | #ifdef USE_LOCALE |
242 | # include "locale.h" |
243 | #endif |
244 | |
245 | #ifdef MALLOCmalloc |
246 | # ifdef KR_headers |
247 | extern char* MALLOCmalloc(); |
248 | # else |
249 | extern void* MALLOCmalloc(size_t); |
250 | # endif |
251 | #else |
252 | # define MALLOCmalloc malloc |
253 | #endif |
254 | |
255 | #ifndef Omit_Private_Memory |
256 | # ifndef PRIVATE_MEM2304 |
257 | # define PRIVATE_MEM2304 2304 |
258 | # endif |
259 | # define PRIVATE_mem((2304 + sizeof(double) - 1) / sizeof(double)) ((PRIVATE_MEM2304 + sizeof(double) - 1) / sizeof(double)) |
260 | static double private_mem[PRIVATE_mem((2304 + sizeof(double) - 1) / sizeof(double))], *pmem_next = private_mem; |
261 | #endif |
262 | |
263 | #undef IEEE_Arith |
264 | #undef Avoid_Underflow |
265 | #ifdef IEEE_MC68k |
266 | # define IEEE_Arith |
267 | #endif |
268 | #ifdef IEEE_8087 |
269 | # define IEEE_Arith |
270 | #endif |
271 | #ifdef IEEE_ARM |
272 | # define IEEE_Arith |
273 | #endif |
274 | |
275 | #include "errno.h" |
276 | |
277 | #ifdef Bad_float_h |
278 | |
279 | # ifdef IEEE_Arith |
280 | # define DBL_DIG15 15 |
281 | # define DBL_MAX_10_EXP308 308 |
282 | # define DBL_MAX_EXP1024 1024 |
283 | # define FLT_RADIX2 2 |
284 | # endif /*IEEE_Arith*/ |
285 | |
286 | # ifdef IBM |
287 | # define DBL_DIG15 16 |
288 | # define DBL_MAX_10_EXP308 75 |
289 | # define DBL_MAX_EXP1024 63 |
290 | # define FLT_RADIX2 16 |
291 | # define DBL_MAX1.7976931348623157e+308 7.2370055773322621e+75 |
292 | # endif |
293 | |
294 | # ifdef VAX |
295 | # define DBL_DIG15 16 |
296 | # define DBL_MAX_10_EXP308 38 |
297 | # define DBL_MAX_EXP1024 127 |
298 | # define FLT_RADIX2 2 |
299 | # define DBL_MAX1.7976931348623157e+308 1.7014118346046923e+38 |
300 | # endif |
301 | |
302 | # ifndef LONG_MAX |
303 | # define LONG_MAX 2147483647 |
304 | # endif |
305 | |
306 | #else /* ifndef Bad_float_h */ |
307 | # include "float.h" |
308 | #endif /* Bad_float_h */ |
309 | |
310 | #ifndef __MATH_H__ |
311 | # include "math.h" |
312 | #endif |
313 | |
314 | #ifdef __cplusplus |
315 | extern "C" { |
316 | #endif |
317 | |
318 | #ifndef CONSTconst |
319 | # ifdef KR_headers |
320 | # define CONSTconst /* blank */ |
321 | # else |
322 | # define CONSTconst const |
323 | # endif |
324 | #endif |
325 | |
326 | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) + \ |
327 | defined(VAX) + defined(IBM) != \ |
328 | 1 |
329 | Exactly one of IEEE_8087, IEEE_MC68k, IEEE_ARM, VAX, or IBM should be defined. |
330 | #endif |
331 | |
332 | typedef union { |
333 | double d; |
334 | ULongPRUint32 L[2]; |
335 | } U; |
336 | |
337 | #define dval(x)(x).d (x).d |
338 | #ifdef IEEE_8087 |
339 | # define word0(x)(x).L[1] (x).L[1] |
340 | # define word1(x)(x).L[0] (x).L[0] |
341 | #else |
342 | # define word0(x)(x).L[1] (x).L[0] |
343 | # define word1(x)(x).L[0] (x).L[1] |
344 | #endif |
345 | |
346 | /* The following definition of Storeinc is appropriate for MIPS processors. |
347 | * An alternative that might be better on some machines is |
348 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
349 | */ |
350 | #if defined(IEEE_8087) + defined(IEEE_ARM) + defined(VAX) |
351 | # define Storeinc(a, b, c)(((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short *)a)[0] = (unsigned short)c, a++) \ |
352 | (((unsigned short*)a)[1] = (unsigned short)b, \ |
353 | ((unsigned short*)a)[0] = (unsigned short)c, a++) |
354 | #else |
355 | # define Storeinc(a, b, c)(((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short *)a)[0] = (unsigned short)c, a++) \ |
356 | (((unsigned short*)a)[0] = (unsigned short)b, \ |
357 | ((unsigned short*)a)[1] = (unsigned short)c, a++) |
358 | #endif |
359 | |
360 | /* #define P DBL_MANT_DIG */ |
361 | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
362 | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
363 | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
364 | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
365 | |
366 | #ifdef IEEE_Arith |
367 | # define Exp_shift20 20 |
368 | # define Exp_shift120 20 |
369 | # define Exp_msk10x100000 0x100000 |
370 | # define Exp_msk110x100000 0x100000 |
371 | # define Exp_mask0x7ff00000 0x7ff00000 |
372 | # define P53 53 |
373 | # define Bias1023 1023 |
374 | # define Emin(-1022) (-1022) |
375 | # define Exp_10x3ff00000 0x3ff00000 |
376 | # define Exp_110x3ff00000 0x3ff00000 |
377 | # define Ebits11 11 |
378 | # define Frac_mask0xfffff 0xfffff |
379 | # define Frac_mask10xfffff 0xfffff |
380 | # define Ten_pmax22 22 |
381 | # define Bletch0x10 0x10 |
382 | # define Bndry_mask0xfffff 0xfffff |
383 | # define Bndry_mask10xfffff 0xfffff |
384 | # define LSB1 1 |
385 | # define Sign_bit0x80000000 0x80000000 |
386 | # define Log2P1 1 |
387 | # define Tiny00 0 |
388 | # define Tiny11 1 |
389 | # define Quick_max14 14 |
390 | # define Int_max14 14 |
391 | # ifndef NO_IEEE_Scale |
392 | # define Avoid_Underflow |
393 | # ifdef Flush_Denorm /* debugging option */ |
394 | # undef Sudden_Underflow |
395 | # endif |
396 | # endif |
397 | |
398 | # ifndef Flt_Rounds(__builtin_flt_rounds()) |
399 | # ifdef FLT_ROUNDS(__builtin_flt_rounds()) |
400 | # define Flt_Rounds(__builtin_flt_rounds()) FLT_ROUNDS(__builtin_flt_rounds()) |
401 | # else |
402 | # define Flt_Rounds(__builtin_flt_rounds()) 1 |
403 | # endif |
404 | # endif /*Flt_Rounds*/ |
405 | |
406 | # ifdef Honor_FLT_ROUNDS |
407 | # define Rounding(__builtin_flt_rounds()) rounding |
408 | # undef Check_FLT_ROUNDS |
409 | # define Check_FLT_ROUNDS |
410 | # else |
411 | # define Rounding(__builtin_flt_rounds()) Flt_Rounds(__builtin_flt_rounds()) |
412 | # endif |
413 | |
414 | #else /* ifndef IEEE_Arith */ |
415 | # undef Check_FLT_ROUNDS |
416 | # undef Honor_FLT_ROUNDS |
417 | # undef SET_INEXACT |
418 | # undef Sudden_Underflow |
419 | # define Sudden_Underflow |
420 | # ifdef IBM |
421 | # undef Flt_Rounds(__builtin_flt_rounds()) |
422 | # define Flt_Rounds(__builtin_flt_rounds()) 0 |
423 | # define Exp_shift20 24 |
424 | # define Exp_shift120 24 |
425 | # define Exp_msk10x100000 0x1000000 |
426 | # define Exp_msk110x100000 0x1000000 |
427 | # define Exp_mask0x7ff00000 0x7f000000 |
428 | # define P53 14 |
429 | # define Bias1023 65 |
430 | # define Exp_10x3ff00000 0x41000000 |
431 | # define Exp_110x3ff00000 0x41000000 |
432 | # define Ebits11 8 /* exponent has 7 bits, but 8 is the right value in b2d */ |
433 | # define Frac_mask0xfffff 0xffffff |
434 | # define Frac_mask10xfffff 0xffffff |
435 | # define Bletch0x10 4 |
436 | # define Ten_pmax22 22 |
437 | # define Bndry_mask0xfffff 0xefffff |
438 | # define Bndry_mask10xfffff 0xffffff |
439 | # define LSB1 1 |
440 | # define Sign_bit0x80000000 0x80000000 |
441 | # define Log2P1 4 |
442 | # define Tiny00 0x100000 |
443 | # define Tiny11 0 |
444 | # define Quick_max14 14 |
445 | # define Int_max14 15 |
446 | # else /* VAX */ |
447 | # undef Flt_Rounds(__builtin_flt_rounds()) |
448 | # define Flt_Rounds(__builtin_flt_rounds()) 1 |
449 | # define Exp_shift20 23 |
450 | # define Exp_shift120 7 |
451 | # define Exp_msk10x100000 0x80 |
452 | # define Exp_msk110x100000 0x800000 |
453 | # define Exp_mask0x7ff00000 0x7f80 |
454 | # define P53 56 |
455 | # define Bias1023 129 |
456 | # define Exp_10x3ff00000 0x40800000 |
457 | # define Exp_110x3ff00000 0x4080 |
458 | # define Ebits11 8 |
459 | # define Frac_mask0xfffff 0x7fffff |
460 | # define Frac_mask10xfffff 0xffff007f |
461 | # define Ten_pmax22 24 |
462 | # define Bletch0x10 2 |
463 | # define Bndry_mask0xfffff 0xffff007f |
464 | # define Bndry_mask10xfffff 0xffff007f |
465 | # define LSB1 0x10000 |
466 | # define Sign_bit0x80000000 0x8000 |
467 | # define Log2P1 1 |
468 | # define Tiny00 0x80 |
469 | # define Tiny11 0 |
470 | # define Quick_max14 15 |
471 | # define Int_max14 15 |
472 | # endif /* IBM, VAX */ |
473 | #endif /* IEEE_Arith */ |
474 | |
475 | #ifndef IEEE_Arith |
476 | # define ROUND_BIASED |
477 | #endif |
478 | |
479 | #ifdef RND_PRODQUOT |
480 | # define rounded_product(a, b)a *= b a = rnd_prod(a, b) |
481 | # define rounded_quotient(a, b)a /= b a = rnd_quot(a, b) |
482 | # ifdef KR_headers |
483 | extern double rnd_prod(), rnd_quot(); |
484 | # else |
485 | extern double rnd_prod(double, double), rnd_quot(double, double); |
486 | # endif |
487 | #else |
488 | # define rounded_product(a, b)a *= b a *= b |
489 | # define rounded_quotient(a, b)a /= b a /= b |
490 | #endif |
491 | |
492 | #define Big0(0xfffff | 0x100000 * (1024 + 1023 - 1)) (Frac_mask10xfffff | Exp_msk10x100000 * (DBL_MAX_EXP1024 + Bias1023 - 1)) |
493 | #define Big10xffffffff 0xffffffff |
494 | |
495 | #ifndef Pack_32 |
496 | # define Pack_32 |
497 | #endif |
498 | |
499 | #ifdef KR_headers |
500 | # define FFFFFFFF0xffffffffUL ((((unsigned long)0xffff) << 16) | (unsigned long)0xffff) |
501 | #else |
502 | # define FFFFFFFF0xffffffffUL 0xffffffffUL |
503 | #endif |
504 | |
505 | #ifdef NO_LONG_LONG |
506 | # undef ULLong |
507 | # ifdef Just_16 |
508 | # undef Pack_32 |
509 | /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. |
510 | * This makes some inner loops simpler and sometimes saves work |
511 | * during multiplications, but it often seems to make things slightly |
512 | * slower. Hence the default is now to store 32 bits per Long. |
513 | */ |
514 | # endif |
515 | #else /* long long available */ |
516 | # ifndef Llong |
517 | # define Llong long long |
518 | # endif |
519 | # ifndef ULLong |
520 | # define ULLong unsigned Llong |
521 | # endif |
522 | #endif /* NO_LONG_LONG */ |
523 | |
524 | #ifndef MULTIPLE_THREADS |
525 | # define ACQUIRE_DTOA_LOCK(n)PR_Lock(dtoa_lock[n]) /*nothing*/ |
526 | # define FREE_DTOA_LOCK(n)PR_Unlock(dtoa_lock[n]) /*nothing*/ |
527 | #endif |
528 | |
529 | #define Kmax7 7 |
530 | |
531 | struct Bigint { |
532 | struct Bigint* next; |
533 | int k, maxwds, sign, wds; |
534 | ULongPRUint32 x[1]; |
535 | }; |
536 | |
537 | typedef struct Bigint Bigint; |
538 | |
539 | static Bigint* freelist[Kmax7 + 1]; |
540 | |
541 | static Bigint* Balloc |
542 | #ifdef KR_headers |
543 | (k) int k; |
544 | #else |
545 | (int k) |
546 | #endif |
547 | { |
548 | int x; |
549 | Bigint* rv; |
550 | #ifndef Omit_Private_Memory |
551 | unsigned int len; |
552 | #endif |
553 | |
554 | ACQUIRE_DTOA_LOCK(0)PR_Lock(dtoa_lock[0]); |
555 | /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ |
556 | /* but this case seems very unlikely. */ |
557 | if (k <= Kmax7 && (rv = freelist[k])) { |
558 | freelist[k] = rv->next; |
559 | } else { |
560 | x = 1 << k; |
561 | #ifdef Omit_Private_Memory |
562 | rv = (Bigint*)MALLOCmalloc(sizeof(Bigint) + (x - 1) * sizeof(ULongPRUint32)); |
563 | #else |
564 | len = (sizeof(Bigint) + (x - 1) * sizeof(ULongPRUint32) + sizeof(double) - 1) / |
565 | sizeof(double); |
566 | if (k <= Kmax7 && pmem_next - private_mem + len <= PRIVATE_mem((2304 + sizeof(double) - 1) / sizeof(double))) { |
567 | rv = (Bigint*)pmem_next; |
568 | pmem_next += len; |
569 | } else { |
570 | rv = (Bigint*)MALLOCmalloc(len * sizeof(double)); |
571 | } |
572 | #endif |
573 | rv->k = k; |
574 | rv->maxwds = x; |
575 | } |
576 | FREE_DTOA_LOCK(0)PR_Unlock(dtoa_lock[0]); |
577 | rv->sign = rv->wds = 0; |
578 | return rv; |
579 | } |
580 | |
581 | static void Bfree |
582 | #ifdef KR_headers |
583 | (v) Bigint* v; |
584 | #else |
585 | (Bigint* v) |
586 | #endif |
587 | { |
588 | if (v) { |
589 | if (v->k > Kmax7) |
590 | #ifdef FREE |
591 | FREE((void*)v); |
592 | #else |
593 | free((void*)v); |
594 | #endif |
595 | else { |
596 | ACQUIRE_DTOA_LOCK(0)PR_Lock(dtoa_lock[0]); |
597 | v->next = freelist[v->k]; |
598 | freelist[v->k] = v; |
599 | FREE_DTOA_LOCK(0)PR_Unlock(dtoa_lock[0]); |
600 | } |
601 | } |
602 | } |
603 | |
604 | #define Bcopy(x, y)memcpy((char*)&x->sign, (char*)&y->sign, y-> wds * sizeof(PRInt32) + 2 * sizeof(int)) \ |
605 | memcpy((char*)&x->sign, (char*)&y->sign, \ |
606 | y->wds * sizeof(LongPRInt32) + 2 * sizeof(int)) |
607 | |
608 | static Bigint* multadd |
609 | #ifdef KR_headers |
610 | (b, m, a) Bigint* b; |
611 | int m, a; |
612 | #else |
613 | (Bigint* b, int m, int a) /* multiply by m and add a */ |
614 | #endif |
615 | { |
616 | int i, wds; |
617 | #ifdef ULLong |
618 | ULongPRUint32* x; |
619 | ULLong carry, y; |
620 | #else |
621 | ULongPRUint32 carry, *x, y; |
622 | # ifdef Pack_32 |
623 | ULongPRUint32 xi, z; |
624 | # endif |
625 | #endif |
626 | Bigint* b1; |
627 | |
628 | wds = b->wds; |
629 | x = b->x; |
630 | i = 0; |
631 | carry = a; |
632 | do { |
633 | #ifdef ULLong |
634 | y = *x * (ULLong)m + carry; |
635 | carry = y >> 32; |
636 | *x++ = y & FFFFFFFF0xffffffffUL; |
637 | #else |
638 | # ifdef Pack_32 |
639 | xi = *x; |
640 | y = (xi & 0xffff) * m + carry; |
641 | z = (xi >> 16) * m + (y >> 16); |
642 | carry = z >> 16; |
643 | *x++ = (z << 16) + (y & 0xffff); |
644 | # else |
645 | y = *x * m + carry; |
646 | carry = y >> 16; |
647 | *x++ = y & 0xffff; |
648 | # endif |
649 | #endif |
650 | } while (++i < wds); |
651 | if (carry) { |
652 | if (wds >= b->maxwds) { |
653 | b1 = Balloc(b->k + 1); |
654 | Bcopy(b1, b)memcpy((char*)&b1->sign, (char*)&b->sign, b-> wds * sizeof(PRInt32) + 2 * sizeof(int)); |
655 | Bfree(b); |
656 | b = b1; |
657 | } |
658 | b->x[wds++] = carry; |
659 | b->wds = wds; |
660 | } |
661 | return b; |
662 | } |
663 | |
664 | static Bigint* s2b |
665 | #ifdef KR_headers |
666 | (s, nd0, nd, y9) CONSTconst char* s; |
667 | int nd0, nd; |
668 | ULongPRUint32 y9; |
669 | #else |
670 | (CONSTconst char* s, int nd0, int nd, ULongPRUint32 y9) |
671 | #endif |
672 | { |
673 | Bigint* b; |
674 | int i, k; |
675 | LongPRInt32 x, y; |
676 | |
677 | x = (nd + 8) / 9; |
678 | for (k = 0, y = 1; x > y; y <<= 1, k++); |
679 | #ifdef Pack_32 |
680 | b = Balloc(k); |
681 | b->x[0] = y9; |
682 | b->wds = 1; |
683 | #else |
684 | b = Balloc(k + 1); |
685 | b->x[0] = y9 & 0xffff; |
686 | b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; |
687 | #endif |
688 | |
689 | i = 9; |
690 | if (9 < nd0) { |
691 | s += 9; |
692 | do { |
693 | b = multadd(b, 10, *s++ - '0'); |
694 | } while (++i < nd0); |
695 | s++; |
696 | } else { |
697 | s += 10; |
698 | } |
699 | for (; i < nd; i++) { |
700 | b = multadd(b, 10, *s++ - '0'); |
701 | } |
702 | return b; |
703 | } |
704 | |
705 | static int hi0bits |
706 | #ifdef KR_headers |
707 | (x) register ULongPRUint32 x; |
708 | #else |
709 | (register ULongPRUint32 x) |
710 | #endif |
711 | { |
712 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
713 | return ((!x) ? 32 : pr_bitscan_clz32(x)__builtin_clz(x)); |
714 | #else |
715 | register int k = 0; |
716 | |
717 | if (!(x & 0xffff0000)) { |
718 | k = 16; |
719 | x <<= 16; |
720 | } |
721 | if (!(x & 0xff000000)) { |
722 | k += 8; |
723 | x <<= 8; |
724 | } |
725 | if (!(x & 0xf0000000)) { |
726 | k += 4; |
727 | x <<= 4; |
728 | } |
729 | if (!(x & 0xc0000000)) { |
730 | k += 2; |
731 | x <<= 2; |
732 | } |
733 | if (!(x & 0x80000000)) { |
734 | k++; |
735 | if (!(x & 0x40000000)) { |
736 | return 32; |
737 | } |
738 | } |
739 | return k; |
740 | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
741 | } |
742 | |
743 | static int lo0bits |
744 | #ifdef KR_headers |
745 | (y) ULongPRUint32* y; |
746 | #else |
747 | (ULongPRUint32* y) |
748 | #endif |
749 | { |
750 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
751 | int k; |
752 | ULongPRUint32 x = *y; |
753 | |
754 | if (x > 1) { |
755 | *y = (x >> (k = pr_bitscan_ctz32(x)__builtin_ctz(x))); |
756 | } else { |
757 | k = ((x ^ 1) << 5); |
758 | } |
759 | #else |
760 | register int k; |
761 | register ULongPRUint32 x = *y; |
762 | |
763 | if (x & 7) { |
764 | if (x & 1) { |
765 | return 0; |
766 | } |
767 | if (x & 2) { |
768 | *y = x >> 1; |
769 | return 1; |
770 | } |
771 | *y = x >> 2; |
772 | return 2; |
773 | } |
774 | k = 0; |
775 | if (!(x & 0xffff)) { |
776 | k = 16; |
777 | x >>= 16; |
778 | } |
779 | if (!(x & 0xff)) { |
780 | k += 8; |
781 | x >>= 8; |
782 | } |
783 | if (!(x & 0xf)) { |
784 | k += 4; |
785 | x >>= 4; |
786 | } |
787 | if (!(x & 0x3)) { |
788 | k += 2; |
789 | x >>= 2; |
790 | } |
791 | if (!(x & 1)) { |
792 | k++; |
793 | x >>= 1; |
794 | if (!x) { |
795 | return 32; |
796 | } |
797 | } |
798 | *y = x; |
799 | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
800 | return k; |
801 | } |
802 | |
803 | static Bigint* i2b |
804 | #ifdef KR_headers |
805 | (i) int i; |
806 | #else |
807 | (int i) |
808 | #endif |
809 | { |
810 | Bigint* b; |
811 | |
812 | b = Balloc(1); |
813 | b->x[0] = i; |
814 | b->wds = 1; |
815 | return b; |
816 | } |
817 | |
818 | static Bigint *mult |
819 | #ifdef KR_headers |
820 | (a, b) Bigint *a, |
821 | *b; |
822 | #else |
823 | (Bigint* a, Bigint* b) |
824 | #endif |
825 | { |
826 | Bigint* c; |
827 | int k, wa, wb, wc; |
828 | ULongPRUint32 *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
829 | ULongPRUint32 y; |
830 | #ifdef ULLong |
831 | ULLong carry, z; |
832 | #else |
833 | ULongPRUint32 carry, z; |
834 | # ifdef Pack_32 |
835 | ULongPRUint32 z2; |
836 | # endif |
837 | #endif |
838 | |
839 | if (a->wds < b->wds) { |
840 | c = a; |
841 | a = b; |
842 | b = c; |
843 | } |
844 | k = a->k; |
845 | wa = a->wds; |
846 | wb = b->wds; |
847 | wc = wa + wb; |
848 | if (wc > a->maxwds) { |
849 | k++; |
850 | } |
851 | c = Balloc(k); |
852 | for (x = c->x, xa = x + wc; x < xa; x++) { |
853 | *x = 0; |
854 | } |
855 | xa = a->x; |
856 | xae = xa + wa; |
857 | xb = b->x; |
858 | xbe = xb + wb; |
859 | xc0 = c->x; |
860 | #ifdef ULLong |
861 | for (; xb < xbe; xc0++) { |
862 | if (y = *xb++) { |
863 | x = xa; |
864 | xc = xc0; |
865 | carry = 0; |
866 | do { |
867 | z = *x++ * (ULLong)y + *xc + carry; |
868 | carry = z >> 32; |
869 | *xc++ = z & FFFFFFFF0xffffffffUL; |
870 | } while (x < xae); |
871 | *xc = carry; |
872 | } |
873 | } |
874 | #else |
875 | # ifdef Pack_32 |
876 | for (; xb < xbe; xb++, xc0++) { |
877 | if (y = *xb & 0xffff) { |
878 | x = xa; |
879 | xc = xc0; |
880 | carry = 0; |
881 | do { |
882 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
883 | carry = z >> 16; |
884 | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
885 | carry = z2 >> 16; |
886 | Storeinc(xc, z2, z)(((unsigned short*)xc)[1] = (unsigned short)z2, ((unsigned short *)xc)[0] = (unsigned short)z, xc++); |
887 | } while (x < xae); |
888 | *xc = carry; |
889 | } |
890 | if (y = *xb >> 16) { |
891 | x = xa; |
892 | xc = xc0; |
893 | carry = 0; |
894 | z2 = *xc; |
895 | do { |
896 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
897 | carry = z >> 16; |
898 | Storeinc(xc, z, z2)(((unsigned short*)xc)[1] = (unsigned short)z, ((unsigned short *)xc)[0] = (unsigned short)z2, xc++); |
899 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
900 | carry = z2 >> 16; |
901 | } while (x < xae); |
902 | *xc = z2; |
903 | } |
904 | } |
905 | # else |
906 | for (; xb < xbe; xc0++) { |
907 | if (y = *xb++) { |
908 | x = xa; |
909 | xc = xc0; |
910 | carry = 0; |
911 | do { |
912 | z = *x++ * y + *xc + carry; |
913 | carry = z >> 16; |
914 | *xc++ = z & 0xffff; |
915 | } while (x < xae); |
916 | *xc = carry; |
917 | } |
918 | } |
919 | # endif |
920 | #endif |
921 | for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc); |
922 | c->wds = wc; |
923 | return c; |
924 | } |
925 | |
926 | static Bigint* p5s; |
927 | |
928 | static Bigint* pow5mult |
929 | #ifdef KR_headers |
930 | (b, k) Bigint* b; |
931 | int k; |
932 | #else |
933 | (Bigint* b, int k) |
934 | #endif |
935 | { |
936 | Bigint *b1, *p5, *p51; |
937 | int i; |
938 | static int p05[3] = {5, 25, 125}; |
939 | |
940 | if (i = k & 3) { |
941 | b = multadd(b, p05[i - 1], 0); |
942 | } |
943 | |
944 | if (!(k >>= 2)) { |
945 | return b; |
946 | } |
947 | if (!(p5 = p5s)) { |
948 | /* first time */ |
949 | #ifdef MULTIPLE_THREADS |
950 | ACQUIRE_DTOA_LOCK(1)PR_Lock(dtoa_lock[1]); |
951 | if (!(p5 = p5s)) { |
952 | p5 = p5s = i2b(625); |
953 | p5->next = 0; |
954 | } |
955 | FREE_DTOA_LOCK(1)PR_Unlock(dtoa_lock[1]); |
956 | #else |
957 | p5 = p5s = i2b(625); |
958 | p5->next = 0; |
959 | #endif |
960 | } |
961 | for (;;) { |
962 | if (k & 1) { |
963 | b1 = mult(b, p5); |
964 | Bfree(b); |
965 | b = b1; |
966 | } |
967 | if (!(k >>= 1)) { |
968 | break; |
969 | } |
970 | if (!(p51 = p5->next)) { |
971 | #ifdef MULTIPLE_THREADS |
972 | ACQUIRE_DTOA_LOCK(1)PR_Lock(dtoa_lock[1]); |
973 | if (!(p51 = p5->next)) { |
974 | p51 = p5->next = mult(p5, p5); |
975 | p51->next = 0; |
976 | } |
977 | FREE_DTOA_LOCK(1)PR_Unlock(dtoa_lock[1]); |
978 | #else |
979 | p51 = p5->next = mult(p5, p5); |
980 | p51->next = 0; |
981 | #endif |
982 | } |
983 | p5 = p51; |
984 | } |
985 | return b; |
986 | } |
987 | |
988 | static Bigint* lshift |
989 | #ifdef KR_headers |
990 | (b, k) Bigint* b; |
991 | int k; |
992 | #else |
993 | (Bigint* b, int k) |
994 | #endif |
995 | { |
996 | int i, k1, n, n1; |
997 | Bigint* b1; |
998 | ULongPRUint32 *x, *x1, *xe, z; |
999 | |
1000 | #ifdef Pack_32 |
1001 | n = k >> 5; |
1002 | #else |
1003 | n = k >> 4; |
1004 | #endif |
1005 | k1 = b->k; |
1006 | n1 = n + b->wds + 1; |
1007 | for (i = b->maxwds; n1 > i; i <<= 1) { |
1008 | k1++; |
1009 | } |
1010 | b1 = Balloc(k1); |
1011 | x1 = b1->x; |
1012 | for (i = 0; i < n; i++) { |
1013 | *x1++ = 0; |
1014 | } |
1015 | x = b->x; |
1016 | xe = x + b->wds; |
1017 | #ifdef Pack_32 |
1018 | if (k &= 0x1f) { |
1019 | k1 = 32 - k; |
1020 | z = 0; |
1021 | do { |
1022 | *x1++ = *x << k | z; |
1023 | z = *x++ >> k1; |
1024 | } while (x < xe); |
1025 | if (*x1 = z) { |
1026 | ++n1; |
1027 | } |
1028 | } |
1029 | #else |
1030 | if (k &= 0xf) { |
1031 | k1 = 16 - k; |
1032 | z = 0; |
1033 | do { |
1034 | *x1++ = *x << k & 0xffff | z; |
1035 | z = *x++ >> k1; |
1036 | } while (x < xe); |
1037 | if (*x1 = z) { |
1038 | ++n1; |
1039 | } |
1040 | } |
1041 | #endif |
1042 | else |
1043 | do { |
1044 | *x1++ = *x++; |
1045 | } while (x < xe); |
1046 | b1->wds = n1 - 1; |
1047 | Bfree(b); |
1048 | return b1; |
1049 | } |
1050 | |
1051 | static int cmp |
1052 | #ifdef KR_headers |
1053 | (a, b) Bigint *a, |
1054 | *b; |
1055 | #else |
1056 | (Bigint* a, Bigint* b) |
1057 | #endif |
1058 | { |
1059 | ULongPRUint32 *xa, *xa0, *xb, *xb0; |
1060 | int i, j; |
1061 | |
1062 | i = a->wds; |
1063 | j = b->wds; |
1064 | #ifdef DEBUG1 |
1065 | if (i > 1 && !a->x[i - 1]) { |
1066 | Bug("cmp called with a->x[a->wds-1] == 0"){ fprintf(stderr, "%s\n", "cmp called with a->x[a->wds-1] == 0" ); exit(1); }; |
1067 | } |
1068 | if (j > 1 && !b->x[j - 1]) { |
1069 | Bug("cmp called with b->x[b->wds-1] == 0"){ fprintf(stderr, "%s\n", "cmp called with b->x[b->wds-1] == 0" ); exit(1); }; |
1070 | } |
1071 | #endif |
1072 | if (i -= j) { |
1073 | return i; |
1074 | } |
1075 | xa0 = a->x; |
1076 | xa = xa0 + j; |
1077 | xb0 = b->x; |
1078 | xb = xb0 + j; |
1079 | for (;;) { |
1080 | if (*--xa != *--xb) { |
1081 | return *xa < *xb ? -1 : 1; |
1082 | } |
1083 | if (xa <= xa0) { |
1084 | break; |
1085 | } |
1086 | } |
1087 | return 0; |
1088 | } |
1089 | |
1090 | static Bigint *diff |
1091 | #ifdef KR_headers |
1092 | (a, b) Bigint *a, |
1093 | *b; |
1094 | #else |
1095 | (Bigint* a, Bigint* b) |
1096 | #endif |
1097 | { |
1098 | Bigint* c; |
1099 | int i, wa, wb; |
1100 | ULongPRUint32 *xa, *xae, *xb, *xbe, *xc; |
1101 | #ifdef ULLong |
1102 | ULLong borrow, y; |
1103 | #else |
1104 | ULongPRUint32 borrow, y; |
1105 | # ifdef Pack_32 |
1106 | ULongPRUint32 z; |
1107 | # endif |
1108 | #endif |
1109 | |
1110 | i = cmp(a, b); |
1111 | if (!i) { |
1112 | c = Balloc(0); |
1113 | c->wds = 1; |
1114 | c->x[0] = 0; |
1115 | return c; |
1116 | } |
1117 | if (i < 0) { |
1118 | c = a; |
1119 | a = b; |
1120 | b = c; |
1121 | i = 1; |
1122 | } else { |
1123 | i = 0; |
1124 | } |
1125 | c = Balloc(a->k); |
1126 | c->sign = i; |
1127 | wa = a->wds; |
1128 | xa = a->x; |
1129 | xae = xa + wa; |
1130 | wb = b->wds; |
1131 | xb = b->x; |
1132 | xbe = xb + wb; |
1133 | xc = c->x; |
1134 | borrow = 0; |
1135 | #ifdef ULLong |
1136 | do { |
1137 | y = (ULLong)*xa++ - *xb++ - borrow; |
1138 | borrow = y >> 32 & (ULongPRUint32)1; |
1139 | *xc++ = y & FFFFFFFF0xffffffffUL; |
1140 | } while (xb < xbe); |
1141 | while (xa < xae) { |
1142 | y = *xa++ - borrow; |
1143 | borrow = y >> 32 & (ULongPRUint32)1; |
1144 | *xc++ = y & FFFFFFFF0xffffffffUL; |
1145 | } |
1146 | #else |
1147 | # ifdef Pack_32 |
1148 | do { |
1149 | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
1150 | borrow = (y & 0x10000) >> 16; |
1151 | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
1152 | borrow = (z & 0x10000) >> 16; |
1153 | Storeinc(xc, z, y)(((unsigned short*)xc)[1] = (unsigned short)z, ((unsigned short *)xc)[0] = (unsigned short)y, xc++); |
1154 | } while (xb < xbe); |
1155 | while (xa < xae) { |
1156 | y = (*xa & 0xffff) - borrow; |
1157 | borrow = (y & 0x10000) >> 16; |
1158 | z = (*xa++ >> 16) - borrow; |
1159 | borrow = (z & 0x10000) >> 16; |
1160 | Storeinc(xc, z, y)(((unsigned short*)xc)[1] = (unsigned short)z, ((unsigned short *)xc)[0] = (unsigned short)y, xc++); |
1161 | } |
1162 | # else |
1163 | do { |
1164 | y = *xa++ - *xb++ - borrow; |
1165 | borrow = (y & 0x10000) >> 16; |
1166 | *xc++ = y & 0xffff; |
1167 | } while (xb < xbe); |
1168 | while (xa < xae) { |
1169 | y = *xa++ - borrow; |
1170 | borrow = (y & 0x10000) >> 16; |
1171 | *xc++ = y & 0xffff; |
1172 | } |
1173 | # endif |
1174 | #endif |
1175 | while (!*--xc) { |
1176 | wa--; |
1177 | } |
1178 | c->wds = wa; |
1179 | return c; |
1180 | } |
1181 | |
1182 | static double ulp |
1183 | #ifdef KR_headers |
1184 | (dx) double dx; |
1185 | #else |
1186 | (double dx) |
1187 | #endif |
1188 | { |
1189 | register LongPRInt32 L; |
1190 | U x, a; |
1191 | |
1192 | dval(x)(x).d = dx; |
1193 | L = (word0(x)(x).L[1] & Exp_mask0x7ff00000) - (P53 - 1) * Exp_msk10x100000; |
1194 | #ifndef Avoid_Underflow |
1195 | # ifndef Sudden_Underflow |
1196 | if (L > 0) { |
1197 | # endif |
1198 | #endif |
1199 | #ifdef IBM |
1200 | L |= Exp_msk10x100000 >> 4; |
1201 | #endif |
1202 | word0(a)(a).L[1] = L; |
1203 | word1(a)(a).L[0] = 0; |
1204 | #ifndef Avoid_Underflow |
1205 | # ifndef Sudden_Underflow |
1206 | } else { |
1207 | L = -L >> Exp_shift20; |
1208 | if (L < Exp_shift20) { |
1209 | word0(a)(a).L[1] = 0x80000 >> L; |
1210 | word1(a)(a).L[0] = 0; |
1211 | } else { |
1212 | word0(a)(a).L[1] = 0; |
1213 | L -= Exp_shift20; |
1214 | word1(a)(a).L[0] = L >= 31 ? 1 : 1 << 31 - L; |
1215 | } |
1216 | } |
1217 | # endif |
1218 | #endif |
1219 | return dval(a)(a).d; |
1220 | } |
1221 | |
1222 | static double b2d |
1223 | #ifdef KR_headers |
1224 | (a, e) Bigint* a; |
1225 | int* e; |
1226 | #else |
1227 | (Bigint* a, int* e) |
1228 | #endif |
1229 | { |
1230 | ULongPRUint32 *xa, *xa0, w, y, z; |
1231 | int k; |
1232 | U d; |
1233 | #ifdef VAX |
1234 | ULongPRUint32 d0, d1; |
1235 | #else |
1236 | # define d0 word0(d)(d).L[1] |
1237 | # define d1 word1(d)(d).L[0] |
1238 | #endif |
1239 | |
1240 | xa0 = a->x; |
1241 | xa = xa0 + a->wds; |
1242 | y = *--xa; |
1243 | #ifdef DEBUG1 |
1244 | if (!y) { |
1245 | Bug("zero y in b2d"){ fprintf(stderr, "%s\n", "zero y in b2d"); exit(1); }; |
1246 | } |
1247 | #endif |
1248 | k = hi0bits(y); |
1249 | *e = 32 - k; |
1250 | #ifdef Pack_32 |
1251 | if (k < Ebits11) { |
1252 | d0 = Exp_10x3ff00000 | y >> Ebits11 - k; |
1253 | w = xa > xa0 ? *--xa : 0; |
1254 | d1 = y << (32 - Ebits11) + k | w >> Ebits11 - k; |
1255 | goto ret_d; |
1256 | } |
1257 | z = xa > xa0 ? *--xa : 0; |
1258 | if (k -= Ebits11) { |
1259 | d0 = Exp_10x3ff00000 | y << k | z >> 32 - k; |
1260 | y = xa > xa0 ? *--xa : 0; |
1261 | d1 = z << k | y >> 32 - k; |
1262 | } else { |
1263 | d0 = Exp_10x3ff00000 | y; |
1264 | d1 = z; |
1265 | } |
1266 | #else |
1267 | if (k < Ebits11 + 16) { |
1268 | z = xa > xa0 ? *--xa : 0; |
1269 | d0 = Exp_10x3ff00000 | y << k - Ebits11 | z >> Ebits11 + 16 - k; |
1270 | w = xa > xa0 ? *--xa : 0; |
1271 | y = xa > xa0 ? *--xa : 0; |
1272 | d1 = z << k + 16 - Ebits11 | w << k - Ebits11 | y >> 16 + Ebits11 - k; |
1273 | goto ret_d; |
1274 | } |
1275 | z = xa > xa0 ? *--xa : 0; |
1276 | w = xa > xa0 ? *--xa : 0; |
1277 | k -= Ebits11 + 16; |
1278 | d0 = Exp_10x3ff00000 | y << k + 16 | z << k | w >> 16 - k; |
1279 | y = xa > xa0 ? *--xa : 0; |
1280 | d1 = w << k + 16 | y << k; |
1281 | #endif |
1282 | ret_d: |
1283 | #ifdef VAX |
1284 | word0(d)(d).L[1] = d0 >> 16 | d0 << 16; |
1285 | word1(d)(d).L[0] = d1 >> 16 | d1 << 16; |
1286 | #else |
1287 | # undef d0 |
1288 | # undef d1 |
1289 | #endif |
1290 | return dval(d)(d).d; |
1291 | } |
1292 | |
1293 | static Bigint* d2b |
1294 | #ifdef KR_headers |
1295 | (dd, e, bits) double dd; |
1296 | int *e, *bits; |
1297 | #else |
1298 | (double dd, int* e, int* bits) |
1299 | #endif |
1300 | { |
1301 | U d; |
1302 | Bigint* b; |
1303 | int de, k; |
1304 | ULongPRUint32 *x, y, z; |
1305 | #ifndef Sudden_Underflow |
1306 | int i; |
1307 | #endif |
1308 | #ifdef VAX |
1309 | ULongPRUint32 d0, d1; |
1310 | #endif |
1311 | |
1312 | dval(d)(d).d = dd; |
1313 | #ifdef VAX |
1314 | d0 = word0(d)(d).L[1] >> 16 | word0(d)(d).L[1] << 16; |
1315 | d1 = word1(d)(d).L[0] >> 16 | word1(d)(d).L[0] << 16; |
1316 | #else |
1317 | # define d0 word0(d)(d).L[1] |
1318 | # define d1 word1(d)(d).L[0] |
1319 | #endif |
1320 | |
1321 | #ifdef Pack_32 |
1322 | b = Balloc(1); |
1323 | #else |
1324 | b = Balloc(2); |
1325 | #endif |
1326 | x = b->x; |
1327 | |
1328 | z = d0 & Frac_mask0xfffff; |
1329 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
1330 | #ifdef Sudden_Underflow |
1331 | de = (int)(d0 >> Exp_shift20); |
1332 | # ifndef IBM |
1333 | z |= Exp_msk110x100000; |
1334 | # endif |
1335 | #else |
1336 | if (de = (int)(d0 >> Exp_shift20)) { |
1337 | z |= Exp_msk10x100000; |
1338 | } |
1339 | #endif |
1340 | #ifdef Pack_32 |
1341 | if (y = d1) { |
1342 | if (k = lo0bits(&y)) { |
1343 | x[0] = y | z << 32 - k; |
1344 | z >>= k; |
1345 | } else { |
1346 | x[0] = y; |
1347 | } |
1348 | # ifndef Sudden_Underflow |
1349 | i = |
1350 | # endif |
1351 | b->wds = (x[1] = z) ? 2 : 1; |
1352 | } else { |
1353 | k = lo0bits(&z); |
1354 | x[0] = z; |
1355 | # ifndef Sudden_Underflow |
1356 | i = |
1357 | # endif |
1358 | b->wds = 1; |
1359 | k += 32; |
1360 | } |
1361 | #else |
1362 | if (y = d1) { |
1363 | if (k = lo0bits(&y)) |
1364 | if (k >= 16) { |
1365 | x[0] = y | z << 32 - k & 0xffff; |
1366 | x[1] = z >> k - 16 & 0xffff; |
1367 | x[2] = z >> k; |
1368 | i = 2; |
1369 | } else { |
1370 | x[0] = y & 0xffff; |
1371 | x[1] = y >> 16 | z << 16 - k & 0xffff; |
1372 | x[2] = z >> k & 0xffff; |
1373 | x[3] = z >> k + 16; |
1374 | i = 3; |
1375 | } |
1376 | else { |
1377 | x[0] = y & 0xffff; |
1378 | x[1] = y >> 16; |
1379 | x[2] = z & 0xffff; |
1380 | x[3] = z >> 16; |
1381 | i = 3; |
1382 | } |
1383 | } else { |
1384 | # ifdef DEBUG1 |
1385 | if (!z) { |
1386 | Bug("Zero passed to d2b"){ fprintf(stderr, "%s\n", "Zero passed to d2b"); exit(1); }; |
1387 | } |
1388 | # endif |
1389 | k = lo0bits(&z); |
1390 | if (k >= 16) { |
1391 | x[0] = z; |
1392 | i = 0; |
1393 | } else { |
1394 | x[0] = z & 0xffff; |
1395 | x[1] = z >> 16; |
1396 | i = 1; |
1397 | } |
1398 | k += 32; |
1399 | } |
1400 | while (!x[i]) { |
1401 | --i; |
1402 | } |
1403 | b->wds = i + 1; |
1404 | #endif |
1405 | #ifndef Sudden_Underflow |
1406 | if (de) { |
1407 | #endif |
1408 | #ifdef IBM |
1409 | *e = (de - Bias1023 - (P53 - 1) << 2) + k; |
1410 | *bits = 4 * P53 + 8 - k - hi0bits(word0(d)(d).L[1] & Frac_mask0xfffff); |
1411 | #else |
1412 | *e = de - Bias1023 - (P53 - 1) + k; |
1413 | *bits = P53 - k; |
1414 | #endif |
1415 | #ifndef Sudden_Underflow |
1416 | } else { |
1417 | *e = de - Bias1023 - (P53 - 1) + 1 + k; |
1418 | # ifdef Pack_32 |
1419 | *bits = 32 * i - hi0bits(x[i - 1]); |
1420 | # else |
1421 | *bits = (i + 2) * 16 - hi0bits(x[i]); |
1422 | # endif |
1423 | } |
1424 | #endif |
1425 | return b; |
1426 | } |
1427 | #undef d0 |
1428 | #undef d1 |
1429 | |
1430 | static double ratio |
1431 | #ifdef KR_headers |
1432 | (a, b) Bigint *a, |
1433 | *b; |
1434 | #else |
1435 | (Bigint* a, Bigint* b) |
1436 | #endif |
1437 | { |
1438 | U da, db; |
1439 | int k, ka, kb; |
1440 | |
1441 | dval(da)(da).d = b2d(a, &ka); |
1442 | dval(db)(db).d = b2d(b, &kb); |
1443 | #ifdef Pack_32 |
1444 | k = ka - kb + 32 * (a->wds - b->wds); |
1445 | #else |
1446 | k = ka - kb + 16 * (a->wds - b->wds); |
1447 | #endif |
1448 | #ifdef IBM |
1449 | if (k > 0) { |
1450 | word0(da)(da).L[1] += (k >> 2) * Exp_msk10x100000; |
1451 | if (k &= 3) { |
1452 | dval(da)(da).d *= 1 << k; |
1453 | } |
1454 | } else { |
1455 | k = -k; |
1456 | word0(db)(db).L[1] += (k >> 2) * Exp_msk10x100000; |
1457 | if (k &= 3) { |
1458 | dval(db)(db).d *= 1 << k; |
1459 | } |
1460 | } |
1461 | #else |
1462 | if (k > 0) { |
1463 | word0(da)(da).L[1] += k * Exp_msk10x100000; |
1464 | } else { |
1465 | k = -k; |
1466 | word0(db)(db).L[1] += k * Exp_msk10x100000; |
1467 | } |
1468 | #endif |
1469 | return dval(da)(da).d / dval(db)(db).d; |
1470 | } |
1471 | |
1472 | static CONSTconst double tens[] = {1e0, |
1473 | 1e1, |
1474 | 1e2, |
1475 | 1e3, |
1476 | 1e4, |
1477 | 1e5, |
1478 | 1e6, |
1479 | 1e7, |
1480 | 1e8, |
1481 | 1e9, |
1482 | 1e10, |
1483 | 1e11, |
1484 | 1e12, |
1485 | 1e13, |
1486 | 1e14, |
1487 | 1e15, |
1488 | 1e16, |
1489 | 1e17, |
1490 | 1e18, |
1491 | 1e19, |
1492 | 1e20, |
1493 | 1e21, |
1494 | 1e22 |
1495 | #ifdef VAX |
1496 | , |
1497 | 1e23, |
1498 | 1e24 |
1499 | #endif |
1500 | }; |
1501 | |
1502 | static CONSTconst double |
1503 | #ifdef IEEE_Arith |
1504 | bigtens[] = {1e16, 1e32, 1e64, 1e128, 1e256}; |
1505 | static CONSTconst double tinytens[] = {1e-16, 1e-32, 1e-64, 1e-128, |
1506 | # ifdef Avoid_Underflow |
1507 | 9007199254740992. * 9007199254740992.e-256 |
1508 | /* = 2^106 * 1e-53 */ |
1509 | # else |
1510 | 1e-256 |
1511 | # endif |
1512 | }; |
1513 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
1514 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
1515 | # define Scale_Bit0x10 0x10 |
1516 | # define n_bigtens5 5 |
1517 | #else |
1518 | # ifdef IBM |
1519 | bigtens[] = {1e16, 1e32, 1e64}; |
1520 | static CONSTconst double tinytens[] = {1e-16, 1e-32, 1e-64}; |
1521 | # define n_bigtens5 3 |
1522 | # else |
1523 | bigtens[] = {1e16, 1e32}; |
1524 | static CONSTconst double tinytens[] = {1e-16, 1e-32}; |
1525 | # define n_bigtens5 2 |
1526 | # endif |
1527 | #endif |
1528 | |
1529 | #ifndef IEEE_Arith |
1530 | # undef INFNAN_CHECK |
1531 | #endif |
1532 | |
1533 | #ifdef INFNAN_CHECK |
1534 | |
1535 | # ifndef NAN_WORD0 |
1536 | # define NAN_WORD0 0x7ff80000 |
1537 | # endif |
1538 | |
1539 | # ifndef NAN_WORD1 |
1540 | # define NAN_WORD1 0 |
1541 | # endif |
1542 | |
1543 | static int match |
1544 | # ifdef KR_headers |
1545 | (sp, t) char **sp, |
1546 | *t; |
1547 | # else |
1548 | (CONSTconst char** sp, char* t) |
1549 | # endif |
1550 | { |
1551 | int c, d; |
1552 | CONSTconst char* s = *sp; |
1553 | |
1554 | while (d = *t++) { |
1555 | if ((c = *++s) >= 'A' && c <= 'Z') { |
1556 | c += 'a' - 'A'; |
1557 | } |
1558 | if (c != d) { |
1559 | return 0; |
1560 | } |
1561 | } |
1562 | *sp = s + 1; |
1563 | return 1; |
1564 | } |
1565 | |
1566 | # ifndef No_Hex_NaN |
1567 | static void hexnan |
1568 | # ifdef KR_headers |
1569 | (rvp, sp) double* rvp; |
1570 | CONSTconst char** sp; |
1571 | # else |
1572 | (double* rvp, CONSTconst char** sp) |
1573 | # endif |
1574 | { |
1575 | ULongPRUint32 c, x[2]; |
1576 | CONSTconst char* s; |
1577 | int havedig, udx0, xshift; |
1578 | |
1579 | x[0] = x[1] = 0; |
1580 | havedig = xshift = 0; |
1581 | udx0 = 1; |
1582 | s = *sp; |
1583 | while (c = *(CONSTconst unsigned char*)++s) { |
1584 | if (c >= '0' && c <= '9') { |
1585 | c -= '0'; |
1586 | } else if (c >= 'a' && c <= 'f') { |
1587 | c += 10 - 'a'; |
1588 | } else if (c >= 'A' && c <= 'F') { |
1589 | c += 10 - 'A'; |
1590 | } else if (c <= ' ') { |
1591 | if (udx0 && havedig) { |
1592 | udx0 = 0; |
1593 | xshift = 1; |
1594 | } |
1595 | continue; |
1596 | } else if (/*(*/ c == ')' && havedig) { |
1597 | *sp = s + 1; |
1598 | break; |
1599 | } else { |
1600 | return; /* invalid form: don't change *sp */ |
1601 | } |
1602 | havedig = 1; |
1603 | if (xshift) { |
1604 | xshift = 0; |
1605 | x[0] = x[1]; |
1606 | x[1] = 0; |
1607 | } |
1608 | if (udx0) { |
1609 | x[0] = (x[0] << 4) | (x[1] >> 28); |
1610 | } |
1611 | x[1] = (x[1] << 4) | c; |
1612 | } |
1613 | if ((x[0] &= 0xfffff) || x[1]) { |
1614 | word0(*rvp)(*rvp).L[1] = Exp_mask0x7ff00000 | x[0]; |
1615 | word1(*rvp)(*rvp).L[0] = x[1]; |
1616 | } |
1617 | } |
1618 | # endif /*No_Hex_NaN*/ |
1619 | #endif /* INFNAN_CHECK */ |
1620 | |
1621 | PR_IMPLEMENT(double)__attribute__((visibility("default"))) double |
1622 | PR_strtod |
1623 | #ifdef KR_headers |
1624 | (s00, se) CONSTconst char* s00; |
1625 | char** se; |
1626 | #else |
1627 | (CONSTconst char* s00, char** se) |
1628 | #endif |
1629 | { |
1630 | #ifdef Avoid_Underflow |
1631 | int scale; |
1632 | #endif |
1633 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e, e1, esign, i, j, k, nd, |
1634 | nd0, nf, nz, nz0, sign; |
1635 | CONSTconst char *s, *s0, *s1; |
1636 | double aadj, aadj1, adj; |
1637 | U aadj2, rv, rv0; |
1638 | LongPRInt32 L; |
1639 | ULongPRUint32 y, z; |
1640 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
1641 | #ifdef SET_INEXACT |
1642 | int inexact, oldinexact; |
1643 | #endif |
1644 | #ifdef Honor_FLT_ROUNDS |
1645 | int rounding; |
1646 | #endif |
1647 | #ifdef USE_LOCALE |
1648 | CONSTconst char* s2; |
1649 | #endif |
1650 | |
1651 | if (!_pr_initialized) { |
1652 | _PR_ImplicitInitialization(); |
1653 | } |
1654 | |
1655 | sign = nz0 = nz = 0; |
1656 | dval(rv)(rv).d = 0.; |
1657 | for (s = s00;; s++) switch (*s) { |
1658 | case '-': |
1659 | sign = 1; |
1660 | /* no break */ |
1661 | case '+': |
1662 | if (*++s) { |
1663 | goto break2; |
1664 | } |
1665 | /* no break */ |
1666 | case 0: |
1667 | goto ret0; |
1668 | case '\t': |
1669 | case '\n': |
1670 | case '\v': |
1671 | case '\f': |
1672 | case '\r': |
1673 | case ' ': |
1674 | continue; |
1675 | default: |
1676 | goto break2; |
1677 | } |
1678 | break2: |
1679 | if (*s == '0') { |
1680 | nz0 = 1; |
1681 | while (*++s == '0'); |
1682 | if (!*s) { |
1683 | goto ret; |
1684 | } |
1685 | } |
1686 | s0 = s; |
1687 | y = z = 0; |
1688 | for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
1689 | if (nd < 9) { |
1690 | y = 10 * y + c - '0'; |
1691 | } else if (nd < 16) { |
1692 | z = 10 * z + c - '0'; |
1693 | } |
1694 | nd0 = nd; |
1695 | #ifdef USE_LOCALE |
1696 | s1 = localeconv()->decimal_point; |
1697 | if (c == *s1) { |
1698 | c = '.'; |
1699 | if (*++s1) { |
1700 | s2 = s; |
1701 | for (;;) { |
1702 | if (*++s2 != *s1) { |
1703 | c = 0; |
1704 | break; |
1705 | } |
1706 | if (!*++s1) { |
1707 | s = s2; |
1708 | break; |
1709 | } |
1710 | } |
1711 | } |
1712 | } |
1713 | #endif |
1714 | if (c == '.') { |
1715 | c = *++s; |
1716 | if (!nd) { |
1717 | for (; c == '0'; c = *++s) { |
1718 | nz++; |
1719 | } |
1720 | if (c > '0' && c <= '9') { |
1721 | s0 = s; |
1722 | nf += nz; |
1723 | nz = 0; |
1724 | goto have_dig; |
1725 | } |
1726 | goto dig_done; |
1727 | } |
1728 | for (; c >= '0' && c <= '9'; c = *++s) { |
1729 | have_dig: |
1730 | nz++; |
1731 | if (c -= '0') { |
1732 | nf += nz; |
1733 | for (i = 1; i < nz; i++) |
1734 | if (nd++ < 9) { |
1735 | y *= 10; |
1736 | } else if (nd <= DBL_DIG15 + 1) { |
1737 | z *= 10; |
1738 | } |
1739 | if (nd++ < 9) { |
1740 | y = 10 * y + c; |
1741 | } else if (nd <= DBL_DIG15 + 1) { |
1742 | z = 10 * z + c; |
1743 | } |
1744 | nz = 0; |
1745 | } |
1746 | } |
1747 | } |
1748 | dig_done: |
1749 | if (nd > 64 * 1024) { |
1750 | goto ret0; |
1751 | } |
1752 | e = 0; |
1753 | if (c == 'e' || c == 'E') { |
1754 | if (!nd && !nz && !nz0) { |
1755 | goto ret0; |
1756 | } |
1757 | s00 = s; |
1758 | esign = 0; |
1759 | switch (c = *++s) { |
1760 | case '-': |
1761 | esign = 1; |
1762 | case '+': |
1763 | c = *++s; |
1764 | } |
1765 | if (c >= '0' && c <= '9') { |
1766 | while (c == '0') { |
1767 | c = *++s; |
1768 | } |
1769 | if (c > '0' && c <= '9') { |
1770 | L = c - '0'; |
1771 | s1 = s; |
1772 | while ((c = *++s) >= '0' && c <= '9') { |
1773 | L = 10 * L + c - '0'; |
1774 | } |
1775 | if (s - s1 > 8 || L > 19999) |
1776 | /* Avoid confusion from exponents |
1777 | * so large that e might overflow. |
1778 | */ |
1779 | { |
1780 | e = 19999; /* safe for 16 bit ints */ |
1781 | } else { |
1782 | e = (int)L; |
1783 | } |
1784 | if (esign) { |
1785 | e = -e; |
1786 | } |
1787 | } else { |
1788 | e = 0; |
1789 | } |
1790 | } else { |
1791 | s = s00; |
1792 | } |
1793 | } |
1794 | if (!nd) { |
1795 | if (!nz && !nz0) { |
1796 | #ifdef INFNAN_CHECK |
1797 | /* Check for Nan and Infinity */ |
1798 | switch (c) { |
1799 | case 'i': |
1800 | case 'I': |
1801 | if (match(&s, "nf")) { |
1802 | --s; |
1803 | if (!match(&s, "inity")) { |
1804 | ++s; |
1805 | } |
1806 | word0(rv)(rv).L[1] = 0x7ff00000; |
1807 | word1(rv)(rv).L[0] = 0; |
1808 | goto ret; |
1809 | } |
1810 | break; |
1811 | case 'n': |
1812 | case 'N': |
1813 | if (match(&s, "an")) { |
1814 | word0(rv)(rv).L[1] = NAN_WORD0; |
1815 | word1(rv)(rv).L[0] = NAN_WORD1; |
1816 | # ifndef No_Hex_NaN |
1817 | if (*s == '(') { /*)*/ |
1818 | hexnan(&rv, &s); |
1819 | } |
1820 | # endif |
1821 | goto ret; |
1822 | } |
1823 | } |
1824 | #endif /* INFNAN_CHECK */ |
1825 | ret0: |
1826 | s = s00; |
1827 | sign = 0; |
1828 | } |
1829 | goto ret; |
1830 | } |
1831 | e1 = e -= nf; |
1832 | |
1833 | /* Now we have nd0 digits, starting at s0, followed by a |
1834 | * decimal point, followed by nd-nd0 digits. The number we're |
1835 | * after is the integer represented by those digits times |
1836 | * 10**e */ |
1837 | |
1838 | if (!nd0) { |
1839 | nd0 = nd; |
1840 | } |
1841 | k = nd < DBL_DIG15 + 1 ? nd : DBL_DIG15 + 1; |
1842 | dval(rv)(rv).d = y; |
1843 | if (k > 9) { |
1844 | #ifdef SET_INEXACT |
1845 | if (k > DBL_DIG15) { |
1846 | oldinexact = get_inexact(); |
1847 | } |
1848 | #endif |
1849 | dval(rv)(rv).d = tens[k - 9] * dval(rv)(rv).d + z; |
1850 | } |
1851 | bd0 = 0; |
1852 | if (nd <= DBL_DIG15 |
1853 | #ifndef RND_PRODQUOT |
1854 | # ifndef Honor_FLT_ROUNDS |
1855 | && Flt_Rounds(__builtin_flt_rounds()) == 1 |
1856 | # endif |
1857 | #endif |
1858 | ) { |
1859 | if (!e) { |
1860 | goto ret; |
1861 | } |
1862 | if (e > 0) { |
1863 | if (e <= Ten_pmax22) { |
1864 | #ifdef VAX |
1865 | goto vax_ovfl_check; |
1866 | #else |
1867 | # ifdef Honor_FLT_ROUNDS |
1868 | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1869 | if (sign) { |
1870 | rv = -rv; |
1871 | sign = 0; |
1872 | } |
1873 | # endif |
1874 | /* rv = */ rounded_product(dval(rv), tens[e])(rv).d *= tens[e]; |
1875 | goto ret; |
1876 | #endif |
1877 | } |
1878 | i = DBL_DIG15 - nd; |
1879 | if (e <= Ten_pmax22 + i) { |
1880 | /* A fancier test would sometimes let us do |
1881 | * this for larger i values. |
1882 | */ |
1883 | #ifdef Honor_FLT_ROUNDS |
1884 | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1885 | if (sign) { |
1886 | rv = -rv; |
1887 | sign = 0; |
1888 | } |
1889 | #endif |
1890 | e -= i; |
1891 | dval(rv)(rv).d *= tens[i]; |
1892 | #ifdef VAX |
1893 | /* VAX exponent range is so narrow we must |
1894 | * worry about overflow here... |
1895 | */ |
1896 | vax_ovfl_check: |
1897 | word0(rv)(rv).L[1] -= P53 * Exp_msk10x100000; |
1898 | /* rv = */ rounded_product(dval(rv), tens[e])(rv).d *= tens[e]; |
1899 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) > Exp_msk10x100000 * (DBL_MAX_EXP1024 + Bias1023 - 1 - P53)) { |
1900 | goto ovfl; |
1901 | } |
1902 | word0(rv)(rv).L[1] += P53 * Exp_msk10x100000; |
1903 | #else |
1904 | /* rv = */ rounded_product(dval(rv), tens[e])(rv).d *= tens[e]; |
1905 | #endif |
1906 | goto ret; |
1907 | } |
1908 | } |
1909 | #ifndef Inaccurate_Divide |
1910 | else if (e >= -Ten_pmax22) { |
1911 | # ifdef Honor_FLT_ROUNDS |
1912 | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1913 | if (sign) { |
1914 | rv = -rv; |
1915 | sign = 0; |
1916 | } |
1917 | # endif |
1918 | /* rv = */ rounded_quotient(dval(rv), tens[-e])(rv).d /= tens[-e]; |
1919 | goto ret; |
1920 | } |
1921 | #endif |
1922 | } |
1923 | e1 += nd - k; |
1924 | |
1925 | #ifdef IEEE_Arith |
1926 | # ifdef SET_INEXACT |
1927 | inexact = 1; |
1928 | if (k <= DBL_DIG15) { |
1929 | oldinexact = get_inexact(); |
1930 | } |
1931 | # endif |
1932 | # ifdef Avoid_Underflow |
1933 | scale = 0; |
1934 | # endif |
1935 | # ifdef Honor_FLT_ROUNDS |
1936 | if ((rounding = Flt_Rounds(__builtin_flt_rounds())) >= 2) { |
1937 | if (sign) { |
1938 | rounding = rounding == 2 ? 0 : 2; |
1939 | } else if (rounding != 2) { |
1940 | rounding = 0; |
1941 | } |
1942 | } |
1943 | # endif |
1944 | #endif /*IEEE_Arith*/ |
1945 | |
1946 | /* Get starting approximation = rv * 10**e1 */ |
1947 | |
1948 | if (e1 > 0) { |
1949 | if (i = e1 & 15) { |
1950 | dval(rv)(rv).d *= tens[i]; |
1951 | } |
1952 | if (e1 &= ~15) { |
1953 | if (e1 > DBL_MAX_10_EXP308) { |
1954 | ovfl: |
1955 | #ifndef NO_ERRNO |
1956 | PR_SetError(PR_RANGE_ERROR(-5960L), 0); |
1957 | #endif |
1958 | /* Can't trust HUGE_VAL */ |
1959 | #ifdef IEEE_Arith |
1960 | # ifdef Honor_FLT_ROUNDS |
1961 | switch (rounding) { |
1962 | case 0: /* toward 0 */ |
1963 | case 3: /* toward -infinity */ |
1964 | word0(rv)(rv).L[1] = Big0(0xfffff | 0x100000 * (1024 + 1023 - 1)); |
1965 | word1(rv)(rv).L[0] = Big10xffffffff; |
1966 | break; |
1967 | default: |
1968 | word0(rv)(rv).L[1] = Exp_mask0x7ff00000; |
1969 | word1(rv)(rv).L[0] = 0; |
1970 | } |
1971 | # else /*Honor_FLT_ROUNDS*/ |
1972 | word0(rv)(rv).L[1] = Exp_mask0x7ff00000; |
1973 | word1(rv)(rv).L[0] = 0; |
1974 | # endif /*Honor_FLT_ROUNDS*/ |
1975 | # ifdef SET_INEXACT |
1976 | /* set overflow bit */ |
1977 | dval(rv0)(rv0).d = 1e300; |
1978 | dval(rv0)(rv0).d *= dval(rv0)(rv0).d; |
1979 | # endif |
1980 | #else /*IEEE_Arith*/ |
1981 | word0(rv)(rv).L[1] = Big0(0xfffff | 0x100000 * (1024 + 1023 - 1)); |
1982 | word1(rv)(rv).L[0] = Big10xffffffff; |
1983 | #endif /*IEEE_Arith*/ |
1984 | if (bd0) { |
1985 | goto retfree; |
1986 | } |
1987 | goto ret; |
1988 | } |
1989 | e1 >>= 4; |
1990 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
1991 | if (e1 & 1) { |
1992 | dval(rv)(rv).d *= bigtens[j]; |
1993 | } |
1994 | /* The last multiplication could overflow. */ |
1995 | word0(rv)(rv).L[1] -= P53 * Exp_msk10x100000; |
1996 | dval(rv)(rv).d *= bigtens[j]; |
1997 | if ((z = word0(rv)(rv).L[1] & Exp_mask0x7ff00000) > Exp_msk10x100000 * (DBL_MAX_EXP1024 + Bias1023 - P53)) { |
1998 | goto ovfl; |
1999 | } |
2000 | if (z > Exp_msk10x100000 * (DBL_MAX_EXP1024 + Bias1023 - 1 - P53)) { |
2001 | /* set to largest number */ |
2002 | /* (Can't trust DBL_MAX) */ |
2003 | word0(rv)(rv).L[1] = Big0(0xfffff | 0x100000 * (1024 + 1023 - 1)); |
2004 | word1(rv)(rv).L[0] = Big10xffffffff; |
2005 | } else { |
2006 | word0(rv)(rv).L[1] += P53 * Exp_msk10x100000; |
2007 | } |
2008 | } |
2009 | } else if (e1 < 0) { |
2010 | e1 = -e1; |
2011 | if (i = e1 & 15) { |
2012 | dval(rv)(rv).d /= tens[i]; |
2013 | } |
2014 | if (e1 >>= 4) { |
2015 | if (e1 >= 1 << n_bigtens5) { |
2016 | goto undfl; |
2017 | } |
2018 | #ifdef Avoid_Underflow |
2019 | if (e1 & Scale_Bit0x10) { |
2020 | scale = 2 * P53; |
2021 | } |
2022 | for (j = 0; e1 > 0; j++, e1 >>= 1) |
2023 | if (e1 & 1) { |
2024 | dval(rv)(rv).d *= tinytens[j]; |
2025 | } |
2026 | if (scale && |
2027 | (j = 2 * P53 + 1 - ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) >> Exp_shift20)) > 0) { |
2028 | /* scaled rv is denormal; zap j low bits */ |
2029 | if (j >= 32) { |
2030 | word1(rv)(rv).L[0] = 0; |
2031 | if (j >= 53) { |
2032 | word0(rv)(rv).L[1] = (P53 + 2) * Exp_msk10x100000; |
2033 | } else { |
2034 | word0(rv)(rv).L[1] &= 0xffffffff << j - 32; |
2035 | } |
2036 | } else { |
2037 | word1(rv)(rv).L[0] &= 0xffffffff << j; |
2038 | } |
2039 | } |
2040 | #else |
2041 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
2042 | if (e1 & 1) { |
2043 | dval(rv)(rv).d *= tinytens[j]; |
2044 | } |
2045 | /* The last multiplication could underflow. */ |
2046 | dval(rv0)(rv0).d = dval(rv)(rv).d; |
2047 | dval(rv)(rv).d *= tinytens[j]; |
2048 | if (!dval(rv)(rv).d) { |
2049 | dval(rv)(rv).d = 2. * dval(rv0)(rv0).d; |
2050 | dval(rv)(rv).d *= tinytens[j]; |
2051 | #endif |
2052 | if (!dval(rv)(rv).d) { |
2053 | undfl: |
2054 | dval(rv)(rv).d = 0.; |
2055 | #ifndef NO_ERRNO |
2056 | PR_SetError(PR_RANGE_ERROR(-5960L), 0); |
2057 | #endif |
2058 | if (bd0) { |
2059 | goto retfree; |
2060 | } |
2061 | goto ret; |
2062 | } |
2063 | #ifndef Avoid_Underflow |
2064 | word0(rv)(rv).L[1] = Tiny00; |
2065 | word1(rv)(rv).L[0] = Tiny11; |
2066 | /* The refinement below will clean |
2067 | * this approximation up. |
2068 | */ |
2069 | } |
2070 | #endif |
2071 | } |
2072 | } |
2073 | |
2074 | /* Now the hard part -- adjusting rv to the correct value.*/ |
2075 | |
2076 | /* Put digits into bd: true value = bd * 10^e */ |
2077 | |
2078 | bd0 = s2b(s0, nd0, nd, y); |
2079 | |
2080 | for (;;) { |
2081 | bd = Balloc(bd0->k); |
2082 | Bcopy(bd, bd0)memcpy((char*)&bd->sign, (char*)&bd0->sign, bd0 ->wds * sizeof(PRInt32) + 2 * sizeof(int)); |
2083 | bb = d2b(dval(rv)(rv).d, &bbe, &bbbits); /* rv = bb * 2^bbe */ |
2084 | bs = i2b(1); |
2085 | |
2086 | if (e >= 0) { |
2087 | bb2 = bb5 = 0; |
2088 | bd2 = bd5 = e; |
2089 | } else { |
2090 | bb2 = bb5 = -e; |
2091 | bd2 = bd5 = 0; |
2092 | } |
2093 | if (bbe >= 0) { |
2094 | bb2 += bbe; |
2095 | } else { |
2096 | bd2 -= bbe; |
2097 | } |
2098 | bs2 = bb2; |
2099 | #ifdef Honor_FLT_ROUNDS |
2100 | if (rounding != 1) { |
2101 | bs2++; |
2102 | } |
2103 | #endif |
2104 | #ifdef Avoid_Underflow |
2105 | j = bbe - scale; |
2106 | i = j + bbbits - 1; /* logb(rv) */ |
2107 | if (i < Emin(-1022)) { /* denormal */ |
2108 | j += P53 - Emin(-1022); |
2109 | } else { |
2110 | j = P53 + 1 - bbbits; |
2111 | } |
2112 | #else /*Avoid_Underflow*/ |
2113 | # ifdef Sudden_Underflow |
2114 | # ifdef IBM |
2115 | j = 1 + 4 * P53 - 3 - bbbits + ((bbe + bbbits - 1) & 3); |
2116 | # else |
2117 | j = P53 + 1 - bbbits; |
2118 | # endif |
2119 | # else /*Sudden_Underflow*/ |
2120 | j = bbe; |
2121 | i = j + bbbits - 1; /* logb(rv) */ |
2122 | if (i < Emin(-1022)) { /* denormal */ |
2123 | j += P53 - Emin(-1022); |
2124 | } else { |
2125 | j = P53 + 1 - bbbits; |
2126 | } |
2127 | # endif /*Sudden_Underflow*/ |
2128 | #endif /*Avoid_Underflow*/ |
2129 | bb2 += j; |
2130 | bd2 += j; |
2131 | #ifdef Avoid_Underflow |
2132 | bd2 += scale; |
2133 | #endif |
2134 | i = bb2 < bd2 ? bb2 : bd2; |
2135 | if (i > bs2) { |
2136 | i = bs2; |
2137 | } |
2138 | if (i > 0) { |
2139 | bb2 -= i; |
2140 | bd2 -= i; |
2141 | bs2 -= i; |
2142 | } |
2143 | if (bb5 > 0) { |
2144 | bs = pow5mult(bs, bb5); |
2145 | bb1 = mult(bs, bb); |
2146 | Bfree(bb); |
2147 | bb = bb1; |
2148 | } |
2149 | if (bb2 > 0) { |
2150 | bb = lshift(bb, bb2); |
2151 | } |
2152 | if (bd5 > 0) { |
2153 | bd = pow5mult(bd, bd5); |
2154 | } |
2155 | if (bd2 > 0) { |
2156 | bd = lshift(bd, bd2); |
2157 | } |
2158 | if (bs2 > 0) { |
2159 | bs = lshift(bs, bs2); |
2160 | } |
2161 | delta = diff(bb, bd); |
2162 | dsign = delta->sign; |
2163 | delta->sign = 0; |
2164 | i = cmp(delta, bs); |
2165 | #ifdef Honor_FLT_ROUNDS |
2166 | if (rounding != 1) { |
2167 | if (i < 0) { |
2168 | /* Error is less than an ulp */ |
2169 | if (!delta->x[0] && delta->wds <= 1) { |
2170 | /* exact */ |
2171 | # ifdef SET_INEXACT |
2172 | inexact = 0; |
2173 | # endif |
2174 | break; |
2175 | } |
2176 | if (rounding) { |
2177 | if (dsign) { |
2178 | adj = 1.; |
2179 | goto apply_adj; |
2180 | } |
2181 | } else if (!dsign) { |
2182 | adj = -1.; |
2183 | if (!word1(rv)(rv).L[0] && !(word0(rv)(rv).L[1] & Frac_mask0xfffff)) { |
2184 | y = word0(rv)(rv).L[1] & Exp_mask0x7ff00000; |
2185 | # ifdef Avoid_Underflow |
2186 | if (!scale || y > 2 * P53 * Exp_msk10x100000) |
2187 | # else |
2188 | if (y) |
2189 | # endif |
2190 | { |
2191 | delta = lshift(delta, Log2P1); |
2192 | if (cmp(delta, bs) <= 0) { |
2193 | adj = -0.5; |
2194 | } |
2195 | } |
2196 | } |
2197 | apply_adj: |
2198 | # ifdef Avoid_Underflow |
2199 | if (scale && (y = word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= 2 * P53 * Exp_msk10x100000) { |
2200 | word0(adj)(adj).L[1] += (2 * P53 + 1) * Exp_msk10x100000 - y; |
2201 | } |
2202 | # else |
2203 | # ifdef Sudden_Underflow |
2204 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= P53 * Exp_msk10x100000) { |
2205 | word0(rv)(rv).L[1] += P53 * Exp_msk10x100000; |
2206 | dval(rv)(rv).d += adj * ulp(dval(rv)(rv).d); |
2207 | word0(rv)(rv).L[1] -= P53 * Exp_msk10x100000; |
2208 | } else |
2209 | # endif /*Sudden_Underflow*/ |
2210 | # endif /*Avoid_Underflow*/ |
2211 | dval(rv)(rv).d += adj * ulp(dval(rv)(rv).d); |
2212 | } |
2213 | break; |
2214 | } |
2215 | adj = ratio(delta, bs); |
2216 | if (adj < 1.) { |
2217 | adj = 1.; |
2218 | } |
2219 | if (adj <= 0x7ffffffe) { |
2220 | /* adj = rounding ? ceil(adj) : floor(adj); */ |
2221 | y = adj; |
2222 | if (y != adj) { |
2223 | if (!((rounding >> 1) ^ dsign)) { |
2224 | y++; |
2225 | } |
2226 | adj = y; |
2227 | } |
2228 | } |
2229 | # ifdef Avoid_Underflow |
2230 | if (scale && (y = word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= 2 * P53 * Exp_msk10x100000) { |
2231 | word0(adj)(adj).L[1] += (2 * P53 + 1) * Exp_msk10x100000 - y; |
2232 | } |
2233 | # else |
2234 | # ifdef Sudden_Underflow |
2235 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= P53 * Exp_msk10x100000) { |
2236 | word0(rv)(rv).L[1] += P53 * Exp_msk10x100000; |
2237 | adj *= ulp(dval(rv)(rv).d); |
2238 | if (dsign) { |
2239 | dval(rv)(rv).d += adj; |
2240 | } else { |
2241 | dval(rv)(rv).d -= adj; |
2242 | } |
2243 | word0(rv)(rv).L[1] -= P53 * Exp_msk10x100000; |
2244 | goto cont; |
2245 | } |
2246 | # endif /*Sudden_Underflow*/ |
2247 | # endif /*Avoid_Underflow*/ |
2248 | adj *= ulp(dval(rv)(rv).d); |
2249 | if (dsign) { |
2250 | dval(rv)(rv).d += adj; |
2251 | } else { |
2252 | dval(rv)(rv).d -= adj; |
2253 | } |
2254 | goto cont; |
2255 | } |
2256 | #endif /*Honor_FLT_ROUNDS*/ |
2257 | |
2258 | if (i < 0) { |
2259 | /* Error is less than half an ulp -- check for |
2260 | * special case of mantissa a power of two. |
2261 | */ |
2262 | if (dsign || word1(rv)(rv).L[0] || word0(rv)(rv).L[1] & Bndry_mask0xfffff |
2263 | #ifdef IEEE_Arith |
2264 | # ifdef Avoid_Underflow |
2265 | || (word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= (2 * P53 + 1) * Exp_msk10x100000 |
2266 | # else |
2267 | || (word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= Exp_msk10x100000 |
2268 | # endif |
2269 | #endif |
2270 | ) { |
2271 | #ifdef SET_INEXACT |
2272 | if (!delta->x[0] && delta->wds <= 1) { |
2273 | inexact = 0; |
2274 | } |
2275 | #endif |
2276 | break; |
2277 | } |
2278 | if (!delta->x[0] && delta->wds <= 1) { |
2279 | /* exact result */ |
2280 | #ifdef SET_INEXACT |
2281 | inexact = 0; |
2282 | #endif |
2283 | break; |
2284 | } |
2285 | delta = lshift(delta, Log2P1); |
2286 | if (cmp(delta, bs) > 0) { |
2287 | goto drop_down; |
2288 | } |
2289 | break; |
2290 | } |
2291 | if (i == 0) { |
2292 | /* exactly half-way between */ |
2293 | if (dsign) { |
2294 | if ((word0(rv)(rv).L[1] & Bndry_mask10xfffff) == Bndry_mask10xfffff && |
2295 | word1(rv)(rv).L[0] == |
2296 | ( |
2297 | #ifdef Avoid_Underflow |
2298 | (scale && (y = word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= 2 * P53 * Exp_msk10x100000) |
2299 | ? (0xffffffff & |
2300 | (0xffffffff << (2 * P53 + 1 - (y >> Exp_shift20)))) |
2301 | : |
2302 | #endif |
2303 | 0xffffffff)) { |
2304 | /*boundary case -- increment exponent*/ |
2305 | word0(rv)(rv).L[1] = (word0(rv)(rv).L[1] & Exp_mask0x7ff00000) + Exp_msk10x100000 |
2306 | #ifdef IBM |
2307 | | Exp_msk10x100000 >> 4 |
2308 | #endif |
2309 | ; |
2310 | word1(rv)(rv).L[0] = 0; |
2311 | #ifdef Avoid_Underflow |
2312 | dsign = 0; |
2313 | #endif |
2314 | break; |
2315 | } |
2316 | } else if (!(word0(rv)(rv).L[1] & Bndry_mask0xfffff) && !word1(rv)(rv).L[0]) { |
2317 | drop_down: |
2318 | /* boundary case -- decrement exponent */ |
2319 | #ifdef Sudden_Underflow /*{{*/ |
2320 | L = word0(rv)(rv).L[1] & Exp_mask0x7ff00000; |
2321 | # ifdef IBM |
2322 | if (L < Exp_msk10x100000) |
2323 | # else |
2324 | # ifdef Avoid_Underflow |
2325 | if (L <= (scale ? (2 * P53 + 1) * Exp_msk10x100000 : Exp_msk10x100000)) |
2326 | # else |
2327 | if (L <= Exp_msk10x100000) |
2328 | # endif /*Avoid_Underflow*/ |
2329 | # endif /*IBM*/ |
2330 | goto undfl; |
2331 | L -= Exp_msk10x100000; |
2332 | #else /*Sudden_Underflow}{*/ |
2333 | # ifdef Avoid_Underflow |
2334 | if (scale) { |
2335 | L = word0(rv)(rv).L[1] & Exp_mask0x7ff00000; |
2336 | if (L <= (2 * P53 + 1) * Exp_msk10x100000) { |
2337 | if (L > (P53 + 2) * Exp_msk10x100000) |
2338 | /* round even ==> */ |
2339 | /* accept rv */ |
2340 | { |
2341 | break; |
2342 | } |
2343 | /* rv = smallest denormal */ |
2344 | goto undfl; |
2345 | } |
2346 | } |
2347 | # endif /*Avoid_Underflow*/ |
2348 | L = (word0(rv)(rv).L[1] & Exp_mask0x7ff00000) - Exp_msk10x100000; |
2349 | #endif /*Sudden_Underflow}}*/ |
2350 | word0(rv)(rv).L[1] = L | Bndry_mask10xfffff; |
2351 | word1(rv)(rv).L[0] = 0xffffffff; |
2352 | #ifdef IBM |
2353 | goto cont; |
2354 | #else |
2355 | break; |
2356 | #endif |
2357 | } |
2358 | #ifndef ROUND_BIASED |
2359 | if (!(word1(rv)(rv).L[0] & LSB1)) { |
2360 | break; |
2361 | } |
2362 | #endif |
2363 | if (dsign) { |
2364 | dval(rv)(rv).d += ulp(dval(rv)(rv).d); |
2365 | } |
2366 | #ifndef ROUND_BIASED |
2367 | else { |
2368 | dval(rv)(rv).d -= ulp(dval(rv)(rv).d); |
2369 | # ifndef Sudden_Underflow |
2370 | if (!dval(rv)(rv).d) { |
2371 | goto undfl; |
2372 | } |
2373 | # endif |
2374 | } |
2375 | # ifdef Avoid_Underflow |
2376 | dsign = 1 - dsign; |
Value stored to 'dsign' is never read | |
2377 | # endif |
2378 | #endif |
2379 | break; |
2380 | } |
2381 | if ((aadj = ratio(delta, bs)) <= 2.) { |
2382 | if (dsign) { |
2383 | aadj = aadj1 = 1.; |
2384 | } else if (word1(rv)(rv).L[0] || word0(rv)(rv).L[1] & Bndry_mask0xfffff) { |
2385 | #ifndef Sudden_Underflow |
2386 | if (word1(rv)(rv).L[0] == Tiny11 && !word0(rv)(rv).L[1]) { |
2387 | goto undfl; |
2388 | } |
2389 | #endif |
2390 | aadj = 1.; |
2391 | aadj1 = -1.; |
2392 | } else { |
2393 | /* special case -- power of FLT_RADIX to be */ |
2394 | /* rounded down... */ |
2395 | |
2396 | if (aadj < 2. / FLT_RADIX2) { |
2397 | aadj = 1. / FLT_RADIX2; |
2398 | } else { |
2399 | aadj *= 0.5; |
2400 | } |
2401 | aadj1 = -aadj; |
2402 | } |
2403 | } else { |
2404 | aadj *= 0.5; |
2405 | aadj1 = dsign ? aadj : -aadj; |
2406 | #ifdef Check_FLT_ROUNDS |
2407 | switch (Rounding(__builtin_flt_rounds())) { |
2408 | case 2: /* towards +infinity */ |
2409 | aadj1 -= 0.5; |
2410 | break; |
2411 | case 0: /* towards 0 */ |
2412 | case 3: /* towards -infinity */ |
2413 | aadj1 += 0.5; |
2414 | } |
2415 | #else |
2416 | if (Flt_Rounds(__builtin_flt_rounds()) == 0) { |
2417 | aadj1 += 0.5; |
2418 | } |
2419 | #endif /*Check_FLT_ROUNDS*/ |
2420 | } |
2421 | y = word0(rv)(rv).L[1] & Exp_mask0x7ff00000; |
2422 | |
2423 | /* Check for overflow */ |
2424 | |
2425 | if (y == Exp_msk10x100000 * (DBL_MAX_EXP1024 + Bias1023 - 1)) { |
2426 | dval(rv0)(rv0).d = dval(rv)(rv).d; |
2427 | word0(rv)(rv).L[1] -= P53 * Exp_msk10x100000; |
2428 | adj = aadj1 * ulp(dval(rv)(rv).d); |
2429 | dval(rv)(rv).d += adj; |
2430 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) >= Exp_msk10x100000 * (DBL_MAX_EXP1024 + Bias1023 - P53)) { |
2431 | if (word0(rv0)(rv0).L[1] == Big0(0xfffff | 0x100000 * (1024 + 1023 - 1)) && word1(rv0)(rv0).L[0] == Big10xffffffff) { |
2432 | goto ovfl; |
2433 | } |
2434 | word0(rv)(rv).L[1] = Big0(0xfffff | 0x100000 * (1024 + 1023 - 1)); |
2435 | word1(rv)(rv).L[0] = Big10xffffffff; |
2436 | goto cont; |
2437 | } else { |
2438 | word0(rv)(rv).L[1] += P53 * Exp_msk10x100000; |
2439 | } |
2440 | } else { |
2441 | #ifdef Avoid_Underflow |
2442 | if (scale && y <= 2 * P53 * Exp_msk10x100000) { |
2443 | if (aadj <= 0x7fffffff) { |
2444 | if ((z = aadj) <= 0) { |
2445 | z = 1; |
2446 | } |
2447 | aadj = z; |
2448 | aadj1 = dsign ? aadj : -aadj; |
2449 | } |
2450 | dval(aadj2)(aadj2).d = aadj1; |
2451 | word0(aadj2)(aadj2).L[1] += (2 * P53 + 1) * Exp_msk10x100000 - y; |
2452 | aadj1 = dval(aadj2)(aadj2).d; |
2453 | } |
2454 | adj = aadj1 * ulp(dval(rv)(rv).d); |
2455 | dval(rv)(rv).d += adj; |
2456 | #else |
2457 | # ifdef Sudden_Underflow |
2458 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= P53 * Exp_msk10x100000) { |
2459 | dval(rv0)(rv0).d = dval(rv)(rv).d; |
2460 | word0(rv)(rv).L[1] += P53 * Exp_msk10x100000; |
2461 | adj = aadj1 * ulp(dval(rv)(rv).d); |
2462 | dval(rv)(rv).d += adj; |
2463 | # ifdef IBM |
2464 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) < P53 * Exp_msk10x100000) |
2465 | # else |
2466 | if ((word0(rv)(rv).L[1] & Exp_mask0x7ff00000) <= P53 * Exp_msk10x100000) |
2467 | # endif |
2468 | { |
2469 | if (word0(rv0)(rv0).L[1] == Tiny00 && word1(rv0)(rv0).L[0] == Tiny11) { |
2470 | goto undfl; |
2471 | } |
2472 | word0(rv)(rv).L[1] = Tiny00; |
2473 | word1(rv)(rv).L[0] = Tiny11; |
2474 | goto cont; |
2475 | } else { |
2476 | word0(rv)(rv).L[1] -= P53 * Exp_msk10x100000; |
2477 | } |
2478 | } else { |
2479 | adj = aadj1 * ulp(dval(rv)(rv).d); |
2480 | dval(rv)(rv).d += adj; |
2481 | } |
2482 | # else /*Sudden_Underflow*/ |
2483 | /* Compute adj so that the IEEE rounding rules will |
2484 | * correctly round rv + adj in some half-way cases. |
2485 | * If rv * ulp(rv) is denormalized (i.e., |
2486 | * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid |
2487 | * trouble from bits lost to denormalization; |
2488 | * example: 1.2e-307 . |
2489 | */ |
2490 | if (y <= (P53 - 1) * Exp_msk10x100000 && aadj > 1.) { |
2491 | aadj1 = (double)(int)(aadj + 0.5); |
2492 | if (!dsign) { |
2493 | aadj1 = -aadj1; |
2494 | } |
2495 | } |
2496 | adj = aadj1 * ulp(dval(rv)(rv).d); |
2497 | dval(rv)(rv).d += adj; |
2498 | # endif /*Sudden_Underflow*/ |
2499 | #endif /*Avoid_Underflow*/ |
2500 | } |
2501 | z = word0(rv)(rv).L[1] & Exp_mask0x7ff00000; |
2502 | #ifndef SET_INEXACT |
2503 | # ifdef Avoid_Underflow |
2504 | if (!scale) |
2505 | # endif |
2506 | if (y == z) { |
2507 | /* Can we stop now? */ |
2508 | L = (LongPRInt32)aadj; |
2509 | aadj -= L; |
2510 | /* The tolerances below are conservative. */ |
2511 | if (dsign || word1(rv)(rv).L[0] || word0(rv)(rv).L[1] & Bndry_mask0xfffff) { |
2512 | if (aadj < .4999999 || aadj > .5000001) { |
2513 | break; |
2514 | } |
2515 | } else if (aadj < .4999999 / FLT_RADIX2) { |
2516 | break; |
2517 | } |
2518 | } |
2519 | #endif |
2520 | cont: |
2521 | Bfree(bb); |
2522 | Bfree(bd); |
2523 | Bfree(bs); |
2524 | Bfree(delta); |
2525 | } |
2526 | #ifdef SET_INEXACT |
2527 | if (inexact) { |
2528 | if (!oldinexact) { |
2529 | word0(rv0)(rv0).L[1] = Exp_10x3ff00000 + (70 << Exp_shift20); |
2530 | word1(rv0)(rv0).L[0] = 0; |
2531 | dval(rv0)(rv0).d += 1.; |
2532 | } |
2533 | } else if (!oldinexact) { |
2534 | clear_inexact(); |
2535 | } |
2536 | #endif |
2537 | #ifdef Avoid_Underflow |
2538 | if (scale) { |
2539 | word0(rv0)(rv0).L[1] = Exp_10x3ff00000 - 2 * P53 * Exp_msk10x100000; |
2540 | word1(rv0)(rv0).L[0] = 0; |
2541 | dval(rv)(rv).d *= dval(rv0)(rv0).d; |
2542 | # ifndef NO_ERRNO |
2543 | /* try to avoid the bug of testing an 8087 register value */ |
2544 | if (word0(rv)(rv).L[1] == 0 && word1(rv)(rv).L[0] == 0) { |
2545 | PR_SetError(PR_RANGE_ERROR(-5960L), 0); |
2546 | } |
2547 | # endif |
2548 | } |
2549 | #endif /* Avoid_Underflow */ |
2550 | #ifdef SET_INEXACT |
2551 | if (inexact && !(word0(rv)(rv).L[1] & Exp_mask0x7ff00000)) { |
2552 | /* set underflow bit */ |
2553 | dval(rv0)(rv0).d = 1e-300; |
2554 | dval(rv0)(rv0).d *= dval(rv0)(rv0).d; |
2555 | } |
2556 | #endif |
2557 | retfree: Bfree(bb); |
2558 | Bfree(bd); |
2559 | Bfree(bs); |
2560 | Bfree(bd0); |
2561 | Bfree(delta); |
2562 | ret: if (se) { *se = (char*)s; } |
2563 | return sign ? -dval(rv)(rv).d : dval(rv)(rv).d; |
2564 | } |
2565 | |
2566 | static int quorem |
2567 | #ifdef KR_headers |
2568 | (b, S) |
2569 | Bigint *b, *S; |
2570 | #else |
2571 | (Bigint * b, Bigint * S) |
2572 | #endif |
2573 | { |
2574 | int n; |
2575 | ULongPRUint32 *bx, *bxe, q, *sx, *sxe; |
2576 | #ifdef ULLong |
2577 | ULLong borrow, carry, y, ys; |
2578 | #else |
2579 | ULongPRUint32 borrow, carry, y, ys; |
2580 | # ifdef Pack_32 |
2581 | ULongPRUint32 si, z, zs; |
2582 | # endif |
2583 | #endif |
2584 | |
2585 | n = S->wds; |
2586 | #ifdef DEBUG1 |
2587 | /*debug*/ if (b->wds > n) |
2588 | /*debug*/ { |
2589 | Bug("oversize b in quorem"){ fprintf(stderr, "%s\n", "oversize b in quorem"); exit(1); }; |
2590 | } |
2591 | #endif |
2592 | if (b->wds < n) { |
2593 | return 0; |
2594 | } |
2595 | sx = S->x; |
2596 | sxe = sx + --n; |
2597 | bx = b->x; |
2598 | bxe = bx + n; |
2599 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
2600 | #ifdef DEBUG1 |
2601 | /*debug*/ if (q > 9) |
2602 | /*debug*/ { |
2603 | Bug("oversized quotient in quorem"){ fprintf(stderr, "%s\n", "oversized quotient in quorem"); exit (1); }; |
2604 | } |
2605 | #endif |
2606 | if (q) { |
2607 | borrow = 0; |
2608 | carry = 0; |
2609 | do { |
2610 | #ifdef ULLong |
2611 | ys = *sx++ * (ULLong)q + carry; |
2612 | carry = ys >> 32; |
2613 | y = *bx - (ys & FFFFFFFF0xffffffffUL) - borrow; |
2614 | borrow = y >> 32 & (ULongPRUint32)1; |
2615 | *bx++ = y & FFFFFFFF0xffffffffUL; |
2616 | #else |
2617 | # ifdef Pack_32 |
2618 | si = *sx++; |
2619 | ys = (si & 0xffff) * q + carry; |
2620 | zs = (si >> 16) * q + (ys >> 16); |
2621 | carry = zs >> 16; |
2622 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
2623 | borrow = (y & 0x10000) >> 16; |
2624 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
2625 | borrow = (z & 0x10000) >> 16; |
2626 | Storeinc(bx, z, y)(((unsigned short*)bx)[1] = (unsigned short)z, ((unsigned short *)bx)[0] = (unsigned short)y, bx++); |
2627 | # else |
2628 | ys = *sx++ * q + carry; |
2629 | carry = ys >> 16; |
2630 | y = *bx - (ys & 0xffff) - borrow; |
2631 | borrow = (y & 0x10000) >> 16; |
2632 | *bx++ = y & 0xffff; |
2633 | # endif |
2634 | #endif |
2635 | } while (sx <= sxe); |
2636 | if (!*bxe) { |
2637 | bx = b->x; |
2638 | while (--bxe > bx && !*bxe) { |
2639 | --n; |
2640 | } |
2641 | b->wds = n; |
2642 | } |
2643 | } |
2644 | if (cmp(b, S) >= 0) { |
2645 | q++; |
2646 | borrow = 0; |
2647 | carry = 0; |
2648 | bx = b->x; |
2649 | sx = S->x; |
2650 | do { |
2651 | #ifdef ULLong |
2652 | ys = *sx++ + carry; |
2653 | carry = ys >> 32; |
2654 | y = *bx - (ys & FFFFFFFF0xffffffffUL) - borrow; |
2655 | borrow = y >> 32 & (ULongPRUint32)1; |
2656 | *bx++ = y & FFFFFFFF0xffffffffUL; |
2657 | #else |
2658 | # ifdef Pack_32 |
2659 | si = *sx++; |
2660 | ys = (si & 0xffff) + carry; |
2661 | zs = (si >> 16) + (ys >> 16); |
2662 | carry = zs >> 16; |
2663 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
2664 | borrow = (y & 0x10000) >> 16; |
2665 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
2666 | borrow = (z & 0x10000) >> 16; |
2667 | Storeinc(bx, z, y)(((unsigned short*)bx)[1] = (unsigned short)z, ((unsigned short *)bx)[0] = (unsigned short)y, bx++); |
2668 | # else |
2669 | ys = *sx++ + carry; |
2670 | carry = ys >> 16; |
2671 | y = *bx - (ys & 0xffff) - borrow; |
2672 | borrow = (y & 0x10000) >> 16; |
2673 | *bx++ = y & 0xffff; |
2674 | # endif |
2675 | #endif |
2676 | } while (sx <= sxe); |
2677 | bx = b->x; |
2678 | bxe = bx + n; |
2679 | if (!*bxe) { |
2680 | while (--bxe > bx && !*bxe) { |
2681 | --n; |
2682 | } |
2683 | b->wds = n; |
2684 | } |
2685 | } |
2686 | return q; |
2687 | } |
2688 | |
2689 | #ifndef MULTIPLE_THREADS |
2690 | static char* dtoa_result; |
2691 | #endif |
2692 | |
2693 | static char* |
2694 | #ifdef KR_headers |
2695 | rv_alloc(i) |
2696 | int i; |
2697 | #else |
2698 | rv_alloc(int i) |
2699 | #endif |
2700 | { |
2701 | int j, k, *r; |
2702 | |
2703 | j = sizeof(ULongPRUint32); |
2704 | for (k = 0; sizeof(Bigint) - sizeof(ULongPRUint32) - sizeof(int) + j <= i; j <<= 1) { |
2705 | k++; |
2706 | } |
2707 | r = (int*)Balloc(k); |
2708 | *r = k; |
2709 | return |
2710 | #ifndef MULTIPLE_THREADS |
2711 | dtoa_result = |
2712 | #endif |
2713 | (char*)(r + 1); |
2714 | } |
2715 | |
2716 | static char* |
2717 | #ifdef KR_headers |
2718 | nrv_alloc(s, rve, n) |
2719 | char *s, **rve; |
2720 | int n; |
2721 | #else |
2722 | nrv_alloc(char* s, char** rve, int n) |
2723 | #endif |
2724 | { |
2725 | char *rv, *t; |
2726 | |
2727 | t = rv = rv_alloc(n); |
2728 | while (*t = *s++) { |
2729 | t++; |
2730 | } |
2731 | if (rve) { |
2732 | *rve = t; |
2733 | } |
2734 | return rv; |
2735 | } |
2736 | |
2737 | /* freedtoa(s) must be used to free values s returned by dtoa |
2738 | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
2739 | * but for consistency with earlier versions of dtoa, it is optional |
2740 | * when MULTIPLE_THREADS is not defined. |
2741 | */ |
2742 | |
2743 | static void |
2744 | #ifdef KR_headers |
2745 | freedtoa(s) char* s; |
2746 | #else |
2747 | freedtoa(char* s) |
2748 | #endif |
2749 | { |
2750 | Bigint* b = (Bigint*)((int*)s - 1); |
2751 | b->maxwds = 1 << (b->k = *(int*)b); |
2752 | Bfree(b); |
2753 | #ifndef MULTIPLE_THREADS |
2754 | if (s == dtoa_result) { |
2755 | dtoa_result = 0; |
2756 | } |
2757 | #endif |
2758 | } |
2759 | |
2760 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
2761 | * |
2762 | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
2763 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
2764 | * |
2765 | * Modifications: |
2766 | * 1. Rather than iterating, we use a simple numeric overestimate |
2767 | * to determine k = floor(log10(d)). We scale relevant |
2768 | * quantities using O(log2(k)) rather than O(k) multiplications. |
2769 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
2770 | * try to generate digits strictly left to right. Instead, we |
2771 | * compute with fewer bits and propagate the carry if necessary |
2772 | * when rounding the final digit up. This is often faster. |
2773 | * 3. Under the assumption that input will be rounded nearest, |
2774 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
2775 | * That is, we allow equality in stopping tests when the |
2776 | * round-nearest rule will give the same floating-point value |
2777 | * as would satisfaction of the stopping test with strict |
2778 | * inequality. |
2779 | * 4. We remove common factors of powers of 2 from relevant |
2780 | * quantities. |
2781 | * 5. When converting floating-point integers less than 1e16, |
2782 | * we use floating-point arithmetic rather than resorting |
2783 | * to multiple-precision integers. |
2784 | * 6. When asked to produce fewer than 15 digits, we first try |
2785 | * to get by with floating-point arithmetic; we resort to |
2786 | * multiple-precision integer arithmetic only if we cannot |
2787 | * guarantee that the floating-point calculation has given |
2788 | * the correctly rounded result. For k requested digits and |
2789 | * "uniformly" distributed input, the probability is |
2790 | * something like 10^(k-15) that we must resort to the Long |
2791 | * calculation. |
2792 | */ |
2793 | |
2794 | static char* dtoa |
2795 | #ifdef KR_headers |
2796 | (dd, mode, ndigits, decpt, sign, rve) |
2797 | double dd; |
2798 | int mode, ndigits, *decpt, *sign; |
2799 | char** rve; |
2800 | #else |
2801 | (double dd, int mode, int ndigits, int* decpt, int* sign, char** rve) |
2802 | #endif |
2803 | { |
2804 | /* Arguments ndigits, decpt, sign are similar to those |
2805 | of ecvt and fcvt; trailing zeros are suppressed from |
2806 | the returned string. If not null, *rve is set to point |
2807 | to the end of the return value. If d is +-Infinity or NaN, |
2808 | then *decpt is set to 9999. |
2809 | |
2810 | mode: |
2811 | 0 ==> shortest string that yields d when read in |
2812 | and rounded to nearest. |
2813 | 1 ==> like 0, but with Steele & White stopping rule; |
2814 | e.g. with IEEE P754 arithmetic , mode 0 gives |
2815 | 1e23 whereas mode 1 gives 9.999999999999999e22. |
2816 | 2 ==> max(1,ndigits) significant digits. This gives a |
2817 | return value similar to that of ecvt, except |
2818 | that trailing zeros are suppressed. |
2819 | 3 ==> through ndigits past the decimal point. This |
2820 | gives a return value similar to that from fcvt, |
2821 | except that trailing zeros are suppressed, and |
2822 | ndigits can be negative. |
2823 | 4,5 ==> similar to 2 and 3, respectively, but (in |
2824 | round-nearest mode) with the tests of mode 0 to |
2825 | possibly return a shorter string that rounds to d. |
2826 | With IEEE arithmetic and compilation with |
2827 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
2828 | as modes 2 and 3 when FLT_ROUNDS != 1. |
2829 | 6-9 ==> Debugging modes similar to mode - 4: don't try |
2830 | fast floating-point estimate (if applicable). |
2831 | |
2832 | Values of mode other than 0-9 are treated as mode 0. |
2833 | |
2834 | Sufficient space is allocated to the return value |
2835 | to hold the suppressed trailing zeros. |
2836 | */ |
2837 | |
2838 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, |
2839 | k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; |
2840 | LongPRInt32 L; |
2841 | #ifndef Sudden_Underflow |
2842 | int denorm; |
2843 | ULongPRUint32 x; |
2844 | #endif |
2845 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
2846 | U d, d2, eps; |
2847 | double ds; |
2848 | char *s, *s0; |
2849 | #ifdef Honor_FLT_ROUNDS |
2850 | int rounding; |
2851 | #endif |
2852 | #ifdef SET_INEXACT |
2853 | int inexact, oldinexact; |
2854 | #endif |
2855 | |
2856 | #ifndef MULTIPLE_THREADS |
2857 | if (dtoa_result) { |
2858 | freedtoa(dtoa_result); |
2859 | dtoa_result = 0; |
2860 | } |
2861 | #endif |
2862 | |
2863 | dval(d)(d).d = dd; |
2864 | if (word0(d)(d).L[1] & Sign_bit0x80000000) { |
2865 | /* set sign for everything, including 0's and NaNs */ |
2866 | *sign = 1; |
2867 | word0(d)(d).L[1] &= ~Sign_bit0x80000000; /* clear sign bit */ |
2868 | } else { |
2869 | *sign = 0; |
2870 | } |
2871 | |
2872 | #if defined(IEEE_Arith) + defined(VAX) |
2873 | # ifdef IEEE_Arith |
2874 | if ((word0(d)(d).L[1] & Exp_mask0x7ff00000) == Exp_mask0x7ff00000) |
2875 | # else |
2876 | if (word0(d)(d).L[1] == 0x8000) |
2877 | # endif |
2878 | { |
2879 | /* Infinity or NaN */ |
2880 | *decpt = 9999; |
2881 | # ifdef IEEE_Arith |
2882 | if (!word1(d)(d).L[0] && !(word0(d)(d).L[1] & 0xfffff)) { |
2883 | return nrv_alloc("Infinity", rve, 8); |
2884 | } |
2885 | # endif |
2886 | return nrv_alloc("NaN", rve, 3); |
2887 | } |
2888 | #endif |
2889 | #ifdef IBM |
2890 | dval(d)(d).d += 0; /* normalize */ |
2891 | #endif |
2892 | if (!dval(d)(d).d) { |
2893 | *decpt = 1; |
2894 | return nrv_alloc("0", rve, 1); |
2895 | } |
2896 | |
2897 | #ifdef SET_INEXACT |
2898 | try_quick = oldinexact = get_inexact(); |
2899 | inexact = 1; |
2900 | #endif |
2901 | #ifdef Honor_FLT_ROUNDS |
2902 | if ((rounding = Flt_Rounds(__builtin_flt_rounds())) >= 2) { |
2903 | if (*sign) { |
2904 | rounding = rounding == 2 ? 0 : 2; |
2905 | } else if (rounding != 2) { |
2906 | rounding = 0; |
2907 | } |
2908 | } |
2909 | #endif |
2910 | |
2911 | b = d2b(dval(d)(d).d, &be, &bbits); |
2912 | #ifdef Sudden_Underflow |
2913 | i = (int)(word0(d)(d).L[1] >> Exp_shift120 & (Exp_mask0x7ff00000 >> Exp_shift120)); |
2914 | #else |
2915 | if (i = (int)(word0(d)(d).L[1] >> Exp_shift120 & (Exp_mask0x7ff00000 >> Exp_shift120))) { |
2916 | #endif |
2917 | dval(d2)(d2).d = dval(d)(d).d; |
2918 | word0(d2)(d2).L[1] &= Frac_mask10xfffff; |
2919 | word0(d2)(d2).L[1] |= Exp_110x3ff00000; |
2920 | #ifdef IBM |
2921 | if (j = 11 - hi0bits(word0(d2)(d2).L[1] & Frac_mask0xfffff)) { |
2922 | dval(d2)(d2).d /= 1 << j; |
2923 | } |
2924 | #endif |
2925 | |
2926 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
2927 | * log10(x) = log(x) / log(10) |
2928 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
2929 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
2930 | * |
2931 | * This suggests computing an approximation k to log10(d) by |
2932 | * |
2933 | * k = (i - Bias)*0.301029995663981 |
2934 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
2935 | * |
2936 | * We want k to be too large rather than too small. |
2937 | * The error in the first-order Taylor series approximation |
2938 | * is in our favor, so we just round up the constant enough |
2939 | * to compensate for any error in the multiplication of |
2940 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
2941 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
2942 | * adding 1e-13 to the constant term more than suffices. |
2943 | * Hence we adjust the constant term to 0.1760912590558. |
2944 | * (We could get a more accurate k by invoking log10, |
2945 | * but this is probably not worthwhile.) |
2946 | */ |
2947 | |
2948 | i -= Bias1023; |
2949 | #ifdef IBM |
2950 | i <<= 2; |
2951 | i += j; |
2952 | #endif |
2953 | #ifndef Sudden_Underflow |
2954 | denorm = 0; |
2955 | } |
2956 | else { |
2957 | /* d is denormalized */ |
2958 | |
2959 | i = bbits + be + (Bias1023 + (P53 - 1) - 1); |
2960 | x = i > 32 ? word0(d)(d).L[1] << 64 - i | word1(d)(d).L[0] >> i - 32 : word1(d)(d).L[0] << 32 - i; |
2961 | dval(d2)(d2).d = x; |
2962 | word0(d2)(d2).L[1] -= 31 * Exp_msk10x100000; /* adjust exponent */ |
2963 | i -= (Bias1023 + (P53 - 1) - 1) + 1; |
2964 | denorm = 1; |
2965 | } |
2966 | #endif |
2967 | ds = (dval(d2)(d2).d - 1.5) * 0.289529654602168 + 0.1760912590558 + |
2968 | i * 0.301029995663981; |
2969 | k = (int)ds; |
2970 | if (ds < 0. && ds != k) { |
2971 | k--; /* want k = floor(ds) */ |
2972 | } |
2973 | k_check = 1; |
2974 | if (k >= 0 && k <= Ten_pmax22) { |
2975 | if (dval(d)(d).d < tens[k]) { |
2976 | k--; |
2977 | } |
2978 | k_check = 0; |
2979 | } |
2980 | j = bbits - i - 1; |
2981 | if (j >= 0) { |
2982 | b2 = 0; |
2983 | s2 = j; |
2984 | } else { |
2985 | b2 = -j; |
2986 | s2 = 0; |
2987 | } |
2988 | if (k >= 0) { |
2989 | b5 = 0; |
2990 | s5 = k; |
2991 | s2 += k; |
2992 | } else { |
2993 | b2 -= k; |
2994 | b5 = -k; |
2995 | s5 = 0; |
2996 | } |
2997 | if (mode < 0 || mode > 9) { |
2998 | mode = 0; |
2999 | } |
3000 | |
3001 | #ifndef SET_INEXACT |
3002 | # ifdef Check_FLT_ROUNDS |
3003 | try_quick = Rounding(__builtin_flt_rounds()) == 1; |
3004 | # else |
3005 | try_quick = 1; |
3006 | # endif |
3007 | #endif /*SET_INEXACT*/ |
3008 | |
3009 | if (mode > 5) { |
3010 | mode -= 4; |
3011 | try_quick = 0; |
3012 | } |
3013 | leftright = 1; |
3014 | switch (mode) { |
3015 | case 0: |
3016 | case 1: |
3017 | ilim = ilim1 = -1; |
3018 | i = 18; |
3019 | ndigits = 0; |
3020 | break; |
3021 | case 2: |
3022 | leftright = 0; |
3023 | /* no break */ |
3024 | case 4: |
3025 | if (ndigits <= 0) { |
3026 | ndigits = 1; |
3027 | } |
3028 | ilim = ilim1 = i = ndigits; |
3029 | break; |
3030 | case 3: |
3031 | leftright = 0; |
3032 | /* no break */ |
3033 | case 5: |
3034 | i = ndigits + k + 1; |
3035 | ilim = i; |
3036 | ilim1 = i - 1; |
3037 | if (i <= 0) { |
3038 | i = 1; |
3039 | } |
3040 | } |
3041 | s = s0 = rv_alloc(i); |
3042 | |
3043 | #ifdef Honor_FLT_ROUNDS |
3044 | if (mode > 1 && rounding != 1) { |
3045 | leftright = 0; |
3046 | } |
3047 | #endif |
3048 | |
3049 | if (ilim >= 0 && ilim <= Quick_max14 && try_quick) { |
3050 | /* Try to get by with floating-point arithmetic. */ |
3051 | |
3052 | i = 0; |
3053 | dval(d2)(d2).d = dval(d)(d).d; |
3054 | k0 = k; |
3055 | ilim0 = ilim; |
3056 | ieps = 2; /* conservative */ |
3057 | if (k > 0) { |
3058 | ds = tens[k & 0xf]; |
3059 | j = k >> 4; |
3060 | if (j & Bletch0x10) { |
3061 | /* prevent overflows */ |
3062 | j &= Bletch0x10 - 1; |
3063 | dval(d)(d).d /= bigtens[n_bigtens5 - 1]; |
3064 | ieps++; |
3065 | } |
3066 | for (; j; j >>= 1, i++) |
3067 | if (j & 1) { |
3068 | ieps++; |
3069 | ds *= bigtens[i]; |
3070 | } |
3071 | dval(d)(d).d /= ds; |
3072 | } else if (j1 = -k) { |
3073 | dval(d)(d).d *= tens[j1 & 0xf]; |
3074 | for (j = j1 >> 4; j; j >>= 1, i++) |
3075 | if (j & 1) { |
3076 | ieps++; |
3077 | dval(d)(d).d *= bigtens[i]; |
3078 | } |
3079 | } |
3080 | if (k_check && dval(d)(d).d < 1. && ilim > 0) { |
3081 | if (ilim1 <= 0) { |
3082 | goto fast_failed; |
3083 | } |
3084 | ilim = ilim1; |
3085 | k--; |
3086 | dval(d)(d).d *= 10.; |
3087 | ieps++; |
3088 | } |
3089 | dval(eps)(eps).d = ieps * dval(d)(d).d + 7.; |
3090 | word0(eps)(eps).L[1] -= (P53 - 1) * Exp_msk10x100000; |
3091 | if (ilim == 0) { |
3092 | S = mhi = 0; |
3093 | dval(d)(d).d -= 5.; |
3094 | if (dval(d)(d).d > dval(eps)(eps).d) { |
3095 | goto one_digit; |
3096 | } |
3097 | if (dval(d)(d).d < -dval(eps)(eps).d) { |
3098 | goto no_digits; |
3099 | } |
3100 | goto fast_failed; |
3101 | } |
3102 | #ifndef No_leftright |
3103 | if (leftright) { |
3104 | /* Use Steele & White method of only |
3105 | * generating digits needed. |
3106 | */ |
3107 | dval(eps)(eps).d = 0.5 / tens[ilim - 1] - dval(eps)(eps).d; |
3108 | for (i = 0;;) { |
3109 | L = dval(d)(d).d; |
3110 | dval(d)(d).d -= L; |
3111 | *s++ = '0' + (int)L; |
3112 | if (dval(d)(d).d < dval(eps)(eps).d) { |
3113 | goto ret1; |
3114 | } |
3115 | if (1. - dval(d)(d).d < dval(eps)(eps).d) { |
3116 | goto bump_up; |
3117 | } |
3118 | if (++i >= ilim) { |
3119 | break; |
3120 | } |
3121 | dval(eps)(eps).d *= 10.; |
3122 | dval(d)(d).d *= 10.; |
3123 | } |
3124 | } else { |
3125 | #endif |
3126 | /* Generate ilim digits, then fix them up. */ |
3127 | dval(eps)(eps).d *= tens[ilim - 1]; |
3128 | for (i = 1;; i++, dval(d)(d).d *= 10.) { |
3129 | L = (LongPRInt32)(dval(d)(d).d); |
3130 | if (!(dval(d)(d).d -= L)) { |
3131 | ilim = i; |
3132 | } |
3133 | *s++ = '0' + (int)L; |
3134 | if (i == ilim) { |
3135 | if (dval(d)(d).d > 0.5 + dval(eps)(eps).d) { |
3136 | goto bump_up; |
3137 | } else if (dval(d)(d).d < 0.5 - dval(eps)(eps).d) { |
3138 | while (*--s == '0'); |
3139 | s++; |
3140 | goto ret1; |
3141 | } |
3142 | break; |
3143 | } |
3144 | } |
3145 | #ifndef No_leftright |
3146 | } |
3147 | #endif |
3148 | fast_failed: |
3149 | s = s0; |
3150 | dval(d)(d).d = dval(d2)(d2).d; |
3151 | k = k0; |
3152 | ilim = ilim0; |
3153 | } |
3154 | |
3155 | /* Do we have a "small" integer? */ |
3156 | |
3157 | if (be >= 0 && k <= Int_max14) { |
3158 | /* Yes. */ |
3159 | ds = tens[k]; |
3160 | if (ndigits < 0 && ilim <= 0) { |
3161 | S = mhi = 0; |
3162 | if (ilim < 0 || dval(d)(d).d <= 5 * ds) { |
3163 | goto no_digits; |
3164 | } |
3165 | goto one_digit; |
3166 | } |
3167 | for (i = 1; i <= k + 1; i++, dval(d)(d).d *= 10.) { |
3168 | L = (LongPRInt32)(dval(d)(d).d / ds); |
3169 | dval(d)(d).d -= L * ds; |
3170 | #ifdef Check_FLT_ROUNDS |
3171 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
3172 | if (dval(d)(d).d < 0) { |
3173 | L--; |
3174 | dval(d)(d).d += ds; |
3175 | } |
3176 | #endif |
3177 | *s++ = '0' + (int)L; |
3178 | if (!dval(d)(d).d) { |
3179 | #ifdef SET_INEXACT |
3180 | inexact = 0; |
3181 | #endif |
3182 | break; |
3183 | } |
3184 | if (i == ilim) { |
3185 | #ifdef Honor_FLT_ROUNDS |
3186 | if (mode > 1) switch (rounding) { |
3187 | case 0: |
3188 | goto ret1; |
3189 | case 2: |
3190 | goto bump_up; |
3191 | } |
3192 | #endif |
3193 | dval(d)(d).d += dval(d)(d).d; |
3194 | if (dval(d)(d).d > ds || dval(d)(d).d == ds && L & 1) { |
3195 | bump_up: |
3196 | while (*--s == '9') |
3197 | if (s == s0) { |
3198 | k++; |
3199 | *s = '0'; |
3200 | break; |
3201 | } |
3202 | ++*s++; |
3203 | } |
3204 | break; |
3205 | } |
3206 | } |
3207 | goto ret1; |
3208 | } |
3209 | |
3210 | m2 = b2; |
3211 | m5 = b5; |
3212 | mhi = mlo = 0; |
3213 | if (leftright) { |
3214 | i = |
3215 | #ifndef Sudden_Underflow |
3216 | denorm ? be + (Bias1023 + (P53 - 1) - 1 + 1) : |
3217 | #endif |
3218 | #ifdef IBM |
3219 | 1 + 4 * P53 - 3 - bbits + ((bbits + be - 1) & 3); |
3220 | #else |
3221 | 1 + P53 - bbits; |
3222 | #endif |
3223 | b2 += i; |
3224 | s2 += i; |
3225 | mhi = i2b(1); |
3226 | } |
3227 | if (m2 > 0 && s2 > 0) { |
3228 | i = m2 < s2 ? m2 : s2; |
3229 | b2 -= i; |
3230 | m2 -= i; |
3231 | s2 -= i; |
3232 | } |
3233 | if (b5 > 0) { |
3234 | if (leftright) { |
3235 | if (m5 > 0) { |
3236 | mhi = pow5mult(mhi, m5); |
3237 | b1 = mult(mhi, b); |
3238 | Bfree(b); |
3239 | b = b1; |
3240 | } |
3241 | if (j = b5 - m5) { |
3242 | b = pow5mult(b, j); |
3243 | } |
3244 | } else { |
3245 | b = pow5mult(b, b5); |
3246 | } |
3247 | } |
3248 | S = i2b(1); |
3249 | if (s5 > 0) { |
3250 | S = pow5mult(S, s5); |
3251 | } |
3252 | |
3253 | /* Check for special case that d is a normalized power of 2. */ |
3254 | |
3255 | spec_case = 0; |
3256 | if ((mode < 2 || leftright) |
3257 | #ifdef Honor_FLT_ROUNDS |
3258 | && rounding == 1 |
3259 | #endif |
3260 | ) { |
3261 | if (!word1(d)(d).L[0] && !(word0(d)(d).L[1] & Bndry_mask0xfffff) |
3262 | #ifndef Sudden_Underflow |
3263 | && word0(d)(d).L[1] & (Exp_mask0x7ff00000 & ~Exp_msk10x100000) |
3264 | #endif |
3265 | ) { |
3266 | /* The special case */ |
3267 | b2 += Log2P1; |
3268 | s2 += Log2P1; |
3269 | spec_case = 1; |
3270 | } |
3271 | } |
3272 | |
3273 | /* Arrange for convenient computation of quotients: |
3274 | * shift left if necessary so divisor has 4 leading 0 bits. |
3275 | * |
3276 | * Perhaps we should just compute leading 28 bits of S once |
3277 | * and for all and pass them and a shift to quorem, so it |
3278 | * can do shifts and ors to compute the numerator for q. |
3279 | */ |
3280 | #ifdef Pack_32 |
3281 | if (i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0x1f) { |
3282 | i = 32 - i; |
3283 | } |
3284 | #else |
3285 | if (i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0xf) { |
3286 | i = 16 - i; |
3287 | } |
3288 | #endif |
3289 | if (i > 4) { |
3290 | i -= 4; |
3291 | b2 += i; |
3292 | m2 += i; |
3293 | s2 += i; |
3294 | } else if (i < 4) { |
3295 | i += 28; |
3296 | b2 += i; |
3297 | m2 += i; |
3298 | s2 += i; |
3299 | } |
3300 | if (b2 > 0) { |
3301 | b = lshift(b, b2); |
3302 | } |
3303 | if (s2 > 0) { |
3304 | S = lshift(S, s2); |
3305 | } |
3306 | if (k_check) { |
3307 | if (cmp(b, S) < 0) { |
3308 | k--; |
3309 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
3310 | if (leftright) { |
3311 | mhi = multadd(mhi, 10, 0); |
3312 | } |
3313 | ilim = ilim1; |
3314 | } |
3315 | } |
3316 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
3317 | if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) { |
3318 | /* no digits, fcvt style */ |
3319 | no_digits: |
3320 | k = -1 - ndigits; |
3321 | goto ret; |
3322 | } |
3323 | one_digit: |
3324 | *s++ = '1'; |
3325 | k++; |
3326 | goto ret; |
3327 | } |
3328 | if (leftright) { |
3329 | if (m2 > 0) { |
3330 | mhi = lshift(mhi, m2); |
3331 | } |
3332 | |
3333 | /* Compute mlo -- check for special case |
3334 | * that d is a normalized power of 2. |
3335 | */ |
3336 | |
3337 | mlo = mhi; |
3338 | if (spec_case) { |
3339 | mhi = Balloc(mhi->k); |
3340 | Bcopy(mhi, mlo)memcpy((char*)&mhi->sign, (char*)&mlo->sign, mlo ->wds * sizeof(PRInt32) + 2 * sizeof(int)); |
3341 | mhi = lshift(mhi, Log2P1); |
3342 | } |
3343 | |
3344 | for (i = 1;; i++) { |
3345 | dig = quorem(b, S) + '0'; |
3346 | /* Do we yet have the shortest decimal string |
3347 | * that will round to d? |
3348 | */ |
3349 | j = cmp(b, mlo); |
3350 | delta = diff(S, mhi); |
3351 | j1 = delta->sign ? 1 : cmp(b, delta); |
3352 | Bfree(delta); |
3353 | #ifndef ROUND_BIASED |
3354 | if (j1 == 0 && mode != 1 && !(word1(d)(d).L[0] & 1) |
3355 | # ifdef Honor_FLT_ROUNDS |
3356 | && rounding >= 1 |
3357 | # endif |
3358 | ) { |
3359 | if (dig == '9') { |
3360 | goto round_9_up; |
3361 | } |
3362 | if (j > 0) { |
3363 | dig++; |
3364 | } |
3365 | # ifdef SET_INEXACT |
3366 | else if (!b->x[0] && b->wds <= 1) { |
3367 | inexact = 0; |
3368 | } |
3369 | # endif |
3370 | *s++ = dig; |
3371 | goto ret; |
3372 | } |
3373 | #endif |
3374 | if (j < 0 || j == 0 && mode != 1 |
3375 | #ifndef ROUND_BIASED |
3376 | && !(word1(d)(d).L[0] & 1) |
3377 | #endif |
3378 | ) { |
3379 | if (!b->x[0] && b->wds <= 1) { |
3380 | #ifdef SET_INEXACT |
3381 | inexact = 0; |
3382 | #endif |
3383 | goto accept_dig; |
3384 | } |
3385 | #ifdef Honor_FLT_ROUNDS |
3386 | if (mode > 1) switch (rounding) { |
3387 | case 0: |
3388 | goto accept_dig; |
3389 | case 2: |
3390 | goto keep_dig; |
3391 | } |
3392 | #endif /*Honor_FLT_ROUNDS*/ |
3393 | if (j1 > 0) { |
3394 | b = lshift(b, 1); |
3395 | j1 = cmp(b, S); |
3396 | if ((j1 > 0 || j1 == 0 && dig & 1) && dig++ == '9') { |
3397 | goto round_9_up; |
3398 | } |
3399 | } |
3400 | accept_dig: |
3401 | *s++ = dig; |
3402 | goto ret; |
3403 | } |
3404 | if (j1 > 0) { |
3405 | #ifdef Honor_FLT_ROUNDS |
3406 | if (!rounding) { |
3407 | goto accept_dig; |
3408 | } |
3409 | #endif |
3410 | if (dig == '9') { /* possible if i == 1 */ |
3411 | round_9_up: |
3412 | *s++ = '9'; |
3413 | goto roundoff; |
3414 | } |
3415 | *s++ = dig + 1; |
3416 | goto ret; |
3417 | } |
3418 | #ifdef Honor_FLT_ROUNDS |
3419 | keep_dig: |
3420 | #endif |
3421 | *s++ = dig; |
3422 | if (i == ilim) { |
3423 | break; |
3424 | } |
3425 | b = multadd(b, 10, 0); |
3426 | if (mlo == mhi) { |
3427 | mlo = mhi = multadd(mhi, 10, 0); |
3428 | } else { |
3429 | mlo = multadd(mlo, 10, 0); |
3430 | mhi = multadd(mhi, 10, 0); |
3431 | } |
3432 | } |
3433 | } else |
3434 | for (i = 1;; i++) { |
3435 | *s++ = dig = quorem(b, S) + '0'; |
3436 | if (!b->x[0] && b->wds <= 1) { |
3437 | #ifdef SET_INEXACT |
3438 | inexact = 0; |
3439 | #endif |
3440 | goto ret; |
3441 | } |
3442 | if (i >= ilim) { |
3443 | break; |
3444 | } |
3445 | b = multadd(b, 10, 0); |
3446 | } |
3447 | |
3448 | /* Round off last digit */ |
3449 | |
3450 | #ifdef Honor_FLT_ROUNDS |
3451 | switch (rounding) { |
3452 | case 0: |
3453 | goto trimzeros; |
3454 | case 2: |
3455 | goto roundoff; |
3456 | } |
3457 | #endif |
3458 | b = lshift(b, 1); |
3459 | j = cmp(b, S); |
3460 | if (j > 0 || j == 0 && dig & 1) { |
3461 | roundoff: |
3462 | while (*--s == '9') |
3463 | if (s == s0) { |
3464 | k++; |
3465 | *s++ = '1'; |
3466 | goto ret; |
3467 | } |
3468 | ++*s++; |
3469 | } else { |
3470 | #ifdef Honor_FLT_ROUNDS |
3471 | trimzeros: |
3472 | #endif |
3473 | while (*--s == '0'); |
3474 | s++; |
3475 | } |
3476 | ret: Bfree(S); |
3477 | if (mhi) { |
3478 | if (mlo && mlo != mhi) { |
3479 | Bfree(mlo); |
3480 | } |
3481 | Bfree(mhi); |
3482 | } |
3483 | ret1: |
3484 | #ifdef SET_INEXACT |
3485 | if (inexact) { |
3486 | if (!oldinexact) { |
3487 | word0(d)(d).L[1] = Exp_10x3ff00000 + (70 << Exp_shift20); |
3488 | word1(d)(d).L[0] = 0; |
3489 | dval(d)(d).d += 1.; |
3490 | } |
3491 | } |
3492 | else if (!oldinexact) { |
3493 | clear_inexact(); |
3494 | } |
3495 | #endif |
3496 | Bfree(b); |
3497 | *s = 0; |
3498 | *decpt = k + 1; |
3499 | if (rve) { |
3500 | *rve = s; |
3501 | } |
3502 | return s0; |
3503 | } |
3504 | #ifdef __cplusplus |
3505 | } |
3506 | #endif |
3507 | |
3508 | PR_IMPLEMENT(PRStatus)__attribute__((visibility("default"))) PRStatus |
3509 | PR_dtoa(PRFloat64 d, PRIntn mode, PRIntn ndigits, PRIntn* decpt, PRIntn* sign, |
3510 | char** rve, char* buf, PRSize bufsize) { |
3511 | char* result; |
3512 | PRSize resultlen; |
3513 | PRStatus rv = PR_FAILURE; |
3514 | |
3515 | if (!_pr_initialized) { |
3516 | _PR_ImplicitInitialization(); |
3517 | } |
3518 | |
3519 | if (mode < 0 || mode > 3) { |
3520 | PR_SetError(PR_INVALID_ARGUMENT_ERROR(-5987L), 0); |
3521 | return rv; |
3522 | } |
3523 | result = dtoa(d, mode, ndigits, decpt, sign, rve); |
3524 | if (!result) { |
3525 | PR_SetError(PR_OUT_OF_MEMORY_ERROR(-6000L), 0); |
3526 | return rv; |
3527 | } |
3528 | resultlen = strlen(result) + 1; |
3529 | if (bufsize < resultlen) { |
3530 | PR_SetError(PR_BUFFER_OVERFLOW_ERROR(-5962L), 0); |
3531 | } else { |
3532 | memcpy(buf, result, resultlen); |
3533 | if (rve) { |
3534 | *rve = buf + (*rve - result); |
3535 | } |
3536 | rv = PR_SUCCESS; |
3537 | } |
3538 | freedtoa(result); |
3539 | return rv; |
3540 | } |
3541 | |
3542 | /* |
3543 | ** conversion routines for floating point |
3544 | ** prcsn - number of digits of precision to generate floating |
3545 | ** point value. |
3546 | ** This should be reparameterized so that you can send in a |
3547 | ** prcn for the positive and negative ranges. For now, |
3548 | ** conform to the ECMA JavaScript spec which says numbers |
3549 | ** less than 1e-6 are in scientific notation. |
3550 | ** Also, the ECMA spec says that there should always be a |
3551 | ** '+' or '-' after the 'e' in scientific notation |
3552 | */ |
3553 | PR_IMPLEMENT(void)__attribute__((visibility("default"))) void |
3554 | PR_cnvtf(char* buf, int bufsz, int prcsn, double dfval) { |
3555 | PRIntn decpt, sign, numdigits; |
3556 | char *num, *nump; |
3557 | char* bufp = buf; |
3558 | char* endnum; |
3559 | U fval; |
3560 | |
3561 | dval(fval)(fval).d = dfval; |
3562 | /* If anything fails, we store an empty string in 'buf' */ |
3563 | num = (char*)PR_MALLOC(bufsz)(PR_Malloc((bufsz))); |
3564 | if (num == NULL((void*)0)) { |
3565 | buf[0] = '\0'; |
3566 | return; |
3567 | } |
3568 | /* XXX Why use mode 1? */ |
3569 | if (PR_dtoa(dval(fval)(fval).d, 1, prcsn, &decpt, &sign, &endnum, num, bufsz) == |
3570 | PR_FAILURE) { |
3571 | buf[0] = '\0'; |
3572 | goto done; |
3573 | } |
3574 | numdigits = endnum - num; |
3575 | nump = num; |
3576 | |
3577 | if (sign && !(word0(fval)(fval).L[1] == Sign_bit0x80000000 && word1(fval)(fval).L[0] == 0) && |
3578 | !((word0(fval)(fval).L[1] & Exp_mask0x7ff00000) == Exp_mask0x7ff00000 && |
3579 | (word1(fval)(fval).L[0] || (word0(fval)(fval).L[1] & 0xfffff)))) { |
3580 | *bufp++ = '-'; |
3581 | } |
3582 | |
3583 | if (decpt == 9999) { |
3584 | while ((*bufp++ = *nump++) != 0) { |
3585 | } /* nothing to execute */ |
3586 | goto done; |
3587 | } |
3588 | |
3589 | if (decpt > (prcsn + 1) || decpt < -(prcsn - 1) || decpt < -5) { |
3590 | *bufp++ = *nump++; |
3591 | if (numdigits != 1) { |
3592 | *bufp++ = '.'; |
3593 | } |
3594 | |
3595 | while (*nump != '\0') { |
3596 | *bufp++ = *nump++; |
3597 | } |
3598 | *bufp++ = 'e'; |
3599 | PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt - 1); |
3600 | } else if (decpt >= 0) { |
3601 | if (decpt == 0) { |
3602 | *bufp++ = '0'; |
3603 | } else { |
3604 | while (decpt--) { |
3605 | if (*nump != '\0') { |
3606 | *bufp++ = *nump++; |
3607 | } else { |
3608 | *bufp++ = '0'; |
3609 | } |
3610 | } |
3611 | } |
3612 | if (*nump != '\0') { |
3613 | *bufp++ = '.'; |
3614 | while (*nump != '\0') { |
3615 | *bufp++ = *nump++; |
3616 | } |
3617 | } |
3618 | *bufp++ = '\0'; |
3619 | } else if (decpt < 0) { |
3620 | *bufp++ = '0'; |
3621 | *bufp++ = '.'; |
3622 | while (decpt++) { |
3623 | *bufp++ = '0'; |
3624 | } |
3625 | |
3626 | while (*nump != '\0') { |
3627 | *bufp++ = *nump++; |
3628 | } |
3629 | *bufp++ = '\0'; |
3630 | } |
3631 | done: |
3632 | PR_DELETE(num){ PR_Free(num); (num) = ((void*)0); }; |
3633 | } |