Bug Summary

File:root/firefox-clang/intl/icu/source/common/normalizer2impl.cpp
Warning:line 538, column 14
Dereference of null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name normalizer2impl.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -ffp-contract=off -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/root/firefox-clang/obj-x86_64-pc-linux-gnu/config/external/icu/common -fcoverage-compilation-dir=/root/firefox-clang/obj-x86_64-pc-linux-gnu/config/external/icu/common -resource-dir /usr/lib/llvm-21/lib/clang/21 -include /root/firefox-clang/config/gcc_hidden.h -include /root/firefox-clang/obj-x86_64-pc-linux-gnu/mozilla-config.h -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/system_wrappers -U _FORTIFY_SOURCE -D _FORTIFY_SOURCE=2 -D _GLIBCXX_ASSERTIONS -D DEBUG=1 -D U_COMMON_IMPLEMENTATION -D _LIBCPP_DISABLE_DEPRECATION_WARNINGS -D U_USING_ICU_NAMESPACE=0 -D U_NO_DEFAULT_INCLUDE_UTF_HEADERS=1 -D U_HIDE_OBSOLETE_UTF_OLD_H=1 -D UCONFIG_NO_LEGACY_CONVERSION -D UCONFIG_NO_TRANSLITERATION -D UCONFIG_NO_REGULAR_EXPRESSIONS -D UCONFIG_NO_BREAK_ITERATION -D UCONFIG_NO_IDNA -D UCONFIG_NO_MF2 -D U_CHARSET_IS_UTF8 -D UNISTR_FROM_CHAR_EXPLICIT=explicit -D UNISTR_FROM_STRING_EXPLICIT=explicit -D U_ENABLE_DYLOAD=0 -D U_DEBUG=1 -I /root/firefox-clang/config/external/icu/common -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/config/external/icu/common -I /root/firefox-clang/intl/icu/source/i18n -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/include -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/include/nspr -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/include/nss -D MOZILLA_CLIENT -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/14/../../../../include/c++/14 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/14/../../../../include/x86_64-linux-gnu/c++/14 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/14/../../../../include/c++/14/backward -internal-isystem /usr/lib/llvm-21/lib/clang/21/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/14/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-error=pessimizing-move -Wno-error=large-by-value-copy=128 -Wno-error=implicit-int-float-conversion -Wno-error=thread-safety-analysis -Wno-error=tautological-type-limit-compare -Wno-invalid-offsetof -Wno-range-loop-analysis -Wno-deprecated-anon-enum-enum-conversion -Wno-deprecated-enum-enum-conversion -Wno-deprecated-this-capture -Wno-inline-new-delete -Wno-error=deprecated-declarations -Wno-error=array-bounds -Wno-error=free-nonheap-object -Wno-error=atomic-alignment -Wno-error=deprecated-builtins -Wno-psabi -Wno-error=builtin-macro-redefined -Wno-vla-cxx-extension -Wno-unknown-warning-option -Wno-comma -Wno-implicit-const-int-float-conversion -Wno-macro-redefined -Wno-microsoft-include -Wno-tautological-unsigned-enum-zero-compare -Wno-unreachable-code-loop-increment -Wno-unreachable-code-return -fdeprecated-macro -ferror-limit 19 -fstrict-flex-arrays=1 -stack-protector 2 -fstack-clash-protection -ftrivial-auto-var-init=pattern -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -fno-sized-deallocation -fno-aligned-allocation -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2025-06-27-100320-3286336-1 -x c++ /root/firefox-clang/intl/icu/source/common/normalizer2impl.cpp
1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5*
6* Copyright (C) 2009-2014, International Business Machines
7* Corporation and others. All Rights Reserved.
8*
9*******************************************************************************
10* file name: normalizer2impl.cpp
11* encoding: UTF-8
12* tab size: 8 (not used)
13* indentation:4
14*
15* created on: 2009nov22
16* created by: Markus W. Scherer
17*/
18
19// #define UCPTRIE_DEBUG
20
21#include "unicode/utypes.h"
22
23#if !UCONFIG_NO_NORMALIZATION0
24
25#include "unicode/bytestream.h"
26#include "unicode/edits.h"
27#include "unicode/normalizer2.h"
28#include "unicode/stringoptions.h"
29#include "unicode/ucptrie.h"
30#include "unicode/udata.h"
31#include "unicode/umutablecptrie.h"
32#include "unicode/ustring.h"
33#include "unicode/utf16.h"
34#include "unicode/utf8.h"
35#include "bytesinkutil.h"
36#include "cmemory.h"
37#include "mutex.h"
38#include "normalizer2impl.h"
39#include "putilimp.h"
40#include "uassert.h"
41#include "ucptrie_impl.h"
42#include "uset_imp.h"
43#include "uvector.h"
44
45U_NAMESPACE_BEGINnamespace icu_77 {
46
47namespace {
48
49/**
50 * UTF-8 lead byte for minNoMaybeCP.
51 * Can be lower than the actual lead byte for c.
52 * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
53 */
54inline uint8_t leadByteForCP(UChar32 c) {
55 if (c <= 0x7f) {
56 return static_cast<uint8_t>(c);
57 } else if (c <= 0x7ff) {
58 return static_cast<uint8_t>(0xc0 + (c >> 6));
59 } else {
60 // Should not occur because ccc(U+0300)!=0.
61 return 0xe0;
62 }
63}
64
65/**
66 * Returns the code point from one single well-formed UTF-8 byte sequence
67 * between cpStart and cpLimit.
68 *
69 * Trie UTF-8 macros do not assemble whole code points (for efficiency).
70 * When we do need the code point, we call this function.
71 * We should not need it for normalization-inert data (norm16==0).
72 * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
73 */
74UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
75 // Similar to U8_NEXT_UNSAFE(s, i, c).
76 U_ASSERT(cpStart < cpLimit)(static_cast <bool> (cpStart < cpLimit) ? void (0) :
__assert_fail ("cpStart < cpLimit", __builtin_FILE (), __builtin_LINE
(), __extension__ __PRETTY_FUNCTION__))
;
77 uint8_t c = *cpStart;
78 switch(cpLimit-cpStart) {
79 case 1:
80 return c;
81 case 2:
82 return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
83 case 3:
84 // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (char16_t)
85 return static_cast<char16_t>((c << 12) | ((cpStart[1] & 0x3f) << 6) | (cpStart[2] & 0x3f));
86 case 4:
87 return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
88 default:
89 UPRV_UNREACHABLE_EXITabort(); // Should not occur.
90 }
91}
92
93/**
94 * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
95 * Otherwise returns a negative value.
96 */
97UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
98 if ((p - start) >= 3) {
99 p -= 3;
100 uint8_t l = *p;
101 uint8_t t1, t2;
102 if (0xe1 <= l && l <= 0xed &&
103 (t1 = static_cast<uint8_t>(p[1] - 0x80)) <= 0x3f &&
104 (t2 = static_cast<uint8_t>(p[2] - 0x80)) <= 0x3f &&
105 (l < 0xed || t1 <= 0x1f)) {
106 return ((l & 0xf) << 12) | (t1 << 6) | t2;
107 }
108 }
109 return U_SENTINEL(-1);
110}
111
112/**
113 * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
114 * Otherwise returns a negative value.
115 */
116int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
117 // Jamo T: E1 86 A8..E1 87 82
118 if ((limit - src) >= 3 && *src == 0xe1) {
119 if (src[1] == 0x86) {
120 uint8_t t = src[2];
121 // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
122 // Offset 0 does not correspond to any conjoining Jamo.
123 if (0xa8 <= t && t <= 0xbf) {
124 return t - 0xa7;
125 }
126 } else if (src[1] == 0x87) {
127 uint8_t t = src[2];
128 if (static_cast<int8_t>(t) <= static_cast<int8_t>(0x82u)) {
129 return t - (0xa7 - 0x40);
130 }
131 }
132 }
133 return -1;
134}
135
136void
137appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
138 ByteSink &sink, Edits *edits) {
139 char buffer[U8_MAX_LENGTH4];
140 int32_t length;
141 int32_t cpLength = static_cast<int32_t>(cpLimit - cpStart);
142 if (cpLength == 1) {
143 // The builder makes ASCII map to ASCII.
144 buffer[0] = static_cast<uint8_t>(*cpStart + delta);
145 length = 1;
146 } else {
147 int32_t trail = *(cpLimit-1) + delta;
148 if (0x80 <= trail && trail <= 0xbf) {
149 // The delta only changes the last trail byte.
150 --cpLimit;
151 length = 0;
152 do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
153 buffer[length++] = static_cast<uint8_t>(trail);
154 } else {
155 // Decode the code point, add the delta, re-encode.
156 UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
157 length = 0;
158 U8_APPEND_UNSAFE(buffer, length, c)do { uint32_t __uc=(c); if(__uc<=0x7f) { (buffer)[(length)
++]=(uint8_t)__uc; } else { if(__uc<=0x7ff) { (buffer)[(length
)++]=(uint8_t)((__uc>>6)|0xc0); } else { if(__uc<=0xffff
) { (buffer)[(length)++]=(uint8_t)((__uc>>12)|0xe0); } else
{ (buffer)[(length)++]=(uint8_t)((__uc>>18)|0xf0); (buffer
)[(length)++]=(uint8_t)(((__uc>>12)&0x3f)|0x80); } (
buffer)[(length)++]=(uint8_t)(((__uc>>6)&0x3f)|0x80
); } (buffer)[(length)++]=(uint8_t)((__uc&0x3f)|0x80); } }
while (false)
;
159 }
160 }
161 if (edits != nullptr) {
162 edits->addReplace(cpLength, length);
163 }
164 sink.Append(buffer, length);
165}
166
167} // namespace
168
169// ReorderingBuffer -------------------------------------------------------- ***
170
171ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
172 UErrorCode &errorCode) :
173 impl(ni), str(dest),
174 start(str.getBuffer(8)), reorderStart(start), limit(start),
175 remainingCapacity(str.getCapacity()), lastCC(0) {
176 if (start == nullptr && U_SUCCESS(errorCode)) {
177 // getBuffer() already did str.setToBogus()
178 errorCode = U_MEMORY_ALLOCATION_ERROR;
179 }
180}
181
182UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
183 int32_t length=str.length();
184 start=str.getBuffer(destCapacity);
185 if(start==nullptr) {
186 // getBuffer() already did str.setToBogus()
187 errorCode=U_MEMORY_ALLOCATION_ERROR;
188 return false;
189 }
190 limit=start+length;
191 remainingCapacity=str.getCapacity()-length;
192 reorderStart=start;
193 if(start==limit) {
194 lastCC=0;
195 } else {
196 setIterator();
197 lastCC=previousCC();
198 // Set reorderStart after the last code point with cc<=1 if there is one.
199 if(lastCC>1) {
200 while(previousCC()>1) {}
201 }
202 reorderStart=codePointLimit;
203 }
204 return true;
205}
206
207UBool ReorderingBuffer::equals(const char16_t *otherStart, const char16_t *otherLimit) const {
208 int32_t length = static_cast<int32_t>(limit - start);
209 return
210 length == static_cast<int32_t>(otherLimit - otherStart) &&
211 0==u_memcmpu_memcmp_77(start, otherStart, length);
212}
213
214UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
215 U_ASSERT((otherLimit - otherStart) <= INT32_MAX)(static_cast <bool> ((otherLimit - otherStart) <= (2147483647
)) ? void (0) : __assert_fail ("(otherLimit - otherStart) <= (2147483647)"
, __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__
))
; // ensured by caller
216 int32_t length = static_cast<int32_t>(limit - start);
217 int32_t otherLength = static_cast<int32_t>(otherLimit - otherStart);
218 // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
219 if (otherLength < length || (otherLength / 3) > length) {
220 return false;
221 }
222 // Compare valid strings from between normalization boundaries.
223 // (Invalid sequences are normalization-inert.)
224 for (int32_t i = 0, j = 0;;) {
225 if (i >= length) {
226 return j >= otherLength;
227 } else if (j >= otherLength) {
228 return false;
229 }
230 // Not at the end of either string yet.
231 UChar32 c, other;
232 U16_NEXT_UNSAFE(start, i, c)do { (c)=(start)[(i)++]; if((((c)&0xfffffc00)==0xd800)) {
(c)=(((UChar32)((c))<<10UL)+(UChar32)((start)[(i)++])-
((0xd800<<10UL)+0xdc00-0x10000)); } } while (false)
;
233 U8_NEXT_UNSAFE(otherStart, j, other)do { (other)=(uint8_t)(otherStart)[(j)++]; if(!(((other)&
0x80)==0)) { if((other)<0xe0) { (other)=(((other)&0x1f
)<<6)|((otherStart)[(j)++]&0x3f); } else if((other)
<0xf0) { (other)=(UChar)(((other)<<12)|(((otherStart
)[j]&0x3f)<<6)|((otherStart)[(j)+1]&0x3f)); (j)
+=2; } else { (other)=(((other)&7)<<18)|(((otherStart
)[j]&0x3f)<<12)|(((otherStart)[(j)+1]&0x3f)<<
6)|((otherStart)[(j)+2]&0x3f); (j)+=3; } } } while (false
)
;
234 if (c != other) {
235 return false;
236 }
237 }
238}
239
240UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
241 if(remainingCapacity<2 && !resize(2, errorCode)) {
242 return false;
243 }
244 if(lastCC<=cc || cc==0) {
245 limit[0]=U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0);
246 limit[1]=U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00);
247 limit+=2;
248 lastCC=cc;
249 if(cc<=1) {
250 reorderStart=limit;
251 }
252 } else {
253 insert(c, cc);
254 }
255 remainingCapacity-=2;
256 return true;
257}
258
259UBool ReorderingBuffer::append(const char16_t *s, int32_t length, UBool isNFD,
260 uint8_t leadCC, uint8_t trailCC,
261 UErrorCode &errorCode) {
262 if(length==0) {
263 return true;
264 }
265 if(remainingCapacity<length && !resize(length, errorCode)) {
266 return false;
267 }
268 remainingCapacity-=length;
269 if(lastCC<=leadCC || leadCC==0) {
270 if(trailCC<=1) {
271 reorderStart=limit+length;
272 } else if(leadCC<=1) {
273 reorderStart=limit+1; // Ok if not a code point boundary.
274 }
275 const char16_t *sLimit=s+length;
276 do { *limit++=*s++; } while(s!=sLimit);
277 lastCC=trailCC;
278 } else {
279 int32_t i=0;
280 UChar32 c;
281 U16_NEXT(s, i, length, c)do { (c)=(s)[(i)++]; if((((c)&0xfffffc00)==0xd800)) { uint16_t
__c2; if((i)!=(length) && (((__c2=(s)[(i)])&0xfffffc00
)==0xdc00)) { ++(i); (c)=(((UChar32)((c))<<10UL)+(UChar32
)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (
false)
;
282 insert(c, leadCC); // insert first code point
283 while(i<length) {
284 U16_NEXT(s, i, length, c)do { (c)=(s)[(i)++]; if((((c)&0xfffffc00)==0xd800)) { uint16_t
__c2; if((i)!=(length) && (((__c2=(s)[(i)])&0xfffffc00
)==0xdc00)) { ++(i); (c)=(((UChar32)((c))<<10UL)+(UChar32
)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (
false)
;
285 if(i<length) {
286 if (isNFD) {
287 leadCC = Normalizer2Impl::getCCFromYesOrMaybeYes(impl.getRawNorm16(c));
288 } else {
289 leadCC = impl.getCC(impl.getNorm16(c));
290 }
291 } else {
292 leadCC=trailCC;
293 }
294 append(c, leadCC, errorCode);
295 }
296 }
297 return true;
298}
299
300UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
301 int32_t cpLength=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
302 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
303 return false;
304 }
305 remainingCapacity-=cpLength;
306 if(cpLength==1) {
307 *limit++ = static_cast<char16_t>(c);
308 } else {
309 limit[0]=U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0);
310 limit[1]=U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00);
311 limit+=2;
312 }
313 lastCC=0;
314 reorderStart=limit;
315 return true;
316}
317
318UBool ReorderingBuffer::appendZeroCC(const char16_t *s, const char16_t *sLimit, UErrorCode &errorCode) {
319 if(s==sLimit) {
320 return true;
321 }
322 int32_t length = static_cast<int32_t>(sLimit - s);
323 if(remainingCapacity<length && !resize(length, errorCode)) {
324 return false;
325 }
326 u_memcpyu_memcpy_77(limit, s, length);
327 limit+=length;
328 remainingCapacity-=length;
329 lastCC=0;
330 reorderStart=limit;
331 return true;
332}
333
334void ReorderingBuffer::remove() {
335 reorderStart=limit=start;
336 remainingCapacity=str.getCapacity();
337 lastCC=0;
338}
339
340void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
341 if(suffixLength<(limit-start)) {
342 limit-=suffixLength;
343 remainingCapacity+=suffixLength;
344 } else {
345 limit=start;
346 remainingCapacity=str.getCapacity();
347 }
348 lastCC=0;
349 reorderStart=limit;
350}
351
352UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
353 int32_t reorderStartIndex = static_cast<int32_t>(reorderStart - start);
354 int32_t length = static_cast<int32_t>(limit - start);
355 str.releaseBuffer(length);
356 int32_t newCapacity=length+appendLength;
357 int32_t doubleCapacity=2*str.getCapacity();
358 if(newCapacity<doubleCapacity) {
359 newCapacity=doubleCapacity;
360 }
361 if(newCapacity<256) {
362 newCapacity=256;
363 }
364 start=str.getBuffer(newCapacity);
365 if(start==nullptr) {
366 // getBuffer() already did str.setToBogus()
367 errorCode=U_MEMORY_ALLOCATION_ERROR;
368 return false;
369 }
370 reorderStart=start+reorderStartIndex;
371 limit=start+length;
372 remainingCapacity=str.getCapacity()-length;
373 return true;
374}
375
376void ReorderingBuffer::skipPrevious() {
377 codePointLimit=codePointStart;
378 char16_t c=*--codePointStart;
379 if(U16_IS_TRAIL(c)(((c)&0xfffffc00)==0xdc00) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))(((*(codePointStart-1))&0xfffffc00)==0xd800)) {
380 --codePointStart;
381 }
382}
383
384uint8_t ReorderingBuffer::previousCC() {
385 codePointLimit=codePointStart;
386 if(reorderStart>=codePointStart) {
387 return 0;
388 }
389 UChar32 c=*--codePointStart;
390 char16_t c2;
391 if(U16_IS_TRAIL(c)(((c)&0xfffffc00)==0xdc00) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))(((c2=*(codePointStart-1))&0xfffffc00)==0xd800)) {
392 --codePointStart;
393 c=U16_GET_SUPPLEMENTARY(c2, c)(((UChar32)(c2)<<10UL)+(UChar32)(c)-((0xd800<<10UL
)+0xdc00-0x10000))
;
394 }
395 return impl.getCCFromYesOrMaybeYesCP(c);
396}
397
398// Inserts c somewhere before the last character.
399// Requires 0<cc<lastCC which implies reorderStart<limit.
400void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
401 for(setIterator(), skipPrevious(); previousCC()>cc;) {}
402 // insert c at codePointLimit, after the character with prevCC<=cc
403 char16_t *q=limit;
404 char16_t *r=limit+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
405 do {
406 *--r=*--q;
407 } while(codePointLimit!=q);
408 writeCodePoint(q, c);
409 if(cc<=1) {
410 reorderStart=r;
411 }
412}
413
414// Normalizer2Impl --------------------------------------------------------- ***
415
416struct CanonIterData : public UMemory {
417 CanonIterData(UErrorCode &errorCode);
418 ~CanonIterData();
419 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
420 UMutableCPTrie *mutableTrie;
421 UCPTrie *trie;
422 UVector canonStartSets; // contains UnicodeSet *
423};
424
425Normalizer2Impl::~Normalizer2Impl() {
426 delete fCanonIterData;
427}
428
429void
430Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie,
431 const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
432 minDecompNoCP = static_cast<char16_t>(inIndexes[IX_MIN_DECOMP_NO_CP]);
433 minCompNoMaybeCP = static_cast<char16_t>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]);
434 minLcccCP = static_cast<char16_t>(inIndexes[IX_MIN_LCCC_CP]);
435
436 minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]);
437 minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]);
438 minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]);
439 minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]);
440 minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]);
441 minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]);
442 limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]);
443 minMaybeNo = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_NO]);
444 minMaybeNoCombinesFwd = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_NO_COMBINES_FWD]);
445 minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]);
446 U_ASSERT((minMaybeNo & 7) == 0)(static_cast <bool> ((minMaybeNo & 7) == 0) ? void (
0) : __assert_fail ("(minMaybeNo & 7) == 0", __builtin_FILE
(), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__))
; // 8-aligned for noNoDelta bit fields
447 centerNoNoDelta = (minMaybeNo >> DELTA_SHIFT) - MAX_DELTA - 1;
448
449 normTrie=inTrie;
450 extraData=inExtraData;
451 smallFCD=inSmallFCD;
452}
453
454U_CDECL_BEGINextern "C" {
455
456static uint32_t U_CALLCONV
457segmentStarterMapper(const void * /*context*/, uint32_t value) {
458 return value&CANON_NOT_SEGMENT_STARTER0x80000000;
459}
460
461U_CDECL_END}
462
463void
464Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
465 UChar32 start = 0, end;
466 uint32_t norm16;
467 while ((end = ucptrie_getRangeucptrie_getRange_77(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
468 nullptr, nullptr, &norm16)) >= 0) {
469 if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
470 norm16 != Normalizer2Impl::JAMO_VT) {
471 set.add(start, end);
472 } else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) {
473 uint16_t fcd16 = getFCD16(start);
474 if (fcd16 > 0xff) { set.add(start, end); }
475 }
476 start = end + 1;
477 }
478}
479
480void
481Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
482 // Add the start code point of each same-value range of the trie.
483 UChar32 start = 0, end;
484 uint32_t value;
485 while ((end = ucptrie_getRangeucptrie_getRange_77(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
486 nullptr, nullptr, &value)) >= 0) {
487 sa->add(sa->set, start);
488 if (start != end && isAlgorithmicNoNo(static_cast<uint16_t>(value)) &&
489 (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
490 // Range of code points with same-norm16-value algorithmic decompositions.
491 // They might have different non-zero FCD16 values.
492 uint16_t prevFCD16 = getFCD16(start);
493 while (++start <= end) {
494 uint16_t fcd16 = getFCD16(start);
495 if (fcd16 != prevFCD16) {
496 sa->add(sa->set, start);
497 prevFCD16 = fcd16;
498 }
499 }
500 }
501 start = end + 1;
502 }
503
504 /* add Hangul LV syllables and LV+1 because of skippables */
505 for(char16_t c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
506 sa->add(sa->set, c);
507 sa->add(sa->set, c+1);
508 }
509 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
510}
511
512void
513Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
514 // Add the start code point of each same-value range of the canonical iterator data trie.
515 if (!ensureCanonIterData(errorCode)) { return; }
516 // Currently only used for the SEGMENT_STARTER property.
517 UChar32 start = 0, end;
518 uint32_t value;
519 while ((end = ucptrie_getRangeucptrie_getRange_77(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0,
520 segmentStarterMapper, nullptr, &value)) >= 0) {
521 sa->add(sa->set, start);
522 start = end + 1;
523 }
524}
525
526const char16_t *
527Normalizer2Impl::copyLowPrefixFromNulTerminated(const char16_t *src,
528 UChar32 minNeedDataCP,
529 ReorderingBuffer *buffer,
530 UErrorCode &errorCode) const {
531 // Make some effort to support NUL-terminated strings reasonably.
532 // Take the part of the fast quick check loop that does not look up
533 // data and check the first part of the string.
534 // After this prefix, determine the string length to simplify the rest
535 // of the code.
536 const char16_t *prevSrc=src;
537 char16_t c;
538 while((c=*src++)<minNeedDataCP && c!=0) {}
7
Null pointer value stored to 'src'
8
Dereference of null pointer
539 // Back out the last character for full processing.
540 // Copy this prefix.
541 if(--src!=prevSrc) {
542 if(buffer!=nullptr) {
543 buffer->appendZeroCC(prevSrc, src, errorCode);
544 }
545 }
546 return src;
547}
548
549UnicodeString &
550Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
551 UErrorCode &errorCode) const {
552 if(U_FAILURE(errorCode)) {
553 dest.setToBogus();
554 return dest;
555 }
556 const char16_t *sArray=src.getBuffer();
557 if(&dest==&src || sArray==nullptr) {
558 errorCode=U_ILLEGAL_ARGUMENT_ERROR;
559 dest.setToBogus();
560 return dest;
561 }
562 decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
563 return dest;
564}
565
566void
567Normalizer2Impl::decompose(const char16_t *src, const char16_t *limit,
568 UnicodeString &dest,
569 int32_t destLengthEstimate,
570 UErrorCode &errorCode) const {
571 if(destLengthEstimate<0 && limit!=nullptr) {
572 destLengthEstimate = static_cast<int32_t>(limit - src);
573 }
574 dest.remove();
575 ReorderingBuffer buffer(*this, dest);
576 if(buffer.init(destLengthEstimate, errorCode)) {
577 decompose(src, limit, &buffer, errorCode);
578 }
579}
580
581// Dual functionality:
582// buffer!=nullptr: normalize
583// buffer==nullptr: isNormalized/spanQuickCheckYes
584const char16_t *
585Normalizer2Impl::decompose(const char16_t *src, const char16_t *limit,
586 ReorderingBuffer *buffer,
587 UErrorCode &errorCode) const {
588 UChar32 minNoCP=minDecompNoCP;
589 if(limit==nullptr) {
590 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
591 if(U_FAILURE(errorCode)) {
592 return src;
593 }
594 limit=u_strchru_strchr_77(src, 0);
595 }
596
597 const char16_t *prevSrc;
598 UChar32 c=0;
599 uint16_t norm16=0;
600
601 // only for quick check
602 const char16_t *prevBoundary=src;
603 uint8_t prevCC=0;
604
605 for(;;) {
606 // count code units below the minimum or with irrelevant data for the quick check
607 for(prevSrc=src; src!=limit;) {
608 if( (c=*src)<minNoCP ||
609 isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((int32_t)(normTrie)->index[(c)
>> UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK
))])
)
610 ) {
611 ++src;
612 } else if(!U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
613 break;
614 } else {
615 char16_t c2;
616 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])(((c2=src[1])&0xfffffc00)==0xdc00)) {
617 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
618 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((c) >= (normTrie)->highStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c))])
;
619 if(isMostDecompYesAndZeroCC(norm16)) {
620 src+=2;
621 } else {
622 break;
623 }
624 } else {
625 ++src; // unpaired lead surrogate: inert
626 }
627 }
628 }
629 // copy these code units all at once
630 if(src!=prevSrc) {
631 if(buffer!=nullptr) {
632 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
633 break;
634 }
635 } else {
636 prevCC=0;
637 prevBoundary=src;
638 }
639 }
640 if(src==limit) {
641 break;
642 }
643
644 // Check one above-minimum, relevant code point.
645 src+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
646 if(buffer!=nullptr) {
647 if(!decompose(c, norm16, *buffer, errorCode)) {
648 break;
649 }
650 } else {
651 if(isDecompYes(norm16)) {
652 uint8_t cc=getCCFromYesOrMaybeYes(norm16);
653 if(prevCC<=cc || cc==0) {
654 prevCC=cc;
655 if(cc<=1) {
656 prevBoundary=src;
657 }
658 continue;
659 }
660 }
661 return prevBoundary; // "no" or cc out of order
662 }
663 }
664 return src;
665}
666
667// Decompose a short piece of text which is likely to contain characters that
668// fail the quick check loop and/or where the quick check loop's overhead
669// is unlikely to be amortized.
670// Called by the compose() and makeFCD() implementations.
671const char16_t *
672Normalizer2Impl::decomposeShort(const char16_t *src, const char16_t *limit,
673 UBool stopAtCompBoundary, UBool onlyContiguous,
674 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
675 if (U_FAILURE(errorCode)) {
676 return nullptr;
677 }
678 while(src<limit) {
679 if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
680 return src;
681 }
682 const char16_t *prevSrc = src;
683 UChar32 c;
684 uint16_t norm16;
685 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16)do { (c) = *(src)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (src
) != (limit) && (((__c2 = *(src))&0xfffffc00)==0xdc00
)) { ++(src); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
686 if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
687 return prevSrc;
688 }
689 if(!decompose(c, norm16, buffer, errorCode)) {
690 return nullptr;
691 }
692 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
693 return src;
694 }
695 }
696 return src;
697}
698
699UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
700 ReorderingBuffer &buffer,
701 UErrorCode &errorCode) const {
702 // get the decomposition and the lead and trail cc's
703 if (norm16 >= limitNoNo) {
704 if (isMaybeYesOrNonZeroCC(norm16)) {
705 return buffer.append(c, getCCFromYesOrMaybeYes(norm16), errorCode);
706 } else if (norm16 < minMaybeNo) {
707 // Maps to an isCompYesAndZeroCC.
708 c=mapAlgorithmic(c, norm16);
709 norm16=getRawNorm16(c);
710 }
711 }
712 if (norm16 < minYesNo) {
713 // c does not decompose
714 return buffer.append(c, 0, errorCode);
715 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
716 // Hangul syllable: decompose algorithmically
717 char16_t jamos[3];
718 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
719 }
720 // c decomposes, get everything from the variable-length extra data
721 const uint16_t *mapping=getData(norm16);
722 uint16_t firstUnit=*mapping;
723 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
724 uint8_t leadCC, trailCC;
725 trailCC = static_cast<uint8_t>(firstUnit >> 8);
726 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
727 leadCC = static_cast<uint8_t>(*(mapping - 1) >> 8);
728 } else {
729 leadCC=0;
730 }
731 return buffer.append(reinterpret_cast<const char16_t*>(mapping) + 1, length, true, leadCC, trailCC, errorCode);
732}
733
734// Dual functionality:
735// sink != nullptr: normalize
736// sink == nullptr: isNormalized/spanQuickCheckYes
737const uint8_t *
738Normalizer2Impl::decomposeUTF8(uint32_t options,
739 const uint8_t *src, const uint8_t *limit,
740 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
741 U_ASSERT(limit != nullptr)(static_cast <bool> (limit != nullptr) ? void (0) : __assert_fail
("limit != nullptr", __builtin_FILE (), __builtin_LINE (), __extension__
__PRETTY_FUNCTION__))
;
742 UnicodeString s16;
743 uint8_t minNoLead = leadByteForCP(minDecompNoCP);
744
745 const uint8_t *prevBoundary = src;
746 // only for quick check
747 uint8_t prevCC = 0;
748
749 for (;;) {
750 // Fast path: Scan over a sequence of characters below the minimum "no" code point,
751 // or with (decompYes && ccc==0) properties.
752 const uint8_t *fastStart = src;
753 const uint8_t *prevSrc;
754 uint16_t norm16 = 0;
755
756 for (;;) {
757 if (src == limit) {
758 if (prevBoundary != limit && sink != nullptr) {
759 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
760 *sink, options, edits, errorCode);
761 }
762 return src;
763 }
764 if (*src < minNoLead) {
765 ++src;
766 } else {
767 prevSrc = src;
768 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_77((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
769 if (!isMostDecompYesAndZeroCC(norm16)) {
770 break;
771 }
772 }
773 }
774 // isMostDecompYesAndZeroCC(norm16) is false, that is, norm16>=minYesNo,
775 // and the current character at [prevSrc..src[ is not a common case with cc=0
776 // (MIN_NORMAL_MAYBE_YES or JAMO_VT).
777 // It could still be a maybeYes with cc=0.
778 if (prevSrc != fastStart) {
779 // The fast path looped over yes/0 characters before the current one.
780 if (sink != nullptr &&
781 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
782 *sink, options, edits, errorCode)) {
783 break;
784 }
785 prevBoundary = prevSrc;
786 prevCC = 0;
787 }
788
789 // Medium-fast path: Quick check.
790 if (isMaybeYesOrNonZeroCC(norm16)) {
791 // Does not decompose.
792 uint8_t cc = getCCFromYesOrMaybeYes(norm16);
793 if (prevCC <= cc || cc == 0) {
794 prevCC = cc;
795 if (cc <= 1) {
796 if (sink != nullptr &&
797 !ByteSinkUtil::appendUnchanged(prevBoundary, src,
798 *sink, options, edits, errorCode)) {
799 break;
800 }
801 prevBoundary = src;
802 }
803 continue;
804 }
805 }
806 if (sink == nullptr) {
807 return prevBoundary; // quick check: "no" or cc out of order
808 }
809
810 // Slow path
811 // Decompose up to and including the current character.
812 if (prevBoundary != prevSrc && norm16HasDecompBoundaryBefore(norm16)) {
813 if (!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
814 *sink, options, edits, errorCode)) {
815 break;
816 }
817 prevBoundary = prevSrc;
818 }
819 ReorderingBuffer buffer(*this, s16, errorCode);
820 if (U_FAILURE(errorCode)) {
821 break;
822 }
823 decomposeShort(prevBoundary, src, STOP_AT_LIMIT, false /* onlyContiguous */,
824 buffer, errorCode);
825 // Decompose until the next boundary.
826 if (buffer.getLastCC() > 1) {
827 src = decomposeShort(src, limit, STOP_AT_DECOMP_BOUNDARY, false /* onlyContiguous */,
828 buffer, errorCode);
829 }
830 if (U_FAILURE(errorCode)) {
831 break;
832 }
833 if ((src - prevSrc) > INT32_MAX(2147483647)) { // guard before buffer.equals()
834 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
835 break;
836 }
837 // We already know there was a change if the original character decomposed;
838 // otherwise compare.
839 if (isMaybeYesOrNonZeroCC(norm16) && buffer.equals(prevBoundary, src)) {
840 if (!ByteSinkUtil::appendUnchanged(prevBoundary, src,
841 *sink, options, edits, errorCode)) {
842 break;
843 }
844 } else {
845 if (!ByteSinkUtil::appendChange(prevBoundary, src, buffer.getStart(), buffer.length(),
846 *sink, edits, errorCode)) {
847 break;
848 }
849 }
850 prevBoundary = src;
851 prevCC = 0;
852 }
853 return src;
854}
855
856const uint8_t *
857Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
858 StopAt stopAt, UBool onlyContiguous,
859 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
860 if (U_FAILURE(errorCode)) {
861 return nullptr;
862 }
863 while (src < limit) {
864 const uint8_t *prevSrc = src;
865 uint16_t norm16;
866 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_77((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
867 // Get the decomposition and the lead and trail cc's.
868 UChar32 c = U_SENTINEL(-1);
869 if (norm16 >= limitNoNo) {
870 if (isMaybeYesOrNonZeroCC(norm16)) {
871 // No comp boundaries around this character.
872 uint8_t cc = getCCFromYesOrMaybeYes(norm16);
873 if (cc == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
874 return prevSrc;
875 }
876 c = codePointFromValidUTF8(prevSrc, src);
877 if (!buffer.append(c, cc, errorCode)) {
878 return nullptr;
879 }
880 if (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1) {
881 return src;
882 }
883 continue;
884 } else if (norm16 < minMaybeNo) {
885 // Maps to an isCompYesAndZeroCC.
886 if (stopAt != STOP_AT_LIMIT) {
887 return prevSrc;
888 }
889 c = codePointFromValidUTF8(prevSrc, src);
890 c = mapAlgorithmic(c, norm16);
891 norm16 = getRawNorm16(c);
892 }
893 } else if (stopAt != STOP_AT_LIMIT && norm16 < minNoNoCompNoMaybeCC) {
894 return prevSrc;
895 }
896 // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
897 // We do not see invalid UTF-8 here because
898 // its norm16==INERT is normalization-inert,
899 // so it gets copied unchanged in the fast path,
900 // and we stop the slow path where invalid UTF-8 begins.
901 // c >= 0 is the result of an algorithmic mapping.
902 U_ASSERT(c >= 0 || norm16 != INERT)(static_cast <bool> (c >= 0 || norm16 != INERT) ? void
(0) : __assert_fail ("c >= 0 || norm16 != INERT", __builtin_FILE
(), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__))
;
903 if (norm16 < minYesNo) {
904 if (c < 0) {
905 c = codePointFromValidUTF8(prevSrc, src);
906 }
907 // does not decompose
908 if (!buffer.append(c, 0, errorCode)) {
909 return nullptr;
910 }
911 } else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
912 // Hangul syllable: decompose algorithmically
913 if (c < 0) {
914 c = codePointFromValidUTF8(prevSrc, src);
915 }
916 char16_t jamos[3];
917 if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
918 return nullptr;
919 }
920 } else {
921 // The character decomposes, get everything from the variable-length extra data.
922 const uint16_t *mapping = getData(norm16);
923 uint16_t firstUnit = *mapping;
924 int32_t length = firstUnit & MAPPING_LENGTH_MASK;
925 uint8_t trailCC = static_cast<uint8_t>(firstUnit >> 8);
926 uint8_t leadCC;
927 if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
928 leadCC = static_cast<uint8_t>(*(mapping - 1) >> 8);
929 } else {
930 leadCC = 0;
931 }
932 if (leadCC == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
933 return prevSrc;
934 }
935 if (!buffer.append(reinterpret_cast<const char16_t*>(mapping) + 1, length, true, leadCC, trailCC, errorCode)) {
936 return nullptr;
937 }
938 }
939 if ((stopAt == STOP_AT_COMP_BOUNDARY && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) ||
940 (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1)) {
941 return src;
942 }
943 }
944 return src;
945}
946
947const char16_t *
948Normalizer2Impl::getDecomposition(UChar32 c, char16_t buffer[4], int32_t &length) const {
949 uint16_t norm16;
950 if(c<minDecompNoCP || isMaybeYesOrNonZeroCC(norm16=getNorm16(c))) {
951 // c does not decompose
952 return nullptr;
953 }
954 const char16_t *decomp = nullptr;
955 if(isDecompNoAlgorithmic(norm16)) {
956 // Maps to an isCompYesAndZeroCC.
957 c=mapAlgorithmic(c, norm16);
958 decomp=buffer;
959 length=0;
960 U16_APPEND_UNSAFE(buffer, length, c)do { if((uint32_t)(c)<=0xffff) { (buffer)[(length)++]=(uint16_t
)(c); } else { (buffer)[(length)++]=(uint16_t)(((c)>>10
)+0xd7c0); (buffer)[(length)++]=(uint16_t)(((c)&0x3ff)|0xdc00
); } } while (false)
;
961 // The mapping might decompose further.
962 norm16 = getRawNorm16(c);
963 }
964 if (norm16 < minYesNo) {
965 return decomp;
966 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
967 // Hangul syllable: decompose algorithmically
968 length=Hangul::decompose(c, buffer);
969 return buffer;
970 }
971 // c decomposes, get everything from the variable-length extra data
972 const uint16_t *mapping=getData(norm16);
973 length=*mapping&MAPPING_LENGTH_MASK;
974 return reinterpret_cast<const char16_t*>(mapping) + 1;
975}
976
977// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
978// so that a raw mapping fits that consists of one unit ("rm0")
979// plus all but the first two code units of the normal mapping.
980// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
981const char16_t *
982Normalizer2Impl::getRawDecomposition(UChar32 c, char16_t buffer[30], int32_t &length) const {
983 uint16_t norm16;
984 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
985 // c does not decompose
986 return nullptr;
987 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
988 // Hangul syllable: decompose algorithmically
989 Hangul::getRawDecomposition(c, buffer);
990 length=2;
991 return buffer;
992 } else if(isDecompNoAlgorithmic(norm16)) {
993 c=mapAlgorithmic(c, norm16);
994 length=0;
995 U16_APPEND_UNSAFE(buffer, length, c)do { if((uint32_t)(c)<=0xffff) { (buffer)[(length)++]=(uint16_t
)(c); } else { (buffer)[(length)++]=(uint16_t)(((c)>>10
)+0xd7c0); (buffer)[(length)++]=(uint16_t)(((c)&0x3ff)|0xdc00
); } } while (false)
;
996 return buffer;
997 }
998 // c decomposes, get everything from the variable-length extra data
999 const uint16_t *mapping=getData(norm16);
1000 uint16_t firstUnit=*mapping;
1001 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
1002 if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
1003 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
1004 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
1005 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
1006 uint16_t rm0=*rawMapping;
1007 if(rm0<=MAPPING_LENGTH_MASK) {
1008 length=rm0;
1009 return reinterpret_cast<const char16_t*>(rawMapping) - rm0;
1010 } else {
1011 // Copy the normal mapping and replace its first two code units with rm0.
1012 buffer[0] = static_cast<char16_t>(rm0);
1013 u_memcpyu_memcpy_77(buffer + 1, reinterpret_cast<const char16_t*>(mapping) + 1 + 2, mLength - 2);
1014 length=mLength-1;
1015 return buffer;
1016 }
1017 } else {
1018 length=mLength;
1019 return reinterpret_cast<const char16_t*>(mapping) + 1;
1020 }
1021}
1022
1023void Normalizer2Impl::decomposeAndAppend(const char16_t *src, const char16_t *limit,
1024 UBool doDecompose,
1025 UnicodeString &safeMiddle,
1026 ReorderingBuffer &buffer,
1027 UErrorCode &errorCode) const {
1028 buffer.copyReorderableSuffixTo(safeMiddle);
1029 if(doDecompose) {
1030 decompose(src, limit, &buffer, errorCode);
1031 return;
1032 }
1033 // Just merge the strings at the boundary.
1034 bool isFirst = true;
1035 uint8_t firstCC = 0, prevCC = 0, cc;
1036 const char16_t *p = src;
1037 while (p != limit) {
1038 const char16_t *codePointStart = p;
1039 UChar32 c;
1040 uint16_t norm16;
1041 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
1042 if ((cc = getCC(norm16)) == 0) {
1043 p = codePointStart;
1044 break;
1045 }
1046 if (isFirst) {
1047 firstCC = cc;
1048 isFirst = false;
1049 }
1050 prevCC = cc;
1051 }
1052 if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
1053 limit=u_strchru_strchr_77(p, 0);
1054 }
1055
1056 if (buffer.append(src, static_cast<int32_t>(p - src), false, firstCC, prevCC, errorCode)) {
1057 buffer.appendZeroCC(p, limit, errorCode);
1058 }
1059}
1060
1061UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
1062 return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
1063 norm16HasDecompBoundaryBefore(getNorm16(c));
1064}
1065
1066UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
1067 if (norm16 < minNoNoCompNoMaybeCC) {
1068 return true;
1069 }
1070 if (norm16 >= limitNoNo) {
1071 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
1072 }
1073 // c decomposes, get everything from the variable-length extra data
1074 const uint16_t *mapping=getDataForYesOrNo(norm16);
1075 uint16_t firstUnit=*mapping;
1076 // true if leadCC==0 (hasFCDBoundaryBefore())
1077 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
1078}
1079
1080UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
1081 if (c < minDecompNoCP) {
1082 return true;
1083 }
1084 if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
1085 return true;
1086 }
1087 return norm16HasDecompBoundaryAfter(getNorm16(c));
1088}
1089
1090UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
1091 if(norm16 <= minYesNo || isHangulLVT(norm16)) {
1092 return true;
1093 }
1094 if (norm16 >= limitNoNo) {
1095 if (isMaybeYesOrNonZeroCC(norm16)) {
1096 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
1097 } else if (norm16 < minMaybeNo) {
1098 // Maps to an isCompYesAndZeroCC.
1099 return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
1100 }
1101 }
1102 // c decomposes, get everything from the variable-length extra data
1103 const uint16_t *mapping=getData(norm16);
1104 uint16_t firstUnit=*mapping;
1105 // decomp after-boundary: same as hasFCDBoundaryAfter(),
1106 // fcd16<=1 || trailCC==0
1107 if(firstUnit>0x1ff) {
1108 return false; // trailCC>1
1109 }
1110 if(firstUnit<=0xff) {
1111 return true; // trailCC==0
1112 }
1113 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
1114 // true if leadCC==0 (hasFCDBoundaryBefore())
1115 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
1116}
1117
1118/*
1119 * Finds the recomposition result for
1120 * a forward-combining "lead" character,
1121 * specified with a pointer to its compositions list,
1122 * and a backward-combining "trail" character.
1123 *
1124 * If the lead and trail characters combine, then this function returns
1125 * the following "compositeAndFwd" value:
1126 * Bits 21..1 composite character
1127 * Bit 0 set if the composite is a forward-combining starter
1128 * otherwise it returns -1.
1129 *
1130 * The compositions list has (trail, compositeAndFwd) pair entries,
1131 * encoded as either pairs or triples of 16-bit units.
1132 * The last entry has the high bit of its first unit set.
1133 *
1134 * The list is sorted by ascending trail characters (there are no duplicates).
1135 * A linear search is used.
1136 *
1137 * See normalizer2impl.h for a more detailed description
1138 * of the compositions list format.
1139 */
1140int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
1141 uint16_t key1, firstUnit;
1142 if(trail<COMP_1_TRAIL_LIMIT) {
1143 // trail character is 0..33FF
1144 // result entry may have 2 or 3 units
1145 key1 = static_cast<uint16_t>(trail << 1);
1146 while(key1>(firstUnit=*list)) {
1147 list+=2+(firstUnit&COMP_1_TRIPLE);
1148 }
1149 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1150 if(firstUnit&COMP_1_TRIPLE) {
1151 return (static_cast<int32_t>(list[1]) << 16) | list[2];
1152 } else {
1153 return list[1];
1154 }
1155 }
1156 } else {
1157 // trail character is 3400..10FFFF
1158 // result entry has 3 units
1159 key1 = static_cast<uint16_t>(COMP_1_TRAIL_LIMIT +
1160 (((trail>>COMP_1_TRAIL_SHIFT))&
1161 ~COMP_1_TRIPLE));
1162 uint16_t key2 = static_cast<uint16_t>(trail << COMP_2_TRAIL_SHIFT);
1163 uint16_t secondUnit;
1164 for(;;) {
1165 if(key1>(firstUnit=*list)) {
1166 list+=2+(firstUnit&COMP_1_TRIPLE);
1167 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1168 if(key2>(secondUnit=list[1])) {
1169 if(firstUnit&COMP_1_LAST_TUPLE) {
1170 break;
1171 } else {
1172 list+=3;
1173 }
1174 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
1175 return (static_cast<int32_t>(secondUnit & ~COMP_2_TRAIL_MASK) << 16) | list[2];
1176 } else {
1177 break;
1178 }
1179 } else {
1180 break;
1181 }
1182 }
1183 }
1184 return -1;
1185}
1186
1187/**
1188 * @param list some character's compositions list
1189 * @param set recursively receives the composites from these compositions
1190 */
1191void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
1192 uint16_t firstUnit;
1193 int32_t compositeAndFwd;
1194 do {
1195 firstUnit=*list;
1196 if((firstUnit&COMP_1_TRIPLE)==0) {
1197 compositeAndFwd=list[1];
1198 list+=2;
1199 } else {
1200 compositeAndFwd = ((static_cast<int32_t>(list[1]) & ~COMP_2_TRAIL_MASK) << 16) | list[2];
1201 list+=3;
1202 }
1203 UChar32 composite=compositeAndFwd>>1;
1204 if((compositeAndFwd&1)!=0) {
1205 addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set);
1206 }
1207 set.add(composite);
1208 } while((firstUnit&COMP_1_LAST_TUPLE)==0);
1209}
1210
1211/*
1212 * Recomposes the buffer text starting at recomposeStartIndex
1213 * (which is in NFD - decomposed and canonically ordered),
1214 * and truncates the buffer contents.
1215 *
1216 * Note that recomposition never lengthens the text:
1217 * Any character consists of either one or two code units;
1218 * a composition may contain at most one more code unit than the original starter,
1219 * while the combining mark that is removed has at least one code unit.
1220 */
1221void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
1222 UBool onlyContiguous) const {
1223 char16_t *p=buffer.getStart()+recomposeStartIndex;
1224 char16_t *limit=buffer.getLimit();
1225 if(p==limit) {
1226 return;
1227 }
1228
1229 char16_t *starter, *pRemove, *q, *r;
1230 const uint16_t *compositionsList;
1231 UChar32 c, compositeAndFwd;
1232 uint16_t norm16;
1233 uint8_t cc, prevCC;
1234 UBool starterIsSupplementary;
1235
1236 // Some of the following variables are not used until we have a forward-combining starter
1237 // and are only initialized now to avoid compiler warnings.
1238 compositionsList=nullptr; // used as indicator for whether we have a forward-combining starter
1239 starter=nullptr;
1240 starterIsSupplementary=false;
1241 prevCC=0;
1242
1243 for(;;) {
1244 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
1245 cc=getCCFromYesOrMaybeYes(norm16);
1246 if( // this character combines backward and
1247 isMaybe(norm16) &&
1248 // we have seen a starter that combines forward and
1249 compositionsList!=nullptr &&
1250 // the backward-combining character is not blocked
1251 (prevCC<cc || prevCC==0)
1252 ) {
1253 if(isJamoVT(norm16)) {
1254 // c is a Jamo V/T, see if we can compose it with the previous character.
1255 if(c<Hangul::JAMO_T_BASE) {
1256 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
1257 char16_t prev = static_cast<char16_t>(*starter - Hangul::JAMO_L_BASE);
1258 if(prev<Hangul::JAMO_L_COUNT) {
1259 pRemove=p-1;
1260 char16_t syllable = static_cast<char16_t>(
1261 Hangul::HANGUL_BASE +
1262 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
1263 Hangul::JAMO_T_COUNT);
1264 char16_t t;
1265 if (p != limit && (t = static_cast<char16_t>(*p - Hangul::JAMO_T_BASE)) < Hangul::JAMO_T_COUNT) {
1266 ++p;
1267 syllable+=t; // The next character was a Jamo T.
1268 }
1269 *starter=syllable;
1270 // remove the Jamo V/T
1271 q=pRemove;
1272 r=p;
1273 while(r<limit) {
1274 *q++=*r++;
1275 }
1276 limit=q;
1277 p=pRemove;
1278 }
1279 }
1280 /*
1281 * No "else" for Jamo T:
1282 * Since the input is in NFD, there are no Hangul LV syllables that
1283 * a Jamo T could combine with.
1284 * All Jamo Ts are combined above when handling Jamo Vs.
1285 */
1286 if(p==limit) {
1287 break;
1288 }
1289 compositionsList=nullptr;
1290 continue;
1291 } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
1292 // The starter and the combining mark (c) do combine.
1293 UChar32 composite=compositeAndFwd>>1;
1294
1295 // Replace the starter with the composite, remove the combining mark.
1296 pRemove=p-U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2); // pRemove & p: start & limit of the combining mark
1297 if(starterIsSupplementary) {
1298 if(U_IS_SUPPLEMENTARY(composite)((uint32_t)((composite)-0x10000)<=0xfffff)) {
1299 // both are supplementary
1300 starter[0]=U16_LEAD(composite)(UChar)(((composite)>>10)+0xd7c0);
1301 starter[1]=U16_TRAIL(composite)(UChar)(((composite)&0x3ff)|0xdc00);
1302 } else {
1303 *starter = static_cast<char16_t>(composite);
1304 // The composite is shorter than the starter,
1305 // move the intermediate characters forward one.
1306 starterIsSupplementary=false;
1307 q=starter+1;
1308 r=q+1;
1309 while(r<pRemove) {
1310 *q++=*r++;
1311 }
1312 --pRemove;
1313 }
1314 } else if(U_IS_SUPPLEMENTARY(composite)((uint32_t)((composite)-0x10000)<=0xfffff)) {
1315 // The composite is longer than the starter,
1316 // move the intermediate characters back one.
1317 starterIsSupplementary=true;
1318 ++starter; // temporarily increment for the loop boundary
1319 q=pRemove;
1320 r=++pRemove;
1321 while(starter<q) {
1322 *--r=*--q;
1323 }
1324 *starter=U16_TRAIL(composite)(UChar)(((composite)&0x3ff)|0xdc00);
1325 *--starter=U16_LEAD(composite)(UChar)(((composite)>>10)+0xd7c0); // undo the temporary increment
1326 } else {
1327 // both are on the BMP
1328 *starter = static_cast<char16_t>(composite);
1329 }
1330
1331 /* remove the combining mark by moving the following text over it */
1332 if(pRemove<p) {
1333 q=pRemove;
1334 r=p;
1335 while(r<limit) {
1336 *q++=*r++;
1337 }
1338 limit=q;
1339 p=pRemove;
1340 }
1341 // Keep prevCC because we removed the combining mark.
1342
1343 if(p==limit) {
1344 break;
1345 }
1346 // Is the composite a starter that combines forward?
1347 if(compositeAndFwd&1) {
1348 compositionsList=
1349 getCompositionsListForComposite(getRawNorm16(composite));
1350 } else {
1351 compositionsList=nullptr;
1352 }
1353
1354 // We combined; continue with looking for compositions.
1355 continue;
1356 }
1357 }
1358
1359 // no combination this time
1360 prevCC=cc;
1361 if(p==limit) {
1362 break;
1363 }
1364
1365 // If c did not combine, then check if it is a starter.
1366 if(cc==0) {
1367 // Found a new starter.
1368 if((compositionsList=getCompositionsListForDecompYes(norm16))!=nullptr) {
1369 // It may combine with something, prepare for it.
1370 if(U_IS_BMP(c)((uint32_t)(c)<=0xffff)) {
1371 starterIsSupplementary=false;
1372 starter=p-1;
1373 } else {
1374 starterIsSupplementary=true;
1375 starter=p-2;
1376 }
1377 }
1378 } else if(onlyContiguous) {
1379 // FCC: no discontiguous compositions; any intervening character blocks.
1380 compositionsList=nullptr;
1381 }
1382 }
1383 buffer.setReorderingLimit(limit);
1384}
1385
1386UChar32
1387Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
1388 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16
1389 const uint16_t *list;
1390 if(isInert(norm16)) {
1391 return U_SENTINEL(-1);
1392 } else if(norm16<minYesNoMappingsOnly) {
1393 // a combines forward.
1394 if(isJamoL(norm16)) {
1395 if (b < Hangul::JAMO_V_BASE) {
1396 return U_SENTINEL(-1);
1397 }
1398 b-=Hangul::JAMO_V_BASE;
1399 if(b<Hangul::JAMO_V_COUNT) {
1400 return
1401 (Hangul::HANGUL_BASE+
1402 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
1403 Hangul::JAMO_T_COUNT);
1404 } else {
1405 return U_SENTINEL(-1);
1406 }
1407 } else if(isHangulLV(norm16)) {
1408 if (b <= Hangul::JAMO_T_BASE) {
1409 return U_SENTINEL(-1);
1410 }
1411 b-=Hangul::JAMO_T_BASE;
1412 if(b<Hangul::JAMO_T_COUNT) { // not b==0!
1413 return a+b;
1414 } else {
1415 return U_SENTINEL(-1);
1416 }
1417 } else {
1418 // 'a' has a compositions list in extraData
1419 list=getDataForYesOrNo(norm16);
1420 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
1421 list+= // mapping pointer
1422 1+ // +1 to skip the first unit with the mapping length
1423 (*list&MAPPING_LENGTH_MASK); // + mapping length
1424 }
1425 }
1426 } else if(norm16<minMaybeNoCombinesFwd || MIN_NORMAL_MAYBE_YES<=norm16) {
1427 return U_SENTINEL(-1);
1428 } else {
1429 list=getDataForMaybe(norm16);
1430 if(norm16<minMaybeYes) { // composite 'a' has both mapping & compositions list
1431 list+= // mapping pointer
1432 1+ // +1 to skip the first unit with the mapping length
1433 (*list&MAPPING_LENGTH_MASK); // + mapping length
1434 }
1435 }
1436 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
1437 return U_SENTINEL(-1);
1438 }
1439#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC1
1440 return combine(list, b)>>1;
1441#else
1442 int32_t compositeAndFwd=combine(list, b);
1443 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL(-1);
1444#endif
1445}
1446
1447// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
1448// doCompose: normalize
1449// !doCompose: isNormalized (buffer must be empty and initialized)
1450UBool
1451Normalizer2Impl::compose(const char16_t *src, const char16_t *limit,
1452 UBool onlyContiguous,
1453 UBool doCompose,
1454 ReorderingBuffer &buffer,
1455 UErrorCode &errorCode) const {
1456 const char16_t *prevBoundary=src;
1457 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1458 if(limit==nullptr) {
1459 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
1460 doCompose ? &buffer : nullptr,
1461 errorCode);
1462 if(U_FAILURE(errorCode)) {
1463 return false;
1464 }
1465 limit=u_strchru_strchr_77(src, 0);
1466 if (prevBoundary != src) {
1467 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1468 prevBoundary = src;
1469 } else {
1470 buffer.removeSuffix(1);
1471 prevBoundary = --src;
1472 }
1473 }
1474 }
1475
1476 for (;;) {
1477 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1478 // or with (compYes && ccc==0) properties.
1479 const char16_t *prevSrc;
1480 UChar32 c = 0;
1481 uint16_t norm16 = 0;
1482 for (;;) {
1483 if (src == limit) {
1484 if (prevBoundary != limit && doCompose) {
1485 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1486 }
1487 return true;
1488 }
1489 if( (c=*src)<minNoMaybeCP ||
1490 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((int32_t)(normTrie)->index[(c)
>> UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK
))])
)
1491 ) {
1492 ++src;
1493 } else {
1494 prevSrc = src++;
1495 if(!U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
1496 break;
1497 } else {
1498 char16_t c2;
1499 if(src!=limit && U16_IS_TRAIL(c2=*src)(((c2=*src)&0xfffffc00)==0xdc00)) {
1500 ++src;
1501 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
1502 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((c) >= (normTrie)->highStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c))])
;
1503 if(!isCompYesAndZeroCC(norm16)) {
1504 break;
1505 }
1506 }
1507 }
1508 }
1509 }
1510 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1511 // The current character is either a "noNo" (has a mapping)
1512 // or a "maybeYes" / "maybeNo" (combines backward)
1513 // or a "yesYes" with ccc!=0.
1514 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1515
1516 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1517 if (norm16 < minMaybeNo) { // minNoNo <= norm16 < minMaybeNo
1518 if (!doCompose) {
1519 return false;
1520 }
1521 // Fast path for mapping a character that is immediately surrounded by boundaries.
1522 // In this case, we need not decompose around the current character.
1523 if (isDecompNoAlgorithmic(norm16)) {
1524 // Maps to a single isCompYesAndZeroCC character
1525 // which also implies hasCompBoundaryBefore.
1526 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1527 hasCompBoundaryBefore(src, limit)) {
1528 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1529 break;
1530 }
1531 if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
1532 break;
1533 }
1534 prevBoundary = src;
1535 continue;
1536 }
1537 } else if (norm16 < minNoNoCompBoundaryBefore) {
1538 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1539 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1540 hasCompBoundaryBefore(src, limit)) {
1541 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1542 break;
1543 }
1544 const char16_t *mapping = reinterpret_cast<const char16_t *>(getDataForYesOrNo(norm16));
1545 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1546 if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
1547 break;
1548 }
1549 prevBoundary = src;
1550 continue;
1551 }
1552 } else if (norm16 >= minNoNoEmpty) {
1553 // The current character maps to nothing.
1554 // Simply omit it from the output if there is a boundary before _or_ after it.
1555 // The character itself implies no boundaries.
1556 if (hasCompBoundaryBefore(src, limit) ||
1557 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1558 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1559 break;
1560 }
1561 prevBoundary = src;
1562 continue;
1563 }
1564 }
1565 // Other "noNo" type, or need to examine more text around this character:
1566 // Fall through to the slow path.
1567 } else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
1568 char16_t prev=*(prevSrc-1);
1569 if(c<Hangul::JAMO_T_BASE) {
1570 // The current character is a Jamo Vowel,
1571 // compose with previous Jamo L and following Jamo T.
1572 char16_t l = static_cast<char16_t>(prev - Hangul::JAMO_L_BASE);
1573 if(l<Hangul::JAMO_L_COUNT) {
1574 if (!doCompose) {
1575 return false;
1576 }
1577 int32_t t;
1578 if (src != limit &&
1579 0 < (t = (static_cast<int32_t>(*src) - Hangul::JAMO_T_BASE)) &&
1580 t < Hangul::JAMO_T_COUNT) {
1581 // The next character is a Jamo T.
1582 ++src;
1583 } else if (hasCompBoundaryBefore(src, limit)) {
1584 // No Jamo T follows, not even via decomposition.
1585 t = 0;
1586 } else {
1587 t = -1;
1588 }
1589 if (t >= 0) {
1590 UChar32 syllable = Hangul::HANGUL_BASE +
1591 (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
1592 Hangul::JAMO_T_COUNT + t;
1593 --prevSrc; // Replace the Jamo L as well.
1594 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1595 break;
1596 }
1597 if (!buffer.appendBMP(static_cast<char16_t>(syllable), 0, errorCode)) {
1598 break;
1599 }
1600 prevBoundary = src;
1601 continue;
1602 }
1603 // If we see L+V+x where x!=T then we drop to the slow path,
1604 // decompose and recompose.
1605 // This is to deal with NFKC finding normal L and V but a
1606 // compatibility variant of a T.
1607 // We need to either fully compose that combination here
1608 // (which would complicate the code and may not work with strange custom data)
1609 // or use the slow path.
1610 }
1611 } else if (Hangul::isHangulLV(prev)) {
1612 // The current character is a Jamo Trailing consonant,
1613 // compose with previous Hangul LV that does not contain a Jamo T.
1614 if (!doCompose) {
1615 return false;
1616 }
1617 UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
1618 --prevSrc; // Replace the Hangul LV as well.
1619 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1620 break;
1621 }
1622 if (!buffer.appendBMP(static_cast<char16_t>(syllable), 0, errorCode)) {
1623 break;
1624 }
1625 prevBoundary = src;
1626 continue;
1627 }
1628 // No matching context, or may need to decompose surrounding text first:
1629 // Fall through to the slow path.
1630 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1631 // One or more combining marks that do not combine-back:
1632 // Check for canonical order, copy unchanged if ok and
1633 // if followed by a character with a boundary-before.
1634 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1635 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1636 // Fails FCD test, need to decompose and contiguously recompose.
1637 if (!doCompose) {
1638 return false;
1639 }
1640 } else {
1641 // If !onlyContiguous (not FCC), then we ignore the tccc of
1642 // the previous character which passed the quick check "yes && ccc==0" test.
1643 const char16_t *nextSrc;
1644 uint16_t n16;
1645 for (;;) {
1646 if (src == limit) {
1647 if (doCompose) {
1648 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1649 }
1650 return true;
1651 }
1652 uint8_t prevCC = cc;
1653 nextSrc = src;
1654 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16)do { (c) = *(nextSrc)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (nextSrc
) != (limit) && (((__c2 = *(nextSrc))&0xfffffc00)
==0xdc00)) { ++(nextSrc); (c) = (((UChar32)((c))<<10UL)
+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); __index
= ((c) >= (normTrie)->highStart ? (normTrie)->dataLength
- UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (n16) = ((normTrie)
->data.ptr16[__index]); } while (false)
;
1655 if (n16 >= MIN_YES_YES_WITH_CC) {
1656 cc = getCCFromNormalYesOrMaybe(n16);
1657 if (prevCC > cc) {
1658 if (!doCompose) {
1659 return false;
1660 }
1661 break;
1662 }
1663 } else {
1664 break;
1665 }
1666 src = nextSrc;
1667 }
1668 // src is after the last in-order combining mark.
1669 // If there is a boundary here, then we continue with no change.
1670 if (norm16HasCompBoundaryBefore(n16)) {
1671 if (isCompYesAndZeroCC(n16)) {
1672 src = nextSrc;
1673 }
1674 continue;
1675 }
1676 // Use the slow path. There is no boundary in [prevSrc, src[.
1677 }
1678 }
1679
1680 // Slow path: Find the nearest boundaries around the current character,
1681 // decompose and recompose.
1682 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1683 const char16_t *p = prevSrc;
1684 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (prevBoundary) && (((__c2 = *((p) - 1))&0xfffffc00
)==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
1685 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1686 prevSrc = p;
1687 }
1688 }
1689 if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1690 break;
1691 }
1692 int32_t recomposeStartIndex=buffer.length();
1693 // We know there is not a boundary here.
1694 decomposeShort(prevSrc, src, false /* !stopAtCompBoundary */, onlyContiguous,
1695 buffer, errorCode);
1696 // Decompose until the next boundary.
1697 src = decomposeShort(src, limit, true /* stopAtCompBoundary */, onlyContiguous,
1698 buffer, errorCode);
1699 if (U_FAILURE(errorCode)) {
1700 break;
1701 }
1702 if ((src - prevSrc) > INT32_MAX(2147483647)) { // guard before buffer.equals()
1703 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1704 return true;
1705 }
1706 recompose(buffer, recomposeStartIndex, onlyContiguous);
1707 if(!doCompose) {
1708 if(!buffer.equals(prevSrc, src)) {
1709 return false;
1710 }
1711 buffer.remove();
1712 }
1713 prevBoundary=src;
1714 }
1715 return true;
1716}
1717
1718// Very similar to compose(): Make the same changes in both places if relevant.
1719// pQCResult==nullptr: spanQuickCheckYes
1720// pQCResult!=nullptr: quickCheck (*pQCResult must be UNORM_YES)
1721const char16_t *
1722Normalizer2Impl::composeQuickCheck(const char16_t *src, const char16_t *limit,
1723 UBool onlyContiguous,
1724 UNormalizationCheckResult *pQCResult) const {
1725 const char16_t *prevBoundary=src;
1726 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1727 if(limit==nullptr) {
1728 UErrorCode errorCode=U_ZERO_ERROR;
1729 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, nullptr, errorCode);
1730 limit=u_strchru_strchr_77(src, 0);
1731 if (prevBoundary != src) {
1732 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1733 prevBoundary = src;
1734 } else {
1735 prevBoundary = --src;
1736 }
1737 }
1738 }
1739
1740 for(;;) {
1741 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1742 // or with (compYes && ccc==0) properties.
1743 const char16_t *prevSrc;
1744 UChar32 c = 0;
1745 uint16_t norm16 = 0;
1746 for (;;) {
1747 if(src==limit) {
1748 return src;
1749 }
1750 if( (c=*src)<minNoMaybeCP ||
1751 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((int32_t)(normTrie)->index[(c)
>> UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK
))])
)
1752 ) {
1753 ++src;
1754 } else {
1755 prevSrc = src++;
1756 if(!U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
1757 break;
1758 } else {
1759 char16_t c2;
1760 if(src!=limit && U16_IS_TRAIL(c2=*src)(((c2=*src)&0xfffffc00)==0xdc00)) {
1761 ++src;
1762 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
1763 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((c) >= (normTrie)->highStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c))])
;
1764 if(!isCompYesAndZeroCC(norm16)) {
1765 break;
1766 }
1767 }
1768 }
1769 }
1770 }
1771 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1772 // The current character is either a "noNo" (has a mapping)
1773 // or a "maybeYes" / "maybeNo" (combines backward)
1774 // or a "yesYes" with ccc!=0.
1775 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1776
1777 uint16_t prevNorm16 = INERT;
1778 if (prevBoundary != prevSrc) {
1779 if (norm16HasCompBoundaryBefore(norm16)) {
1780 prevBoundary = prevSrc;
1781 } else {
1782 const char16_t *p = prevSrc;
1783 uint16_t n16;
1784 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (prevBoundary) && (((__c2 = *((p) - 1))&0xfffffc00
)==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (n16) = ((normTrie)
->data.ptr16[__index]); } while (false)
;
1785 if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
1786 prevBoundary = prevSrc;
1787 } else {
1788 prevBoundary = p;
1789 prevNorm16 = n16;
1790 }
1791 }
1792 }
1793
1794 if (norm16 >= minMaybeNo) {
1795 uint16_t fcd16 = getFCD16FromMaybeOrNonZeroCC(norm16);
1796 uint8_t cc = fcd16 >> 8;
1797 if (onlyContiguous /* FCC */ && cc != 0 &&
1798 getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
1799 // The [prevBoundary..prevSrc[ character
1800 // passed the quick check "yes && ccc==0" test
1801 // but is out of canonical order with the current combining mark.
1802 } else {
1803 // If !onlyContiguous (not FCC), then we ignore the tccc of
1804 // the previous character which passed the quick check "yes && ccc==0" test.
1805 const char16_t *nextSrc;
1806 for (;;) {
1807 if (norm16 < MIN_YES_YES_WITH_CC) {
1808 if (pQCResult != nullptr) {
1809 *pQCResult = UNORM_MAYBE;
1810 } else {
1811 return prevBoundary;
1812 }
1813 }
1814 if (src == limit) {
1815 return src;
1816 }
1817 uint8_t prevCC = fcd16;
1818 nextSrc = src;
1819 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16)do { (c) = *(nextSrc)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (nextSrc
) != (limit) && (((__c2 = *(nextSrc))&0xfffffc00)
==0xdc00)) { ++(nextSrc); (c) = (((UChar32)((c))<<10UL)
+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); __index
= ((c) >= (normTrie)->highStart ? (normTrie)->dataLength
- UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
1820 if (norm16 >= minMaybeNo) {
1821 fcd16 = getFCD16FromMaybeOrNonZeroCC(norm16);
1822 cc = fcd16 >> 8;
1823 if (!(prevCC <= cc || cc == 0)) {
1824 break;
1825 }
1826 } else {
1827 break;
1828 }
1829 src = nextSrc;
1830 }
1831 // src is after the last in-order combining mark.
1832 if (isCompYesAndZeroCC(norm16)) {
1833 prevBoundary = src;
1834 src = nextSrc;
1835 continue;
1836 }
1837 }
1838 }
1839 if(pQCResult!=nullptr) {
1840 *pQCResult=UNORM_NO;
1841 }
1842 return prevBoundary;
1843 }
1844}
1845
1846void Normalizer2Impl::composeAndAppend(const char16_t *src, const char16_t *limit,
1847 UBool doCompose,
1848 UBool onlyContiguous,
1849 UnicodeString &safeMiddle,
1850 ReorderingBuffer &buffer,
1851 UErrorCode &errorCode) const {
1852 if(!buffer.isEmpty()) {
1853 const char16_t *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
1854 if(src!=firstStarterInSrc) {
1855 const char16_t *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
1856 buffer.getLimit(), onlyContiguous);
1857 int32_t destSuffixLength = static_cast<int32_t>(buffer.getLimit() - lastStarterInDest);
1858 UnicodeString middle(lastStarterInDest, destSuffixLength);
1859 buffer.removeSuffix(destSuffixLength);
1860 safeMiddle=middle;
1861 middle.append(src, static_cast<int32_t>(firstStarterInSrc - src));
1862 const char16_t *middleStart=middle.getBuffer();
1863 compose(middleStart, middleStart+middle.length(), onlyContiguous,
1864 true, buffer, errorCode);
1865 if(U_FAILURE(errorCode)) {
1866 return;
1867 }
1868 src=firstStarterInSrc;
1869 }
1870 }
1871 if(doCompose) {
1872 compose(src, limit, onlyContiguous, true, buffer, errorCode);
1873 } else {
1874 if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
1875 limit=u_strchru_strchr_77(src, 0);
1876 }
1877 buffer.appendZeroCC(src, limit, errorCode);
1878 }
1879}
1880
1881UBool
1882Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
1883 const uint8_t *src, const uint8_t *limit,
1884 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
1885 U_ASSERT(limit != nullptr)(static_cast <bool> (limit != nullptr) ? void (0) : __assert_fail
("limit != nullptr", __builtin_FILE (), __builtin_LINE (), __extension__
__PRETTY_FUNCTION__))
;
1886 UnicodeString s16;
1887 uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
1888 const uint8_t *prevBoundary = src;
1889
1890 for (;;) {
1891 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1892 // or with (compYes && ccc==0) properties.
1893 const uint8_t *prevSrc;
1894 uint16_t norm16 = 0;
1895 for (;;) {
1896 if (src == limit) {
1897 if (prevBoundary != limit && sink != nullptr) {
1898 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1899 *sink, options, edits, errorCode);
1900 }
1901 return true;
1902 }
1903 if (*src < minNoMaybeLead) {
1904 ++src;
1905 } else {
1906 prevSrc = src;
1907 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_77((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
1908 if (!isCompYesAndZeroCC(norm16)) {
1909 break;
1910 }
1911 }
1912 }
1913 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1914 // The current character is either a "noNo" (has a mapping)
1915 // or a "maybeYes" / "maybeNo" (combines backward)
1916 // or a "yesYes" with ccc!=0.
1917 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1918
1919 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1920 if (norm16 < minMaybeNo) { // minNoNo <= norm16 < minMaybeNo
1921 if (sink == nullptr) {
1922 return false;
1923 }
1924 // Fast path for mapping a character that is immediately surrounded by boundaries.
1925 // In this case, we need not decompose around the current character.
1926 if (isDecompNoAlgorithmic(norm16)) {
1927 // Maps to a single isCompYesAndZeroCC character
1928 // which also implies hasCompBoundaryBefore.
1929 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1930 hasCompBoundaryBefore(src, limit)) {
1931 if (prevBoundary != prevSrc &&
1932 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1933 *sink, options, edits, errorCode)) {
1934 break;
1935 }
1936 appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
1937 prevBoundary = src;
1938 continue;
1939 }
1940 } else if (norm16 < minNoNoCompBoundaryBefore) {
1941 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1942 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1943 hasCompBoundaryBefore(src, limit)) {
1944 if (prevBoundary != prevSrc &&
1945 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1946 *sink, options, edits, errorCode)) {
1947 break;
1948 }
1949 const uint16_t *mapping = getDataForYesOrNo(norm16);
1950 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1951 if (!ByteSinkUtil::appendChange(prevSrc, src, reinterpret_cast<const char16_t*>(mapping), length,
1952 *sink, edits, errorCode)) {
1953 break;
1954 }
1955 prevBoundary = src;
1956 continue;
1957 }
1958 } else if (norm16 >= minNoNoEmpty) {
1959 // The current character maps to nothing.
1960 // Simply omit it from the output if there is a boundary before _or_ after it.
1961 // The character itself implies no boundaries.
1962 if (hasCompBoundaryBefore(src, limit) ||
1963 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1964 if (prevBoundary != prevSrc &&
1965 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1966 *sink, options, edits, errorCode)) {
1967 break;
1968 }
1969 if (edits != nullptr) {
1970 edits->addReplace(static_cast<int32_t>(src - prevSrc), 0);
1971 }
1972 prevBoundary = src;
1973 continue;
1974 }
1975 }
1976 // Other "noNo" type, or need to examine more text around this character:
1977 // Fall through to the slow path.
1978 } else if (isJamoVT(norm16)) {
1979 // Jamo L: E1 84 80..92
1980 // Jamo V: E1 85 A1..B5
1981 // Jamo T: E1 86 A8..E1 87 82
1982 U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1)(static_cast <bool> ((src - prevSrc) == 3 && *prevSrc
== 0xe1) ? void (0) : __assert_fail ("(src - prevSrc) == 3 && *prevSrc == 0xe1"
, __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__
))
;
1983 UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
1984 if (prevSrc[1] == 0x85) {
1985 // The current character is a Jamo Vowel,
1986 // compose with previous Jamo L and following Jamo T.
1987 UChar32 l = prev - Hangul::JAMO_L_BASE;
1988 if (static_cast<uint32_t>(l) < Hangul::JAMO_L_COUNT) {
1989 if (sink == nullptr) {
1990 return false;
1991 }
1992 int32_t t = getJamoTMinusBase(src, limit);
1993 if (t >= 0) {
1994 // The next character is a Jamo T.
1995 src += 3;
1996 } else if (hasCompBoundaryBefore(src, limit)) {
1997 // No Jamo T follows, not even via decomposition.
1998 t = 0;
1999 }
2000 if (t >= 0) {
2001 UChar32 syllable = Hangul::HANGUL_BASE +
2002 (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
2003 Hangul::JAMO_T_COUNT + t;
2004 prevSrc -= 3; // Replace the Jamo L as well.
2005 if (prevBoundary != prevSrc &&
2006 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2007 *sink, options, edits, errorCode)) {
2008 break;
2009 }
2010 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
2011 prevBoundary = src;
2012 continue;
2013 }
2014 // If we see L+V+x where x!=T then we drop to the slow path,
2015 // decompose and recompose.
2016 // This is to deal with NFKC finding normal L and V but a
2017 // compatibility variant of a T.
2018 // We need to either fully compose that combination here
2019 // (which would complicate the code and may not work with strange custom data)
2020 // or use the slow path.
2021 }
2022 } else if (Hangul::isHangulLV(prev)) {
2023 // The current character is a Jamo Trailing consonant,
2024 // compose with previous Hangul LV that does not contain a Jamo T.
2025 if (sink == nullptr) {
2026 return false;
2027 }
2028 UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
2029 prevSrc -= 3; // Replace the Hangul LV as well.
2030 if (prevBoundary != prevSrc &&
2031 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2032 *sink, options, edits, errorCode)) {
2033 break;
2034 }
2035 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
2036 prevBoundary = src;
2037 continue;
2038 }
2039 // No matching context, or may need to decompose surrounding text first:
2040 // Fall through to the slow path.
2041 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
2042 // One or more combining marks that do not combine-back:
2043 // Check for canonical order, copy unchanged if ok and
2044 // if followed by a character with a boundary-before.
2045 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
2046 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
2047 // Fails FCD test, need to decompose and contiguously recompose.
2048 if (sink == nullptr) {
2049 return false;
2050 }
2051 } else {
2052 // If !onlyContiguous (not FCC), then we ignore the tccc of
2053 // the previous character which passed the quick check "yes && ccc==0" test.
2054 const uint8_t *nextSrc;
2055 uint16_t n16;
2056 for (;;) {
2057 if (src == limit) {
2058 if (sink != nullptr) {
2059 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
2060 *sink, options, edits, errorCode);
2061 }
2062 return true;
2063 }
2064 uint8_t prevCC = cc;
2065 nextSrc = src;
2066 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16)do { int32_t __lead = (uint8_t)*(nextSrc)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((nextSrc) != (limit
) && (__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(nextSrc)) >>
5)) && ++(nextSrc) != (limit) && (__t2 = *(nextSrc
) - 0x80) <= 0x3f && (__lead = ((int32_t)(normTrie
)->index[(__lead << 6) + (__t1 & 0x3f)]) + __t2,
1) : (__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(nextSrc)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(nextSrc
) != (limit)) && (__t2 = *(nextSrc) - 0x80) <= 0x3f
&& ++(nextSrc) != (limit) && (__t3 = *(nextSrc
) - 0x80) <= 0x3f && (__lead = __lead >= (normTrie
)->shifted12HighStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_77((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(nextSrc) - 0x80
) <= 0x3f && (__lead = (int32_t)(normTrie)->index
[__lead & 0x1f] + __t1, 1))) { ++(nextSrc); } else { __lead
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (n16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
2067 if (n16 >= MIN_YES_YES_WITH_CC) {
2068 cc = getCCFromNormalYesOrMaybe(n16);
2069 if (prevCC > cc) {
2070 if (sink == nullptr) {
2071 return false;
2072 }
2073 break;
2074 }
2075 } else {
2076 break;
2077 }
2078 src = nextSrc;
2079 }
2080 // src is after the last in-order combining mark.
2081 // If there is a boundary here, then we continue with no change.
2082 if (norm16HasCompBoundaryBefore(n16)) {
2083 if (isCompYesAndZeroCC(n16)) {
2084 src = nextSrc;
2085 }
2086 continue;
2087 }
2088 // Use the slow path. There is no boundary in [prevSrc, src[.
2089 }
2090 }
2091
2092 // Slow path: Find the nearest boundaries around the current character,
2093 // decompose and recompose.
2094 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
2095 const uint8_t *p = prevSrc;
2096 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16)do { int32_t __index = (uint8_t)*--(p); if (!(((__index)&
0x80)==0)) { __index = ucptrie_internalU8PrevIndex_77((normTrie
), __index, (const uint8_t *)(prevBoundary), (const uint8_t *
)(p)); (p) -= __index & 7; __index >>= 3; } (norm16
) = ((normTrie)->data.ptr16[__index]); } while (false)
;
2097 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2098 prevSrc = p;
2099 }
2100 }
2101 ReorderingBuffer buffer(*this, s16, errorCode);
2102 if (U_FAILURE(errorCode)) {
2103 break;
2104 }
2105 // We know there is not a boundary here.
2106 decomposeShort(prevSrc, src, STOP_AT_LIMIT, onlyContiguous,
2107 buffer, errorCode);
2108 // Decompose until the next boundary.
2109 src = decomposeShort(src, limit, STOP_AT_COMP_BOUNDARY, onlyContiguous,
2110 buffer, errorCode);
2111 if (U_FAILURE(errorCode)) {
2112 break;
2113 }
2114 if ((src - prevSrc) > INT32_MAX(2147483647)) { // guard before buffer.equals()
2115 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
2116 return true;
2117 }
2118 recompose(buffer, 0, onlyContiguous);
2119 if (!buffer.equals(prevSrc, src)) {
2120 if (sink == nullptr) {
2121 return false;
2122 }
2123 if (prevBoundary != prevSrc &&
2124 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2125 *sink, options, edits, errorCode)) {
2126 break;
2127 }
2128 if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
2129 *sink, edits, errorCode)) {
2130 break;
2131 }
2132 prevBoundary = src;
2133 }
2134 }
2135 return true;
2136}
2137
2138UBool Normalizer2Impl::hasCompBoundaryBefore(const char16_t *src, const char16_t *limit) const {
2139 if (src == limit || *src < minCompNoMaybeCP) {
2140 return true;
2141 }
2142 UChar32 c;
2143 uint16_t norm16;
2144 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16)do { (c) = *(src)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (src
) != (limit) && (((__c2 = *(src))&0xfffffc00)==0xdc00
)) { ++(src); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
2145 return norm16HasCompBoundaryBefore(norm16);
2146}
2147
2148UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
2149 if (src == limit) {
2150 return true;
2151 }
2152 uint16_t norm16;
2153 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_77((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
2154 return norm16HasCompBoundaryBefore(norm16);
2155}
2156
2157UBool Normalizer2Impl::hasCompBoundaryAfter(const char16_t *start, const char16_t *p,
2158 UBool onlyContiguous) const {
2159 if (start == p) {
2160 return true;
2161 }
2162 UChar32 c;
2163 uint16_t norm16;
2164 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (start) && (((__c2 = *((p) - 1))&0xfffffc00)
==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2165 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2166}
2167
2168UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
2169 UBool onlyContiguous) const {
2170 if (start == p) {
2171 return true;
2172 }
2173 uint16_t norm16;
2174 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16)do { int32_t __index = (uint8_t)*--(p); if (!(((__index)&
0x80)==0)) { __index = ucptrie_internalU8PrevIndex_77((normTrie
), __index, (const uint8_t *)(start), (const uint8_t *)(p)); (
p) -= __index & 7; __index >>= 3; } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2175 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2176}
2177
2178const char16_t *Normalizer2Impl::findPreviousCompBoundary(const char16_t *start, const char16_t *p,
2179 UBool onlyContiguous) const {
2180 while (p != start) {
2181 const char16_t *codePointLimit = p;
2182 UChar32 c;
2183 uint16_t norm16;
2184 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (start) && (((__c2 = *((p) - 1))&0xfffffc00)
==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2185 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2186 return codePointLimit;
2187 }
2188 if (hasCompBoundaryBefore(c, norm16)) {
2189 return p;
2190 }
2191 }
2192 return p;
2193}
2194
2195const char16_t *Normalizer2Impl::findNextCompBoundary(const char16_t *p, const char16_t *limit,
2196 UBool onlyContiguous) const {
2197 while (p != limit) {
2198 const char16_t *codePointStart = p;
2199 UChar32 c;
2200 uint16_t norm16;
2201 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
2202 if (hasCompBoundaryBefore(c, norm16)) {
2203 return codePointStart;
2204 }
2205 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2206 return p;
2207 }
2208 }
2209 return p;
2210}
2211
2212uint8_t Normalizer2Impl::getPreviousTrailCC(const char16_t *start, const char16_t *p) const {
2213 if (start == p) {
2214 return 0;
2215 }
2216 int32_t i = static_cast<int32_t>(p - start);
2217 UChar32 c;
2218 U16_PREV(start, 0, i, c)do { (c)=(start)[--(i)]; if((((c)&0xfffffc00)==0xdc00)) {
uint16_t __c2; if((i)>(0) && (((__c2=(start)[(i)-
1])&0xfffffc00)==0xd800)) { --(i); (c)=(((UChar32)(__c2)<<
10UL)+(UChar32)((c))-((0xd800<<10UL)+0xdc00-0x10000)); }
} } while (false)
;
2219 return static_cast<uint8_t>(getFCD16(c));
2220}
2221
2222uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
2223 if (start == p) {
2224 return 0;
2225 }
2226 int32_t i = static_cast<int32_t>(p - start);
2227 UChar32 c;
2228 U8_PREV(start, 0, i, c)do { (c)=(uint8_t)(start)[--(i)]; if(!(((c)&0x80)==0)) { (
c)=utf8_prevCharSafeBody_77((const uint8_t *)start, 0, &(
i), c, -1); } } while (false)
;
2229 return static_cast<uint8_t>(getFCD16(c));
2230}
2231
2232// Note: normalizer2impl.cpp r30982 (2011-nov-27)
2233// still had getFCDTrie() which built and cached an FCD trie.
2234// That provided faster access to FCD data than getFCD16FromNormData()
2235// but required synchronization and consumed some 10kB of heap memory
2236// in any process that uses FCD (e.g., via collation).
2237// minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
2238// at least for ASCII & CJK.
2239
2240// Ticket 20907 - The optimizer in MSVC/Visual Studio versions below 16.4 has trouble with this
2241// function on Windows ARM64. As a work-around, we disable optimizations for this function.
2242// This work-around could/should be removed once the following versions of Visual Studio are no
2243// longer supported: All versions of VS2017, and versions of VS2019 below 16.4.
2244#if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2245#pragma optimize( "", off )
2246#endif
2247// Gets the FCD value from the regular normalization data.
2248uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
2249 uint16_t norm16=getNorm16(c);
2250 if (norm16 >= limitNoNo) {
2251 if(norm16>=MIN_NORMAL_MAYBE_YES) {
2252 // combining mark
2253 norm16=getCCFromNormalYesOrMaybe(norm16);
2254 return norm16|(norm16<<8);
2255 } else if(norm16>=minMaybeYes) {
2256 return 0;
2257 } else if(norm16<minMaybeNo) { // isDecompNoAlgorithmic(norm16)
2258 uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
2259 if (deltaTrailCC <= DELTA_TCCC_1) {
2260 return deltaTrailCC >> OFFSET_SHIFT;
2261 }
2262 // Maps to an isCompYesAndZeroCC.
2263 c=mapAlgorithmic(c, norm16);
2264 norm16=getRawNorm16(c);
2265 }
2266 }
2267 if(norm16<=minYesNo || isHangulLVT(norm16)) {
2268 // no decomposition or Hangul syllable, all zeros
2269 return 0;
2270 }
2271 // c decomposes, get everything from the variable-length extra data
2272 const uint16_t *mapping=getData(norm16);
2273 uint16_t firstUnit=*mapping;
2274 norm16=firstUnit>>8; // tccc
2275 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
2276 norm16|=*(mapping-1)&0xff00; // lccc
2277 }
2278 return norm16;
2279}
2280#if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2281#pragma optimize( "", on )
2282#endif
2283
2284uint16_t Normalizer2Impl::getFCD16FromMaybeOrNonZeroCC(uint16_t norm16) const {
2285 U_ASSERT(norm16 >= minMaybeNo)(static_cast <bool> (norm16 >= minMaybeNo) ? void (0
) : __assert_fail ("norm16 >= minMaybeNo", __builtin_FILE (
), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__))
;
2286 if (norm16 >= MIN_NORMAL_MAYBE_YES) {
2287 // combining mark
2288 norm16 = getCCFromNormalYesOrMaybe(norm16);
2289 return norm16 | (norm16<<8);
2290 } else if (norm16 >= minMaybeYes) {
2291 return 0;
2292 }
2293 // c decomposes, get everything from the variable-length extra data
2294 const uint16_t *mapping = getDataForMaybe(norm16);
2295 uint16_t firstUnit = *mapping;
2296 // maybeNo has lccc = 0
2297 U_ASSERT((firstUnit & MAPPING_HAS_CCC_LCCC_WORD) == 0 || (*(mapping - 1) & 0xff00) == 0)(static_cast <bool> ((firstUnit & MAPPING_HAS_CCC_LCCC_WORD
) == 0 || (*(mapping - 1) & 0xff00) == 0) ? void (0) : __assert_fail
("(firstUnit & MAPPING_HAS_CCC_LCCC_WORD) == 0 || (*(mapping - 1) & 0xff00) == 0"
, __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__
))
;
2298 return firstUnit >> 8; // tccc
2299}
2300
2301// Dual functionality:
2302// buffer!=nullptr: normalize
2303// buffer==nullptr: isNormalized/quickCheck/spanQuickCheckYes
2304const char16_t *
2305Normalizer2Impl::makeFCD(const char16_t *src, const char16_t *limit,
2306 ReorderingBuffer *buffer,
2307 UErrorCode &errorCode) const {
2308 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
2309 // Similar to the prevBoundary in the compose() implementation.
2310 const char16_t *prevBoundary=src;
2311 int32_t prevFCD16=0;
2312 if(limit==nullptr) {
4
Assuming the condition is true
5
Taking true branch
2313 src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
6
Calling 'Normalizer2Impl::copyLowPrefixFromNulTerminated'
2314 if(U_FAILURE(errorCode)) {
2315 return src;
2316 }
2317 if(prevBoundary<src) {
2318 prevBoundary=src;
2319 // We know that the previous character's lccc==0.
2320 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
2321 prevFCD16=getFCD16(*(src-1));
2322 if(prevFCD16>1) {
2323 --prevBoundary;
2324 }
2325 }
2326 limit=u_strchru_strchr_77(src, 0);
2327 }
2328
2329 // Note: In this function we use buffer->appendZeroCC() because we track
2330 // the lead and trail combining classes here, rather than leaving it to
2331 // the ReorderingBuffer.
2332 // The exception is the call to decomposeShort() which uses the buffer
2333 // in the normal way.
2334
2335 const char16_t *prevSrc;
2336 UChar32 c=0;
2337 uint16_t fcd16=0;
2338
2339 for(;;) {
2340 // count code units with lccc==0
2341 for(prevSrc=src; src!=limit;) {
2342 if((c=*src)<minLcccCP) {
2343 prevFCD16=~c;
2344 ++src;
2345 } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
2346 prevFCD16=0;
2347 ++src;
2348 } else {
2349 if(U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
2350 char16_t c2;
2351 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])(((c2=src[1])&0xfffffc00)==0xdc00)) {
2352 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
2353 }
2354 }
2355 if((fcd16=getFCD16FromNormData(c))<=0xff) {
2356 prevFCD16=fcd16;
2357 src+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
2358 } else {
2359 break;
2360 }
2361 }
2362 }
2363 // copy these code units all at once
2364 if(src!=prevSrc) {
2365 if(buffer!=nullptr && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
2366 break;
2367 }
2368 if(src==limit) {
2369 break;
2370 }
2371 prevBoundary=src;
2372 // We know that the previous character's lccc==0.
2373 if(prevFCD16<0) {
2374 // Fetching the fcd16 value was deferred for this below-minLcccCP code point.
2375 UChar32 prev=~prevFCD16;
2376 if(prev<minDecompNoCP) {
2377 prevFCD16=0;
2378 } else {
2379 prevFCD16=getFCD16FromNormData(prev);
2380 if(prevFCD16>1) {
2381 --prevBoundary;
2382 }
2383 }
2384 } else {
2385 const char16_t *p=src-1;
2386 if(U16_IS_TRAIL(*p)(((*p)&0xfffffc00)==0xdc00) && prevSrc<p && U16_IS_LEAD(*(p-1))(((*(p-1))&0xfffffc00)==0xd800)) {
2387 --p;
2388 // Need to fetch the previous character's FCD value because
2389 // prevFCD16 was just for the trail surrogate code point.
2390 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])(((UChar32)(p[0])<<10UL)+(UChar32)(p[1])-((0xd800<<
10UL)+0xdc00-0x10000))
);
2391 // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
2392 }
2393 if(prevFCD16>1) {
2394 prevBoundary=p;
2395 }
2396 }
2397 // The start of the current character (c).
2398 prevSrc=src;
2399 } else if(src==limit) {
2400 break;
2401 }
2402
2403 src+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
2404 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
2405 // Check for proper order, and decompose locally if necessary.
2406 if((prevFCD16&0xff)<=(fcd16>>8)) {
2407 // proper order: prev tccc <= current lccc
2408 if((fcd16&0xff)<=1) {
2409 prevBoundary=src;
2410 }
2411 if(buffer!=nullptr && !buffer->appendZeroCC(c, errorCode)) {
2412 break;
2413 }
2414 prevFCD16=fcd16;
2415 continue;
2416 } else if(buffer==nullptr) {
2417 return prevBoundary; // quick check "no"
2418 } else {
2419 /*
2420 * Back out the part of the source that we copied or appended
2421 * already but is now going to be decomposed.
2422 * prevSrc is set to after what was copied/appended.
2423 */
2424 buffer->removeSuffix(static_cast<int32_t>(prevSrc - prevBoundary));
2425 /*
2426 * Find the part of the source that needs to be decomposed,
2427 * up to the next safe boundary.
2428 */
2429 src=findNextFCDBoundary(src, limit);
2430 /*
2431 * The source text does not fulfill the conditions for FCD.
2432 * Decompose and reorder a limited piece of the text.
2433 */
2434 decomposeShort(prevBoundary, src, false, false, *buffer, errorCode);
2435 if (U_FAILURE(errorCode)) {
2436 break;
2437 }
2438 prevBoundary=src;
2439 prevFCD16=0;
2440 }
2441 }
2442 return src;
2443}
2444
2445void Normalizer2Impl::makeFCDAndAppend(const char16_t *src, const char16_t *limit,
2446 UBool doMakeFCD,
2447 UnicodeString &safeMiddle,
2448 ReorderingBuffer &buffer,
2449 UErrorCode &errorCode) const {
2450 if(!buffer.isEmpty()) {
1
Taking true branch
2451 const char16_t *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
2452 if(src
1.1
'src' is not equal to 'firstBoundaryInSrc'
!=firstBoundaryInSrc) {
2
Taking true branch
2453 const char16_t *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
2454 buffer.getLimit());
2455 int32_t destSuffixLength = static_cast<int32_t>(buffer.getLimit() - lastBoundaryInDest);
2456 UnicodeString middle(lastBoundaryInDest, destSuffixLength);
2457 buffer.removeSuffix(destSuffixLength);
2458 safeMiddle=middle;
2459 middle.append(src, static_cast<int32_t>(firstBoundaryInSrc - src));
2460 const char16_t *middleStart=middle.getBuffer();
2461 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
3
Calling 'Normalizer2Impl::makeFCD'
2462 if(U_FAILURE(errorCode)) {
2463 return;
2464 }
2465 src=firstBoundaryInSrc;
2466 }
2467 }
2468 if(doMakeFCD) {
2469 makeFCD(src, limit, &buffer, errorCode);
2470 } else {
2471 if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
2472 limit=u_strchru_strchr_77(src, 0);
2473 }
2474 buffer.appendZeroCC(src, limit, errorCode);
2475 }
2476}
2477
2478const char16_t *Normalizer2Impl::findPreviousFCDBoundary(const char16_t *start, const char16_t *p) const {
2479 while(start<p) {
2480 const char16_t *codePointLimit = p;
2481 UChar32 c;
2482 uint16_t norm16;
2483 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (start) && (((__c2 = *((p) - 1))&0xfffffc00)
==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_77
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2484 if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
2485 return codePointLimit;
2486 }
2487 if (norm16HasDecompBoundaryBefore(norm16)) {
2488 return p;
2489 }
2490 }
2491 return p;
2492}
2493
2494const char16_t *Normalizer2Impl::findNextFCDBoundary(const char16_t *p, const char16_t *limit) const {
2495 while(p<limit) {
2496 const char16_t *codePointStart=p;
2497 UChar32 c;
2498 uint16_t norm16;
2499 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_77(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
2500 if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
2501 return codePointStart;
2502 }
2503 if (norm16HasDecompBoundaryAfter(norm16)) {
2504 return p;
2505 }
2506 }
2507 return p;
2508}
2509
2510// CanonicalIterator data -------------------------------------------------- ***
2511
2512CanonIterData::CanonIterData(UErrorCode &errorCode) :
2513 mutableTrie(umutablecptrie_openumutablecptrie_open_77(0, 0, &errorCode)), trie(nullptr),
2514 canonStartSets(uprv_deleteUObjectuprv_deleteUObject_77, nullptr, errorCode) {}
2515
2516CanonIterData::~CanonIterData() {
2517 umutablecptrie_closeumutablecptrie_close_77(mutableTrie);
2518 ucptrie_closeucptrie_close_77(trie);
2519}
2520
2521void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
2522 uint32_t canonValue = umutablecptrie_getumutablecptrie_get_77(mutableTrie, decompLead);
2523 if((canonValue&(CANON_HAS_SET0x200000|CANON_VALUE_MASK0x1fffff))==0 && origin!=0) {
2524 // origin is the first character whose decomposition starts with
2525 // the character for which we are setting the value.
2526 umutablecptrie_setumutablecptrie_set_77(mutableTrie, decompLead, canonValue|origin, &errorCode);
2527 } else {
2528 // origin is not the first character, or it is U+0000.
2529 UnicodeSet *set;
2530 if((canonValue&CANON_HAS_SET0x200000)==0) {
2531 LocalPointer<UnicodeSet> lpSet(new UnicodeSet, errorCode);
2532 set=lpSet.getAlias();
2533 if(U_FAILURE(errorCode)) {
2534 return;
2535 }
2536 UChar32 firstOrigin = static_cast<UChar32>(canonValue & CANON_VALUE_MASK0x1fffff);
2537 canonValue = (canonValue & ~CANON_VALUE_MASK0x1fffff) | CANON_HAS_SET0x200000 | static_cast<uint32_t>(canonStartSets.size());
2538 umutablecptrie_setumutablecptrie_set_77(mutableTrie, decompLead, canonValue, &errorCode);
2539 canonStartSets.adoptElement(lpSet.orphan(), errorCode);
2540 if (U_FAILURE(errorCode)) {
2541 return;
2542 }
2543 if(firstOrigin!=0) {
2544 set->add(firstOrigin);
2545 }
2546 } else {
2547 set = static_cast<UnicodeSet*>(canonStartSets[static_cast<int32_t>(canonValue & CANON_VALUE_MASK0x1fffff)]);
2548 }
2549 set->add(origin);
2550 }
2551}
2552
2553// C++ class for friend access to private Normalizer2Impl members.
2554class InitCanonIterData {
2555public:
2556 static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
2557};
2558
2559U_CDECL_BEGINextern "C" {
2560
2561// UInitOnce instantiation function for CanonIterData
2562static void U_CALLCONV
2563initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
2564 InitCanonIterData::doInit(impl, errorCode);
2565}
2566
2567U_CDECL_END}
2568
2569void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
2570 U_ASSERT(impl->fCanonIterData == nullptr)(static_cast <bool> (impl->fCanonIterData == nullptr
) ? void (0) : __assert_fail ("impl->fCanonIterData == nullptr"
, __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__
))
;
2571 impl->fCanonIterData = new CanonIterData(errorCode);
2572 if (impl->fCanonIterData == nullptr) {
2573 errorCode=U_MEMORY_ALLOCATION_ERROR;
2574 }
2575 if (U_SUCCESS(errorCode)) {
2576 UChar32 start = 0, end;
2577 uint32_t value;
2578 while ((end = ucptrie_getRangeucptrie_getRange_77(impl->normTrie, start,
2579 UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT,
2580 nullptr, nullptr, &value)) >= 0) {
2581 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
2582 if (value != Normalizer2Impl::INERT) {
2583 impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
2584 }
2585 start = end + 1;
2586 }
2587#ifdef UCPTRIE_DEBUG
2588 umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData");
2589#endif
2590 impl->fCanonIterData->trie = umutablecptrie_buildImmutableumutablecptrie_buildImmutable_77(
2591 impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode);
2592 umutablecptrie_closeumutablecptrie_close_77(impl->fCanonIterData->mutableTrie);
2593 impl->fCanonIterData->mutableTrie = nullptr;
2594 }
2595 if (U_FAILURE(errorCode)) {
2596 delete impl->fCanonIterData;
2597 impl->fCanonIterData = nullptr;
2598 }
2599}
2600
2601void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
2602 CanonIterData &newData,
2603 UErrorCode &errorCode) const {
2604 if(isInert(norm16) ||
2605 (minYesNo<=norm16 && norm16<minNoNo) ||
2606 (minMaybeNo<=norm16 && norm16<minMaybeYes)) {
2607 // Inert, or 2-way mapping (including Hangul syllable).
2608 // We do not write a canonStartSet for any yesNo/maybeNo character.
2609 // Composites from 2-way mappings are added at runtime from the
2610 // starter's compositions list, and the other characters in
2611 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
2612 // "maybe" characters.
2613 return;
2614 }
2615 for(UChar32 c=start; c<=end; ++c) {
2616 uint32_t oldValue = umutablecptrie_getumutablecptrie_get_77(newData.mutableTrie, c);
2617 uint32_t newValue=oldValue;
2618 if(isMaybeYesOrNonZeroCC(norm16)) {
2619 // not a segment starter if it occurs in a decomposition or has cc!=0
2620 newValue|=CANON_NOT_SEGMENT_STARTER0x80000000;
2621 if(norm16<MIN_NORMAL_MAYBE_YES) {
2622 newValue|=CANON_HAS_COMPOSITIONS0x40000000;
2623 }
2624 } else if(norm16<minYesNo) {
2625 newValue|=CANON_HAS_COMPOSITIONS0x40000000;
2626 } else {
2627 // c has a one-way decomposition
2628 UChar32 c2=c;
2629 // Do not modify the whole-range norm16 value.
2630 uint16_t norm16_2=norm16;
2631 if (isDecompNoAlgorithmic(norm16_2)) {
2632 // Maps to an isCompYesAndZeroCC.
2633 c2 = mapAlgorithmic(c2, norm16_2);
2634 norm16_2 = getRawNorm16(c2);
2635 // No compatibility mappings for the CanonicalIterator.
2636 U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)))(static_cast <bool> (!(isHangulLV(norm16_2) || isHangulLVT
(norm16_2))) ? void (0) : __assert_fail ("!(isHangulLV(norm16_2) || isHangulLVT(norm16_2))"
, __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__
))
;
2637 }
2638 if (norm16_2 > minYesNo) {
2639 // c decomposes, get everything from the variable-length extra data
2640 const uint16_t *mapping=getDataForYesOrNo(norm16_2);
2641 uint16_t firstUnit=*mapping;
2642 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
2643 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
2644 if(c==c2 && (*(mapping-1)&0xff)!=0) {
2645 newValue|=CANON_NOT_SEGMENT_STARTER0x80000000; // original c has cc!=0
2646 }
2647 }
2648 // Skip empty mappings (no characters in the decomposition).
2649 if(length!=0) {
2650 ++mapping; // skip over the firstUnit
2651 // add c to first code point's start set
2652 int32_t i=0;
2653 U16_NEXT_UNSAFE(mapping, i, c2)do { (c2)=(mapping)[(i)++]; if((((c2)&0xfffffc00)==0xd800
)) { (c2)=(((UChar32)((c2))<<10UL)+(UChar32)((mapping)[
(i)++])-((0xd800<<10UL)+0xdc00-0x10000)); } } while (false
)
;
2654 newData.addToStartSet(c, c2, errorCode);
2655 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
2656 // one-way mapping. A 2-way mapping is possible here after
2657 // intermediate algorithmic mapping.
2658 if(norm16_2>=minNoNo) {
2659 while(i<length) {
2660 U16_NEXT_UNSAFE(mapping, i, c2)do { (c2)=(mapping)[(i)++]; if((((c2)&0xfffffc00)==0xd800
)) { (c2)=(((UChar32)((c2))<<10UL)+(UChar32)((mapping)[
(i)++])-((0xd800<<10UL)+0xdc00-0x10000)); } } while (false
)
;
2661 uint32_t c2Value = umutablecptrie_getumutablecptrie_get_77(newData.mutableTrie, c2);
2662 if((c2Value&CANON_NOT_SEGMENT_STARTER0x80000000)==0) {
2663 umutablecptrie_setumutablecptrie_set_77(newData.mutableTrie, c2,
2664 c2Value|CANON_NOT_SEGMENT_STARTER0x80000000, &errorCode);
2665 }
2666 }
2667 }
2668 }
2669 } else {
2670 // c decomposed to c2 algorithmically; c has cc==0
2671 newData.addToStartSet(c, c2, errorCode);
2672 }
2673 }
2674 if(newValue!=oldValue) {
2675 umutablecptrie_setumutablecptrie_set_77(newData.mutableTrie, c, newValue, &errorCode);
2676 }
2677 }
2678}
2679
2680UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
2681 // Logically const: Synchronized instantiation.
2682 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
2683 umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
2684 return U_SUCCESS(errorCode);
2685}
2686
2687int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
2688 return static_cast<int32_t>(ucptrie_getucptrie_get_77(fCanonIterData->trie, c));
2689}
2690
2691const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
2692 return *static_cast<const UnicodeSet*>(fCanonIterData->canonStartSets[n]);
2693}
2694
2695UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
2696 return getCanonValue(c)>=0;
2697}
2698
2699UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
2700 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER0x80000000;
2701 if(canonValue==0) {
2702 return false;
2703 }
2704 set.clear();
2705 int32_t value=canonValue&CANON_VALUE_MASK0x1fffff;
2706 if((canonValue&CANON_HAS_SET0x200000)!=0) {
2707 set.addAll(getCanonStartSet(value));
2708 } else if(value!=0) {
2709 set.add(value);
2710 }
2711 if((canonValue&CANON_HAS_COMPOSITIONS0x40000000)!=0) {
2712 uint16_t norm16=getRawNorm16(c);
2713 if(norm16==JAMO_L) {
2714 UChar32 syllable=
2715 static_cast<UChar32>(Hangul::HANGUL_BASE + (c - Hangul::JAMO_L_BASE) * Hangul::JAMO_VT_COUNT);
2716 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
2717 } else {
2718 addComposites(getCompositionsList(norm16), set);
2719 }
2720 }
2721 return true;
2722}
2723
2724U_NAMESPACE_END}
2725
2726// Normalizer2 data swapping ----------------------------------------------- ***
2727
2728U_NAMESPACE_USEusing namespace icu_77;
2729
2730U_CAPIextern "C" int32_t U_EXPORT2
2731unorm2_swapunorm2_swap_77(const UDataSwapper *ds,
2732 const void *inData, int32_t length, void *outData,
2733 UErrorCode *pErrorCode) {
2734 const UDataInfo *pInfo;
2735 int32_t headerSize;
2736
2737 const uint8_t *inBytes;
2738 uint8_t *outBytes;
2739
2740 const int32_t *inIndexes;
2741 int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
2742
2743 int32_t i, offset, nextOffset, size;
2744
2745 /* udata_swapDataHeader checks the arguments */
2746 headerSize=udata_swapDataHeaderudata_swapDataHeader_77(ds, inData, length, outData, pErrorCode);
2747 if(pErrorCode==nullptr || U_FAILURE(*pErrorCode)) {
2748 return 0;
2749 }
2750
2751 /* check data format and format version */
2752 pInfo=(const UDataInfo *)((const char *)inData+4);
2753 uint8_t formatVersion0=pInfo->formatVersion[0];
2754 if(!(
2755 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
2756 pInfo->dataFormat[1]==0x72 &&
2757 pInfo->dataFormat[2]==0x6d &&
2758 pInfo->dataFormat[3]==0x32 &&
2759 (1<=formatVersion0 && formatVersion0<=5)
2760 )) {
2761 udata_printErrorudata_printError_77(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
2762 pInfo->dataFormat[0], pInfo->dataFormat[1],
2763 pInfo->dataFormat[2], pInfo->dataFormat[3],
2764 pInfo->formatVersion[0]);
2765 *pErrorCode=U_UNSUPPORTED_ERROR;
2766 return 0;
2767 }
2768
2769 inBytes=(const uint8_t *)inData+headerSize;
2770 outBytes=(outData == nullptr) ? nullptr : (uint8_t *)outData+headerSize;
2771
2772 inIndexes=(const int32_t *)inBytes;
2773 int32_t minIndexesLength;
2774 if(formatVersion0==1) {
2775 minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
2776 } else if(formatVersion0==2) {
2777 minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
2778 } else if(formatVersion0<=4) {
2779 minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
2780 } else {
2781 minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_NO_COMBINES_FWD+1;
2782 }
2783
2784 if(length>=0) {
2785 length-=headerSize;
2786 if(length<minIndexesLength*4) {
2787 udata_printErrorudata_printError_77(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
2788 length);
2789 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2790 return 0;
2791 }
2792 }
2793
2794 /* read the first few indexes */
2795 for(i=0; i<UPRV_LENGTHOF(indexes)(int32_t)(sizeof(indexes)/sizeof((indexes)[0])); ++i) {
2796 indexes[i]=udata_readInt32udata_readInt32_77(ds, inIndexes[i]);
2797 }
2798
2799 /* get the total length of the data */
2800 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
2801
2802 if(length>=0) {
2803 if(length<size) {
2804 udata_printErrorudata_printError_77(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
2805 length);
2806 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2807 return 0;
2808 }
2809
2810 /* copy the data for inaccessible bytes */
2811 if(inBytes!=outBytes) {
2812 uprv_memcpy(outBytes, inBytes, size)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(static_cast <bool> (outBytes != __null) ? void (0) :
__assert_fail ("outBytes != __null", __builtin_FILE (), __builtin_LINE
(), __extension__ __PRETTY_FUNCTION__)); (static_cast <bool
> (inBytes != __null) ? void (0) : __assert_fail ("inBytes != __null"
, __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__
)); clang diagnostic pop :: memcpy(outBytes, inBytes, size);
} while (false)
;
2813 }
2814
2815 offset=0;
2816
2817 /* swap the int32_t indexes[] */
2818 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
2819 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
2820 offset=nextOffset;
2821
2822 /* swap the trie */
2823 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
2824 utrie_swapAnyVersionutrie_swapAnyVersion_77(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2825 offset=nextOffset;
2826
2827 /* swap the uint16_t extraData[] */
2828 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
2829 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2830 offset=nextOffset;
2831
2832 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
2833 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
2834 offset=nextOffset;
2835
2836 U_ASSERT(offset==size)(static_cast <bool> (offset==size) ? void (0) : __assert_fail
("offset==size", __builtin_FILE (), __builtin_LINE (), __extension__
__PRETTY_FUNCTION__))
;
2837 }
2838
2839 return headerSize+size;
2840}
2841
2842#endif // !UCONFIG_NO_NORMALIZATION