File: | root/firefox-clang/intl/icu/source/i18n/nfrule.cpp |
Warning: | line 500, column 13 Value stored to 'subEnd' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * Copyright (C) 1997-2015, International Business Machines |
6 | * Corporation and others. All Rights Reserved. |
7 | ****************************************************************************** |
8 | * file name: nfrule.cpp |
9 | * encoding: UTF-8 |
10 | * tab size: 8 (not used) |
11 | * indentation:4 |
12 | * |
13 | * Modification history |
14 | * Date Name Comments |
15 | * 10/11/2001 Doug Ported from ICU4J |
16 | */ |
17 | |
18 | #include "nfrule.h" |
19 | |
20 | #if U_HAVE_RBNF1 |
21 | |
22 | #include "unicode/localpointer.h" |
23 | #include "unicode/rbnf.h" |
24 | #include "unicode/tblcoll.h" |
25 | #include "unicode/plurfmt.h" |
26 | #include "unicode/upluralrules.h" |
27 | #include "unicode/coleitr.h" |
28 | #include "unicode/uchar.h" |
29 | #include "nfrs.h" |
30 | #include "nfrlist.h" |
31 | #include "nfsubs.h" |
32 | #include "patternprops.h" |
33 | #include "putilimp.h" |
34 | |
35 | U_NAMESPACE_BEGINnamespace icu_77 { |
36 | |
37 | NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status) |
38 | : baseValue(static_cast<int32_t>(0)) |
39 | , radix(10) |
40 | , exponent(0) |
41 | , decimalPoint(0) |
42 | , fRuleText(_ruleText) |
43 | , sub1(nullptr) |
44 | , sub2(nullptr) |
45 | , formatter(_rbnf) |
46 | , rulePatternFormat(nullptr) |
47 | { |
48 | if (!fRuleText.isEmpty()) { |
49 | parseRuleDescriptor(fRuleText, status); |
50 | } |
51 | } |
52 | |
53 | NFRule::~NFRule() |
54 | { |
55 | if (sub1 != sub2) { |
56 | delete sub2; |
57 | sub2 = nullptr; |
58 | } |
59 | delete sub1; |
60 | sub1 = nullptr; |
61 | delete rulePatternFormat; |
62 | rulePatternFormat = nullptr; |
63 | } |
64 | |
65 | static const char16_t gLeftBracket = 0x005b; |
66 | static const char16_t gRightBracket = 0x005d; |
67 | static const char16_t gVerticalLine = 0x007C; |
68 | static const char16_t gColon = 0x003a; |
69 | static const char16_t gZero = 0x0030; |
70 | static const char16_t gNine = 0x0039; |
71 | static const char16_t gSpace = 0x0020; |
72 | static const char16_t gSlash = 0x002f; |
73 | static const char16_t gGreaterThan = 0x003e; |
74 | static const char16_t gLessThan = 0x003c; |
75 | static const char16_t gComma = 0x002c; |
76 | static const char16_t gDot = 0x002e; |
77 | static const char16_t gTick = 0x0027; |
78 | //static const char16_t gMinus = 0x002d; |
79 | static const char16_t gSemicolon = 0x003b; |
80 | static const char16_t gX = 0x0078; |
81 | |
82 | static const char16_t gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ |
83 | static const char16_t gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */ |
84 | static const char16_t gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */ |
85 | |
86 | static const char16_t gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */ |
87 | static const char16_t gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */ |
88 | |
89 | static const char16_t gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ |
90 | static const char16_t gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ |
91 | static const char16_t gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ |
92 | static const char16_t gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ |
93 | static const char16_t gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ |
94 | static const char16_t gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ |
95 | static const char16_t gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ |
96 | static const char16_t gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ |
97 | static const char16_t gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ |
98 | static const char16_t gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ |
99 | static const char16_t gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ |
100 | static const char16_t gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ |
101 | |
102 | static const char16_t * const RULE_PREFIXES[] = { |
103 | gLessLess, gLessPercent, gLessHash, gLessZero, |
104 | gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, |
105 | gEqualPercent, gEqualHash, gEqualZero, nullptr |
106 | }; |
107 | |
108 | void |
109 | NFRule::makeRules(UnicodeString& description, |
110 | NFRuleSet *owner, |
111 | const NFRule *predecessor, |
112 | const RuleBasedNumberFormat *rbnf, |
113 | NFRuleList& rules, |
114 | UErrorCode& status) |
115 | { |
116 | // we know we're making at least one rule, so go ahead and |
117 | // new it up and initialize its basevalue and divisor |
118 | // (this also strips the rule descriptor, if any, off the |
119 | // description string) |
120 | LocalPointer<NFRule> rule1(new NFRule(rbnf, description, status)); |
121 | /* test for nullptr */ |
122 | if (rule1.isNull()) { |
123 | status = U_MEMORY_ALLOCATION_ERROR; |
124 | return; |
125 | } |
126 | description = rule1->fRuleText; |
127 | |
128 | // check the description to see whether there's text enclosed |
129 | // in brackets |
130 | int32_t brack1 = description.indexOf(gLeftBracket); |
131 | int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket); |
132 | |
133 | // if the description doesn't contain a matched pair of brackets, |
134 | // or if it's of a type that doesn't recognize bracketed text, |
135 | // then leave the description alone, initialize the rule's |
136 | // rule text and substitutions, and return that rule |
137 | if (brack2 < 0 || brack1 > brack2 |
138 | || rule1->getType() == kProperFractionRule |
139 | || rule1->getType() == kNegativeNumberRule |
140 | || rule1->getType() == kInfinityRule |
141 | || rule1->getType() == kNaNRule) |
142 | { |
143 | rule1->extractSubstitutions(owner, description, predecessor, status); |
144 | } |
145 | else { |
146 | // if the description does contain a matched pair of brackets, |
147 | // then it's really shorthand for two rules (with one exception) |
148 | LocalPointer<NFRule> rule2; |
149 | UnicodeString sbuf; |
150 | int32_t orElseOp = description.indexOf(gVerticalLine); |
151 | |
152 | // we'll actually only split the rule into two rules if its |
153 | // base value is an even multiple of its divisor (or it's one |
154 | // of the special rules) |
155 | if ((rule1->baseValue > 0 |
156 | && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) |
157 | || rule1->getType() == kImproperFractionRule |
158 | || rule1->getType() == kDefaultRule) { |
159 | |
160 | // if it passes that test, new up the second rule. If the |
161 | // rule set both rules will belong to is a fraction rule |
162 | // set, they both have the same base value; otherwise, |
163 | // increment the original rule's base value ("rule1" actually |
164 | // goes SECOND in the rule set's rule list) |
165 | rule2.adoptInstead(new NFRule(rbnf, UnicodeString(), status)); |
166 | /* test for nullptr */ |
167 | if (rule2.isNull()) { |
168 | status = U_MEMORY_ALLOCATION_ERROR; |
169 | return; |
170 | } |
171 | if (rule1->baseValue >= 0) { |
172 | rule2->baseValue = rule1->baseValue; |
173 | if (!owner->isFractionRuleSet()) { |
174 | ++rule1->baseValue; |
175 | } |
176 | } |
177 | |
178 | // if the description began with "x.x" and contains bracketed |
179 | // text, it describes both the improper fraction rule and |
180 | // the proper fraction rule |
181 | else if (rule1->getType() == kImproperFractionRule) { |
182 | rule2->setType(kProperFractionRule); |
183 | } |
184 | |
185 | // if the description began with "x.0" and contains bracketed |
186 | // text, it describes both the default rule and the |
187 | // improper fraction rule |
188 | else if (rule1->getType() == kDefaultRule) { |
189 | rule2->baseValue = rule1->baseValue; |
190 | rule1->setType(kImproperFractionRule); |
191 | } |
192 | |
193 | // both rules have the same radix and exponent (i.e., the |
194 | // same divisor) |
195 | rule2->radix = rule1->radix; |
196 | rule2->exponent = rule1->exponent; |
197 | |
198 | // By default, rule2's rule text omits the stuff in brackets, |
199 | // unless it contains a | between the brackets. |
200 | // Initialize its rule text and substitutions accordingly. |
201 | sbuf.append(description, 0, brack1); |
202 | if (orElseOp >= 0) { |
203 | sbuf.append(description, orElseOp + 1, brack2 - orElseOp - 1); |
204 | } |
205 | if (brack2 + 1 < description.length()) { |
206 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); |
207 | } |
208 | rule2->extractSubstitutions(owner, sbuf, predecessor, status); |
209 | } |
210 | |
211 | // rule1's text includes the text in the brackets but omits |
212 | // the brackets themselves: initialize _its_ rule text and |
213 | // substitutions accordingly |
214 | sbuf.setTo(description, 0, brack1); |
215 | if (orElseOp >= 0) { |
216 | sbuf.append(description, brack1 + 1, orElseOp - brack1 - 1); |
217 | } |
218 | else { |
219 | sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); |
220 | } |
221 | if (brack2 + 1 < description.length()) { |
222 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); |
223 | } |
224 | rule1->extractSubstitutions(owner, sbuf, predecessor, status); |
225 | |
226 | // if we only have one rule, return it; if we have two, return |
227 | // a two-element array containing them (notice that rule2 goes |
228 | // BEFORE rule1 in the list: in all cases, rule2 OMITS the |
229 | // material in the brackets and rule1 INCLUDES the material |
230 | // in the brackets) |
231 | if (!rule2.isNull()) { |
232 | if (rule2->baseValue >= kNoBase) { |
233 | rules.add(rule2.orphan()); |
234 | } |
235 | else { |
236 | owner->setNonNumericalRule(rule2.orphan()); |
237 | } |
238 | } |
239 | } |
240 | if (rule1->baseValue >= kNoBase) { |
241 | rules.add(rule1.orphan()); |
242 | } |
243 | else { |
244 | owner->setNonNumericalRule(rule1.orphan()); |
245 | } |
246 | } |
247 | |
248 | /** |
249 | * This function parses the rule's rule descriptor (i.e., the base |
250 | * value and/or other tokens that precede the rule's rule text |
251 | * in the description) and sets the rule's base value, radix, and |
252 | * exponent according to the descriptor. (If the description doesn't |
253 | * include a rule descriptor, then this function sets everything to |
254 | * default values and the rule set sets the rule's real base value). |
255 | * @param description The rule's description |
256 | * @return If "description" included a rule descriptor, this is |
257 | * "description" with the descriptor and any trailing whitespace |
258 | * stripped off. Otherwise; it's "descriptor" unchangd. |
259 | */ |
260 | void |
261 | NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) |
262 | { |
263 | // the description consists of a rule descriptor and a rule body, |
264 | // separated by a colon. The rule descriptor is optional. If |
265 | // it's omitted, just set the base value to 0. |
266 | int32_t p = description.indexOf(gColon); |
267 | if (p != -1) { |
268 | // copy the descriptor out into its own string and strip it, |
269 | // along with any trailing whitespace, out of the original |
270 | // description |
271 | UnicodeString descriptor; |
272 | descriptor.setTo(description, 0, p); |
273 | |
274 | ++p; |
275 | while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { |
276 | ++p; |
277 | } |
278 | description.removeBetween(0, p); |
279 | |
280 | // check first to see if the rule descriptor matches the token |
281 | // for one of the special rules. If it does, set the base |
282 | // value to the correct identifier value |
283 | int descriptorLength = descriptor.length(); |
284 | char16_t firstChar = descriptor.charAt(0); |
285 | char16_t lastChar = descriptor.charAt(descriptorLength - 1); |
286 | if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) { |
287 | // if the rule descriptor begins with a digit, it's a descriptor |
288 | // for a normal rule |
289 | // since we don't have Long.parseLong, and this isn't much work anyway, |
290 | // just build up the value as we encounter the digits. |
291 | int64_t val = 0; |
292 | p = 0; |
293 | char16_t c = gSpace; |
294 | |
295 | // begin parsing the descriptor: copy digits |
296 | // into "tempValue", skip periods, commas, and spaces, |
297 | // stop on a slash or > sign (or at the end of the string), |
298 | // and throw an exception on any other character |
299 | while (p < descriptorLength) { |
300 | c = descriptor.charAt(p); |
301 | if (c >= gZero && c <= gNine) { |
302 | int64_t digit = static_cast<int64_t>(c - gZero); |
303 | if ((val > 0 && val > (INT64_MAX(9223372036854775807L) - digit) / 10) || |
304 | (val < 0 && val < (INT64_MIN(-9223372036854775807L -1) - digit) / 10)) { |
305 | // out of int64_t range |
306 | status = U_PARSE_ERROR; |
307 | return; |
308 | } |
309 | val = val * 10 + digit; |
310 | } |
311 | else if (c == gSlash || c == gGreaterThan) { |
312 | break; |
313 | } |
314 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
315 | } |
316 | else { |
317 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); |
318 | status = U_PARSE_ERROR; |
319 | return; |
320 | } |
321 | ++p; |
322 | } |
323 | |
324 | // we have the base value, so set it |
325 | setBaseValue(val, status); |
326 | |
327 | // if we stopped the previous loop on a slash, we're |
328 | // now parsing the rule's radix. Again, accumulate digits |
329 | // in tempValue, skip punctuation, stop on a > mark, and |
330 | // throw an exception on anything else |
331 | if (c == gSlash) { |
332 | val = 0; |
333 | ++p; |
334 | while (p < descriptorLength) { |
335 | c = descriptor.charAt(p); |
336 | if (c >= gZero && c <= gNine) { |
337 | int64_t digit = static_cast<int64_t>(c - gZero); |
338 | if ((val > 0 && val > (INT64_MAX(9223372036854775807L) - digit) / 10) || |
339 | (val < 0 && val < (INT64_MIN(-9223372036854775807L -1) - digit) / 10)) { |
340 | // out of int64_t range |
341 | status = U_PARSE_ERROR; |
342 | return; |
343 | } |
344 | val = val * 10 + digit; |
345 | } |
346 | else if (c == gGreaterThan) { |
347 | break; |
348 | } |
349 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
350 | } |
351 | else { |
352 | // throw new IllegalArgumentException("Illegal character is rule descriptor"); |
353 | status = U_PARSE_ERROR; |
354 | return; |
355 | } |
356 | ++p; |
357 | } |
358 | |
359 | // tempValue now contain's the rule's radix. Set it |
360 | // accordingly, and recalculate the rule's exponent |
361 | radix = static_cast<int32_t>(val); |
362 | if (radix == 0) { |
363 | // throw new IllegalArgumentException("Rule can't have radix of 0"); |
364 | status = U_PARSE_ERROR; |
365 | } |
366 | |
367 | exponent = expectedExponent(); |
368 | } |
369 | |
370 | // if we stopped the previous loop on a > sign, then continue |
371 | // for as long as we still see > signs. For each one, |
372 | // decrement the exponent (unless the exponent is already 0). |
373 | // If we see another character before reaching the end of |
374 | // the descriptor, that's also a syntax error. |
375 | if (c == gGreaterThan) { |
376 | while (p < descriptor.length()) { |
377 | c = descriptor.charAt(p); |
378 | if (c == gGreaterThan && exponent > 0) { |
379 | --exponent; |
380 | } else { |
381 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); |
382 | status = U_PARSE_ERROR; |
383 | return; |
384 | } |
385 | ++p; |
386 | } |
387 | } |
388 | } |
389 | else if (0 == descriptor.compare(gMinusX, 2)) { |
390 | setType(kNegativeNumberRule); |
391 | } |
392 | else if (descriptorLength == 3) { |
393 | if (firstChar == gZero && lastChar == gX) { |
394 | setBaseValue(kProperFractionRule, status); |
395 | decimalPoint = descriptor.charAt(1); |
396 | } |
397 | else if (firstChar == gX && lastChar == gX) { |
398 | setBaseValue(kImproperFractionRule, status); |
399 | decimalPoint = descriptor.charAt(1); |
400 | } |
401 | else if (firstChar == gX && lastChar == gZero) { |
402 | setBaseValue(kDefaultRule, status); |
403 | decimalPoint = descriptor.charAt(1); |
404 | } |
405 | else if (descriptor.compare(gNaN, 3) == 0) { |
406 | setBaseValue(kNaNRule, status); |
407 | } |
408 | else if (descriptor.compare(gInf, 3) == 0) { |
409 | setBaseValue(kInfinityRule, status); |
410 | } |
411 | } |
412 | } |
413 | // else use the default base value for now. |
414 | |
415 | // finally, if the rule body begins with an apostrophe, strip it off |
416 | // (this is generally used to put whitespace at the beginning of |
417 | // a rule's rule text) |
418 | if (!description.isEmpty() && description.charAt(0) == gTick) { |
419 | description.removeBetween(0, 1); |
420 | } |
421 | |
422 | // return the description with all the stuff we've just waded through |
423 | // stripped off the front. It now contains just the rule body. |
424 | // return description; |
425 | } |
426 | |
427 | /** |
428 | * Searches the rule's rule text for the substitution tokens, |
429 | * creates the substitutions, and removes the substitution tokens |
430 | * from the rule's rule text. |
431 | * @param owner The rule set containing this rule |
432 | * @param predecessor The rule preseding this one in "owners" rule list |
433 | * @param ownersOwner The RuleBasedFormat that owns this rule |
434 | */ |
435 | void |
436 | NFRule::extractSubstitutions(const NFRuleSet* ruleSet, |
437 | const UnicodeString &ruleText, |
438 | const NFRule* predecessor, |
439 | UErrorCode& status) |
440 | { |
441 | if (U_FAILURE(status)) { |
442 | return; |
443 | } |
444 | fRuleText = ruleText; |
445 | sub1 = extractSubstitution(ruleSet, predecessor, status); |
446 | if (sub1 == nullptr) { |
447 | // Small optimization. There is no need to create a redundant NullSubstitution. |
448 | sub2 = nullptr; |
449 | } |
450 | else { |
451 | sub2 = extractSubstitution(ruleSet, predecessor, status); |
452 | } |
453 | int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
454 | int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1); |
455 | if (pluralRuleEnd >= 0) { |
456 | int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart); |
457 | if (endType < 0) { |
458 | status = U_PARSE_ERROR; |
459 | return; |
460 | } |
461 | UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2)); |
462 | UPluralType pluralType; |
463 | if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal")icu::UnicodeString(true, u"cardinal", -1))) { |
464 | pluralType = UPLURAL_TYPE_CARDINAL; |
465 | } |
466 | else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal")icu::UnicodeString(true, u"ordinal", -1))) { |
467 | pluralType = UPLURAL_TYPE_ORDINAL; |
468 | } |
469 | else { |
470 | status = U_ILLEGAL_ARGUMENT_ERROR; |
471 | return; |
472 | } |
473 | rulePatternFormat = formatter->createPluralFormat(pluralType, |
474 | fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status); |
475 | } |
476 | } |
477 | |
478 | /** |
479 | * Searches the rule's rule text for the first substitution token, |
480 | * creates a substitution based on it, and removes the token from |
481 | * the rule's rule text. |
482 | * @param owner The rule set containing this rule |
483 | * @param predecessor The rule preceding this one in the rule set's |
484 | * rule list |
485 | * @param ownersOwner The RuleBasedNumberFormat that owns this rule |
486 | * @return The newly-created substitution. This is never null; if |
487 | * the rule text doesn't contain any substitution tokens, this will |
488 | * be a NullSubstitution. |
489 | */ |
490 | NFSubstitution * |
491 | NFRule::extractSubstitution(const NFRuleSet* ruleSet, |
492 | const NFRule* predecessor, |
493 | UErrorCode& status) |
494 | { |
495 | NFSubstitution* result = nullptr; |
496 | |
497 | // search the rule's rule text for the first two characters of |
498 | // a substitution token |
499 | int32_t subStart = indexOfAnyRulePrefix(); |
500 | int32_t subEnd = subStart; |
Value stored to 'subEnd' during its initialization is never read | |
501 | |
502 | // if we didn't find one, create a null substitution positioned |
503 | // at the end of the rule text |
504 | if (subStart == -1) { |
505 | return nullptr; |
506 | } |
507 | |
508 | // special-case the ">>>" token, since searching for the > at the |
509 | // end will actually find the > in the middle |
510 | if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { |
511 | subEnd = subStart + 2; |
512 | |
513 | // otherwise the substitution token ends with the same character |
514 | // it began with |
515 | } else { |
516 | char16_t c = fRuleText.charAt(subStart); |
517 | subEnd = fRuleText.indexOf(c, subStart + 1); |
518 | // special case for '<%foo<<' |
519 | if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) { |
520 | // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle |
521 | // occurs because of the juxtaposition of two different rules. The check for '<' is a hack |
522 | // to get around this. Having the duplicate at the front would cause problems with |
523 | // rules like "<<%" to format, say, percents... |
524 | ++subEnd; |
525 | } |
526 | } |
527 | |
528 | // if we don't find the end of the token (i.e., if we're on a single, |
529 | // unmatched token character), create a null substitution positioned |
530 | // at the end of the rule |
531 | if (subEnd == -1) { |
532 | return nullptr; |
533 | } |
534 | |
535 | // if we get here, we have a real substitution token (or at least |
536 | // some text bounded by substitution token characters). Use |
537 | // makeSubstitution() to create the right kind of substitution |
538 | UnicodeString subToken; |
539 | subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart); |
540 | result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, |
541 | this->formatter, subToken, status); |
542 | |
543 | // remove the substitution from the rule text |
544 | fRuleText.removeBetween(subStart, subEnd+1); |
545 | |
546 | return result; |
547 | } |
548 | |
549 | /** |
550 | * Sets the rule's base value, and causes the radix and exponent |
551 | * to be recalculated. This is used during construction when we |
552 | * don't know the rule's base value until after it's been |
553 | * constructed. It should be used at any other time. |
554 | * @param The new base value for the rule. |
555 | */ |
556 | void |
557 | NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) |
558 | { |
559 | // set the base value |
560 | baseValue = newBaseValue; |
561 | radix = 10; |
562 | |
563 | // if this isn't a special rule, recalculate the radix and exponent |
564 | // (the radix always defaults to 10; if it's supposed to be something |
565 | // else, it's cleaned up by the caller and the exponent is |
566 | // recalculated again-- the only function that does this is |
567 | // NFRule.parseRuleDescriptor() ) |
568 | if (baseValue >= 1) { |
569 | exponent = expectedExponent(); |
570 | |
571 | // this function gets called on a fully-constructed rule whose |
572 | // description didn't specify a base value. This means it |
573 | // has substitutions, and some substitutions hold on to copies |
574 | // of the rule's divisor. Fix their copies of the divisor. |
575 | if (sub1 != nullptr) { |
576 | sub1->setDivisor(radix, exponent, status); |
577 | } |
578 | if (sub2 != nullptr) { |
579 | sub2->setDivisor(radix, exponent, status); |
580 | } |
581 | |
582 | // if this is a special rule, its radix and exponent are basically |
583 | // ignored. Set them to "safe" default values |
584 | } else { |
585 | exponent = 0; |
586 | } |
587 | } |
588 | |
589 | /** |
590 | * This calculates the rule's exponent based on its radix and base |
591 | * value. This will be the highest power the radix can be raised to |
592 | * and still produce a result less than or equal to the base value. |
593 | */ |
594 | int16_t |
595 | NFRule::expectedExponent() const |
596 | { |
597 | // since the log of 0, or the log base 0 of something, causes an |
598 | // error, declare the exponent in these cases to be 0 (we also |
599 | // deal with the special-rule identifiers here) |
600 | if (radix == 0 || baseValue < 1) { |
601 | return 0; |
602 | } |
603 | |
604 | // we get rounding error in some cases-- for example, log 1000 / log 10 |
605 | // gives us 1.9999999996 instead of 2. The extra logic here is to take |
606 | // that into account |
607 | int16_t tempResult = static_cast<int16_t>(uprv_loguprv_log_77(static_cast<double>(baseValue)) / |
608 | uprv_loguprv_log_77(static_cast<double>(radix))); |
609 | int64_t temp = util64_pow(radix, tempResult + 1); |
610 | if (temp <= baseValue) { |
611 | tempResult += 1; |
612 | } |
613 | return tempResult; |
614 | } |
615 | |
616 | /** |
617 | * Searches the rule's rule text for any of the specified strings. |
618 | * @return The index of the first match in the rule's rule text |
619 | * (i.e., the first substring in the rule's rule text that matches |
620 | * _any_ of the strings in "strings"). If none of the strings in |
621 | * "strings" is found in the rule's rule text, returns -1. |
622 | */ |
623 | int32_t |
624 | NFRule::indexOfAnyRulePrefix() const |
625 | { |
626 | int result = -1; |
627 | for (int i = 0; RULE_PREFIXES[i]; i++) { |
628 | int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]); |
629 | if (pos != -1 && (result == -1 || pos < result)) { |
630 | result = pos; |
631 | } |
632 | } |
633 | return result; |
634 | } |
635 | |
636 | //----------------------------------------------------------------------- |
637 | // boilerplate |
638 | //----------------------------------------------------------------------- |
639 | |
640 | static UBool |
641 | util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2) |
642 | { |
643 | if (sub1) { |
644 | if (sub2) { |
645 | return *sub1 == *sub2; |
646 | } |
647 | } else if (!sub2) { |
648 | return true; |
649 | } |
650 | return false; |
651 | } |
652 | |
653 | /** |
654 | * Tests two rules for equality. |
655 | * @param that The rule to compare this one against |
656 | * @return True is the two rules are functionally equivalent |
657 | */ |
658 | bool |
659 | NFRule::operator==(const NFRule& rhs) const |
660 | { |
661 | return baseValue == rhs.baseValue |
662 | && radix == rhs.radix |
663 | && exponent == rhs.exponent |
664 | && fRuleText == rhs.fRuleText |
665 | && util_equalSubstitutions(sub1, rhs.sub1) |
666 | && util_equalSubstitutions(sub2, rhs.sub2); |
667 | } |
668 | |
669 | /** |
670 | * Returns a textual representation of the rule. This won't |
671 | * necessarily be the same as the description that this rule |
672 | * was created with, but it will produce the same result. |
673 | * @return A textual description of the rule |
674 | */ |
675 | static void util_append64(UnicodeString& result, int64_t n) |
676 | { |
677 | char16_t buffer[256]; |
678 | int32_t len = util64_tou(n, buffer, sizeof(buffer)); |
679 | UnicodeString temp(buffer, len); |
680 | result.append(temp); |
681 | } |
682 | |
683 | void |
684 | NFRule::_appendRuleText(UnicodeString& result) const |
685 | { |
686 | switch (getType()) { |
687 | case kNegativeNumberRule: result.append(gMinusX, 2); break; |
688 | case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
689 | case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
690 | case kDefaultRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break; |
691 | case kInfinityRule: result.append(gInf, 3); break; |
692 | case kNaNRule: result.append(gNaN, 3); break; |
693 | default: |
694 | // for a normal rule, write out its base value, and if the radix is |
695 | // something other than 10, write out the radix (with the preceding |
696 | // slash, of course). Then calculate the expected exponent and if |
697 | // if isn't the same as the actual exponent, write an appropriate |
698 | // number of > signs. Finally, terminate the whole thing with |
699 | // a colon. |
700 | util_append64(result, baseValue); |
701 | if (radix != 10) { |
702 | result.append(gSlash); |
703 | util_append64(result, radix); |
704 | } |
705 | int numCarets = expectedExponent() - exponent; |
706 | for (int i = 0; i < numCarets; i++) { |
707 | result.append(gGreaterThan); |
708 | } |
709 | break; |
710 | } |
711 | result.append(gColon); |
712 | result.append(gSpace); |
713 | |
714 | // if the rule text begins with a space, write an apostrophe |
715 | // (whitespace after the rule descriptor is ignored; the |
716 | // apostrophe is used to make the whitespace significant) |
717 | if (fRuleText.charAt(0) == gSpace && (sub1 == nullptr || sub1->getPos() != 0)) { |
718 | result.append(gTick); |
719 | } |
720 | |
721 | // now, write the rule's rule text, inserting appropriate |
722 | // substitution tokens in the appropriate places |
723 | UnicodeString ruleTextCopy; |
724 | ruleTextCopy.setTo(fRuleText); |
725 | |
726 | UnicodeString temp; |
727 | if (sub2 != nullptr) { |
728 | sub2->toString(temp); |
729 | ruleTextCopy.insert(sub2->getPos(), temp); |
730 | } |
731 | if (sub1 != nullptr) { |
732 | sub1->toString(temp); |
733 | ruleTextCopy.insert(sub1->getPos(), temp); |
734 | } |
735 | |
736 | result.append(ruleTextCopy); |
737 | |
738 | // and finally, top the whole thing off with a semicolon and |
739 | // return the result |
740 | result.append(gSemicolon); |
741 | } |
742 | |
743 | int64_t NFRule::getDivisor() const |
744 | { |
745 | return util64_pow(radix, exponent); |
746 | } |
747 | |
748 | /** |
749 | * Internal function to facilitate numerical rounding. See the explanation in MultiplierSubstitution::transformNumber(). |
750 | */ |
751 | bool NFRule::hasModulusSubstitution() const |
752 | { |
753 | return (sub1 != nullptr && sub1->isModulusSubstitution()) || (sub2 != nullptr && sub2->isModulusSubstitution()); |
754 | } |
755 | |
756 | |
757 | //----------------------------------------------------------------------- |
758 | // formatting |
759 | //----------------------------------------------------------------------- |
760 | |
761 | /** |
762 | * Formats the number, and inserts the resulting text into |
763 | * toInsertInto. |
764 | * @param number The number being formatted |
765 | * @param toInsertInto The string where the resultant text should |
766 | * be inserted |
767 | * @param pos The position in toInsertInto where the resultant text |
768 | * should be inserted |
769 | */ |
770 | void |
771 | NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
772 | { |
773 | // first, insert the rule's rule text into toInsertInto at the |
774 | // specified position, then insert the results of the substitutions |
775 | // into the right places in toInsertInto (notice we do the |
776 | // substitutions in reverse order so that the offsets don't get |
777 | // messed up) |
778 | int32_t pluralRuleStart = fRuleText.length(); |
779 | int32_t lengthOffset = 0; |
780 | if (!rulePatternFormat) { |
781 | toInsertInto.insert(pos, fRuleText); |
782 | } |
783 | else { |
784 | pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
785 | int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); |
786 | int initialLength = toInsertInto.length(); |
787 | if (pluralRuleEnd < fRuleText.length() - 1) { |
788 | toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2)); |
789 | } |
790 | toInsertInto.insert(pos, |
791 | rulePatternFormat->format(static_cast<int32_t>(number / util64_pow(radix, exponent)), status)); |
792 | if (pluralRuleStart > 0) { |
793 | toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart)); |
794 | } |
795 | lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength); |
796 | } |
797 | |
798 | if (sub2 != nullptr) { |
799 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
800 | } |
801 | if (sub1 != nullptr) { |
802 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
803 | } |
804 | } |
805 | |
806 | /** |
807 | * Formats the number, and inserts the resulting text into |
808 | * toInsertInto. |
809 | * @param number The number being formatted |
810 | * @param toInsertInto The string where the resultant text should |
811 | * be inserted |
812 | * @param pos The position in toInsertInto where the resultant text |
813 | * should be inserted |
814 | */ |
815 | void |
816 | NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
817 | { |
818 | // first, insert the rule's rule text into toInsertInto at the |
819 | // specified position, then insert the results of the substitutions |
820 | // into the right places in toInsertInto |
821 | // [again, we have two copies of this routine that do the same thing |
822 | // so that we don't sacrifice precision in a long by casting it |
823 | // to a double] |
824 | int32_t pluralRuleStart = fRuleText.length(); |
825 | int32_t lengthOffset = 0; |
826 | if (!rulePatternFormat) { |
827 | toInsertInto.insert(pos, fRuleText); |
828 | } |
829 | else { |
830 | pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
831 | int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); |
832 | int initialLength = toInsertInto.length(); |
833 | if (pluralRuleEnd < fRuleText.length() - 1) { |
834 | toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2)); |
835 | } |
836 | double pluralVal = number; |
837 | if (0 <= pluralVal && pluralVal < 1) { |
838 | // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior. |
839 | // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors. |
840 | pluralVal = uprv_rounduprv_round_77(pluralVal * util64_pow(radix, exponent)); |
841 | } |
842 | else { |
843 | pluralVal = pluralVal / util64_pow(radix, exponent); |
844 | } |
845 | toInsertInto.insert(pos, rulePatternFormat->format(static_cast<int32_t>(pluralVal), status)); |
846 | if (pluralRuleStart > 0) { |
847 | toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart)); |
848 | } |
849 | lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength); |
850 | } |
851 | |
852 | if (sub2 != nullptr) { |
853 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
854 | } |
855 | if (sub1 != nullptr) { |
856 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
857 | } |
858 | } |
859 | |
860 | /** |
861 | * Used by the owning rule set to determine whether to invoke the |
862 | * rollback rule (i.e., whether this rule or the one that precedes |
863 | * it in the rule set's list should be used to format the number) |
864 | * @param The number being formatted |
865 | * @return True if the rule set should use the rule that precedes |
866 | * this one in its list; false if it should use this rule |
867 | */ |
868 | UBool |
869 | NFRule::shouldRollBack(int64_t number) const |
870 | { |
871 | // we roll back if the rule contains a modulus substitution, |
872 | // the number being formatted is an even multiple of the rule's |
873 | // divisor, and the rule's base value is NOT an even multiple |
874 | // of its divisor |
875 | // In other words, if the original description had |
876 | // 100: << hundred[ >>]; |
877 | // that expands into |
878 | // 100: << hundred; |
879 | // 101: << hundred >>; |
880 | // internally. But when we're formatting 200, if we use the rule |
881 | // at 101, which would normally apply, we get "two hundred zero". |
882 | // To prevent this, we roll back and use the rule at 100 instead. |
883 | // This is the logic that makes this happen: the rule at 101 has |
884 | // a modulus substitution, its base value isn't an even multiple |
885 | // of 100, and the value we're trying to format _is_ an even |
886 | // multiple of 100. This is called the "rollback rule." |
887 | if ((sub1 != nullptr && sub1->isModulusSubstitution()) || (sub2 != nullptr && sub2->isModulusSubstitution())) { |
888 | int64_t re = util64_pow(radix, exponent); |
889 | return (number % re) == 0 && (baseValue % re) != 0; |
890 | } |
891 | return false; |
892 | } |
893 | |
894 | //----------------------------------------------------------------------- |
895 | // parsing |
896 | //----------------------------------------------------------------------- |
897 | |
898 | /** |
899 | * Attempts to parse the string with this rule. |
900 | * @param text The string being parsed |
901 | * @param parsePosition On entry, the value is ignored and assumed to |
902 | * be 0. On exit, this has been updated with the position of the first |
903 | * character not consumed by matching the text against this rule |
904 | * (if this rule doesn't match the text at all, the parse position |
905 | * if left unchanged (presumably at 0) and the function returns |
906 | * new Long(0)). |
907 | * @param isFractionRule True if this rule is contained within a |
908 | * fraction rule set. This is only used if the rule has no |
909 | * substitutions. |
910 | * @return If this rule matched the text, this is the rule's base value |
911 | * combined appropriately with the results of parsing the substitutions. |
912 | * If nothing matched, this is new Long(0) and the parse position is |
913 | * left unchanged. The result will be an instance of Long if the |
914 | * result is an integer and Double otherwise. The result is never null. |
915 | */ |
916 | #ifdef RBNF_DEBUG |
917 | #include <stdio.h> |
918 | |
919 | static void dumpUS(FILE* f, const UnicodeString& us) { |
920 | int len = us.length(); |
921 | char* buf = (char *)uprv_mallocuprv_malloc_77((len+1)*sizeof(char)); //new char[len+1]; |
922 | if (buf != nullptr) { |
923 | us.extract(0, len, buf); |
924 | buf[len] = 0; |
925 | fprintf(f, "%s", buf); |
926 | uprv_freeuprv_free_77(buf); //delete[] buf; |
927 | } |
928 | } |
929 | #endif |
930 | UBool |
931 | NFRule::doParse(const UnicodeString& text, |
932 | ParsePosition& parsePosition, |
933 | UBool isFractionRule, |
934 | double upperBound, |
935 | uint32_t nonNumericalExecutedRuleMask, |
936 | int32_t recursionCount, |
937 | Formattable& resVal) const |
938 | { |
939 | // internally we operate on a copy of the string being parsed |
940 | // (because we're going to change it) and use our own ParsePosition |
941 | ParsePosition pp; |
942 | UnicodeString workText(text); |
943 | |
944 | int32_t sub1Pos = sub1 != nullptr ? sub1->getPos() : fRuleText.length(); |
945 | int32_t sub2Pos = sub2 != nullptr ? sub2->getPos() : fRuleText.length(); |
946 | |
947 | // check to see whether the text before the first substitution |
948 | // matches the text at the beginning of the string being |
949 | // parsed. If it does, strip that off the front of workText; |
950 | // otherwise, dump out with a mismatch |
951 | UnicodeString prefix; |
952 | prefix.setTo(fRuleText, 0, sub1Pos); |
953 | |
954 | #ifdef RBNF_DEBUG |
955 | fprintf(stderrstderr, "doParse %p ", this); |
956 | { |
957 | UnicodeString rt; |
958 | _appendRuleText(rt); |
959 | dumpUS(stderrstderr, rt); |
960 | } |
961 | |
962 | fprintf(stderrstderr, " text: '"); |
963 | dumpUS(stderrstderr, text); |
964 | fprintf(stderrstderr, "' prefix: '"); |
965 | dumpUS(stderrstderr, prefix); |
966 | #endif |
967 | stripPrefix(workText, prefix, pp); |
968 | int32_t prefixLength = text.length() - workText.length(); |
969 | |
970 | #ifdef RBNF_DEBUG |
971 | fprintf(stderrstderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos); |
972 | #endif |
973 | |
974 | if (pp.getIndex() == 0 && sub1Pos != 0) { |
975 | // commented out because ParsePosition doesn't have error index in 1.1.x |
976 | // restored for ICU4C port |
977 | parsePosition.setErrorIndex(pp.getErrorIndex()); |
978 | resVal.setLong(0); |
979 | return true; |
980 | } |
981 | if (baseValue == kInfinityRule) { |
982 | // If you match this, don't try to perform any calculations on it. |
983 | parsePosition.setIndex(pp.getIndex()); |
984 | resVal.setDouble(uprv_getInfinityuprv_getInfinity_77()); |
985 | return true; |
986 | } |
987 | if (baseValue == kNaNRule) { |
988 | // If you match this, don't try to perform any calculations on it. |
989 | parsePosition.setIndex(pp.getIndex()); |
990 | resVal.setDouble(uprv_getNaNuprv_getNaN_77()); |
991 | return true; |
992 | } |
993 | |
994 | // this is the fun part. The basic guts of the rule-matching |
995 | // logic is matchToDelimiter(), which is called twice. The first |
996 | // time it searches the input string for the rule text BETWEEN |
997 | // the substitutions and tries to match the intervening text |
998 | // in the input string with the first substitution. If that |
999 | // succeeds, it then calls it again, this time to look for the |
1000 | // rule text after the second substitution and to match the |
1001 | // intervening input text against the second substitution. |
1002 | // |
1003 | // For example, say we have a rule that looks like this: |
1004 | // first << middle >> last; |
1005 | // and input text that looks like this: |
1006 | // first one middle two last |
1007 | // First we use stripPrefix() to match "first " in both places and |
1008 | // strip it off the front, leaving |
1009 | // one middle two last |
1010 | // Then we use matchToDelimiter() to match " middle " and try to |
1011 | // match "one" against a substitution. If it's successful, we now |
1012 | // have |
1013 | // two last |
1014 | // We use matchToDelimiter() a second time to match " last" and |
1015 | // try to match "two" against a substitution. If "two" matches |
1016 | // the substitution, we have a successful parse. |
1017 | // |
1018 | // Since it's possible in many cases to find multiple instances |
1019 | // of each of these pieces of rule text in the input string, |
1020 | // we need to try all the possible combinations of these |
1021 | // locations. This prevents us from prematurely declaring a mismatch, |
1022 | // and makes sure we match as much input text as we can. |
1023 | int highWaterMark = 0; |
1024 | double result = 0; |
1025 | int start = 0; |
1026 | double tempBaseValue = static_cast<double>(baseValue <= 0 ? 0 : baseValue); |
1027 | |
1028 | UnicodeString temp; |
1029 | do { |
1030 | // our partial parse result starts out as this rule's base |
1031 | // value. If it finds a successful match, matchToDelimiter() |
1032 | // will compose this in some way with what it gets back from |
1033 | // the substitution, giving us a new partial parse result |
1034 | pp.setIndex(0); |
1035 | |
1036 | temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos); |
1037 | double partialResult = matchToDelimiter(workText, start, tempBaseValue, |
1038 | temp, pp, sub1, |
1039 | nonNumericalExecutedRuleMask, |
1040 | recursionCount, |
1041 | upperBound); |
1042 | |
1043 | // if we got a successful match (or were trying to match a |
1044 | // null substitution), pp is now pointing at the first unmatched |
1045 | // character. Take note of that, and try matchToDelimiter() |
1046 | // on the input text again |
1047 | if (pp.getIndex() != 0 || sub1 == nullptr) { |
1048 | start = pp.getIndex(); |
1049 | |
1050 | UnicodeString workText2; |
1051 | workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); |
1052 | ParsePosition pp2; |
1053 | |
1054 | // the second matchToDelimiter() will compose our previous |
1055 | // partial result with whatever it gets back from its |
1056 | // substitution if there's a successful match, giving us |
1057 | // a real result |
1058 | temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos); |
1059 | partialResult = matchToDelimiter(workText2, 0, partialResult, |
1060 | temp, pp2, sub2, |
1061 | nonNumericalExecutedRuleMask, |
1062 | recursionCount, |
1063 | upperBound); |
1064 | |
1065 | // if we got a successful match on this second |
1066 | // matchToDelimiter() call, update the high-water mark |
1067 | // and result (if necessary) |
1068 | if (pp2.getIndex() != 0 || sub2 == nullptr) { |
1069 | if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { |
1070 | highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); |
1071 | result = partialResult; |
1072 | } |
1073 | } |
1074 | else { |
1075 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1076 | // restored for ICU4C port |
1077 | int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex(); |
1078 | if (i_temp> parsePosition.getErrorIndex()) { |
1079 | parsePosition.setErrorIndex(i_temp); |
1080 | } |
1081 | } |
1082 | } |
1083 | else { |
1084 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1085 | // restored for ICU4C port |
1086 | int32_t i_temp = sub1Pos + pp.getErrorIndex(); |
1087 | if (i_temp > parsePosition.getErrorIndex()) { |
1088 | parsePosition.setErrorIndex(i_temp); |
1089 | } |
1090 | } |
1091 | // keep trying to match things until the outer matchToDelimiter() |
1092 | // call fails to make a match (each time, it picks up where it |
1093 | // left off the previous time) |
1094 | } while (sub1Pos != sub2Pos |
1095 | && pp.getIndex() > 0 |
1096 | && pp.getIndex() < workText.length() |
1097 | && pp.getIndex() != start); |
1098 | |
1099 | // update the caller's ParsePosition with our high-water mark |
1100 | // (i.e., it now points at the first character this function |
1101 | // didn't match-- the ParsePosition is therefore unchanged if |
1102 | // we didn't match anything) |
1103 | parsePosition.setIndex(highWaterMark); |
1104 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1105 | // restored for ICU4C port |
1106 | if (highWaterMark > 0) { |
1107 | parsePosition.setErrorIndex(0); |
1108 | } |
1109 | |
1110 | // this is a hack for one unusual condition: Normally, whether this |
1111 | // rule belong to a fraction rule set or not is handled by its |
1112 | // substitutions. But if that rule HAS NO substitutions, then |
1113 | // we have to account for it here. By definition, if the matching |
1114 | // rule in a fraction rule set has no substitutions, its numerator |
1115 | // is 1, and so the result is the reciprocal of its base value. |
1116 | if (isFractionRule && highWaterMark > 0 && sub1 == nullptr) { |
1117 | result = 1 / result; |
1118 | } |
1119 | |
1120 | resVal.setDouble(result); |
1121 | return true; // ??? do we need to worry if it is a long or a double? |
1122 | } |
1123 | |
1124 | /** |
1125 | * This function is used by parse() to match the text being parsed |
1126 | * against a possible prefix string. This function |
1127 | * matches characters from the beginning of the string being parsed |
1128 | * to characters from the prospective prefix. If they match, pp is |
1129 | * updated to the first character not matched, and the result is |
1130 | * the unparsed part of the string. If they don't match, the whole |
1131 | * string is returned, and pp is left unchanged. |
1132 | * @param text The string being parsed |
1133 | * @param prefix The text to match against |
1134 | * @param pp On entry, ignored and assumed to be 0. On exit, points |
1135 | * to the first unmatched character (assuming the whole prefix matched), |
1136 | * or is unchanged (if the whole prefix didn't match). |
1137 | * @return If things match, this is the unparsed part of "text"; |
1138 | * if they didn't match, this is "text". |
1139 | */ |
1140 | void |
1141 | NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const |
1142 | { |
1143 | // if the prefix text is empty, dump out without doing anything |
1144 | if (prefix.length() != 0) { |
1145 | UErrorCode status = U_ZERO_ERROR; |
1146 | // use prefixLength() to match the beginning of |
1147 | // "text" against "prefix". This function returns the |
1148 | // number of characters from "text" that matched (or 0 if |
1149 | // we didn't match the whole prefix) |
1150 | int32_t pfl = prefixLength(text, prefix, status); |
1151 | if (U_FAILURE(status)) { // Memory allocation error. |
1152 | return; |
1153 | } |
1154 | if (pfl != 0) { |
1155 | // if we got a successful match, update the parse position |
1156 | // and strip the prefix off of "text" |
1157 | pp.setIndex(pp.getIndex() + pfl); |
1158 | text.remove(0, pfl); |
1159 | } |
1160 | } |
1161 | } |
1162 | |
1163 | /** |
1164 | * Used by parse() to match a substitution and any following text. |
1165 | * "text" is searched for instances of "delimiter". For each instance |
1166 | * of delimiter, the intervening text is tested to see whether it |
1167 | * matches the substitution. The longest match wins. |
1168 | * @param text The string being parsed |
1169 | * @param startPos The position in "text" where we should start looking |
1170 | * for "delimiter". |
1171 | * @param baseValue A partial parse result (often the rule's base value), |
1172 | * which is combined with the result from matching the substitution |
1173 | * @param delimiter The string to search "text" for. |
1174 | * @param pp Ignored and presumed to be 0 on entry. If there's a match, |
1175 | * on exit this will point to the first unmatched character. |
1176 | * @param sub If we find "delimiter" in "text", this substitution is used |
1177 | * to match the text between the beginning of the string and the |
1178 | * position of "delimiter." (If "delimiter" is the empty string, then |
1179 | * this function just matches against this substitution and updates |
1180 | * everything accordingly.) |
1181 | * @param upperBound When matching the substitution, it will only |
1182 | * consider rules with base values lower than this value. |
1183 | * @return If there's a match, this is the result of composing |
1184 | * baseValue with the result of matching the substitution. Otherwise, |
1185 | * this is new Long(0). It's never null. If the result is an integer, |
1186 | * this will be an instance of Long; otherwise, it's an instance of |
1187 | * Double. |
1188 | * |
1189 | * !!! note {dlf} in point of fact, in the java code the caller always converts |
1190 | * the result to a double, so we might as well return one. |
1191 | */ |
1192 | double |
1193 | NFRule::matchToDelimiter(const UnicodeString& text, |
1194 | int32_t startPos, |
1195 | double _baseValue, |
1196 | const UnicodeString& delimiter, |
1197 | ParsePosition& pp, |
1198 | const NFSubstitution* sub, |
1199 | uint32_t nonNumericalExecutedRuleMask, |
1200 | int32_t recursionCount, |
1201 | double upperBound) const |
1202 | { |
1203 | UErrorCode status = U_ZERO_ERROR; |
1204 | // if "delimiter" contains real (i.e., non-ignorable) text, search |
1205 | // it for "delimiter" beginning at "start". If that succeeds, then |
1206 | // use "sub"'s doParse() method to match the text before the |
1207 | // instance of "delimiter" we just found. |
1208 | if (!allIgnorable(delimiter, status)) { |
1209 | if (U_FAILURE(status)) { //Memory allocation error. |
1210 | return 0; |
1211 | } |
1212 | ParsePosition tempPP; |
1213 | Formattable result; |
1214 | |
1215 | // use findText() to search for "delimiter". It returns a two- |
1216 | // element array: element 0 is the position of the match, and |
1217 | // element 1 is the number of characters that matched |
1218 | // "delimiter". |
1219 | int32_t dLen; |
1220 | int32_t dPos = findText(text, delimiter, startPos, &dLen); |
1221 | |
1222 | // if findText() succeeded, isolate the text preceding the |
1223 | // match, and use "sub" to match that text |
1224 | while (dPos >= 0) { |
1225 | UnicodeString subText; |
1226 | subText.setTo(text, 0, dPos); |
1227 | if (subText.length() > 0) { |
1228 | UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, |
1229 | #if UCONFIG_NO_COLLATION0 |
1230 | false, |
1231 | #else |
1232 | formatter->isLenient(), |
1233 | #endif |
1234 | nonNumericalExecutedRuleMask, |
1235 | recursionCount, |
1236 | result); |
1237 | |
1238 | // if the substitution could match all the text up to |
1239 | // where we found "delimiter", then this function has |
1240 | // a successful match. Bump the caller's parse position |
1241 | // to point to the first character after the text |
1242 | // that matches "delimiter", and return the result |
1243 | // we got from parsing the substitution. |
1244 | if (success && tempPP.getIndex() == dPos) { |
1245 | pp.setIndex(dPos + dLen); |
1246 | return result.getDouble(); |
1247 | } |
1248 | else { |
1249 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1250 | // restored for ICU4C port |
1251 | if (tempPP.getErrorIndex() > 0) { |
1252 | pp.setErrorIndex(tempPP.getErrorIndex()); |
1253 | } else { |
1254 | pp.setErrorIndex(tempPP.getIndex()); |
1255 | } |
1256 | } |
1257 | } |
1258 | |
1259 | // if we didn't match the substitution, search for another |
1260 | // copy of "delimiter" in "text" and repeat the loop if |
1261 | // we find it |
1262 | tempPP.setIndex(0); |
1263 | dPos = findText(text, delimiter, dPos + dLen, &dLen); |
1264 | } |
1265 | // if we make it here, this was an unsuccessful match, and we |
1266 | // leave pp unchanged and return 0 |
1267 | pp.setIndex(0); |
1268 | return 0; |
1269 | |
1270 | // if "delimiter" is empty, or consists only of ignorable characters |
1271 | // (i.e., is semantically empty), thwe we obviously can't search |
1272 | // for "delimiter". Instead, just use "sub" to parse as much of |
1273 | // "text" as possible. |
1274 | } |
1275 | else if (sub == nullptr) { |
1276 | return _baseValue; |
1277 | } |
1278 | else { |
1279 | ParsePosition tempPP; |
1280 | Formattable result; |
1281 | |
1282 | // try to match the whole string against the substitution |
1283 | UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, |
1284 | #if UCONFIG_NO_COLLATION0 |
1285 | false, |
1286 | #else |
1287 | formatter->isLenient(), |
1288 | #endif |
1289 | nonNumericalExecutedRuleMask, |
1290 | recursionCount, |
1291 | result); |
1292 | if (success && (tempPP.getIndex() != 0)) { |
1293 | // if there's a successful match (or it's a null |
1294 | // substitution), update pp to point to the first |
1295 | // character we didn't match, and pass the result from |
1296 | // sub.doParse() on through to the caller |
1297 | pp.setIndex(tempPP.getIndex()); |
1298 | return result.getDouble(); |
1299 | } |
1300 | else { |
1301 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1302 | // restored for ICU4C port |
1303 | pp.setErrorIndex(tempPP.getErrorIndex()); |
1304 | } |
1305 | |
1306 | // and if we get to here, then nothing matched, so we return |
1307 | // 0 and leave pp alone |
1308 | return 0; |
1309 | } |
1310 | } |
1311 | |
1312 | /** |
1313 | * Used by stripPrefix() to match characters. If lenient parse mode |
1314 | * is off, this just calls startsWith(). If lenient parse mode is on, |
1315 | * this function uses CollationElementIterators to match characters in |
1316 | * the strings (only primary-order differences are significant in |
1317 | * determining whether there's a match). |
1318 | * @param str The string being tested |
1319 | * @param prefix The text we're hoping to see at the beginning |
1320 | * of "str" |
1321 | * @return If "prefix" is found at the beginning of "str", this |
1322 | * is the number of characters in "str" that were matched (this |
1323 | * isn't necessarily the same as the length of "prefix" when matching |
1324 | * text with a collator). If there's no match, this is 0. |
1325 | */ |
1326 | int32_t |
1327 | NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const |
1328 | { |
1329 | // if we're looking for an empty prefix, it obviously matches |
1330 | // zero characters. Just go ahead and return 0. |
1331 | if (prefix.length() == 0) { |
1332 | return 0; |
1333 | } |
1334 | |
1335 | #if !UCONFIG_NO_COLLATION0 |
1336 | // go through all this grief if we're in lenient-parse mode |
1337 | if (formatter->isLenient()) { |
1338 | // Check if non-lenient rule finds the text before call lenient parsing |
1339 | if (str.startsWith(prefix)) { |
1340 | return prefix.length(); |
1341 | } |
1342 | // get the formatter's collator and use it to create two |
1343 | // collation element iterators, one over the target string |
1344 | // and another over the prefix (right now, we'll throw an |
1345 | // exception if the collator we get back from the formatter |
1346 | // isn't a RuleBasedCollator, because RuleBasedCollator defines |
1347 | // the CollationElementIterator protocol. Hopefully, this |
1348 | // will change someday.) |
1349 | const RuleBasedCollator* collator = formatter->getCollator(); |
1350 | if (collator == nullptr) { |
1351 | status = U_MEMORY_ALLOCATION_ERROR; |
1352 | return 0; |
1353 | } |
1354 | LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str)); |
1355 | LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix)); |
1356 | // Check for memory allocation error. |
1357 | if (strIter.isNull() || prefixIter.isNull()) { |
1358 | status = U_MEMORY_ALLOCATION_ERROR; |
1359 | return 0; |
1360 | } |
1361 | |
1362 | UErrorCode err = U_ZERO_ERROR; |
1363 | |
1364 | // The original code was problematic. Consider this match: |
1365 | // prefix = "fifty-" |
1366 | // string = " fifty-7" |
1367 | // The intent is to match string up to the '7', by matching 'fifty-' at position 1 |
1368 | // in the string. Unfortunately, we were getting a match, and then computing where |
1369 | // the match terminated by rematching the string. The rematch code was using as an |
1370 | // initial guess the substring of string between 0 and prefix.length. Because of |
1371 | // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving |
1372 | // the position before the hyphen in the string. Recursing down, we then parsed the |
1373 | // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). |
1374 | // This was not pretty, especially since the string "fifty-7" parsed just fine. |
1375 | // |
1376 | // We have newer APIs now, so we can use calls on the iterator to determine what we |
1377 | // matched up to. If we terminate because we hit the last element in the string, |
1378 | // our match terminates at this length. If we terminate because we hit the last element |
1379 | // in the target, our match terminates at one before the element iterator position. |
1380 | |
1381 | // match collation elements between the strings |
1382 | int32_t oStr = strIter->next(err); |
1383 | int32_t oPrefix = prefixIter->next(err); |
1384 | |
1385 | while (oPrefix != CollationElementIterator::NULLORDER) { |
1386 | // skip over ignorable characters in the target string |
1387 | while (CollationElementIterator::primaryOrder(oStr) == 0 |
1388 | && oStr != CollationElementIterator::NULLORDER) { |
1389 | oStr = strIter->next(err); |
1390 | } |
1391 | |
1392 | // skip over ignorable characters in the prefix |
1393 | while (CollationElementIterator::primaryOrder(oPrefix) == 0 |
1394 | && oPrefix != CollationElementIterator::NULLORDER) { |
1395 | oPrefix = prefixIter->next(err); |
1396 | } |
1397 | |
1398 | // dlf: move this above following test, if we consume the |
1399 | // entire target, aren't we ok even if the source was also |
1400 | // entirely consumed? |
1401 | |
1402 | // if skipping over ignorables brought to the end of |
1403 | // the prefix, we DID match: drop out of the loop |
1404 | if (oPrefix == CollationElementIterator::NULLORDER) { |
1405 | break; |
1406 | } |
1407 | |
1408 | // if skipping over ignorables brought us to the end |
1409 | // of the target string, we didn't match and return 0 |
1410 | if (oStr == CollationElementIterator::NULLORDER) { |
1411 | return 0; |
1412 | } |
1413 | |
1414 | // match collation elements from the two strings |
1415 | // (considering only primary differences). If we |
1416 | // get a mismatch, dump out and return 0 |
1417 | if (CollationElementIterator::primaryOrder(oStr) |
1418 | != CollationElementIterator::primaryOrder(oPrefix)) { |
1419 | return 0; |
1420 | |
1421 | // otherwise, advance to the next character in each string |
1422 | // and loop (we drop out of the loop when we exhaust |
1423 | // collation elements in the prefix) |
1424 | } else { |
1425 | oStr = strIter->next(err); |
1426 | oPrefix = prefixIter->next(err); |
1427 | } |
1428 | } |
1429 | |
1430 | int32_t result = strIter->getOffset(); |
1431 | if (oStr != CollationElementIterator::NULLORDER) { |
1432 | --result; // back over character that we don't want to consume; |
1433 | } |
1434 | |
1435 | #ifdef RBNF_DEBUG |
1436 | fprintf(stderrstderr, "prefix length: %d\n", result); |
1437 | #endif |
1438 | return result; |
1439 | #if 0 |
1440 | //---------------------------------------------------------------- |
1441 | // JDK 1.2-specific API call |
1442 | // return strIter.getOffset(); |
1443 | //---------------------------------------------------------------- |
1444 | // JDK 1.1 HACK (take out for 1.2-specific code) |
1445 | |
1446 | // if we make it to here, we have a successful match. Now we |
1447 | // have to find out HOW MANY characters from the target string |
1448 | // matched the prefix (there isn't necessarily a one-to-one |
1449 | // mapping between collation elements and characters). |
1450 | // In JDK 1.2, there's a simple getOffset() call we can use. |
1451 | // In JDK 1.1, on the other hand, we have to go through some |
1452 | // ugly contortions. First, use the collator to compare the |
1453 | // same number of characters from the prefix and target string. |
1454 | // If they're equal, we're done. |
1455 | collator->setStrength(Collator::PRIMARY); |
1456 | if (str.length() >= prefix.length()) { |
1457 | UnicodeString temp; |
1458 | temp.setTo(str, 0, prefix.length()); |
1459 | if (collator->equals(temp, prefix)) { |
1460 | #ifdef RBNF_DEBUG |
1461 | fprintf(stderrstderr, "returning: %d\n", prefix.length()); |
1462 | #endif |
1463 | return prefix.length(); |
1464 | } |
1465 | } |
1466 | |
1467 | // if they're not equal, then we have to compare successively |
1468 | // larger and larger substrings of the target string until we |
1469 | // get to one that matches the prefix. At that point, we know |
1470 | // how many characters matched the prefix, and we can return. |
1471 | int32_t p = 1; |
1472 | while (p <= str.length()) { |
1473 | UnicodeString temp; |
1474 | temp.setTo(str, 0, p); |
1475 | if (collator->equals(temp, prefix)) { |
1476 | return p; |
1477 | } else { |
1478 | ++p; |
1479 | } |
1480 | } |
1481 | |
1482 | // SHOULD NEVER GET HERE!!! |
1483 | return 0; |
1484 | //---------------------------------------------------------------- |
1485 | #endif |
1486 | |
1487 | // If lenient parsing is turned off, forget all that crap above. |
1488 | // Just use String.startsWith() and be done with it. |
1489 | } else |
1490 | #endif |
1491 | { |
1492 | if (str.startsWith(prefix)) { |
1493 | return prefix.length(); |
1494 | } else { |
1495 | return 0; |
1496 | } |
1497 | } |
1498 | } |
1499 | |
1500 | /** |
1501 | * Searches a string for another string. If lenient parsing is off, |
1502 | * this just calls indexOf(). If lenient parsing is on, this function |
1503 | * uses CollationElementIterator to match characters, and only |
1504 | * primary-order differences are significant in determining whether |
1505 | * there's a match. |
1506 | * @param str The string to search |
1507 | * @param key The string to search "str" for |
1508 | * @param startingAt The index into "str" where the search is to |
1509 | * begin |
1510 | * @return A two-element array of ints. Element 0 is the position |
1511 | * of the match, or -1 if there was no match. Element 1 is the |
1512 | * number of characters in "str" that matched (which isn't necessarily |
1513 | * the same as the length of "key") |
1514 | */ |
1515 | int32_t |
1516 | NFRule::findText(const UnicodeString& str, |
1517 | const UnicodeString& key, |
1518 | int32_t startingAt, |
1519 | int32_t* length) const |
1520 | { |
1521 | if (rulePatternFormat) { |
1522 | Formattable result; |
1523 | FieldPosition position(UNUM_INTEGER_FIELD); |
1524 | position.setBeginIndex(startingAt); |
1525 | rulePatternFormat->parseType(str, this, result, position); |
1526 | int start = position.getBeginIndex(); |
1527 | if (start >= 0) { |
1528 | int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
1529 | int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2; |
1530 | int32_t matchLen = position.getEndIndex() - start; |
1531 | UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart)); |
1532 | UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix)); |
1533 | if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0 |
1534 | && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0) |
1535 | { |
1536 | *length = matchLen + prefix.length() + suffix.length(); |
1537 | return start - prefix.length(); |
1538 | } |
1539 | } |
1540 | *length = 0; |
1541 | return -1; |
1542 | } |
1543 | if (!formatter->isLenient()) { |
1544 | // if lenient parsing is turned off, this is easy: just call |
1545 | // String.indexOf() and we're done |
1546 | *length = key.length(); |
1547 | return str.indexOf(key, startingAt); |
1548 | } |
1549 | else { |
1550 | // Check if non-lenient rule finds the text before call lenient parsing |
1551 | *length = key.length(); |
1552 | int32_t pos = str.indexOf(key, startingAt); |
1553 | if(pos >= 0) { |
1554 | return pos; |
1555 | } else { |
1556 | // but if lenient parsing is turned ON, we've got some work ahead of us |
1557 | return findTextLenient(str, key, startingAt, length); |
1558 | } |
1559 | } |
1560 | } |
1561 | |
1562 | int32_t |
1563 | NFRule::findTextLenient(const UnicodeString& str, |
1564 | const UnicodeString& key, |
1565 | int32_t startingAt, |
1566 | int32_t* length) const |
1567 | { |
1568 | //---------------------------------------------------------------- |
1569 | // JDK 1.1 HACK (take out of 1.2-specific code) |
1570 | |
1571 | // in JDK 1.2, CollationElementIterator provides us with an |
1572 | // API to map between character offsets and collation elements |
1573 | // and we can do this by marching through the string comparing |
1574 | // collation elements. We can't do that in JDK 1.1. Instead, |
1575 | // we have to go through this horrible slow mess: |
1576 | int32_t p = startingAt; |
1577 | int32_t keyLen = 0; |
1578 | |
1579 | // basically just isolate smaller and smaller substrings of |
1580 | // the target string (each running to the end of the string, |
1581 | // and with the first one running from startingAt to the end) |
1582 | // and then use prefixLength() to see if the search key is at |
1583 | // the beginning of each substring. This is excruciatingly |
1584 | // slow, but it will locate the key and tell use how long the |
1585 | // matching text was. |
1586 | UnicodeString temp; |
1587 | UErrorCode status = U_ZERO_ERROR; |
1588 | while (p < str.length() && keyLen == 0) { |
1589 | temp.setTo(str, p, str.length() - p); |
1590 | keyLen = prefixLength(temp, key, status); |
1591 | if (U_FAILURE(status)) { |
1592 | break; |
1593 | } |
1594 | if (keyLen != 0) { |
1595 | *length = keyLen; |
1596 | return p; |
1597 | } |
1598 | ++p; |
1599 | } |
1600 | // if we make it to here, we didn't find it. Return -1 for the |
1601 | // location. The length should be ignored, but set it to 0, |
1602 | // which should be "safe" |
1603 | *length = 0; |
1604 | return -1; |
1605 | } |
1606 | |
1607 | /** |
1608 | * Checks to see whether a string consists entirely of ignorable |
1609 | * characters. |
1610 | * @param str The string to test. |
1611 | * @return true if the string is empty of consists entirely of |
1612 | * characters that the number formatter's collator says are |
1613 | * ignorable at the primary-order level. false otherwise. |
1614 | */ |
1615 | UBool |
1616 | NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const |
1617 | { |
1618 | // if the string is empty, we can just return true |
1619 | if (str.length() == 0) { |
1620 | return true; |
1621 | } |
1622 | |
1623 | #if !UCONFIG_NO_COLLATION0 |
1624 | // if lenient parsing is turned on, walk through the string with |
1625 | // a collation element iterator and make sure each collation |
1626 | // element is 0 (ignorable) at the primary level |
1627 | if (formatter->isLenient()) { |
1628 | const RuleBasedCollator* collator = formatter->getCollator(); |
1629 | if (collator == nullptr) { |
1630 | status = U_MEMORY_ALLOCATION_ERROR; |
1631 | return false; |
1632 | } |
1633 | LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str)); |
1634 | |
1635 | // Memory allocation error check. |
1636 | if (iter.isNull()) { |
1637 | status = U_MEMORY_ALLOCATION_ERROR; |
1638 | return false; |
1639 | } |
1640 | |
1641 | UErrorCode err = U_ZERO_ERROR; |
1642 | int32_t o = iter->next(err); |
1643 | while (o != CollationElementIterator::NULLORDER |
1644 | && CollationElementIterator::primaryOrder(o) == 0) { |
1645 | o = iter->next(err); |
1646 | } |
1647 | |
1648 | return o == CollationElementIterator::NULLORDER; |
1649 | } |
1650 | #endif |
1651 | |
1652 | // if lenient parsing is turned off, there is no such thing as |
1653 | // an ignorable character: return true only if the string is empty |
1654 | return false; |
1655 | } |
1656 | |
1657 | void |
1658 | NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) { |
1659 | if (sub1 != nullptr) { |
1660 | sub1->setDecimalFormatSymbols(newSymbols, status); |
1661 | } |
1662 | if (sub2 != nullptr) { |
1663 | sub2->setDecimalFormatSymbols(newSymbols, status); |
1664 | } |
1665 | } |
1666 | |
1667 | U_NAMESPACE_END} |
1668 | |
1669 | /* U_HAVE_RBNF */ |
1670 | #endif |