File: | root/firefox-clang/media/libopus/celt/celt_encoder.c |
Warning: | line 1279, column 7 Value stored to 'r22' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Copyright (c) 2007-2008 CSIRO |
2 | Copyright (c) 2007-2010 Xiph.Org Foundation |
3 | Copyright (c) 2008 Gregory Maxwell |
4 | Written by Jean-Marc Valin and Gregory Maxwell */ |
5 | /* |
6 | Redistribution and use in source and binary forms, with or without |
7 | modification, are permitted provided that the following conditions |
8 | are met: |
9 | |
10 | - Redistributions of source code must retain the above copyright |
11 | notice, this list of conditions and the following disclaimer. |
12 | |
13 | - Redistributions in binary form must reproduce the above copyright |
14 | notice, this list of conditions and the following disclaimer in the |
15 | documentation and/or other materials provided with the distribution. |
16 | |
17 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
21 | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
22 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
24 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
25 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
26 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
27 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | */ |
29 | |
30 | #ifdef HAVE_CONFIG_H |
31 | #include "config.h" |
32 | #endif |
33 | |
34 | #define CELT_ENCODER_C |
35 | |
36 | #include "cpu_support.h" |
37 | #include "os_support.h" |
38 | #include "mdct.h" |
39 | #include <math.h> |
40 | #include "celt.h" |
41 | #include "pitch.h" |
42 | #include "bands.h" |
43 | #include "modes.h" |
44 | #include "entcode.h" |
45 | #include "quant_bands.h" |
46 | #include "rate.h" |
47 | #include "stack_alloc.h" |
48 | #include "mathops.h" |
49 | #include "float_cast.h" |
50 | #include <stdarg.h> |
51 | #include "celt_lpc.h" |
52 | #include "vq.h" |
53 | |
54 | |
55 | #ifndef M_PI3.14159265358979323846 |
56 | #define M_PI3.14159265358979323846 3.141592653 |
57 | #endif |
58 | |
59 | |
60 | /** Encoder state |
61 | @brief Encoder state |
62 | */ |
63 | struct OpusCustomEncoder { |
64 | const OpusCustomMode *mode; /**< Mode used by the encoder */ |
65 | int channels; |
66 | int stream_channels; |
67 | |
68 | int force_intra; |
69 | int clip; |
70 | int disable_pf; |
71 | int complexity; |
72 | int upsample; |
73 | int start, end; |
74 | |
75 | opus_int32 bitrate; |
76 | int vbr; |
77 | int signalling; |
78 | int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */ |
79 | int loss_rate; |
80 | int lsb_depth; |
81 | int lfe; |
82 | int disable_inv; |
83 | int arch; |
84 | |
85 | /* Everything beyond this point gets cleared on a reset */ |
86 | #define ENCODER_RESET_STARTrng rng |
87 | |
88 | opus_uint32 rng; |
89 | int spread_decision; |
90 | opus_val32 delayedIntra; |
91 | int tonal_average; |
92 | int lastCodedBands; |
93 | int hf_average; |
94 | int tapset_decision; |
95 | |
96 | int prefilter_period; |
97 | opus_val16 prefilter_gain; |
98 | int prefilter_tapset; |
99 | #ifdef RESYNTH |
100 | int prefilter_period_old; |
101 | opus_val16 prefilter_gain_old; |
102 | int prefilter_tapset_old; |
103 | #endif |
104 | int consec_transient; |
105 | AnalysisInfo analysis; |
106 | SILKInfo silk_info; |
107 | |
108 | opus_val32 preemph_memE[2]; |
109 | opus_val32 preemph_memD[2]; |
110 | |
111 | /* VBR-related parameters */ |
112 | opus_int32 vbr_reservoir; |
113 | opus_int32 vbr_drift; |
114 | opus_int32 vbr_offset; |
115 | opus_int32 vbr_count; |
116 | opus_val32 overlap_max; |
117 | opus_val16 stereo_saving; |
118 | int intensity; |
119 | celt_glog *energy_mask; |
120 | celt_glog spec_avg; |
121 | |
122 | #ifdef RESYNTH |
123 | /* +MAX_PERIOD/2 to make space for overlap */ |
124 | celt_sig syn_mem[2][2*MAX_PERIOD1024+MAX_PERIOD1024/2]; |
125 | #endif |
126 | |
127 | celt_sig in_mem[1]; /* Size = channels*mode->overlap */ |
128 | /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */ |
129 | /* celt_glog oldBandE[], Size = channels*mode->nbEBands */ |
130 | /* celt_glog oldLogE[], Size = channels*mode->nbEBands */ |
131 | /* celt_glog oldLogE2[], Size = channels*mode->nbEBands */ |
132 | /* celt_glog energyError[], Size = channels*mode->nbEBands */ |
133 | }; |
134 | |
135 | int celt_encoder_get_size(int channels) |
136 | { |
137 | CELTModeOpusCustomMode *mode = opus_custom_mode_create(48000, 960, NULL((void*)0)); |
138 | return opus_custom_encoder_get_size(mode, channels); |
139 | } |
140 | |
141 | OPUS_CUSTOM_NOSTATICstatic inline int opus_custom_encoder_get_size(const CELTModeOpusCustomMode *mode, int channels) |
142 | { |
143 | int size = sizeof(struct CELTEncoderOpusCustomEncoder) |
144 | + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */ |
145 | + channels*COMBFILTER_MAXPERIOD1024*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ |
146 | + 4*channels*mode->nbEBands*sizeof(celt_glog); /* celt_glog oldBandE[channels*mode->nbEBands]; */ |
147 | /* celt_glog oldLogE[channels*mode->nbEBands]; */ |
148 | /* celt_glog oldLogE2[channels*mode->nbEBands]; */ |
149 | /* celt_glog energyError[channels*mode->nbEBands]; */ |
150 | return size; |
151 | } |
152 | |
153 | #ifdef CUSTOM_MODES |
154 | CELTEncoderOpusCustomEncoder *opus_custom_encoder_create(const CELTModeOpusCustomMode *mode, int channels, int *error) |
155 | { |
156 | int ret; |
157 | CELTEncoderOpusCustomEncoder *st = (CELTEncoderOpusCustomEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); |
158 | /* init will handle the NULL case */ |
159 | ret = opus_custom_encoder_init(st, mode, channels); |
160 | if (ret != OPUS_OK0) |
161 | { |
162 | opus_custom_encoder_destroy(st); |
163 | st = NULL((void*)0); |
164 | } |
165 | if (error) |
166 | *error = ret; |
167 | return st; |
168 | } |
169 | #endif /* CUSTOM_MODES */ |
170 | |
171 | static int opus_custom_encoder_init_arch(CELTEncoderOpusCustomEncoder *st, const CELTModeOpusCustomMode *mode, |
172 | int channels, int arch) |
173 | { |
174 | if (channels < 0 || channels > 2) |
175 | return OPUS_BAD_ARG-1; |
176 | |
177 | if (st==NULL((void*)0) || mode==NULL((void*)0)) |
178 | return OPUS_ALLOC_FAIL-7; |
179 | |
180 | OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels))(memset(((char*)st), 0, (opus_custom_encoder_get_size(mode, channels ))*sizeof(*((char*)st)))); |
181 | |
182 | st->mode = mode; |
183 | st->stream_channels = st->channels = channels; |
184 | |
185 | st->upsample = 1; |
186 | st->start = 0; |
187 | st->end = st->mode->effEBands; |
188 | st->signalling = 1; |
189 | st->arch = arch; |
190 | |
191 | st->constrained_vbr = 1; |
192 | st->clip = 1; |
193 | |
194 | st->bitrate = OPUS_BITRATE_MAX-1; |
195 | st->vbr = 0; |
196 | st->force_intra = 0; |
197 | st->complexity = 5; |
198 | st->lsb_depth=24; |
199 | |
200 | opus_custom_encoder_ctl(st, OPUS_RESET_STATE4028); |
201 | |
202 | return OPUS_OK0; |
203 | } |
204 | |
205 | #ifdef CUSTOM_MODES |
206 | int opus_custom_encoder_init(CELTEncoderOpusCustomEncoder *st, const CELTModeOpusCustomMode *mode, int channels) |
207 | { |
208 | return opus_custom_encoder_init_arch(st, mode, channels, opus_select_arch()); |
209 | } |
210 | #endif |
211 | |
212 | int celt_encoder_init(CELTEncoderOpusCustomEncoder *st, opus_int32 sampling_rate, int channels, |
213 | int arch) |
214 | { |
215 | int ret; |
216 | ret = opus_custom_encoder_init_arch(st, |
217 | opus_custom_mode_create(48000, 960, NULL((void*)0)), channels, arch); |
218 | if (ret != OPUS_OK0) |
219 | return ret; |
220 | st->upsample = resampling_factor(sampling_rate); |
221 | return OPUS_OK0; |
222 | } |
223 | |
224 | #ifdef CUSTOM_MODES |
225 | void opus_custom_encoder_destroy(CELTEncoderOpusCustomEncoder *st) |
226 | { |
227 | opus_free(st); |
228 | } |
229 | #endif /* CUSTOM_MODES */ |
230 | |
231 | |
232 | static int transient_analysis(const opus_val32 * OPUS_RESTRICTrestrict in, int len, int C, |
233 | opus_val16 *tf_estimate, int *tf_chan, int allow_weak_transients, |
234 | int *weak_transient, opus_val16 tone_freq, opus_val32 toneishness) |
235 | { |
236 | int i; |
237 | VARDECL(opus_val16, tmp)opus_val16 *tmp; |
238 | opus_val32 mem0,mem1; |
239 | int is_transient = 0; |
240 | opus_int32 mask_metric = 0; |
241 | int c; |
242 | opus_val16 tf_max; |
243 | int len2; |
244 | /* Forward masking: 6.7 dB/ms. */ |
245 | #ifdef FIXED_POINT |
246 | int forward_shift = 4; |
247 | #else |
248 | opus_val16 forward_decay = QCONST16(.0625f,15)(.0625f); |
249 | #endif |
250 | /* Table of 6*64/x, trained on real data to minimize the average error */ |
251 | static const unsigned char inv_table[128] = { |
252 | 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, |
253 | 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, |
254 | 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, |
255 | 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, |
256 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, |
257 | 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
258 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, |
259 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, |
260 | }; |
261 | SAVE_STACK; |
262 | #ifdef FIXED_POINT |
263 | int in_shift = IMAX(0, celt_ilog2(1+celt_maxabs32(in, C*len))-14)((0) > (celt_ilog2(1+celt_maxabs16(in,C*len))-14) ? (0) : ( celt_ilog2(1+celt_maxabs16(in,C*len))-14)); |
264 | #endif |
265 | ALLOC(tmp, len, opus_val16)tmp = ((opus_val16*)__builtin_alloca (sizeof(opus_val16)*(len ))); |
266 | |
267 | *weak_transient = 0; |
268 | /* For lower bitrates, let's be more conservative and have a forward masking |
269 | decay of 3.3 dB/ms. This avoids having to code transients at very low |
270 | bitrate (mostly for hybrid), which can result in unstable energy and/or |
271 | partial collapse. */ |
272 | if (allow_weak_transients) |
273 | { |
274 | #ifdef FIXED_POINT |
275 | forward_shift = 5; |
276 | #else |
277 | forward_decay = QCONST16(.03125f,15)(.03125f); |
278 | #endif |
279 | } |
280 | len2=len/2; |
281 | for (c=0;c<C;c++) |
282 | { |
283 | opus_val32 mean; |
284 | opus_int32 unmask=0; |
285 | opus_val32 norm; |
286 | opus_val16 maxE; |
287 | mem0=0; |
288 | mem1=0; |
289 | /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ |
290 | for (i=0;i<len;i++) |
291 | { |
292 | #ifndef FIXED_POINT |
293 | float mem00; |
294 | #endif |
295 | opus_val32 x,y; |
296 | x = SHR32(in[i+c*len],in_shift)(in[i+c*len]); |
297 | y = ADD32(mem0, x)((mem0)+(x)); |
298 | #ifdef FIXED_POINT |
299 | mem0 = mem1 + y - SHL32(x,1)(x); |
300 | mem1 = x - SHR32(y,1)(y); |
301 | #else |
302 | /* Original code: |
303 | mem0 = mem1 + y - 2*x; |
304 | mem1 = x - .5f*y; |
305 | Modified code to shorten dependency chains: */ |
306 | mem00=mem0; |
307 | mem0 = mem0 - x + .5f*mem1; |
308 | mem1 = x - mem00; |
309 | #endif |
310 | tmp[i] = SROUND16(y, 2)(y); |
311 | /*printf("%f ", tmp[i]);*/ |
312 | } |
313 | /*printf("\n");*/ |
314 | /* First few samples are bad because we don't propagate the memory */ |
315 | OPUS_CLEAR(tmp, 12)(memset((tmp), 0, (12)*sizeof(*(tmp)))); |
316 | |
317 | #ifdef FIXED_POINT |
318 | /* Normalize tmp to max range */ |
319 | { |
320 | int shift=0; |
321 | shift = 14-celt_ilog2(MAX16(1, celt_maxabs16(tmp, len))((1) > (celt_maxabs16(tmp, len)) ? (1) : (celt_maxabs16(tmp , len)))); |
322 | if (shift!=0) |
323 | { |
324 | for (i=0;i<len;i++) |
325 | tmp[i] = SHL16(tmp[i], shift)(tmp[i]); |
326 | } |
327 | } |
328 | #endif |
329 | |
330 | mean=0; |
331 | mem0=0; |
332 | /* Grouping by two to reduce complexity */ |
333 | /* Forward pass to compute the post-echo threshold*/ |
334 | for (i=0;i<len2;i++) |
335 | { |
336 | opus_val32 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),4)(((opus_val32)(tmp[2*i])*(opus_val32)(tmp[2*i])) + ((opus_val32 )(tmp[2*i+1])*(opus_val32)(tmp[2*i+1]))); |
337 | mean += PSHR32(x2, 12)(x2); |
338 | #ifdef FIXED_POINT |
339 | /* FIXME: Use PSHR16() instead */ |
340 | mem0 = mem0 + PSHR32(x2-mem0,forward_shift)(x2-mem0); |
341 | tmp[i] = PSHR32(mem0, 12)(mem0); |
342 | #else |
343 | mem0 = x2 + (1.f-forward_decay)*mem0; |
344 | tmp[i] = forward_decay*mem0; |
345 | #endif |
346 | } |
347 | |
348 | mem0=0; |
349 | maxE=0; |
350 | /* Backward pass to compute the pre-echo threshold */ |
351 | for (i=len2-1;i>=0;i--) |
352 | { |
353 | /* Backward masking: 13.9 dB/ms. */ |
354 | #ifdef FIXED_POINT |
355 | /* FIXME: Use PSHR16() instead */ |
356 | mem0 = mem0 + PSHR32(SHL32(tmp[i],4)-mem0,3)((tmp[i])-mem0); |
357 | tmp[i] = PSHR32(mem0, 4)(mem0); |
358 | maxE = MAX16(maxE, tmp[i])((maxE) > (tmp[i]) ? (maxE) : (tmp[i])); |
359 | #else |
360 | mem0 = tmp[i] + 0.875f*mem0; |
361 | tmp[i] = 0.125f*mem0; |
362 | maxE = MAX16(maxE, 0.125f*mem0)((maxE) > (0.125f*mem0) ? (maxE) : (0.125f*mem0)); |
363 | #endif |
364 | } |
365 | /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ |
366 | |
367 | /* Compute the ratio of the "frame energy" over the harmonic mean of the energy. |
368 | This essentially corresponds to a bitrate-normalized temporal noise-to-mask |
369 | ratio */ |
370 | |
371 | /* As a compromise with the old transient detector, frame energy is the |
372 | geometric mean of the energy and half the max */ |
373 | #ifdef FIXED_POINT |
374 | /* Costs two sqrt() to avoid overflows */ |
375 | mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1)))((opus_val32)(((float)sqrt(mean)))*(opus_val32)(((float)sqrt( ((opus_val32)(maxE)*(opus_val32)(len2>>1)))))); |
376 | #else |
377 | mean = celt_sqrt(mean * maxE*.5*len2)((float)sqrt(mean * maxE*.5*len2)); |
378 | #endif |
379 | /* Inverse of the mean energy in Q15+6 */ |
380 | norm = SHL32(EXTEND32(len2),6+14)((len2))/ADD32(EPSILON,SHR32(mean,1))((1e-15f)+((mean))); |
381 | /* Compute harmonic mean discarding the unreliable boundaries |
382 | The data is smooth, so we only take 1/4th of the samples */ |
383 | unmask=0; |
384 | /* We should never see NaNs here. If we find any, then something really bad happened and we better abort |
385 | before it does any damage later on. If these asserts are disabled (no hardening), then the table |
386 | lookup a few lines below (id = ...) is likely to crash dur to an out-of-bounds read. DO NOT FIX |
387 | that crash on NaN since it could result in a worse issue later on. */ |
388 | celt_assert(!celt_isnan(tmp[0])){if (!(!((tmp[0])!=(tmp[0])))) {celt_fatal("assertion failed: " "!celt_isnan(tmp[0])", "/root/firefox-clang/media/libopus/celt/celt_encoder.c" , 388);}}; |
389 | celt_assert(!celt_isnan(norm)){if (!(!((norm)!=(norm)))) {celt_fatal("assertion failed: " "!celt_isnan(norm)" , "/root/firefox-clang/media/libopus/celt/celt_encoder.c", 389 );}}; |
390 | for (i=12;i<len2-5;i+=4) |
391 | { |
392 | int id; |
393 | #ifdef FIXED_POINT |
394 | id = MAX32(0,MIN32(127,MULT16_32_Q15(tmp[i]+EPSILON,norm)))((0) > (((127) < (((tmp[i]+1e-15f)*(norm))) ? (127) : ( ((tmp[i]+1e-15f)*(norm))))) ? (0) : (((127) < (((tmp[i]+1e-15f )*(norm))) ? (127) : (((tmp[i]+1e-15f)*(norm)))))); /* Do not round to nearest */ |
395 | #else |
396 | id = (int)MAX32(0,MIN32(127,floor(64*norm*(tmp[i]+EPSILON))))((0) > (((127) < (floor(64*norm*(tmp[i]+1e-15f))) ? (127 ) : (floor(64*norm*(tmp[i]+1e-15f))))) ? (0) : (((127) < ( floor(64*norm*(tmp[i]+1e-15f))) ? (127) : (floor(64*norm*(tmp [i]+1e-15f)))))); /* Do not round to nearest */ |
397 | #endif |
398 | unmask += inv_table[id]; |
399 | } |
400 | /*printf("%d\n", unmask);*/ |
401 | /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ |
402 | unmask = 64*unmask*4/(6*(len2-17)); |
403 | if (unmask>mask_metric) |
404 | { |
405 | *tf_chan = c; |
406 | mask_metric = unmask; |
407 | } |
408 | } |
409 | is_transient = mask_metric>200; |
410 | /* Prevent the transient detector from confusing the partial cycle of a |
411 | very low frequency tone with a transient. */ |
412 | if (toneishness > QCONST32(.98f, 29)(.98f) && tone_freq < QCONST16(0.026f, 13)(0.026f)) |
413 | is_transient = 0; |
414 | /* For low bitrates, define "weak transients" that need to be |
415 | handled differently to avoid partial collapse. */ |
416 | if (allow_weak_transients && is_transient && mask_metric<600) { |
417 | is_transient = 0; |
418 | *weak_transient = 1; |
419 | } |
420 | /* Arbitrary metric for VBR boost */ |
421 | tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42)((0) > (((float)sqrt(27*mask_metric))-42) ? (0) : (((float )sqrt(27*mask_metric))-42)); |
422 | /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ |
423 | *tf_estimate = celt_sqrt(MAX32(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28)))((float)sqrt(((0) > ((((opus_val32)((0.0069))*(opus_val32) (((163) < (tf_max) ? (163) : (tf_max)))))-(0.139)) ? (0) : ((((opus_val32)((0.0069))*(opus_val32)(((163) < (tf_max) ? (163) : (tf_max)))))-(0.139))))); |
424 | /*printf("%d %f\n", tf_max, mask_metric);*/ |
425 | RESTORE_STACK; |
426 | #ifdef FUZZING |
427 | is_transient = rand()&0x1; |
428 | #endif |
429 | /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ |
430 | return is_transient; |
431 | } |
432 | |
433 | /* Looks for sudden increases of energy to decide whether we need to patch |
434 | the transient decision */ |
435 | static int patch_transient_decision(celt_glog *newE, celt_glog *oldE, int nbEBands, |
436 | int start, int end, int C) |
437 | { |
438 | int i, c; |
439 | opus_val32 mean_diff=0; |
440 | celt_glog spread_old[26]; |
441 | /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to |
442 | avoid false detection caused by irrelevant bands */ |
443 | if (C==1) |
444 | { |
445 | spread_old[start] = oldE[start]; |
446 | for (i=start+1;i<end;i++) |
447 | spread_old[i] = MAXG(spread_old[i-1]-GCONST(1.0f), oldE[i])((spread_old[i-1]-(1.0f)) > (oldE[i]) ? (spread_old[i-1]-( 1.0f)) : (oldE[i])); |
448 | } else { |
449 | spread_old[start] = MAXG(oldE[start],oldE[start+nbEBands])((oldE[start]) > (oldE[start+nbEBands]) ? (oldE[start]) : ( oldE[start+nbEBands])); |
450 | for (i=start+1;i<end;i++) |
451 | spread_old[i] = MAXG(spread_old[i-1]-GCONST(1.0f),((spread_old[i-1]-(1.0f)) > (((oldE[i]) > (oldE[i+nbEBands ]) ? (oldE[i]) : (oldE[i+nbEBands]))) ? (spread_old[i-1]-(1.0f )) : (((oldE[i]) > (oldE[i+nbEBands]) ? (oldE[i]) : (oldE[ i+nbEBands])))) |
452 | MAXG(oldE[i],oldE[i+nbEBands]))((spread_old[i-1]-(1.0f)) > (((oldE[i]) > (oldE[i+nbEBands ]) ? (oldE[i]) : (oldE[i+nbEBands]))) ? (spread_old[i-1]-(1.0f )) : (((oldE[i]) > (oldE[i+nbEBands]) ? (oldE[i]) : (oldE[ i+nbEBands])))); |
453 | } |
454 | for (i=end-2;i>=start;i--) |
455 | spread_old[i] = MAXG(spread_old[i], spread_old[i+1]-GCONST(1.0f))((spread_old[i]) > (spread_old[i+1]-(1.0f)) ? (spread_old[ i]) : (spread_old[i+1]-(1.0f))); |
456 | /* Compute mean increase */ |
457 | c=0; do { |
458 | for (i=IMAX(2,start)((2) > (start) ? (2) : (start));i<end-1;i++) |
459 | { |
460 | opus_val16 x1, x2; |
461 | x1 = MAXG(0, newE[i + c*nbEBands])((0) > (newE[i + c*nbEBands]) ? (0) : (newE[i + c*nbEBands ])); |
462 | x2 = MAXG(0, spread_old[i])((0) > (spread_old[i]) ? (0) : (spread_old[i])); |
463 | mean_diff = ADD32(mean_diff, MAXG(0, SUB32(x1, x2)))((mean_diff)+(((0) > (((x1)-(x2))) ? (0) : (((x1)-(x2))))) ); |
464 | } |
465 | } while (++c<C); |
466 | mean_diff = DIV32(mean_diff, C*(end-1-IMAX(2,start)))(((opus_val32)(mean_diff))/(opus_val32)(C*(end-1-((2) > (start ) ? (2) : (start))))); |
467 | /*printf("%f %f %d\n", mean_diff, max_diff, count);*/ |
468 | return mean_diff > GCONST(1.f)(1.f); |
469 | } |
470 | |
471 | /** Apply window and compute the MDCT for all sub-frames and |
472 | all channels in a frame */ |
473 | static void compute_mdcts(const CELTModeOpusCustomMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICTrestrict in, |
474 | celt_sig * OPUS_RESTRICTrestrict out, int C, int CC, int LM, int upsample, |
475 | int arch) |
476 | { |
477 | const int overlap = mode->overlap; |
478 | int N; |
479 | int B; |
480 | int shift; |
481 | int i, b, c; |
482 | if (shortBlocks) |
483 | { |
484 | B = shortBlocks; |
485 | N = mode->shortMdctSize; |
486 | shift = mode->maxLM; |
487 | } else { |
488 | B = 1; |
489 | N = mode->shortMdctSize<<LM; |
490 | shift = mode->maxLM-LM; |
491 | } |
492 | c=0; do { |
493 | for (b=0;b<B;b++) |
494 | { |
495 | /* Interleaving the sub-frames while doing the MDCTs */ |
496 | clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N,clt_mdct_forward_c(&mode->mdct, in+c*(B*N+overlap)+b*N , &out[b+c*N*B], mode->window, overlap, shift, B, arch ) |
497 | &out[b+c*N*B], mode->window, overlap, shift, B,clt_mdct_forward_c(&mode->mdct, in+c*(B*N+overlap)+b*N , &out[b+c*N*B], mode->window, overlap, shift, B, arch ) |
498 | arch)clt_mdct_forward_c(&mode->mdct, in+c*(B*N+overlap)+b*N , &out[b+c*N*B], mode->window, overlap, shift, B, arch ); |
499 | } |
500 | } while (++c<CC); |
501 | if (CC==2&&C==1) |
502 | { |
503 | for (i=0;i<B*N;i++) |
504 | out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i]))(((.5f*(out[i])))+((.5f*(out[B*N+i])))); |
505 | } |
506 | if (upsample != 1) |
507 | { |
508 | c=0; do |
509 | { |
510 | int bound = B*N/upsample; |
511 | for (i=0;i<bound;i++) |
512 | out[c*B*N+i] *= upsample; |
513 | OPUS_CLEAR(&out[c*B*N+bound], B*N-bound)(memset((&out[c*B*N+bound]), 0, (B*N-bound)*sizeof(*(& out[c*B*N+bound])))); |
514 | } while (++c<C); |
515 | } |
516 | } |
517 | |
518 | |
519 | void celt_preemphasis(const opus_res * OPUS_RESTRICTrestrict pcmp, celt_sig * OPUS_RESTRICTrestrict inp, |
520 | int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) |
521 | { |
522 | int i; |
523 | opus_val16 coef0; |
524 | celt_sig m; |
525 | int Nu; |
526 | |
527 | coef0 = coef[0]; |
528 | m = *mem; |
529 | |
530 | /* Fast path for the normal 48kHz case and no clipping */ |
531 | if (coef[1] == 0 && upsample == 1 && !clip) |
532 | { |
533 | for (i=0;i<N;i++) |
534 | { |
535 | celt_sig x; |
536 | x = RES2SIG(pcmp[CC*i])(32768.f*(pcmp[CC*i])); |
537 | /* Apply pre-emphasis */ |
538 | inp[i] = x - m; |
539 | m = MULT16_32_Q15(coef0, x)((coef0)*(x)); |
540 | } |
541 | *mem = m; |
542 | return; |
543 | } |
544 | |
545 | Nu = N/upsample; |
546 | if (upsample!=1) |
547 | { |
548 | OPUS_CLEAR(inp, N)(memset((inp), 0, (N)*sizeof(*(inp)))); |
549 | } |
550 | for (i=0;i<Nu;i++) |
551 | inp[i*upsample] = RES2SIG(pcmp[CC*i])(32768.f*(pcmp[CC*i])); |
552 | |
553 | #ifndef FIXED_POINT |
554 | if (clip) |
555 | { |
556 | /* Clip input to avoid encoding non-portable files */ |
557 | for (i=0;i<Nu;i++) |
558 | inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample]))((-65536.f) > (((65536.f) < (inp[i*upsample]) ? (65536.f ) : (inp[i*upsample]))) ? (-65536.f) : (((65536.f) < (inp[ i*upsample]) ? (65536.f) : (inp[i*upsample])))); |
559 | } |
560 | #else |
561 | (void)clip; /* Avoids a warning about clip being unused. */ |
562 | #endif |
563 | #ifdef CUSTOM_MODES |
564 | if (coef[1] != 0) |
565 | { |
566 | opus_val16 coef1 = coef[1]; |
567 | opus_val16 coef2 = coef[2]; |
568 | for (i=0;i<N;i++) |
569 | { |
570 | celt_sig x, tmp; |
571 | x = inp[i]; |
572 | /* Apply pre-emphasis */ |
573 | tmp = SHL32(MULT16_32_Q15(coef2, x), 15-SIG_SHIFT)(((coef2)*(x))); |
574 | inp[i] = tmp + m; |
575 | m = MULT16_32_Q15(coef1, inp[i])((coef1)*(inp[i])) - MULT16_32_Q15(coef0, tmp)((coef0)*(tmp)); |
576 | } |
577 | } else |
578 | #endif |
579 | { |
580 | for (i=0;i<N;i++) |
581 | { |
582 | celt_sig x; |
583 | x = inp[i]; |
584 | /* Apply pre-emphasis */ |
585 | inp[i] = x - m; |
586 | m = MULT16_32_Q15(coef0, x)((coef0)*(x)); |
587 | } |
588 | } |
589 | *mem = m; |
590 | } |
591 | |
592 | |
593 | |
594 | static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) |
595 | { |
596 | int i; |
597 | opus_val32 L1; |
598 | L1 = 0; |
599 | for (i=0;i<N;i++) |
600 | L1 += EXTEND32(ABS16(tmp[i]))(((float)fabs(tmp[i]))); |
601 | /* When in doubt, prefer good freq resolution */ |
602 | L1 = MAC16_32_Q15(L1, LM*bias, L1)((L1)+(LM*bias)*(L1)); |
603 | return L1; |
604 | |
605 | } |
606 | |
607 | static int tf_analysis(const CELTModeOpusCustomMode *m, int len, int isTransient, |
608 | int *tf_res, int lambda, celt_norm *X, int N0, int LM, |
609 | opus_val16 tf_estimate, int tf_chan, int *importance) |
610 | { |
611 | int i; |
612 | VARDECL(int, metric)int *metric; |
613 | int cost0; |
614 | int cost1; |
615 | VARDECL(int, path0)int *path0; |
616 | VARDECL(int, path1)int *path1; |
617 | VARDECL(celt_norm, tmp)celt_norm *tmp; |
618 | VARDECL(celt_norm, tmp_1)celt_norm *tmp_1; |
619 | int sel; |
620 | int selcost[2]; |
621 | int tf_select=0; |
622 | opus_val16 bias; |
623 | |
624 | SAVE_STACK; |
625 | bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate))(((.04f))*(((-(.25f)) > ((.5f)-tf_estimate) ? (-(.25f)) : ( (.5f)-tf_estimate)))); |
626 | /*printf("%f ", bias);*/ |
627 | |
628 | ALLOC(metric, len, int)metric = ((int*)__builtin_alloca (sizeof(int)*(len))); |
629 | ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm)tmp = ((celt_norm*)__builtin_alloca (sizeof(celt_norm)*((m-> eBands[len]-m->eBands[len-1])<<LM))); |
630 | ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm)tmp_1 = ((celt_norm*)__builtin_alloca (sizeof(celt_norm)*((m-> eBands[len]-m->eBands[len-1])<<LM))); |
631 | ALLOC(path0, len, int)path0 = ((int*)__builtin_alloca (sizeof(int)*(len))); |
632 | ALLOC(path1, len, int)path1 = ((int*)__builtin_alloca (sizeof(int)*(len))); |
633 | |
634 | for (i=0;i<len;i++) |
635 | { |
636 | int k, N; |
637 | int narrow; |
638 | opus_val32 L1, best_L1; |
639 | int best_level=0; |
640 | N = (m->eBands[i+1]-m->eBands[i])<<LM; |
641 | /* band is too narrow to be split down to LM=-1 */ |
642 | narrow = (m->eBands[i+1]-m->eBands[i])==1; |
643 | OPUS_COPY(tmp, &X[tf_chan*N0 + (m->eBands[i]<<LM)], N)(memcpy((tmp), (&X[tf_chan*N0 + (m->eBands[i]<<LM )]), (N)*sizeof(*(tmp)) + 0*((tmp)-(&X[tf_chan*N0 + (m-> eBands[i]<<LM)])) )); |
644 | /* Just add the right channel if we're in stereo */ |
645 | /*if (C==2) |
646 | for (j=0;j<N;j++) |
647 | tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ |
648 | L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); |
649 | best_L1 = L1; |
650 | /* Check the -1 case for transients */ |
651 | if (isTransient && !narrow) |
652 | { |
653 | OPUS_COPY(tmp_1, tmp, N)(memcpy((tmp_1), (tmp), (N)*sizeof(*(tmp_1)) + 0*((tmp_1)-(tmp )) )); |
654 | haar1(tmp_1, N>>LM, 1<<LM); |
655 | L1 = l1_metric(tmp_1, N, LM+1, bias); |
656 | if (L1<best_L1) |
657 | { |
658 | best_L1 = L1; |
659 | best_level = -1; |
660 | } |
661 | } |
662 | /*printf ("%f ", L1);*/ |
663 | for (k=0;k<LM+!(isTransient||narrow);k++) |
664 | { |
665 | int B; |
666 | |
667 | if (isTransient) |
668 | B = (LM-k-1); |
669 | else |
670 | B = k+1; |
671 | |
672 | haar1(tmp, N>>k, 1<<k); |
673 | |
674 | L1 = l1_metric(tmp, N, B, bias); |
675 | |
676 | if (L1 < best_L1) |
677 | { |
678 | best_L1 = L1; |
679 | best_level = k+1; |
680 | } |
681 | } |
682 | /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ |
683 | /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ |
684 | if (isTransient) |
685 | metric[i] = 2*best_level; |
686 | else |
687 | metric[i] = -2*best_level; |
688 | /* For bands that can't be split to -1, set the metric to the half-way point to avoid |
689 | biasing the decision */ |
690 | if (narrow && (metric[i]==0 || metric[i]==-2*LM)) |
691 | metric[i]-=1; |
692 | /*printf("%d ", metric[i]/2 + (!isTransient)*LM);*/ |
693 | } |
694 | /*printf("\n");*/ |
695 | /* Search for the optimal tf resolution, including tf_select */ |
696 | tf_select = 0; |
697 | for (sel=0;sel<2;sel++) |
698 | { |
699 | cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+0]); |
700 | cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+1]) + (isTransient ? 0 : lambda); |
701 | for (i=1;i<len;i++) |
702 | { |
703 | int curr0, curr1; |
704 | curr0 = IMIN(cost0, cost1 + lambda)((cost0) < (cost1 + lambda) ? (cost0) : (cost1 + lambda)); |
705 | curr1 = IMIN(cost0 + lambda, cost1)((cost0 + lambda) < (cost1) ? (cost0 + lambda) : (cost1)); |
706 | cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); |
707 | cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); |
708 | } |
709 | cost0 = IMIN(cost0, cost1)((cost0) < (cost1) ? (cost0) : (cost1)); |
710 | selcost[sel]=cost0; |
711 | } |
712 | /* For now, we're conservative and only allow tf_select=1 for transients. |
713 | * If tests confirm it's useful for non-transients, we could allow it. */ |
714 | if (selcost[1]<selcost[0] && isTransient) |
715 | tf_select=1; |
716 | cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); |
717 | cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]) + (isTransient ? 0 : lambda); |
718 | /* Viterbi forward pass */ |
719 | for (i=1;i<len;i++) |
720 | { |
721 | int curr0, curr1; |
722 | int from0, from1; |
723 | |
724 | from0 = cost0; |
725 | from1 = cost1 + lambda; |
726 | if (from0 < from1) |
727 | { |
728 | curr0 = from0; |
729 | path0[i]= 0; |
730 | } else { |
731 | curr0 = from1; |
732 | path0[i]= 1; |
733 | } |
734 | |
735 | from0 = cost0 + lambda; |
736 | from1 = cost1; |
737 | if (from0 < from1) |
738 | { |
739 | curr1 = from0; |
740 | path1[i]= 0; |
741 | } else { |
742 | curr1 = from1; |
743 | path1[i]= 1; |
744 | } |
745 | cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); |
746 | cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); |
747 | } |
748 | tf_res[len-1] = cost0 < cost1 ? 0 : 1; |
749 | /* Viterbi backward pass to check the decisions */ |
750 | for (i=len-2;i>=0;i--) |
751 | { |
752 | if (tf_res[i+1] == 1) |
753 | tf_res[i] = path1[i+1]; |
754 | else |
755 | tf_res[i] = path0[i+1]; |
756 | } |
757 | /*printf("%d %f\n", *tf_sum, tf_estimate);*/ |
758 | RESTORE_STACK; |
759 | #ifdef FUZZING |
760 | tf_select = rand()&0x1; |
761 | tf_res[0] = rand()&0x1; |
762 | for (i=1;i<len;i++) |
763 | tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); |
764 | #endif |
765 | return tf_select; |
766 | } |
767 | |
768 | static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) |
769 | { |
770 | int curr, i; |
771 | int tf_select_rsv; |
772 | int tf_changed; |
773 | int logp; |
774 | opus_uint32 budget; |
775 | opus_uint32 tell; |
776 | budget = enc->storage*8; |
777 | tell = ec_tell(enc); |
778 | logp = isTransient ? 2 : 4; |
779 | /* Reserve space to code the tf_select decision. */ |
780 | tf_select_rsv = LM>0 && tell+logp+1 <= budget; |
781 | budget -= tf_select_rsv; |
782 | curr = tf_changed = 0; |
783 | for (i=start;i<end;i++) |
784 | { |
785 | if (tell+logp<=budget) |
786 | { |
787 | ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); |
788 | tell = ec_tell(enc); |
789 | curr = tf_res[i]; |
790 | tf_changed |= curr; |
791 | } |
792 | else |
793 | tf_res[i] = curr; |
794 | logp = isTransient ? 4 : 5; |
795 | } |
796 | /* Only code tf_select if it would actually make a difference. */ |
797 | if (tf_select_rsv && |
798 | tf_select_table[LM][4*isTransient+0+tf_changed]!= |
799 | tf_select_table[LM][4*isTransient+2+tf_changed]) |
800 | ec_enc_bit_logp(enc, tf_select, 1); |
801 | else |
802 | tf_select = 0; |
803 | for (i=start;i<end;i++) |
804 | tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
805 | /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ |
806 | } |
807 | |
808 | |
809 | static int alloc_trim_analysis(const CELTModeOpusCustomMode *m, const celt_norm *X, |
810 | const celt_glog *bandLogE, int end, int LM, int C, int N0, |
811 | AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, |
812 | int intensity, celt_glog surround_trim, opus_int32 equiv_rate, int arch) |
813 | { |
814 | int i; |
815 | opus_val32 diff=0; |
816 | int c; |
817 | int trim_index; |
818 | opus_val16 trim = QCONST16(5.f, 8)(5.f); |
819 | opus_val16 logXC, logXC2; |
820 | /* At low bitrate, reducing the trim seems to help. At higher bitrates, it's less |
821 | clear what's best, so we're keeping it as it was before, at least for now. */ |
822 | if (equiv_rate < 64000) { |
823 | trim = QCONST16(4.f, 8)(4.f); |
824 | } else if (equiv_rate < 80000) { |
825 | opus_int32 frac = (equiv_rate-64000) >> 10; |
826 | trim = QCONST16(4.f, 8)(4.f) + QCONST16(1.f/16.f, 8)(1.f/16.f)*frac; |
827 | } |
828 | if (C==2) |
829 | { |
830 | opus_val16 sum = 0; /* Q10 */ |
831 | opus_val16 minXC; /* Q10 */ |
832 | /* Compute inter-channel correlation for low frequencies */ |
833 | for (i=0;i<8;i++) |
834 | { |
835 | opus_val32 partial; |
836 | partial = celt_inner_prod(&X[m->eBands[i]<<LM], &X[N0+(m->eBands[i]<<LM)],((*CELT_INNER_PROD_IMPL[(arch) & 7])(&X[m->eBands[ i]<<LM], &X[N0+(m->eBands[i]<<LM)], (m-> eBands[i+1]-m->eBands[i])<<LM)) |
837 | (m->eBands[i+1]-m->eBands[i])<<LM, arch)((*CELT_INNER_PROD_IMPL[(arch) & 7])(&X[m->eBands[ i]<<LM], &X[N0+(m->eBands[i]<<LM)], (m-> eBands[i+1]-m->eBands[i])<<LM)); |
838 | sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)))((sum)+(((partial)))); |
839 | } |
840 | sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum)(((1.f/8))*(sum)); |
841 | sum = MIN16(QCONST16(1.f, 10), ABS16(sum))(((1.f)) < (((float)fabs(sum))) ? ((1.f)) : (((float)fabs( sum)))); |
842 | minXC = sum; |
843 | for (i=8;i<intensity;i++) |
844 | { |
845 | opus_val32 partial; |
846 | partial = celt_inner_prod(&X[m->eBands[i]<<LM], &X[N0+(m->eBands[i]<<LM)],((*CELT_INNER_PROD_IMPL[(arch) & 7])(&X[m->eBands[ i]<<LM], &X[N0+(m->eBands[i]<<LM)], (m-> eBands[i+1]-m->eBands[i])<<LM)) |
847 | (m->eBands[i+1]-m->eBands[i])<<LM, arch)((*CELT_INNER_PROD_IMPL[(arch) & 7])(&X[m->eBands[ i]<<LM], &X[N0+(m->eBands[i]<<LM)], (m-> eBands[i+1]-m->eBands[i])<<LM)); |
848 | minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18))))((minXC) < (((float)fabs(((partial))))) ? (minXC) : (((float )fabs(((partial)))))); |
849 | } |
850 | minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC))(((1.f)) < (((float)fabs(minXC))) ? ((1.f)) : (((float)fabs (minXC)))); |
851 | /*printf ("%f\n", sum);*/ |
852 | /* mid-side savings estimations based on the LF average*/ |
853 | logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum))((float)(1.442695040888963387*log((1.001f)-((opus_val32)(sum) *(opus_val32)(sum))))); |
854 | /* mid-side savings estimations based on min correlation */ |
855 | logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC)))(((.5f*(logXC))) > (((float)(1.442695040888963387*log((1.001f )-((opus_val32)(minXC)*(opus_val32)(minXC)))))) ? ((.5f*(logXC ))) : (((float)(1.442695040888963387*log((1.001f)-((opus_val32 )(minXC)*(opus_val32)(minXC))))))); |
856 | #ifdef FIXED_POINT |
857 | /* Compensate for Q20 vs Q14 input and convert output to Q8 */ |
858 | logXC = PSHR32(logXC-QCONST16(6.f, 10),10-8)(logXC-(6.f)); |
859 | logXC2 = PSHR32(logXC2-QCONST16(6.f, 10),10-8)(logXC2-(6.f)); |
860 | #endif |
861 | |
862 | trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC))((-(4.f)) > ((((.75f))*(logXC))) ? (-(4.f)) : ((((.75f))*( logXC)))); |
863 | *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2))((*stereo_saving + (0.25f)) < (-(.5f*(logXC2))) ? (*stereo_saving + (0.25f)) : (-(.5f*(logXC2)))); |
864 | } |
865 | |
866 | /* Estimate spectral tilt */ |
867 | c=0; do { |
868 | for (i=0;i<end-1;i++) |
869 | { |
870 | diff += SHR32(bandLogE[i+c*m->nbEBands], 5)(bandLogE[i+c*m->nbEBands])*(opus_int32)(2+2*i-end); |
871 | } |
872 | } while (++c<C); |
873 | diff /= C*(end-1); |
874 | /*printf("%f\n", diff);*/ |
875 | trim -= MAX32(-QCONST16(2.f, 8), MIN32(QCONST16(2.f, 8), SHR32(diff+QCONST32(1.f, DB_SHIFT-5),DB_SHIFT-13)/6 ))((-(2.f)) > ((((2.f)) < ((diff+(1.f))/6) ? ((2.f)) : (( diff+(1.f))/6))) ? (-(2.f)) : ((((2.f)) < ((diff+(1.f))/6) ? ((2.f)) : ((diff+(1.f))/6)))); |
876 | trim -= SHR16(surround_trim, DB_SHIFT-8)(surround_trim); |
877 | trim -= 2*SHR16(tf_estimate, 14-8)(tf_estimate); |
878 | #ifndef DISABLE_FLOAT_API |
879 | if (analysis->valid) |
880 | { |
881 | trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8),((-(2.f)) > ((((2.f)) < ((opus_val16)((2.f)*(analysis-> tonality_slope+.05f))) ? ((2.f)) : ((opus_val16)((2.f)*(analysis ->tonality_slope+.05f))))) ? (-(2.f)) : ((((2.f)) < ((opus_val16 )((2.f)*(analysis->tonality_slope+.05f))) ? ((2.f)) : ((opus_val16 )((2.f)*(analysis->tonality_slope+.05f)))))) |
882 | (opus_val16)(QCONST16(2.f, 8)*(analysis->tonality_slope+.05f))))((-(2.f)) > ((((2.f)) < ((opus_val16)((2.f)*(analysis-> tonality_slope+.05f))) ? ((2.f)) : ((opus_val16)((2.f)*(analysis ->tonality_slope+.05f))))) ? (-(2.f)) : ((((2.f)) < ((opus_val16 )((2.f)*(analysis->tonality_slope+.05f))) ? ((2.f)) : ((opus_val16 )((2.f)*(analysis->tonality_slope+.05f)))))); |
883 | } |
884 | #else |
885 | (void)analysis; |
886 | #endif |
887 | |
888 | #ifdef FIXED_POINT |
889 | trim_index = PSHR32(trim, 8)(trim); |
890 | #else |
891 | trim_index = (int)floor(.5f+trim); |
892 | #endif |
893 | trim_index = IMAX(0, IMIN(10, trim_index))((0) > (((10) < (trim_index) ? (10) : (trim_index))) ? ( 0) : (((10) < (trim_index) ? (10) : (trim_index)))); |
894 | /*printf("%d\n", trim_index);*/ |
895 | #ifdef FUZZING |
896 | trim_index = rand()%11; |
897 | #endif |
898 | return trim_index; |
899 | } |
900 | |
901 | static int stereo_analysis(const CELTModeOpusCustomMode *m, const celt_norm *X, |
902 | int LM, int N0) |
903 | { |
904 | int i; |
905 | int thetas; |
906 | opus_val32 sumLR = EPSILON1e-15f, sumMS = EPSILON1e-15f; |
907 | |
908 | /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ |
909 | for (i=0;i<13;i++) |
910 | { |
911 | int j; |
912 | for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
913 | { |
914 | opus_val32 L, R, M, S; |
915 | /* We cast to 32-bit first because of the -32768 case */ |
916 | L = EXTEND32(X[j])(X[j]); |
917 | R = EXTEND32(X[N0+j])(X[N0+j]); |
918 | M = ADD32(L, R)((L)+(R)); |
919 | S = SUB32(L, R)((L)-(R)); |
920 | sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)))((sumLR)+(((((float)fabs(L)))+(((float)fabs(R)))))); |
921 | sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)))((sumMS)+(((((float)fabs(M)))+(((float)fabs(S)))))); |
922 | } |
923 | } |
924 | sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS)(((0.707107f))*(sumMS)); |
925 | thetas = 13; |
926 | /* We don't need thetas for lower bands with LM<=1 */ |
927 | if (LM<=1) |
928 | thetas -= 8; |
929 | return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)(((m->eBands[13]<<(LM+1))+thetas)*(sumMS)) |
930 | > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR)((m->eBands[13]<<(LM+1))*(sumLR)); |
931 | } |
932 | |
933 | #define MSWAP(a,b)do {celt_glog tmp = a;a=b;b=tmp;} while(0) do {celt_glog tmp = a;a=b;b=tmp;} while(0) |
934 | static celt_glog median_of_5(const celt_glog *x) |
935 | { |
936 | celt_glog t0, t1, t2, t3, t4; |
937 | t2 = x[2]; |
938 | if (x[0] > x[1]) |
939 | { |
940 | t0 = x[1]; |
941 | t1 = x[0]; |
942 | } else { |
943 | t0 = x[0]; |
944 | t1 = x[1]; |
945 | } |
946 | if (x[3] > x[4]) |
947 | { |
948 | t3 = x[4]; |
949 | t4 = x[3]; |
950 | } else { |
951 | t3 = x[3]; |
952 | t4 = x[4]; |
953 | } |
954 | if (t0 > t3) |
955 | { |
956 | MSWAP(t0, t3)do {celt_glog tmp = t0;t0=t3;t3=tmp;} while(0); |
957 | MSWAP(t1, t4)do {celt_glog tmp = t1;t1=t4;t4=tmp;} while(0); |
958 | } |
959 | if (t2 > t1) |
960 | { |
961 | if (t1 < t3) |
962 | return MING(t2, t3)((t2) < (t3) ? (t2) : (t3)); |
963 | else |
964 | return MING(t4, t1)((t4) < (t1) ? (t4) : (t1)); |
965 | } else { |
966 | if (t2 < t3) |
967 | return MING(t1, t3)((t1) < (t3) ? (t1) : (t3)); |
968 | else |
969 | return MING(t2, t4)((t2) < (t4) ? (t2) : (t4)); |
970 | } |
971 | } |
972 | |
973 | static celt_glog median_of_3(const celt_glog *x) |
974 | { |
975 | celt_glog t0, t1, t2; |
976 | if (x[0] > x[1]) |
977 | { |
978 | t0 = x[1]; |
979 | t1 = x[0]; |
980 | } else { |
981 | t0 = x[0]; |
982 | t1 = x[1]; |
983 | } |
984 | t2 = x[2]; |
985 | if (t1 < t2) |
986 | return t1; |
987 | else if (t0 < t2) |
988 | return t2; |
989 | else |
990 | return t0; |
991 | } |
992 | |
993 | static celt_glog dynalloc_analysis(const celt_glog *bandLogE, const celt_glog *bandLogE2, const celt_glog *oldBandE, |
994 | int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, |
995 | int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, |
996 | int effectiveBytes, opus_int32 *tot_boost_, int lfe, celt_glog *surround_dynalloc, |
997 | AnalysisInfo *analysis, int *importance, int *spread_weight, opus_val16 tone_freq, opus_val32 toneishness) |
998 | { |
999 | int i, c; |
1000 | opus_int32 tot_boost=0; |
1001 | celt_glog maxDepth; |
1002 | VARDECL(celt_glog, follower)celt_glog *follower; |
1003 | VARDECL(celt_glog, noise_floor)celt_glog *noise_floor; |
1004 | VARDECL(celt_glog, bandLogE3)celt_glog *bandLogE3; |
1005 | SAVE_STACK; |
1006 | ALLOC(follower, C*nbEBands, celt_glog)follower = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)*( C*nbEBands))); |
1007 | ALLOC(noise_floor, C*nbEBands, celt_glog)noise_floor = ((celt_glog*)__builtin_alloca (sizeof(celt_glog )*(C*nbEBands))); |
1008 | ALLOC(bandLogE3, nbEBands, celt_glog)bandLogE3 = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)* (nbEBands))); |
1009 | OPUS_CLEAR(offsets, nbEBands)(memset((offsets), 0, (nbEBands)*sizeof(*(offsets)))); |
1010 | /* Dynamic allocation code */ |
1011 | maxDepth=-GCONST(31.9f)(31.9f); |
1012 | for (i=0;i<end;i++) |
1013 | { |
1014 | /* Noise floor must take into account eMeans, the depth, the width of the bands |
1015 | and the preemphasis filter (approx. square of bark band ID) */ |
1016 | noise_floor[i] = GCONST(0.0625f)(0.0625f)*logN[i] |
1017 | +GCONST(.5f)(.5f)+SHL32(9-lsb_depth,DB_SHIFT)(9-lsb_depth)-SHL32(eMeans[i],DB_SHIFT-4)(eMeans[i]) |
1018 | +GCONST(.0062f)(.0062f)*(i+5)*(i+5); |
1019 | } |
1020 | c=0;do |
1021 | { |
1022 | for (i=0;i<end;i++) |
1023 | maxDepth = MAXG(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i])((maxDepth) > (bandLogE[c*nbEBands+i]-noise_floor[i]) ? (maxDepth ) : (bandLogE[c*nbEBands+i]-noise_floor[i])); |
1024 | } while (++c<C); |
1025 | { |
1026 | /* Compute a really simple masking model to avoid taking into account completely masked |
1027 | bands when computing the spreading decision. */ |
1028 | VARDECL(celt_glog, mask)celt_glog *mask; |
1029 | VARDECL(celt_glog, sig)celt_glog *sig; |
1030 | ALLOC(mask, nbEBands, celt_glog)mask = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)*(nbEBands ))); |
1031 | ALLOC(sig, nbEBands, celt_glog)sig = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)*(nbEBands ))); |
1032 | for (i=0;i<end;i++) |
1033 | mask[i] = bandLogE[i]-noise_floor[i]; |
1034 | if (C==2) |
1035 | { |
1036 | for (i=0;i<end;i++) |
1037 | mask[i] = MAXG(mask[i], bandLogE[nbEBands+i]-noise_floor[i])((mask[i]) > (bandLogE[nbEBands+i]-noise_floor[i]) ? (mask [i]) : (bandLogE[nbEBands+i]-noise_floor[i])); |
1038 | } |
1039 | OPUS_COPY(sig, mask, end)(memcpy((sig), (mask), (end)*sizeof(*(sig)) + 0*((sig)-(mask) ) )); |
1040 | for (i=1;i<end;i++) |
1041 | mask[i] = MAXG(mask[i], mask[i-1] - GCONST(2.f))((mask[i]) > (mask[i-1] - (2.f)) ? (mask[i]) : (mask[i-1] - (2.f))); |
1042 | for (i=end-2;i>=0;i--) |
1043 | mask[i] = MAXG(mask[i], mask[i+1] - GCONST(3.f))((mask[i]) > (mask[i+1] - (3.f)) ? (mask[i]) : (mask[i+1] - (3.f))); |
1044 | for (i=0;i<end;i++) |
1045 | { |
1046 | /* Compute SMR: Mask is never more than 72 dB below the peak and never below the noise floor.*/ |
1047 | celt_glog smr = sig[i]-MAXG(MAXG(0, maxDepth-GCONST(12.f)), mask[i])((((0) > (maxDepth-(12.f)) ? (0) : (maxDepth-(12.f)))) > (mask[i]) ? (((0) > (maxDepth-(12.f)) ? (0) : (maxDepth-( 12.f)))) : (mask[i])); |
1048 | /* Clamp SMR to make sure we're not shifting by something negative or too large. */ |
1049 | #ifdef FIXED_POINT |
1050 | /* FIXME: Use PSHR16() instead */ |
1051 | int shift = -PSHR32(MAXG(-GCONST(5.f), MING(0, smr)), DB_SHIFT)(((-(5.f)) > (((0) < (smr) ? (0) : (smr))) ? (-(5.f)) : (((0) < (smr) ? (0) : (smr))))); |
1052 | #else |
1053 | int shift = IMIN(5, IMAX(0, -(int)floor(.5f + smr)))((5) < (((0) > (-(int)floor(.5f + smr)) ? (0) : (-(int) floor(.5f + smr)))) ? (5) : (((0) > (-(int)floor(.5f + smr )) ? (0) : (-(int)floor(.5f + smr))))); |
1054 | #endif |
1055 | spread_weight[i] = 32 >> shift; |
1056 | } |
1057 | /*for (i=0;i<end;i++) |
1058 | printf("%d ", spread_weight[i]); |
1059 | printf("\n");*/ |
1060 | } |
1061 | /* Make sure that dynamic allocation can't make us bust the budget. |
1062 | We enable the feature starting at 24 kb/s for 20-ms frames |
1063 | and 96 kb/s for 2.5 ms frames. */ |
1064 | if (effectiveBytes >= (30 + 5*LM) && !lfe) |
1065 | { |
1066 | int last=0; |
1067 | c=0;do |
1068 | { |
1069 | celt_glog offset; |
1070 | celt_glog tmp; |
1071 | celt_glog *f; |
1072 | OPUS_COPY(bandLogE3, &bandLogE2[c*nbEBands], end)(memcpy((bandLogE3), (&bandLogE2[c*nbEBands]), (end)*sizeof (*(bandLogE3)) + 0*((bandLogE3)-(&bandLogE2[c*nbEBands])) )); |
1073 | if (LM==0) { |
1074 | /* For 2.5 ms frames, the first 8 bands have just one bin, so the |
1075 | energy is highly unreliable (high variance). For that reason, |
1076 | we take the max with the previous energy so that at least 2 bins |
1077 | are getting used. */ |
1078 | for (i=0;i<IMIN(8,end)((8) < (end) ? (8) : (end));i++) bandLogE3[i] = MAXG(bandLogE2[c*nbEBands+i], oldBandE[c*nbEBands+i])((bandLogE2[c*nbEBands+i]) > (oldBandE[c*nbEBands+i]) ? (bandLogE2 [c*nbEBands+i]) : (oldBandE[c*nbEBands+i])); |
1079 | } |
1080 | f = &follower[c*nbEBands]; |
1081 | f[0] = bandLogE3[0]; |
1082 | for (i=1;i<end;i++) |
1083 | { |
1084 | /* The last band to be at least 3 dB higher than the previous one |
1085 | is the last we'll consider. Otherwise, we run into problems on |
1086 | bandlimited signals. */ |
1087 | if (bandLogE3[i] > bandLogE3[i-1]+GCONST(.5f)(.5f)) |
1088 | last=i; |
1089 | f[i] = MING(f[i-1]+GCONST(1.5f), bandLogE3[i])((f[i-1]+(1.5f)) < (bandLogE3[i]) ? (f[i-1]+(1.5f)) : (bandLogE3 [i])); |
1090 | } |
1091 | for (i=last-1;i>=0;i--) |
1092 | f[i] = MING(f[i], MING(f[i+1]+GCONST(2.f), bandLogE3[i]))((f[i]) < (((f[i+1]+(2.f)) < (bandLogE3[i]) ? (f[i+1]+( 2.f)) : (bandLogE3[i]))) ? (f[i]) : (((f[i+1]+(2.f)) < (bandLogE3 [i]) ? (f[i+1]+(2.f)) : (bandLogE3[i])))); |
1093 | |
1094 | /* Combine with a median filter to avoid dynalloc triggering unnecessarily. |
1095 | The "offset" value controls how conservative we are -- a higher offset |
1096 | reduces the impact of the median filter and makes dynalloc use more bits. */ |
1097 | offset = GCONST(1.f)(1.f); |
1098 | for (i=2;i<end-2;i++) |
1099 | f[i] = MAXG(f[i], median_of_5(&bandLogE3[i-2])-offset)((f[i]) > (median_of_5(&bandLogE3[i-2])-offset) ? (f[i ]) : (median_of_5(&bandLogE3[i-2])-offset)); |
1100 | tmp = median_of_3(&bandLogE3[0])-offset; |
1101 | f[0] = MAXG(f[0], tmp)((f[0]) > (tmp) ? (f[0]) : (tmp)); |
1102 | f[1] = MAXG(f[1], tmp)((f[1]) > (tmp) ? (f[1]) : (tmp)); |
1103 | tmp = median_of_3(&bandLogE3[end-3])-offset; |
1104 | f[end-2] = MAXG(f[end-2], tmp)((f[end-2]) > (tmp) ? (f[end-2]) : (tmp)); |
1105 | f[end-1] = MAXG(f[end-1], tmp)((f[end-1]) > (tmp) ? (f[end-1]) : (tmp)); |
1106 | |
1107 | for (i=0;i<end;i++) |
1108 | f[i] = MAXG(f[i], noise_floor[i])((f[i]) > (noise_floor[i]) ? (f[i]) : (noise_floor[i])); |
1109 | } while (++c<C); |
1110 | if (C==2) |
1111 | { |
1112 | for (i=start;i<end;i++) |
1113 | { |
1114 | /* Consider 24 dB "cross-talk" */ |
1115 | follower[nbEBands+i] = MAXG(follower[nbEBands+i], follower[ i]-GCONST(4.f))((follower[nbEBands+i]) > (follower[ i]-(4.f)) ? (follower [nbEBands+i]) : (follower[ i]-(4.f))); |
1116 | follower[ i] = MAXG(follower[ i], follower[nbEBands+i]-GCONST(4.f))((follower[ i]) > (follower[nbEBands+i]-(4.f)) ? (follower [ i]) : (follower[nbEBands+i]-(4.f))); |
1117 | follower[i] = HALF32(MAXG(0, bandLogE[i]-follower[i]) + MAXG(0, bandLogE[nbEBands+i]-follower[nbEBands+i]))(.5f*(((0) > (bandLogE[i]-follower[i]) ? (0) : (bandLogE[i ]-follower[i])) + ((0) > (bandLogE[nbEBands+i]-follower[nbEBands +i]) ? (0) : (bandLogE[nbEBands+i]-follower[nbEBands+i])))); |
1118 | } |
1119 | } else { |
1120 | for (i=start;i<end;i++) |
1121 | { |
1122 | follower[i] = MAXG(0, bandLogE[i]-follower[i])((0) > (bandLogE[i]-follower[i]) ? (0) : (bandLogE[i]-follower [i])); |
1123 | } |
1124 | } |
1125 | for (i=start;i<end;i++) |
1126 | follower[i] = MAXG(follower[i], surround_dynalloc[i])((follower[i]) > (surround_dynalloc[i]) ? (follower[i]) : ( surround_dynalloc[i])); |
1127 | for (i=start;i<end;i++) |
1128 | { |
1129 | #ifdef FIXED_POINT |
1130 | importance[i] = PSHR32(13*celt_exp2_db(MING(follower[i], GCONST(4.f))), 16)(13*((float)exp(0.6931471805599453094*(((follower[i]) < (( 4.f)) ? (follower[i]) : ((4.f))))))); |
1131 | #else |
1132 | importance[i] = (int)floor(.5f+13*celt_exp2_db(MING(follower[i], GCONST(4.f)))((float)exp(0.6931471805599453094*(((follower[i]) < ((4.f) ) ? (follower[i]) : ((4.f))))))); |
1133 | #endif |
1134 | } |
1135 | /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ |
1136 | if ((!vbr || constrained_vbr)&&!isTransient) |
1137 | { |
1138 | for (i=start;i<end;i++) |
1139 | follower[i] = HALF32(follower[i])(.5f*(follower[i])); |
1140 | } |
1141 | for (i=start;i<end;i++) |
1142 | { |
1143 | if (i<8) |
1144 | follower[i] *= 2; |
1145 | if (i>=12) |
1146 | follower[i] = HALF32(follower[i])(.5f*(follower[i])); |
1147 | } |
1148 | /* Compensate for Opus' under-allocation on tones. */ |
1149 | if (toneishness > QCONST32(.98f, 29)(.98f)) { |
1150 | #ifdef FIXED_POINT |
1151 | int freq_bin = PSHR32(MULT16_16(tone_freq, QCONST16(120/M_PI, 9)), 13+9)(((opus_val32)(tone_freq)*(opus_val32)((120/3.14159265358979323846 )))); |
1152 | #else |
1153 | int freq_bin = (int)floor(.5 + tone_freq*120/M_PI3.14159265358979323846); |
1154 | #endif |
1155 | for (i=start;i<end;i++) { |
1156 | if (freq_bin >= eBands[i] && freq_bin <= eBands[i+1]) follower[i] += GCONST(2.f)(2.f); |
1157 | if (freq_bin >= eBands[i]-1 && freq_bin <= eBands[i+1]+1) follower[i] += GCONST(1.f)(1.f); |
1158 | if (freq_bin >= eBands[i]-2 && freq_bin <= eBands[i+1]+2) follower[i] += GCONST(1.f)(1.f); |
1159 | if (freq_bin >= eBands[i]-3 && freq_bin <= eBands[i+1]+3) follower[i] += GCONST(.5f)(.5f); |
1160 | } |
1161 | } |
1162 | #ifdef DISABLE_FLOAT_API |
1163 | (void)analysis; |
1164 | #else |
1165 | if (analysis->valid) |
1166 | { |
1167 | for (i=start;i<IMIN(LEAK_BANDS, end)((19) < (end) ? (19) : (end));i++) |
1168 | follower[i] = follower[i] + GCONST(1.f/64.f)(1.f/64.f)*analysis->leak_boost[i]; |
1169 | } |
1170 | #endif |
1171 | for (i=start;i<end;i++) |
1172 | { |
1173 | int width; |
1174 | int boost; |
1175 | int boost_bits; |
1176 | |
1177 | follower[i] = MING(follower[i], GCONST(4))((follower[i]) < ((4)) ? (follower[i]) : ((4))); |
1178 | |
1179 | follower[i] = SHR32(follower[i], 8)(follower[i]); |
1180 | width = C*(eBands[i+1]-eBands[i])<<LM; |
1181 | if (width<6) |
1182 | { |
1183 | boost = (int)SHR32(follower[i],DB_SHIFT-8)(follower[i]); |
1184 | boost_bits = boost*width<<BITRES3; |
1185 | } else if (width > 48) { |
1186 | boost = (int)SHR32(follower[i]*8,DB_SHIFT-8)(follower[i]*8); |
1187 | boost_bits = (boost*width<<BITRES3)/8; |
1188 | } else { |
1189 | boost = (int)SHR32(follower[i]*width/6,DB_SHIFT-8)(follower[i]*width/6); |
1190 | boost_bits = boost*6<<BITRES3; |
1191 | } |
1192 | /* For CBR and non-transient CVBR frames, limit dynalloc to 2/3 of the bits */ |
1193 | if ((!vbr || (constrained_vbr&&!isTransient)) |
1194 | && (tot_boost+boost_bits)>>BITRES3>>3 > 2*effectiveBytes/3) |
1195 | { |
1196 | opus_int32 cap = ((2*effectiveBytes/3)<<BITRES3<<3); |
1197 | offsets[i] = cap-tot_boost; |
1198 | tot_boost = cap; |
1199 | break; |
1200 | } else { |
1201 | offsets[i] = boost; |
1202 | tot_boost += boost_bits; |
1203 | } |
1204 | } |
1205 | } else { |
1206 | for (i=start;i<end;i++) |
1207 | importance[i] = 13; |
1208 | } |
1209 | *tot_boost_ = tot_boost; |
1210 | RESTORE_STACK; |
1211 | return maxDepth; |
1212 | } |
1213 | |
1214 | #ifdef FIXED_POINT |
1215 | void normalize_tone_input(opus_val16 *x, int len) { |
1216 | opus_val32 ac0=len; |
1217 | int i; |
1218 | int shift; |
1219 | for (i=0;i<len;i++) { |
1220 | ac0 = ADD32(ac0, SHR32(MULT16_16(x[i], x[i]), 10))((ac0)+((((opus_val32)(x[i])*(opus_val32)(x[i]))))); |
1221 | } |
1222 | shift = 5 - (28-celt_ilog2(ac0))/2; |
1223 | if (shift > 0) { |
1224 | for (i=0;i<len;i++) { |
1225 | x[i] = PSHR32(x[i], shift)(x[i]); |
1226 | } |
1227 | } |
1228 | } |
1229 | int acos_approx(opus_val32 x) { |
1230 | opus_val16 x14; |
1231 | opus_val32 tmp; |
1232 | int flip = x<0; |
1233 | x = abs(x); |
1234 | x14 = x>>15; |
1235 | tmp = (762*x14>>14)-3308; |
1236 | tmp = (tmp*x14>>14)+25726; |
1237 | tmp = tmp*celt_sqrt(IMAX(0, (1<<30) - (x<<1)))((float)sqrt(((0) > ((1<<30) - (x<<1)) ? (0) : ((1<<30) - (x<<1)))))>>16; |
1238 | if (flip) tmp = 25736 - tmp; |
1239 | return tmp; |
1240 | } |
1241 | #endif |
1242 | |
1243 | /* Compute the LPC coefficients using a least-squares fit for both forward and backward prediction. */ |
1244 | static int tone_lpc(const opus_val16 *x, int len, int delay, opus_val32 *lpc) { |
1245 | int i; |
1246 | opus_val32 r00=0, r01=0, r11=0, r02=0, r12=0, r22=0; |
1247 | opus_val32 edges; |
1248 | opus_val32 num0, num1, den; |
1249 | celt_assert(len > 2*delay){if (!(len > 2*delay)) {celt_fatal("assertion failed: " "len > 2*delay" , "/root/firefox-clang/media/libopus/celt/celt_encoder.c", 1249 );}}; |
1250 | /* Compute correlations as if using the forward prediction covariance method. */ |
1251 | for (i=0;i<len-2*delay;i++) { |
1252 | r00 += MULT16_16(x[i],x[i])((opus_val32)(x[i])*(opus_val32)(x[i])); |
1253 | r01 += MULT16_16(x[i],x[i+delay])((opus_val32)(x[i])*(opus_val32)(x[i+delay])); |
1254 | r02 += MULT16_16(x[i],x[i+2*delay])((opus_val32)(x[i])*(opus_val32)(x[i+2*delay])); |
1255 | } |
1256 | edges = 0; |
1257 | for (i=0;i<delay;i++) edges += MULT16_16(x[len+i-2*delay],x[len+i-2*delay])((opus_val32)(x[len+i-2*delay])*(opus_val32)(x[len+i-2*delay] )) - MULT16_16(x[i],x[i])((opus_val32)(x[i])*(opus_val32)(x[i])); |
1258 | r11 = r00+edges; |
1259 | edges = 0; |
1260 | for (i=0;i<delay;i++) edges += MULT16_16(x[len+i-delay],x[len+i-delay])((opus_val32)(x[len+i-delay])*(opus_val32)(x[len+i-delay])) - MULT16_16(x[i+delay],x[i+delay])((opus_val32)(x[i+delay])*(opus_val32)(x[i+delay])); |
1261 | r22 = r11+edges; |
1262 | edges = 0; |
1263 | for (i=0;i<delay;i++) edges += MULT16_16(x[len+i-2*delay],x[len+i-delay])((opus_val32)(x[len+i-2*delay])*(opus_val32)(x[len+i-delay])) - MULT16_16(x[i],x[i+delay])((opus_val32)(x[i])*(opus_val32)(x[i+delay])); |
1264 | r12 = r01+edges; |
1265 | /* Reverse and sum to get the backward contribution. */ |
1266 | { |
1267 | opus_val32 R00, R01, R11, R02, R12, R22; |
1268 | R00 = r00 + r22; |
1269 | R01 = r01 + r12; |
1270 | R11 = 2*r11; |
1271 | R02 = 2*r02; |
1272 | R12 = r12 + r01; |
1273 | R22 = r00 + r22; |
1274 | r00 = R00; |
1275 | r01 = R01; |
1276 | r11 = R11; |
1277 | r02 = R02; |
1278 | r12 = R12; |
1279 | r22 = R22; |
Value stored to 'r22' is never read | |
1280 | } |
1281 | /* Solve A*x=b, where A=[r00, r01; r01, r11] and b=[r02; r12]. */ |
1282 | den = MULT32_32_Q31(r00,r11)((r00)*(r11)) - MULT32_32_Q31(r01,r01)((r01)*(r01)); |
1283 | #ifdef FIXED_POINT |
1284 | if (den <= SHR32(MULT32_32_Q31(r00,r11), 10)(((r00)*(r11)))) return 1; |
1285 | #else |
1286 | if (den < .001f*MULT32_32_Q31(r00,r11)((r00)*(r11))) return 1; |
1287 | #endif |
1288 | num1 = MULT32_32_Q31(r02,r11)((r02)*(r11)) - MULT32_32_Q31(r01,r12)((r01)*(r12)); |
1289 | if (num1 >= den) lpc[1] = QCONST32(1.f, 29)(1.f); |
1290 | else if (num1 <= -den) lpc[1] = -QCONST32(1.f, 29)(1.f); |
1291 | else lpc[1] = frac_div32_q29(num1, den)((float)(num1)/(den)); |
1292 | num0 = MULT32_32_Q31(r00,r12)((r00)*(r12)) - MULT32_32_Q31(r02,r01)((r02)*(r01)); |
1293 | if (HALF32(num0)(.5f*(num0)) >= den) lpc[0] = QCONST32(1.999999f, 29)(1.999999f); |
1294 | else if (HALF32(num0)(.5f*(num0)) <= -den) lpc[0] = -QCONST32(1.999999f, 29)(1.999999f); |
1295 | else lpc[0] = frac_div32_q29(num0, den)((float)(num0)/(den)); |
1296 | /*printf("%f %f\n", lpc[0], lpc[1]);*/ |
1297 | return 0; |
1298 | } |
1299 | |
1300 | /* Detects pure of nearly pure tones so we can prevent them from causing problems with the encoder. */ |
1301 | static opus_val16 tone_detect(const celt_sig *in, int CC, int N, opus_val32 *toneishness, opus_int32 Fs) { |
1302 | int i; |
1303 | int delay = 1; |
1304 | int fail; |
1305 | opus_val32 lpc[2]; |
1306 | opus_val16 freq; |
1307 | VARDECL(opus_val16, x)opus_val16 *x; |
1308 | ALLOC(x, N, opus_val16)x = ((opus_val16*)__builtin_alloca (sizeof(opus_val16)*(N))); |
1309 | /* Shift by SIG_SHIFT+1 (+2 for stereo) to account for HF gain of the preemphasis filter. */ |
1310 | if (CC==2) { |
1311 | for (i=0;i<N;i++) x[i] = PSHR32(ADD32(in[i], in[i+N]), SIG_SHIFT+3)(((in[i])+(in[i+N]))); |
1312 | } else { |
1313 | for (i=0;i<N;i++) x[i] = PSHR32(in[i], SIG_SHIFT+2)(in[i]); |
1314 | } |
1315 | #ifdef FIXED_POINT |
1316 | normalize_tone_input(x, N); |
1317 | #endif |
1318 | fail = tone_lpc(x, N, delay, lpc); |
1319 | /* If our LPC filter resonates too close to DC, retry the analysis with down-sampling. */ |
1320 | while (delay <= Fs/3000 && (fail || (lpc[0] > QCONST32(1.f, 29)(1.f) && lpc[1] < 0))) { |
1321 | delay *= 2; |
1322 | fail = tone_lpc(x, N, delay, lpc); |
1323 | } |
1324 | /* Check that our filter has complex roots. */ |
1325 | if (!fail && MULT32_32_Q31(lpc[0],lpc[0])((lpc[0])*(lpc[0])) + MULT32_32_Q31(QCONST32(3.999999, 29), lpc[1])(((3.999999))*(lpc[1])) < 0) { |
1326 | /* Squared radius of the poles. */ |
1327 | *toneishness = -lpc[1]; |
1328 | #ifdef FIXED_POINT |
1329 | freq = acos_approx(lpc[0]>>1)/delay; |
1330 | #else |
1331 | freq = acos(.5f*lpc[0])/delay; |
1332 | #endif |
1333 | } else { |
1334 | freq = -1; |
1335 | *toneishness=0; |
1336 | } |
1337 | /*printf("%f %f %f %f\n", freq, lpc[0], lpc[1], *toneishness);*/ |
1338 | return freq; |
1339 | } |
1340 | |
1341 | static int run_prefilter(CELTEncoderOpusCustomEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, |
1342 | int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, opus_val16 tf_estimate, int nbAvailableBytes, AnalysisInfo *analysis, opus_val16 tone_freq, opus_val32 toneishness) |
1343 | { |
1344 | int c; |
1345 | VARDECL(celt_sig, _pre)celt_sig *_pre; |
1346 | celt_sig *pre[2]; |
1347 | const CELTModeOpusCustomMode *mode; |
1348 | int pitch_index; |
1349 | opus_val16 gain1; |
1350 | opus_val16 pf_threshold; |
1351 | int pf_on; |
1352 | int qg; |
1353 | int overlap; |
1354 | opus_val32 before[2]={0}, after[2]={0}; |
1355 | int cancel_pitch=0; |
1356 | SAVE_STACK; |
1357 | |
1358 | mode = st->mode; |
1359 | overlap = mode->overlap; |
1360 | ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig)_pre = ((celt_sig*)__builtin_alloca (sizeof(celt_sig)*(CC*(N+ 1024)))); |
1361 | |
1362 | pre[0] = _pre; |
1363 | pre[1] = _pre + (N+COMBFILTER_MAXPERIOD1024); |
1364 | |
1365 | |
1366 | c=0; do { |
1367 | OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD)(memcpy((pre[c]), (prefilter_mem+c*1024), (1024)*sizeof(*(pre [c])) + 0*((pre[c])-(prefilter_mem+c*1024)) )); |
1368 | OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+overlap)+overlap, N)(memcpy((pre[c]+1024), (in+c*(N+overlap)+overlap), (N)*sizeof (*(pre[c]+1024)) + 0*((pre[c]+1024)-(in+c*(N+overlap)+overlap )) )); |
1369 | } while (++c<CC); |
1370 | |
1371 | if (enabled) |
1372 | { |
1373 | VARDECL(opus_val16, pitch_buf)opus_val16 *pitch_buf; |
1374 | ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16)pitch_buf = ((opus_val16*)__builtin_alloca (sizeof(opus_val16 )*((1024 +N)>>1))); |
1375 | |
1376 | pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD1024+N, CC, st->arch); |
1377 | /* Don't search for the fir last 1.5 octave of the range because |
1378 | there's too many false-positives due to short-term correlation */ |
1379 | pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD1024>>1), pitch_buf, N, |
1380 | COMBFILTER_MAXPERIOD1024-3*COMBFILTER_MINPERIOD15, &pitch_index, |
1381 | st->arch); |
1382 | pitch_index = COMBFILTER_MAXPERIOD1024-pitch_index; |
1383 | |
1384 | gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD1024, COMBFILTER_MINPERIOD15, |
1385 | N, &pitch_index, st->prefilter_period, st->prefilter_gain, st->arch); |
1386 | if (pitch_index > COMBFILTER_MAXPERIOD1024-2) |
1387 | pitch_index = COMBFILTER_MAXPERIOD1024-2; |
1388 | gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1)(((.7f))*(gain1)); |
1389 | /* If we detect that the signal is dominated by a single tone, don't rely on the standard pitch |
1390 | estimator, as it can become unreliable. */ |
1391 | if (toneishness > QCONST32(.99f, 29)(.99f)) { |
1392 | /* If the pitch is too high for our post-filter, apply pitch doubling until |
1393 | we can get something that fits (not ideal, but better than nothing). */ |
1394 | while (tone_freq >= QCONST16(0.39f, 13)(0.39f)) tone_freq/=2; |
1395 | if (tone_freq > QCONST16(0.006148f, 13)(0.006148f)) { |
1396 | #ifdef FIXED_POINT |
1397 | pitch_index = IMIN(51472/tone_freq, COMBFILTER_MAXPERIOD-2)((51472/tone_freq) < (1024 -2) ? (51472/tone_freq) : (1024 -2)); |
1398 | #else |
1399 | pitch_index = IMIN((int)floor(.5+2.f*M_PI/tone_freq), COMBFILTER_MAXPERIOD-2)(((int)floor(.5+2.f*3.14159265358979323846/tone_freq)) < ( 1024 -2) ? ((int)floor(.5+2.f*3.14159265358979323846/tone_freq )) : (1024 -2)); |
1400 | #endif |
1401 | } else { |
1402 | /* If the pitch is too low, using a very high pitch will actually give us an improvement |
1403 | due to the DC component of the filter that will be close to our tone. Again, not ideal, |
1404 | but if we only have a single tone, it's better than nothing. */ |
1405 | pitch_index = COMBFILTER_MINPERIOD15; |
1406 | } |
1407 | gain1 = QCONST16(.75f, 15)(.75f); |
1408 | } |
1409 | /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ |
1410 | if (st->loss_rate>2) |
1411 | gain1 = HALF32(gain1)(.5f*(gain1)); |
1412 | if (st->loss_rate>4) |
1413 | gain1 = HALF32(gain1)(.5f*(gain1)); |
1414 | if (st->loss_rate>8) |
1415 | gain1 = 0; |
1416 | } else { |
1417 | gain1 = 0; |
1418 | pitch_index = COMBFILTER_MINPERIOD15; |
1419 | } |
1420 | #ifndef DISABLE_FLOAT_API |
1421 | if (analysis->valid) |
1422 | gain1 = (opus_val16)(gain1 * analysis->max_pitch_ratio); |
1423 | #else |
1424 | (void)analysis; |
1425 | #endif |
1426 | /* Gain threshold for enabling the prefilter/postfilter */ |
1427 | pf_threshold = QCONST16(.2f,15)(.2f); |
1428 | |
1429 | /* Adjusting the threshold based on rate and continuity */ |
1430 | if (abs(pitch_index-st->prefilter_period)*10>pitch_index) |
1431 | { |
1432 | pf_threshold += QCONST16(.2f,15)(.2f); |
1433 | /* Completely disable the prefilter on strong transients without continuity. */ |
1434 | if (tf_estimate > QCONST16(.98f, 14)(.98f)) |
1435 | gain1 = 0; |
1436 | } |
1437 | if (nbAvailableBytes<25) |
1438 | pf_threshold += QCONST16(.1f,15)(.1f); |
1439 | if (nbAvailableBytes<35) |
1440 | pf_threshold += QCONST16(.1f,15)(.1f); |
1441 | if (st->prefilter_gain > QCONST16(.4f,15)(.4f)) |
1442 | pf_threshold -= QCONST16(.1f,15)(.1f); |
1443 | if (st->prefilter_gain > QCONST16(.55f,15)(.55f)) |
1444 | pf_threshold -= QCONST16(.1f,15)(.1f); |
1445 | |
1446 | /* Hard threshold at 0.2 */ |
1447 | pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15))((pf_threshold) > ((.2f)) ? (pf_threshold) : ((.2f))); |
1448 | if (gain1<pf_threshold) |
1449 | { |
1450 | gain1 = 0; |
1451 | pf_on = 0; |
1452 | qg = 0; |
1453 | } else { |
1454 | /*This block is not gated by a total bits check only because |
1455 | of the nbAvailableBytes check above.*/ |
1456 | if (ABS16(gain1-st->prefilter_gain)((float)fabs(gain1-st->prefilter_gain))<QCONST16(.1f,15)(.1f)) |
1457 | gain1=st->prefilter_gain; |
1458 | |
1459 | #ifdef FIXED_POINT |
1460 | qg = ((gain1+1536)>>10)/3-1; |
1461 | #else |
1462 | qg = (int)floor(.5f+gain1*32/3)-1; |
1463 | #endif |
1464 | qg = IMAX(0, IMIN(7, qg))((0) > (((7) < (qg) ? (7) : (qg))) ? (0) : (((7) < ( qg) ? (7) : (qg)))); |
1465 | gain1 = QCONST16(0.09375f,15)(0.09375f)*(qg+1); |
1466 | pf_on = 1; |
1467 | } |
1468 | /*printf("%d %f\n", pitch_index, gain1);*/ |
1469 | |
1470 | c=0; do { |
1471 | int i; |
1472 | int offset = mode->shortMdctSize-overlap; |
1473 | st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD)((st->prefilter_period) > (15) ? (st->prefilter_period ) : (15)); |
1474 | OPUS_COPY(in+c*(N+overlap), st->in_mem+c*(overlap), overlap)(memcpy((in+c*(N+overlap)), (st->in_mem+c*(overlap)), (overlap )*sizeof(*(in+c*(N+overlap))) + 0*((in+c*(N+overlap))-(st-> in_mem+c*(overlap))) )); |
1475 | for (i=0;i<N;i++) before[c] += ABS32(SHR32(in[c*(N+overlap)+overlap+i], 12))((float)fabs((in[c*(N+overlap)+overlap+i]))); |
1476 | if (offset) |
1477 | comb_filter(in+c*(N+overlap)+overlap, pre[c]+COMBFILTER_MAXPERIOD1024, |
1478 | st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, |
1479 | st->prefilter_tapset, st->prefilter_tapset, NULL((void*)0), 0, st->arch); |
1480 | |
1481 | comb_filter(in+c*(N+overlap)+overlap+offset, pre[c]+COMBFILTER_MAXPERIOD1024+offset, |
1482 | st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, |
1483 | st->prefilter_tapset, prefilter_tapset, mode->window, overlap, st->arch); |
1484 | for (i=0;i<N;i++) after[c] += ABS32(SHR32(in[c*(N+overlap)+overlap+i], 12))((float)fabs((in[c*(N+overlap)+overlap+i]))); |
1485 | } while (++c<CC); |
1486 | |
1487 | if (CC==2) { |
1488 | opus_val16 thresh[2]; |
1489 | thresh[0] = MULT16_32_Q15(MULT16_16_Q15(QCONST16(.25f, 15), gain1), before[0])(((((.25f))*(gain1)))*(before[0])) + MULT16_32_Q15(QCONST16(.01f,15), before[1])(((.01f))*(before[1])); |
1490 | thresh[1] = MULT16_32_Q15(MULT16_16_Q15(QCONST16(.25f, 15), gain1), before[1])(((((.25f))*(gain1)))*(before[1])) + MULT16_32_Q15(QCONST16(.01f,15), before[0])(((.01f))*(before[0])); |
1491 | /* Don't use the filter if one channel gets significantly worse. */ |
1492 | if (after[0]-before[0] > thresh[0] || after[1]-before[1] > thresh[1]) cancel_pitch = 1; |
1493 | /* Use the filter only if at least one channel gets significantly better. */ |
1494 | if (before[0]-after[0] < thresh[0] && before[1]-after[1] < thresh[1]) cancel_pitch = 1; |
1495 | } else { |
1496 | /* Check that the mono channel actually got better. */ |
1497 | if (after[0] > before[0]) cancel_pitch = 1; |
1498 | } |
1499 | /* If needed, revert to a gain of zero. */ |
1500 | if (cancel_pitch) { |
1501 | c=0; do { |
1502 | int offset = mode->shortMdctSize-overlap; |
1503 | OPUS_COPY(in+c*(N+overlap)+overlap, pre[c]+COMBFILTER_MAXPERIOD, N)(memcpy((in+c*(N+overlap)+overlap), (pre[c]+1024), (N)*sizeof (*(in+c*(N+overlap)+overlap)) + 0*((in+c*(N+overlap)+overlap) -(pre[c]+1024)) )); |
1504 | comb_filter(in+c*(N+overlap)+overlap+offset, pre[c]+COMBFILTER_MAXPERIOD1024+offset, |
1505 | st->prefilter_period, pitch_index, overlap, -st->prefilter_gain, -0, |
1506 | st->prefilter_tapset, prefilter_tapset, mode->window, overlap, st->arch); |
1507 | } while (++c<CC); |
1508 | gain1 = 0; |
1509 | pf_on = 0; |
1510 | qg = 0; |
1511 | } |
1512 | |
1513 | c=0; do { |
1514 | OPUS_COPY(st->in_mem+c*(overlap), in+c*(N+overlap)+N, overlap)(memcpy((st->in_mem+c*(overlap)), (in+c*(N+overlap)+N), (overlap )*sizeof(*(st->in_mem+c*(overlap))) + 0*((st->in_mem+c* (overlap))-(in+c*(N+overlap)+N)) )); |
1515 | |
1516 | if (N>COMBFILTER_MAXPERIOD1024) |
1517 | { |
1518 | OPUS_COPY(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD)(memcpy((prefilter_mem+c*1024), (pre[c]+N), (1024)*sizeof(*(prefilter_mem +c*1024)) + 0*((prefilter_mem+c*1024)-(pre[c]+N)) )); |
1519 | } else { |
1520 | OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N)(memmove((prefilter_mem+c*1024), (prefilter_mem+c*1024 +N), ( 1024 -N)*sizeof(*(prefilter_mem+c*1024)) + 0*((prefilter_mem+ c*1024)-(prefilter_mem+c*1024 +N)) )); |
1521 | OPUS_COPY(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N)(memcpy((prefilter_mem+c*1024 +1024 -N), (pre[c]+1024), (N)*sizeof (*(prefilter_mem+c*1024 +1024 -N)) + 0*((prefilter_mem+c*1024 +1024 -N)-(pre[c]+1024)) )); |
1522 | } |
1523 | } while (++c<CC); |
1524 | |
1525 | RESTORE_STACK; |
1526 | *gain = gain1; |
1527 | *pitch = pitch_index; |
1528 | *qgain = qg; |
1529 | return pf_on; |
1530 | } |
1531 | |
1532 | static int compute_vbr(const CELTModeOpusCustomMode *mode, AnalysisInfo *analysis, opus_int32 base_target, |
1533 | int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity, |
1534 | int constrained_vbr, opus_val16 stereo_saving, int tot_boost, |
1535 | opus_val16 tf_estimate, int pitch_change, celt_glog maxDepth, |
1536 | int lfe, int has_surround_mask, celt_glog surround_masking, |
1537 | celt_glog temporal_vbr) |
1538 | { |
1539 | /* The target rate in 8th bits per frame */ |
1540 | opus_int32 target; |
1541 | int coded_bins; |
1542 | int coded_bands; |
1543 | opus_val16 tf_calibration; |
1544 | int nbEBands; |
1545 | const opus_int16 *eBands; |
1546 | |
1547 | nbEBands = mode->nbEBands; |
1548 | eBands = mode->eBands; |
1549 | |
1550 | coded_bands = lastCodedBands ? lastCodedBands : nbEBands; |
1551 | coded_bins = eBands[coded_bands]<<LM; |
1552 | if (C==2) |
1553 | coded_bins += eBands[IMIN(intensity, coded_bands)((intensity) < (coded_bands) ? (intensity) : (coded_bands) )]<<LM; |
1554 | |
1555 | target = base_target; |
1556 | |
1557 | /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ |
1558 | #ifndef DISABLE_FLOAT_API |
1559 | if (analysis->valid && analysis->activity<.4) |
1560 | target -= (opus_int32)((coded_bins<<BITRES3)*(.4f-analysis->activity)); |
1561 | #endif |
1562 | /* Stereo savings */ |
1563 | if (C==2) |
1564 | { |
1565 | int coded_stereo_bands; |
1566 | int coded_stereo_dof; |
1567 | opus_val16 max_frac; |
1568 | coded_stereo_bands = IMIN(intensity, coded_bands)((intensity) < (coded_bands) ? (intensity) : (coded_bands) ); |
1569 | coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; |
1570 | /* Maximum fraction of the bits we can save if the signal is mono. */ |
1571 | max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins)(((opus_val32)(((opus_val32)((0.8f))*(opus_val32)(coded_stereo_dof ))))/(opus_val16)(coded_bins)); |
1572 | stereo_saving = MIN16(stereo_saving, QCONST16(1.f, 8))((stereo_saving) < ((1.f)) ? (stereo_saving) : ((1.f))); |
1573 | /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ |
1574 | target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target),((((max_frac)*(target))) < ((((opus_val32)(stereo_saving-( 0.1f))*(opus_val32)((coded_stereo_dof<<3))))) ? (((max_frac )*(target))) : ((((opus_val32)(stereo_saving-(0.1f))*(opus_val32 )((coded_stereo_dof<<3)))))) |
1575 | SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8))((((max_frac)*(target))) < ((((opus_val32)(stereo_saving-( 0.1f))*(opus_val32)((coded_stereo_dof<<3))))) ? (((max_frac )*(target))) : ((((opus_val32)(stereo_saving-(0.1f))*(opus_val32 )((coded_stereo_dof<<3)))))); |
1576 | } |
1577 | /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ |
1578 | target += tot_boost-(19<<LM); |
1579 | /* Apply transient boost, compensating for average boost. */ |
1580 | tf_calibration = QCONST16(0.044f,14)(0.044f); |
1581 | target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1)(((tf_estimate-tf_calibration)*(target))); |
1582 | |
1583 | #ifndef DISABLE_FLOAT_API |
1584 | /* Apply tonality boost */ |
1585 | if (analysis->valid && !lfe) |
1586 | { |
1587 | opus_int32 tonal_target; |
1588 | float tonal; |
1589 | |
1590 | /* Tonality boost (compensating for the average). */ |
1591 | tonal = MAX16(0.f,analysis->tonality-.15f)((0.f) > (analysis->tonality-.15f) ? (0.f) : (analysis-> tonality-.15f))-0.12f; |
1592 | tonal_target = target + (opus_int32)((coded_bins<<BITRES3)*1.2f*tonal); |
1593 | if (pitch_change) |
1594 | tonal_target += (opus_int32)((coded_bins<<BITRES3)*.8f); |
1595 | /*printf("%f %f ", analysis->tonality, tonal);*/ |
1596 | target = tonal_target; |
1597 | } |
1598 | #else |
1599 | (void)analysis; |
1600 | (void)pitch_change; |
1601 | #endif |
1602 | |
1603 | if (has_surround_mask&&!lfe) |
1604 | { |
1605 | opus_int32 surround_target = target + (opus_int32)SHR32(MULT16_16(SHR32(surround_masking,DB_SHIFT-10),coded_bins<<BITRES), 10)(((opus_val32)((surround_masking))*(opus_val32)(coded_bins<< 3))); |
1606 | /*printf("%f %d %d %d %d %d %d ", surround_masking, coded_bins, st->end, st->intensity, surround_target, target, st->bitrate);*/ |
1607 | target = IMAX(target/4, surround_target)((target/4) > (surround_target) ? (target/4) : (surround_target )); |
1608 | } |
1609 | |
1610 | { |
1611 | opus_int32 floor_depth; |
1612 | int bins; |
1613 | bins = eBands[nbEBands-2]<<LM; |
1614 | /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ |
1615 | floor_depth = (opus_int32)SHR32(MULT16_32_Q15((C*bins<<BITRES),maxDepth), DB_SHIFT-15)((((C*bins<<3))*(maxDepth))); |
1616 | floor_depth = IMAX(floor_depth, target>>2)((floor_depth) > (target>>2) ? (floor_depth) : (target >>2)); |
1617 | target = IMIN(target, floor_depth)((target) < (floor_depth) ? (target) : (floor_depth)); |
1618 | /*printf("%f %d\n", maxDepth, floor_depth);*/ |
1619 | } |
1620 | |
1621 | /* Make VBR less aggressive for constrained VBR because we can't keep a higher bitrate |
1622 | for long. Needs tuning. */ |
1623 | if ((!has_surround_mask||lfe) && constrained_vbr) |
1624 | { |
1625 | target = base_target + (opus_int32)MULT16_32_Q15(QCONST16(0.67f, 15), target-base_target)(((0.67f))*(target-base_target)); |
1626 | } |
1627 | |
1628 | if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14)(.2f)) |
1629 | { |
1630 | opus_val16 amount; |
1631 | opus_val16 tvbr_factor; |
1632 | amount = MULT16_16_Q15(QCONST16(.0000031f, 30), IMAX(0, IMIN(32000, 96000-bitrate)))(((.0000031f))*(((0) > (((32000) < (96000-bitrate) ? (32000 ) : (96000-bitrate))) ? (0) : (((32000) < (96000-bitrate) ? (32000) : (96000-bitrate)))))); |
1633 | tvbr_factor = SHR32(MULT16_16(SHR32(temporal_vbr, DB_SHIFT-10), amount), 10)(((opus_val32)((temporal_vbr))*(opus_val32)(amount))); |
1634 | target += (opus_int32)MULT16_32_Q15(tvbr_factor, target)((tvbr_factor)*(target)); |
1635 | } |
1636 | |
1637 | /* Don't allow more than doubling the rate */ |
1638 | target = IMIN(2*base_target, target)((2*base_target) < (target) ? (2*base_target) : (target)); |
1639 | |
1640 | return target; |
1641 | } |
1642 | |
1643 | int celt_encode_with_ec(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const opus_res * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) |
1644 | { |
1645 | int i, c, N; |
1646 | opus_int32 bits; |
1647 | ec_enc _enc; |
1648 | VARDECL(celt_sig, in)celt_sig *in; |
1649 | VARDECL(celt_sig, freq)celt_sig *freq; |
1650 | VARDECL(celt_norm, X)celt_norm *X; |
1651 | VARDECL(celt_ener, bandE)celt_ener *bandE; |
1652 | VARDECL(celt_glog, bandLogE)celt_glog *bandLogE; |
1653 | VARDECL(celt_glog, bandLogE2)celt_glog *bandLogE2; |
1654 | VARDECL(int, fine_quant)int *fine_quant; |
1655 | VARDECL(celt_glog, error)celt_glog *error; |
1656 | VARDECL(int, pulses)int *pulses; |
1657 | VARDECL(int, cap)int *cap; |
1658 | VARDECL(int, offsets)int *offsets; |
1659 | VARDECL(int, importance)int *importance; |
1660 | VARDECL(int, spread_weight)int *spread_weight; |
1661 | VARDECL(int, fine_priority)int *fine_priority; |
1662 | VARDECL(int, tf_res)int *tf_res; |
1663 | VARDECL(unsigned char, collapse_masks)unsigned char *collapse_masks; |
1664 | celt_sig *prefilter_mem; |
1665 | celt_glog *oldBandE, *oldLogE, *oldLogE2, *energyError; |
1666 | int shortBlocks=0; |
1667 | int isTransient=0; |
1668 | const int CC = st->channels; |
1669 | const int C = st->stream_channels; |
1670 | int LM, M; |
1671 | int tf_select; |
1672 | int nbFilledBytes, nbAvailableBytes; |
1673 | int start; |
1674 | int end; |
1675 | int effEnd; |
1676 | int codedBands; |
1677 | int alloc_trim; |
1678 | int pitch_index=COMBFILTER_MINPERIOD15; |
1679 | opus_val16 gain1 = 0; |
1680 | int dual_stereo=0; |
1681 | int effectiveBytes; |
1682 | int dynalloc_logp; |
1683 | opus_int32 vbr_rate; |
1684 | opus_int32 total_bits; |
1685 | opus_int32 total_boost; |
1686 | opus_int32 balance; |
1687 | opus_int32 tell; |
1688 | opus_int32 tell0_frac; |
1689 | int prefilter_tapset=0; |
1690 | int pf_on; |
1691 | int anti_collapse_rsv; |
1692 | int anti_collapse_on=0; |
1693 | int silence=0; |
1694 | int tf_chan = 0; |
1695 | opus_val16 tf_estimate; |
1696 | int pitch_change=0; |
1697 | opus_int32 tot_boost; |
1698 | opus_val32 sample_max; |
1699 | celt_glog maxDepth; |
1700 | const OpusCustomMode *mode; |
1701 | int nbEBands; |
1702 | int overlap; |
1703 | const opus_int16 *eBands; |
1704 | int secondMdct; |
1705 | int signalBandwidth; |
1706 | int transient_got_disabled=0; |
1707 | celt_glog surround_masking=0; |
1708 | celt_glog temporal_vbr=0; |
1709 | celt_glog surround_trim = 0; |
1710 | opus_int32 equiv_rate; |
1711 | int hybrid; |
1712 | int weak_transient = 0; |
1713 | int enable_tf_analysis; |
1714 | opus_val16 tone_freq=-1; |
1715 | opus_val32 toneishness=0; |
1716 | VARDECL(celt_glog, surround_dynalloc)celt_glog *surround_dynalloc; |
1717 | ALLOC_STACK; |
1718 | |
1719 | mode = st->mode; |
1720 | nbEBands = mode->nbEBands; |
1721 | overlap = mode->overlap; |
1722 | eBands = mode->eBands; |
1723 | start = st->start; |
1724 | end = st->end; |
1725 | hybrid = start != 0; |
1726 | tf_estimate = 0; |
1727 | if (nbCompressedBytes<2 || pcm==NULL((void*)0)) |
1728 | { |
1729 | RESTORE_STACK; |
1730 | return OPUS_BAD_ARG-1; |
1731 | } |
1732 | |
1733 | frame_size *= st->upsample; |
1734 | for (LM=0;LM<=mode->maxLM;LM++) |
1735 | if (mode->shortMdctSize<<LM==frame_size) |
1736 | break; |
1737 | if (LM>mode->maxLM) |
1738 | { |
1739 | RESTORE_STACK; |
1740 | return OPUS_BAD_ARG-1; |
1741 | } |
1742 | M=1<<LM; |
1743 | N = M*mode->shortMdctSize; |
1744 | |
1745 | prefilter_mem = st->in_mem+CC*(overlap); |
1746 | oldBandE = (celt_glog*)(st->in_mem+CC*(overlap+COMBFILTER_MAXPERIOD1024)); |
1747 | oldLogE = oldBandE + CC*nbEBands; |
1748 | oldLogE2 = oldLogE + CC*nbEBands; |
1749 | energyError = oldLogE2 + CC*nbEBands; |
1750 | |
1751 | if (enc==NULL((void*)0)) |
1752 | { |
1753 | tell0_frac=tell=1; |
1754 | nbFilledBytes=0; |
1755 | } else { |
1756 | tell0_frac=ec_tell_frac(enc); |
1757 | tell=ec_tell(enc); |
1758 | nbFilledBytes=(tell+4)>>3; |
1759 | } |
1760 | |
1761 | #ifdef CUSTOM_MODES |
1762 | if (st->signalling && enc==NULL((void*)0)) |
1763 | { |
1764 | int tmp = (mode->effEBands-end)>>1; |
1765 | end = st->end = IMAX(1, mode->effEBands-tmp)((1) > (mode->effEBands-tmp) ? (1) : (mode->effEBands -tmp)); |
1766 | compressed[0] = tmp<<5; |
1767 | compressed[0] |= LM<<3; |
1768 | compressed[0] |= (C==2)<<2; |
1769 | /* Convert "standard mode" to Opus header */ |
1770 | if (mode->Fs==48000 && mode->shortMdctSize==120) |
1771 | { |
1772 | int c0 = toOpus(compressed[0]); |
1773 | if (c0<0) |
1774 | { |
1775 | RESTORE_STACK; |
1776 | return OPUS_BAD_ARG-1; |
1777 | } |
1778 | compressed[0] = c0; |
1779 | } |
1780 | compressed++; |
1781 | nbCompressedBytes--; |
1782 | } |
1783 | #else |
1784 | celt_assert(st->signalling==0){if (!(st->signalling==0)) {celt_fatal("assertion failed: " "st->signalling==0", "/root/firefox-clang/media/libopus/celt/celt_encoder.c" , 1784);}}; |
1785 | #endif |
1786 | |
1787 | /* Can't produce more than 1275 output bytes */ |
1788 | nbCompressedBytes = IMIN(nbCompressedBytes,1275)((nbCompressedBytes) < (1275) ? (nbCompressedBytes) : (1275 )); |
1789 | |
1790 | if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX-1) |
1791 | { |
1792 | opus_int32 den=mode->Fs>>BITRES3; |
1793 | vbr_rate=(st->bitrate*frame_size+(den>>1))/den; |
1794 | #ifdef CUSTOM_MODES |
1795 | if (st->signalling) |
1796 | vbr_rate -= 8<<BITRES3; |
1797 | #endif |
1798 | effectiveBytes = vbr_rate>>(3+BITRES3); |
1799 | } else { |
1800 | opus_int32 tmp; |
1801 | vbr_rate = 0; |
1802 | tmp = st->bitrate*frame_size; |
1803 | if (tell>1) |
1804 | tmp += tell*mode->Fs; |
1805 | if (st->bitrate!=OPUS_BITRATE_MAX-1) |
1806 | { |
1807 | nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,((2) > (((nbCompressedBytes) < ((tmp+4*mode->Fs)/(8* mode->Fs)-!!st->signalling) ? (nbCompressedBytes) : ((tmp +4*mode->Fs)/(8*mode->Fs)-!!st->signalling))) ? (2) : (((nbCompressedBytes) < ((tmp+4*mode->Fs)/(8*mode-> Fs)-!!st->signalling) ? (nbCompressedBytes) : ((tmp+4*mode ->Fs)/(8*mode->Fs)-!!st->signalling)))) |
1808 | (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling))((2) > (((nbCompressedBytes) < ((tmp+4*mode->Fs)/(8* mode->Fs)-!!st->signalling) ? (nbCompressedBytes) : ((tmp +4*mode->Fs)/(8*mode->Fs)-!!st->signalling))) ? (2) : (((nbCompressedBytes) < ((tmp+4*mode->Fs)/(8*mode-> Fs)-!!st->signalling) ? (nbCompressedBytes) : ((tmp+4*mode ->Fs)/(8*mode->Fs)-!!st->signalling)))); |
1809 | if (enc != NULL((void*)0)) |
1810 | ec_enc_shrink(enc, nbCompressedBytes); |
1811 | } |
1812 | effectiveBytes = nbCompressedBytes - nbFilledBytes; |
1813 | } |
1814 | nbAvailableBytes = nbCompressedBytes - nbFilledBytes; |
1815 | equiv_rate = ((opus_int32)nbCompressedBytes*8*50 << (3-LM)) - (40*C+20)*((400>>LM) - 50); |
1816 | if (st->bitrate != OPUS_BITRATE_MAX-1) |
1817 | equiv_rate = IMIN(equiv_rate, st->bitrate - (40*C+20)*((400>>LM) - 50))((equiv_rate) < (st->bitrate - (40*C+20)*((400>>LM ) - 50)) ? (equiv_rate) : (st->bitrate - (40*C+20)*((400>> LM) - 50))); |
1818 | |
1819 | if (enc==NULL((void*)0)) |
1820 | { |
1821 | ec_enc_init(&_enc, compressed, nbCompressedBytes); |
1822 | enc = &_enc; |
1823 | } |
1824 | |
1825 | if (vbr_rate>0) |
1826 | { |
1827 | /* Computes the max bit-rate allowed in VBR mode to avoid violating the |
1828 | target rate and buffering. |
1829 | We must do this up front so that bust-prevention logic triggers |
1830 | correctly if we don't have enough bits. */ |
1831 | if (st->constrained_vbr) |
1832 | { |
1833 | opus_int32 vbr_bound; |
1834 | opus_int32 max_allowed; |
1835 | /* We could use any multiple of vbr_rate as bound (depending on the |
1836 | delay). |
1837 | This is clamped to ensure we use at least two bytes if the encoder |
1838 | was entirely empty, but to allow 0 in hybrid mode. */ |
1839 | vbr_bound = vbr_rate; |
1840 | max_allowed = IMIN(IMAX(tell==1?2:0,((((tell==1?2:0) > ((vbr_rate+vbr_bound-st->vbr_reservoir )>>(3 +3)) ? (tell==1?2:0) : ((vbr_rate+vbr_bound-st-> vbr_reservoir)>>(3 +3)))) < (nbAvailableBytes) ? ((( tell==1?2:0) > ((vbr_rate+vbr_bound-st->vbr_reservoir)>> (3 +3)) ? (tell==1?2:0) : ((vbr_rate+vbr_bound-st->vbr_reservoir )>>(3 +3)))) : (nbAvailableBytes)) |
1841 | (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),((((tell==1?2:0) > ((vbr_rate+vbr_bound-st->vbr_reservoir )>>(3 +3)) ? (tell==1?2:0) : ((vbr_rate+vbr_bound-st-> vbr_reservoir)>>(3 +3)))) < (nbAvailableBytes) ? ((( tell==1?2:0) > ((vbr_rate+vbr_bound-st->vbr_reservoir)>> (3 +3)) ? (tell==1?2:0) : ((vbr_rate+vbr_bound-st->vbr_reservoir )>>(3 +3)))) : (nbAvailableBytes)) |
1842 | nbAvailableBytes)((((tell==1?2:0) > ((vbr_rate+vbr_bound-st->vbr_reservoir )>>(3 +3)) ? (tell==1?2:0) : ((vbr_rate+vbr_bound-st-> vbr_reservoir)>>(3 +3)))) < (nbAvailableBytes) ? ((( tell==1?2:0) > ((vbr_rate+vbr_bound-st->vbr_reservoir)>> (3 +3)) ? (tell==1?2:0) : ((vbr_rate+vbr_bound-st->vbr_reservoir )>>(3 +3)))) : (nbAvailableBytes)); |
1843 | if(max_allowed < nbAvailableBytes) |
1844 | { |
1845 | nbCompressedBytes = nbFilledBytes+max_allowed; |
1846 | nbAvailableBytes = max_allowed; |
1847 | ec_enc_shrink(enc, nbCompressedBytes); |
1848 | } |
1849 | } |
1850 | } |
1851 | total_bits = nbCompressedBytes*8; |
1852 | |
1853 | effEnd = end; |
1854 | if (effEnd > mode->effEBands) |
1855 | effEnd = mode->effEBands; |
1856 | |
1857 | ALLOC(in, CC*(N+overlap), celt_sig)in = ((celt_sig*)__builtin_alloca (sizeof(celt_sig)*(CC*(N+overlap )))); |
1858 | |
1859 | sample_max=MAX32(st->overlap_max, celt_maxabs_res(pcm, C*(N-overlap)/st->upsample))((st->overlap_max) > (celt_maxabs16(pcm, C*(N-overlap)/ st->upsample)) ? (st->overlap_max) : (celt_maxabs16(pcm , C*(N-overlap)/st->upsample))); |
1860 | st->overlap_max=celt_maxabs_rescelt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); |
1861 | sample_max=MAX32(sample_max, st->overlap_max)((sample_max) > (st->overlap_max) ? (sample_max) : (st-> overlap_max)); |
1862 | #ifdef FIXED_POINT |
1863 | silence = (sample_max==0); |
1864 | #else |
1865 | silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); |
1866 | #endif |
1867 | #ifdef FUZZING |
1868 | if ((rand()&0x3F)==0) |
1869 | silence = 1; |
1870 | #endif |
1871 | if (tell==1) |
1872 | ec_enc_bit_logp(enc, silence, 15); |
1873 | else |
1874 | silence=0; |
1875 | if (silence) |
1876 | { |
1877 | /*In VBR mode there is no need to send more than the minimum. */ |
1878 | if (vbr_rate>0) |
1879 | { |
1880 | effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2)((nbCompressedBytes) < (nbFilledBytes+2) ? (nbCompressedBytes ) : (nbFilledBytes+2)); |
1881 | total_bits=nbCompressedBytes*8; |
1882 | nbAvailableBytes=2; |
1883 | ec_enc_shrink(enc, nbCompressedBytes); |
1884 | } |
1885 | /* Pretend we've filled all the remaining bits with zeros |
1886 | (that's what the initialiser did anyway) */ |
1887 | tell = nbCompressedBytes*8; |
1888 | enc->nbits_total+=tell-ec_tell(enc); |
1889 | } |
1890 | c=0; do { |
1891 | int need_clip=0; |
1892 | #ifndef FIXED_POINT |
1893 | need_clip = st->clip && sample_max>65536.f; |
1894 | #endif |
1895 | celt_preemphasis(pcm+c, in+c*(N+overlap)+overlap, N, CC, st->upsample, |
1896 | mode->preemph, st->preemph_memE+c, need_clip); |
1897 | OPUS_COPY(in+c*(N+overlap), &prefilter_mem[(1+c)*COMBFILTER_MAXPERIOD-overlap], overlap)(memcpy((in+c*(N+overlap)), (&prefilter_mem[(1+c)*1024 -overlap ]), (overlap)*sizeof(*(in+c*(N+overlap))) + 0*((in+c*(N+overlap ))-(&prefilter_mem[(1+c)*1024 -overlap])) )); |
1898 | } while (++c<CC); |
1899 | |
1900 | |
1901 | tone_freq = tone_detect(in, CC, N+overlap, &toneishness, mode->Fs); |
1902 | isTransient = 0; |
1903 | shortBlocks = 0; |
1904 | if (st->complexity >= 1 && !st->lfe) |
1905 | { |
1906 | /* Reduces the likelihood of energy instability on fricatives at low bitrate |
1907 | in hybrid mode. It seems like we still want to have real transients on vowels |
1908 | though (small SILK quantization offset value). */ |
1909 | int allow_weak_transients = hybrid && effectiveBytes<15 && st->silk_info.signalType != 2; |
1910 | isTransient = transient_analysis(in, N+overlap, CC, |
1911 | &tf_estimate, &tf_chan, allow_weak_transients, &weak_transient, tone_freq, toneishness); |
1912 | } |
1913 | /* Find pitch period and gain */ |
1914 | { |
1915 | int enabled; |
1916 | int qg; |
1917 | enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && !hybrid && !silence && tell+16<=total_bits && !st->disable_pf |
1918 | && st->complexity >= 5; |
1919 | |
1920 | prefilter_tapset = st->tapset_decision; |
1921 | pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, tf_estimate, nbAvailableBytes, &st->analysis, tone_freq, toneishness); |
1922 | if ((gain1 > QCONST16(.4f,15)(.4f) || st->prefilter_gain > QCONST16(.4f,15)(.4f)) && (!st->analysis.valid || st->analysis.tonality > .3) |
1923 | && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) |
1924 | pitch_change = 1; |
1925 | if (pf_on==0) |
1926 | { |
1927 | if(!hybrid && tell+16<=total_bits) |
1928 | ec_enc_bit_logp(enc, 0, 1); |
1929 | } else { |
1930 | /*This block is not gated by a total bits check only because |
1931 | of the nbAvailableBytes check above.*/ |
1932 | int octave; |
1933 | ec_enc_bit_logp(enc, 1, 1); |
1934 | pitch_index += 1; |
1935 | octave = EC_ILOG(pitch_index)(((int)sizeof(unsigned)*8)-(__builtin_clz(pitch_index)))-5; |
1936 | ec_enc_uint(enc, octave, 6); |
1937 | ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); |
1938 | pitch_index -= 1; |
1939 | ec_enc_bits(enc, qg, 3); |
1940 | ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); |
1941 | } |
1942 | } |
1943 | if (LM>0 && ec_tell(enc)+3<=total_bits) |
1944 | { |
1945 | if (isTransient) |
1946 | shortBlocks = M; |
1947 | } else { |
1948 | isTransient = 0; |
1949 | transient_got_disabled=1; |
1950 | } |
1951 | |
1952 | ALLOC(freq, CC*N, celt_sig)freq = ((celt_sig*)__builtin_alloca (sizeof(celt_sig)*(CC*N)) ); /**< Interleaved signal MDCTs */ |
1953 | ALLOC(bandE,nbEBands*CC, celt_ener)bandE = ((celt_ener*)__builtin_alloca (sizeof(celt_ener)*(nbEBands *CC))); |
1954 | ALLOC(bandLogE,nbEBands*CC, celt_glog)bandLogE = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)*( nbEBands*CC))); |
1955 | |
1956 | secondMdct = shortBlocks && st->complexity>=8; |
1957 | ALLOC(bandLogE2, C*nbEBands, celt_glog)bandLogE2 = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)* (C*nbEBands))); |
1958 | if (secondMdct) |
1959 | { |
1960 | compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample, st->arch); |
1961 | compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch); |
1962 | amp2Log2(mode, effEnd, end, bandE, bandLogE2, C); |
1963 | for (c=0;c<C;c++) |
1964 | { |
1965 | for (i=0;i<end;i++) |
1966 | bandLogE2[nbEBands*c+i] += HALF32(SHL32(LM, DB_SHIFT))(.5f*((LM))); |
1967 | } |
1968 | } |
1969 | |
1970 | compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch); |
1971 | /* This should catch any NaN in the CELT input. Since we're not supposed to see any (they're filtered |
1972 | at the Opus layer), just abort. */ |
1973 | celt_assert(!celt_isnan(freq[0]) && (C==1 || !celt_isnan(freq[N]))){if (!(!((freq[0])!=(freq[0])) && (C==1 || !((freq[N] )!=(freq[N]))))) {celt_fatal("assertion failed: " "!celt_isnan(freq[0]) && (C==1 || !celt_isnan(freq[N]))" , "/root/firefox-clang/media/libopus/celt/celt_encoder.c", 1973 );}}; |
1974 | if (CC==2&&C==1) |
1975 | tf_chan = 0; |
1976 | compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch); |
1977 | |
1978 | if (st->lfe) |
1979 | { |
1980 | for (i=2;i<end;i++) |
1981 | { |
1982 | bandE[i] = IMIN(bandE[i], MULT16_32_Q15(QCONST16(1e-4f,15),bandE[0]))((bandE[i]) < ((((1e-4f))*(bandE[0]))) ? (bandE[i]) : (((( 1e-4f))*(bandE[0])))); |
1983 | bandE[i] = MAX32(bandE[i], EPSILON)((bandE[i]) > (1e-15f) ? (bandE[i]) : (1e-15f)); |
1984 | } |
1985 | } |
1986 | amp2Log2(mode, effEnd, end, bandE, bandLogE, C); |
1987 | |
1988 | ALLOC(surround_dynalloc, C*nbEBands, celt_glog)surround_dynalloc = ((celt_glog*)__builtin_alloca (sizeof(celt_glog )*(C*nbEBands))); |
1989 | OPUS_CLEAR(surround_dynalloc, end)(memset((surround_dynalloc), 0, (end)*sizeof(*(surround_dynalloc )))); |
1990 | /* This computes how much masking takes place between surround channels */ |
1991 | if (!hybrid&&st->energy_mask&&!st->lfe) |
1992 | { |
1993 | int mask_end; |
1994 | int midband; |
1995 | int count_dynalloc; |
1996 | opus_val32 mask_avg=0; |
1997 | opus_val32 diff=0; |
1998 | int count=0; |
1999 | mask_end = IMAX(2,st->lastCodedBands)((2) > (st->lastCodedBands) ? (2) : (st->lastCodedBands )); |
2000 | for (c=0;c<C;c++) |
2001 | { |
2002 | for(i=0;i<mask_end;i++) |
2003 | { |
2004 | celt_glog mask; |
2005 | opus_val16 mask16; |
2006 | mask = MAXG(MING(st->energy_mask[nbEBands*c+i],((((st->energy_mask[nbEBands*c+i]) < ((.25f)) ? (st-> energy_mask[nbEBands*c+i]) : ((.25f)))) > (-(2.0f)) ? (((st ->energy_mask[nbEBands*c+i]) < ((.25f)) ? (st->energy_mask [nbEBands*c+i]) : ((.25f)))) : (-(2.0f))) |
2007 | GCONST(.25f)), -GCONST(2.0f))((((st->energy_mask[nbEBands*c+i]) < ((.25f)) ? (st-> energy_mask[nbEBands*c+i]) : ((.25f)))) > (-(2.0f)) ? (((st ->energy_mask[nbEBands*c+i]) < ((.25f)) ? (st->energy_mask [nbEBands*c+i]) : ((.25f)))) : (-(2.0f))); |
2008 | if (mask > 0) |
2009 | mask = HALF32(mask)(.5f*(mask)); |
2010 | mask16 = SHR32(mask, DB_SHIFT-10)(mask); |
2011 | mask_avg += MULT16_16(mask16, eBands[i+1]-eBands[i])((opus_val32)(mask16)*(opus_val32)(eBands[i+1]-eBands[i])); |
2012 | count += eBands[i+1]-eBands[i]; |
2013 | diff += MULT16_16(mask16, 1+2*i-mask_end)((opus_val32)(mask16)*(opus_val32)(1+2*i-mask_end)); |
2014 | } |
2015 | } |
2016 | celt_assert(count>0){if (!(count>0)) {celt_fatal("assertion failed: " "count>0" , "/root/firefox-clang/media/libopus/celt/celt_encoder.c", 2016 );}}; |
2017 | mask_avg = SHL32(DIV32_16(mask_avg,count), DB_SHIFT-10)((((opus_val32)(mask_avg))/(opus_val16)(count))); |
2018 | mask_avg += GCONST(.2f)(.2f); |
2019 | diff = SHL32(diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end), DB_SHIFT-10)(diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end)); |
2020 | /* Again, being conservative */ |
2021 | diff = HALF32(diff)(.5f*(diff)); |
2022 | diff = MAX32(MIN32(diff, GCONST(.031f)), -GCONST(.031f))((((diff) < ((.031f)) ? (diff) : ((.031f)))) > (-(.031f )) ? (((diff) < ((.031f)) ? (diff) : ((.031f)))) : (-(.031f ))); |
2023 | /* Find the band that's in the middle of the coded spectrum */ |
2024 | for (midband=0;eBands[midband+1] < eBands[mask_end]/2;midband++); |
2025 | count_dynalloc=0; |
2026 | for(i=0;i<mask_end;i++) |
2027 | { |
2028 | opus_val32 lin; |
2029 | celt_glog unmask; |
2030 | lin = mask_avg + diff*(i-midband); |
2031 | if (C==2) |
2032 | unmask = MAXG(st->energy_mask[i], st->energy_mask[nbEBands+i])((st->energy_mask[i]) > (st->energy_mask[nbEBands+i] ) ? (st->energy_mask[i]) : (st->energy_mask[nbEBands+i] )); |
2033 | else |
2034 | unmask = st->energy_mask[i]; |
2035 | unmask = MING(unmask, GCONST(.0f))((unmask) < ((.0f)) ? (unmask) : ((.0f))); |
2036 | unmask -= lin; |
2037 | if (unmask > GCONST(.25f)(.25f)) |
2038 | { |
2039 | surround_dynalloc[i] = unmask - GCONST(.25f)(.25f); |
2040 | count_dynalloc++; |
2041 | } |
2042 | } |
2043 | if (count_dynalloc>=3) |
2044 | { |
2045 | /* If we need dynalloc in many bands, it's probably because our |
2046 | initial masking rate was too low. */ |
2047 | mask_avg += GCONST(.25f)(.25f); |
2048 | if (mask_avg>0) |
2049 | { |
2050 | /* Something went really wrong in the original calculations, |
2051 | disabling masking. */ |
2052 | mask_avg = 0; |
2053 | diff = 0; |
2054 | OPUS_CLEAR(surround_dynalloc, mask_end)(memset((surround_dynalloc), 0, (mask_end)*sizeof(*(surround_dynalloc )))); |
2055 | } else { |
2056 | for(i=0;i<mask_end;i++) |
2057 | surround_dynalloc[i] = MAXG(0, surround_dynalloc[i]-GCONST(.25f))((0) > (surround_dynalloc[i]-(.25f)) ? (0) : (surround_dynalloc [i]-(.25f))); |
2058 | } |
2059 | } |
2060 | mask_avg += GCONST(.2f)(.2f); |
2061 | /* Convert to 1/64th units used for the trim */ |
2062 | surround_trim = 64*diff; |
2063 | /*printf("%d %d ", mask_avg, surround_trim);*/ |
2064 | surround_masking = mask_avg; |
2065 | } |
2066 | /* Temporal VBR (but not for LFE) */ |
2067 | if (!st->lfe) |
2068 | { |
2069 | celt_glog follow=-QCONST32(10.0f, DB_SHIFT-5)(10.0f); |
2070 | opus_val32 frame_avg=0; |
2071 | celt_glog offset = shortBlocks?HALF32(SHL32(LM, DB_SHIFT-5))(.5f*((LM))):0; |
2072 | for(i=start;i<end;i++) |
2073 | { |
2074 | follow = MAXG(follow-QCONST32(1.0f, DB_SHIFT-5), SHR32(bandLogE[i],5)-offset)((follow-(1.0f)) > ((bandLogE[i])-offset) ? (follow-(1.0f) ) : ((bandLogE[i])-offset)); |
2075 | if (C==2) |
2076 | follow = MAXG(follow, SHR32(bandLogE[i+nbEBands],5)-offset)((follow) > ((bandLogE[i+nbEBands])-offset) ? (follow) : ( (bandLogE[i+nbEBands])-offset)); |
2077 | frame_avg += follow; |
2078 | } |
2079 | frame_avg /= (end-start); |
2080 | temporal_vbr = SUB32(SHL32(frame_avg, 5),st->spec_avg)(((frame_avg))-(st->spec_avg)); |
2081 | temporal_vbr = MING(GCONST(3.f), MAXG(-GCONST(1.5f), temporal_vbr))(((3.f)) < (((-(1.5f)) > (temporal_vbr) ? (-(1.5f)) : ( temporal_vbr))) ? ((3.f)) : (((-(1.5f)) > (temporal_vbr) ? (-(1.5f)) : (temporal_vbr)))); |
2082 | st->spec_avg += MULT16_32_Q15(QCONST16(.02f, 15), temporal_vbr)(((.02f))*(temporal_vbr)); |
2083 | } |
2084 | /*for (i=0;i<21;i++) |
2085 | printf("%f ", bandLogE[i]); |
2086 | printf("\n");*/ |
2087 | |
2088 | if (!secondMdct) |
2089 | { |
2090 | OPUS_COPY(bandLogE2, bandLogE, C*nbEBands)(memcpy((bandLogE2), (bandLogE), (C*nbEBands)*sizeof(*(bandLogE2 )) + 0*((bandLogE2)-(bandLogE)) )); |
2091 | } |
2092 | |
2093 | /* Last chance to catch any transient we might have missed in the |
2094 | time-domain analysis */ |
2095 | if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe && !hybrid) |
2096 | { |
2097 | if (patch_transient_decision(bandLogE, oldBandE, nbEBands, start, end, C)) |
2098 | { |
2099 | isTransient = 1; |
2100 | shortBlocks = M; |
2101 | compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch); |
2102 | compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch); |
2103 | amp2Log2(mode, effEnd, end, bandE, bandLogE, C); |
2104 | /* Compensate for the scaling of short vs long mdcts */ |
2105 | for (c=0;c<C;c++) |
2106 | { |
2107 | for (i=0;i<end;i++) |
2108 | bandLogE2[nbEBands*c+i] += HALF32(SHL32(LM, DB_SHIFT))(.5f*((LM))); |
2109 | } |
2110 | tf_estimate = QCONST16(.2f,14)(.2f); |
2111 | } |
2112 | } |
2113 | |
2114 | if (LM>0 && ec_tell(enc)+3<=total_bits) |
2115 | ec_enc_bit_logp(enc, isTransient, 3); |
2116 | |
2117 | ALLOC(X, C*N, celt_norm)X = ((celt_norm*)__builtin_alloca (sizeof(celt_norm)*(C*N))); /**< Interleaved normalised MDCTs */ |
2118 | |
2119 | /* Band normalisation */ |
2120 | normalise_bands(mode, freq, X, bandE, effEnd, C, M); |
2121 | |
2122 | enable_tf_analysis = effectiveBytes>=15*C && !hybrid && st->complexity>=2 && !st->lfe && toneishness < QCONST32(.98f, 29)(.98f); |
2123 | |
2124 | ALLOC(offsets, nbEBands, int)offsets = ((int*)__builtin_alloca (sizeof(int)*(nbEBands))); |
2125 | ALLOC(importance, nbEBands, int)importance = ((int*)__builtin_alloca (sizeof(int)*(nbEBands)) ); |
2126 | ALLOC(spread_weight, nbEBands, int)spread_weight = ((int*)__builtin_alloca (sizeof(int)*(nbEBands ))); |
2127 | |
2128 | maxDepth = dynalloc_analysis(bandLogE, bandLogE2, oldBandE, nbEBands, start, end, C, offsets, |
2129 | st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, |
2130 | eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc, &st->analysis, importance, spread_weight, tone_freq, toneishness); |
2131 | |
2132 | ALLOC(tf_res, nbEBands, int)tf_res = ((int*)__builtin_alloca (sizeof(int)*(nbEBands))); |
2133 | /* Disable variable tf resolution for hybrid and at very low bitrate */ |
2134 | if (enable_tf_analysis) |
2135 | { |
2136 | int lambda; |
2137 | lambda = IMAX(80, 20480/effectiveBytes + 2)((80) > (20480/effectiveBytes + 2) ? (80) : (20480/effectiveBytes + 2)); |
2138 | tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, tf_estimate, tf_chan, importance); |
2139 | for (i=effEnd;i<end;i++) |
2140 | tf_res[i] = tf_res[effEnd-1]; |
2141 | } else if (hybrid && weak_transient) |
2142 | { |
2143 | /* For weak transients, we rely on the fact that improving time resolution using |
2144 | TF on a long window is imperfect and will not result in an energy collapse at |
2145 | low bitrate. */ |
2146 | for (i=0;i<end;i++) |
2147 | tf_res[i] = 1; |
2148 | tf_select=0; |
2149 | } else if (hybrid && effectiveBytes<15 && st->silk_info.signalType != 2) |
2150 | { |
2151 | /* For low bitrate hybrid, we force temporal resolution to 5 ms rather than 2.5 ms. */ |
2152 | for (i=0;i<end;i++) |
2153 | tf_res[i] = 0; |
2154 | tf_select=isTransient; |
2155 | } else { |
2156 | for (i=0;i<end;i++) |
2157 | tf_res[i] = isTransient; |
2158 | tf_select=0; |
2159 | } |
2160 | |
2161 | ALLOC(error, C*nbEBands, celt_glog)error = ((celt_glog*)__builtin_alloca (sizeof(celt_glog)*(C*nbEBands ))); |
2162 | c=0; |
2163 | do { |
2164 | for (i=start;i<end;i++) |
2165 | { |
2166 | /* When the energy is stable, slightly bias energy quantization towards |
2167 | the previous error to make the gain more stable (a constant offset is |
2168 | better than fluctuations). */ |
2169 | if (ABS32(SUB32(bandLogE[i+c*nbEBands], oldBandE[i+c*nbEBands]))((float)fabs(((bandLogE[i+c*nbEBands])-(oldBandE[i+c*nbEBands ])))) < GCONST(2.f)(2.f)) |
2170 | { |
2171 | bandLogE[i+c*nbEBands] -= MULT16_32_Q15(QCONST16(0.25f, 15), energyError[i+c*nbEBands])(((0.25f))*(energyError[i+c*nbEBands])); |
2172 | } |
2173 | } |
2174 | } while (++c < C); |
2175 | quant_coarse_energy(mode, start, end, effEnd, bandLogE, |
2176 | oldBandE, total_bits, error, enc, |
2177 | C, LM, nbAvailableBytes, st->force_intra, |
2178 | &st->delayedIntra, st->complexity >= 4, st->loss_rate, st->lfe); |
2179 | |
2180 | tf_encode(start, end, isTransient, tf_res, LM, tf_select, enc); |
2181 | |
2182 | if (ec_tell(enc)+4<=total_bits) |
2183 | { |
2184 | if (st->lfe) |
2185 | { |
2186 | st->tapset_decision = 0; |
2187 | st->spread_decision = SPREAD_NORMAL(2); |
2188 | } else if (hybrid) |
2189 | { |
2190 | if (st->complexity == 0) |
2191 | st->spread_decision = SPREAD_NONE(0); |
2192 | else if (isTransient) |
2193 | st->spread_decision = SPREAD_NORMAL(2); |
2194 | else |
2195 | st->spread_decision = SPREAD_AGGRESSIVE(3); |
2196 | } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C) |
2197 | { |
2198 | if (st->complexity == 0) |
2199 | st->spread_decision = SPREAD_NONE(0); |
2200 | else |
2201 | st->spread_decision = SPREAD_NORMAL(2); |
2202 | } else { |
2203 | /* Disable new spreading+tapset estimator until we can show it works |
2204 | better than the old one. So far it seems like spreading_decision() |
2205 | works best. */ |
2206 | #if 0 |
2207 | if (st->analysis.valid) |
2208 | { |
2209 | static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15)(.6f), -QCONST16(.2f, 15)(.2f), -QCONST16(.07f, 15)(.07f)}; |
2210 | static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15)(.15f), QCONST16(.07f, 15)(.07f), QCONST16(.02f, 15)(.02f)}; |
2211 | static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15)(.0f), QCONST16(.15f, 15)(.15f)}; |
2212 | static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15)(.1f), QCONST16(.05f, 15)(.05f)}; |
2213 | st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); |
2214 | st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); |
2215 | } else |
2216 | #endif |
2217 | { |
2218 | st->spread_decision = spreading_decision(mode, X, |
2219 | &st->tonal_average, st->spread_decision, &st->hf_average, |
2220 | &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M, spread_weight); |
2221 | } |
2222 | /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ |
2223 | /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ |
2224 | } |
2225 | ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); |
2226 | } else { |
2227 | st->spread_decision = SPREAD_NORMAL(2); |
2228 | } |
2229 | |
2230 | /* For LFE, everything interesting is in the first band */ |
2231 | if (st->lfe) |
2232 | offsets[0] = IMIN(8, effectiveBytes/3)((8) < (effectiveBytes/3) ? (8) : (effectiveBytes/3)); |
2233 | ALLOC(cap, nbEBands, int)cap = ((int*)__builtin_alloca (sizeof(int)*(nbEBands))); |
2234 | init_caps(mode,cap,LM,C); |
2235 | |
2236 | dynalloc_logp = 6; |
2237 | total_bits<<=BITRES3; |
2238 | total_boost = 0; |
2239 | tell = ec_tell_frac(enc); |
2240 | for (i=start;i<end;i++) |
2241 | { |
2242 | int width, quanta; |
2243 | int dynalloc_loop_logp; |
2244 | int boost; |
2245 | int j; |
2246 | width = C*(eBands[i+1]-eBands[i])<<LM; |
2247 | /* quanta is 6 bits, but no more than 1 bit/sample |
2248 | and no less than 1/8 bit/sample */ |
2249 | quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width))((width<<3) < (((6<<3) > (width) ? (6<< 3) : (width))) ? (width<<3) : (((6<<3) > (width ) ? (6<<3) : (width)))); |
2250 | dynalloc_loop_logp = dynalloc_logp; |
2251 | boost = 0; |
2252 | for (j = 0; tell+(dynalloc_loop_logp<<BITRES3) < total_bits-total_boost |
2253 | && boost < cap[i]; j++) |
2254 | { |
2255 | int flag; |
2256 | flag = j<offsets[i]; |
2257 | ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); |
2258 | tell = ec_tell_frac(enc); |
2259 | if (!flag) |
2260 | break; |
2261 | boost += quanta; |
2262 | total_boost += quanta; |
2263 | dynalloc_loop_logp = 1; |
2264 | } |
2265 | /* Making dynalloc more likely */ |
2266 | if (j) |
2267 | dynalloc_logp = IMAX(2, dynalloc_logp-1)((2) > (dynalloc_logp-1) ? (2) : (dynalloc_logp-1)); |
2268 | offsets[i] = boost; |
2269 | } |
2270 | |
2271 | if (C==2) |
2272 | { |
2273 | static const opus_val16 intensity_thresholds[21]= |
2274 | /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/ |
2275 | { 1, 2, 3, 4, 5, 6, 7, 8,16,24,36,44,50,56,62,67,72,79,88,106,134}; |
2276 | static const opus_val16 intensity_histeresis[21]= |
2277 | { 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6, 8, 8}; |
2278 | |
2279 | /* Always use MS for 2.5 ms frames until we can do a better analysis */ |
2280 | if (LM!=0) |
2281 | dual_stereo = stereo_analysis(mode, X, LM, N); |
2282 | |
2283 | st->intensity = hysteresis_decision((opus_val16)(equiv_rate/1000), |
2284 | intensity_thresholds, intensity_histeresis, 21, st->intensity); |
2285 | st->intensity = IMIN(end,IMAX(start, st->intensity))((end) < (((start) > (st->intensity) ? (start) : (st ->intensity))) ? (end) : (((start) > (st->intensity) ? (start) : (st->intensity)))); |
2286 | } |
2287 | |
2288 | alloc_trim = 5; |
2289 | if (tell+(6<<BITRES3) <= total_bits - total_boost) |
2290 | { |
2291 | if (start > 0 || st->lfe) |
2292 | { |
2293 | st->stereo_saving = 0; |
2294 | alloc_trim = 5; |
2295 | } else { |
2296 | alloc_trim = alloc_trim_analysis(mode, X, bandLogE, |
2297 | end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, |
2298 | st->intensity, surround_trim, equiv_rate, st->arch); |
2299 | } |
2300 | ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); |
2301 | tell = ec_tell_frac(enc); |
2302 | } |
2303 | |
2304 | /* Variable bitrate */ |
2305 | if (vbr_rate>0) |
2306 | { |
2307 | opus_val16 alpha; |
2308 | opus_int32 delta; |
2309 | /* The target rate in 8th bits per frame */ |
2310 | opus_int32 target, base_target; |
2311 | opus_int32 min_allowed; |
2312 | int lm_diff = mode->maxLM - LM; |
2313 | |
2314 | /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. |
2315 | The CELT allocator will just not be able to use more than that anyway. */ |
2316 | nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM))((nbCompressedBytes) < (1275>>(3-LM)) ? (nbCompressedBytes ) : (1275>>(3-LM))); |
2317 | if (!hybrid) |
2318 | { |
2319 | base_target = vbr_rate - ((40*C+20)<<BITRES3); |
2320 | } else { |
2321 | base_target = IMAX(0, vbr_rate - ((9*C+4)<<BITRES))((0) > (vbr_rate - ((9*C+4)<<3)) ? (0) : (vbr_rate - ((9*C+4)<<3))); |
2322 | } |
2323 | |
2324 | if (st->constrained_vbr) |
2325 | base_target += (st->vbr_offset>>lm_diff); |
2326 | |
2327 | if (!hybrid) |
2328 | { |
2329 | target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate, |
2330 | st->lastCodedBands, C, st->intensity, st->constrained_vbr, |
2331 | st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth, |
2332 | st->lfe, st->energy_mask!=NULL((void*)0), surround_masking, |
2333 | temporal_vbr); |
2334 | } else { |
2335 | target = base_target; |
2336 | /* Tonal frames (offset<100) need more bits than noisy (offset>100) ones. */ |
2337 | if (st->silk_info.offset < 100) target += 12 << BITRES3 >> (3-LM); |
2338 | if (st->silk_info.offset > 100) target -= 18 << BITRES3 >> (3-LM); |
2339 | /* Boosting bitrate on transients and vowels with significant temporal |
2340 | spikes. */ |
2341 | target += (opus_int32)MULT16_16_Q14(tf_estimate-QCONST16(.25f,14), (50<<BITRES))((tf_estimate-(.25f))*((50<<3))); |
2342 | /* If we have a strong transient, let's make sure it has enough bits to code |
2343 | the first two bands, so that it can use folding rather than noise. */ |
2344 | if (tf_estimate > QCONST16(.7f,14)(.7f)) |
2345 | target = IMAX(target, 50<<BITRES)((target) > (50<<3) ? (target) : (50<<3)); |
2346 | } |
2347 | /* The current offset is removed from the target and the space used |
2348 | so far is added*/ |
2349 | target=target+tell; |
2350 | /* In VBR mode the frame size must not be reduced so much that it would |
2351 | result in the encoder running out of bits. |
2352 | The margin of 2 bytes ensures that none of the bust-prevention logic |
2353 | in the decoder will have triggered so far. */ |
2354 | min_allowed = ((tell+total_boost+(1<<(BITRES3+3))-1)>>(BITRES3+3)) + 2; |
2355 | /* Take into account the 37 bits we need to have left in the packet to |
2356 | signal a redundant frame in hybrid mode. Creating a shorter packet would |
2357 | create an entropy coder desync. */ |
2358 | if (hybrid) |
2359 | min_allowed = IMAX(min_allowed, (tell0_frac+(37<<BITRES)+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3))((min_allowed) > ((tell0_frac+(37<<3)+total_boost+(1 <<(3 +3))-1)>>(3 +3)) ? (min_allowed) : ((tell0_frac +(37<<3)+total_boost+(1<<(3 +3))-1)>>(3 +3) )); |
2360 | |
2361 | nbAvailableBytes = (target+(1<<(BITRES3+2)))>>(BITRES3+3); |
2362 | nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes)((min_allowed) > (nbAvailableBytes) ? (min_allowed) : (nbAvailableBytes )); |
2363 | nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes)((nbCompressedBytes) < (nbAvailableBytes) ? (nbCompressedBytes ) : (nbAvailableBytes)); |
2364 | |
2365 | /* By how much did we "miss" the target on that frame */ |
2366 | delta = target - vbr_rate; |
2367 | |
2368 | target=nbAvailableBytes<<(BITRES3+3); |
2369 | |
2370 | /*If the frame is silent we don't adjust our drift, otherwise |
2371 | the encoder will shoot to very high rates after hitting a |
2372 | span of silence, but we do allow the bitres to refill. |
2373 | This means that we'll undershoot our target in CVBR/VBR modes |
2374 | on files with lots of silence. */ |
2375 | if(silence) |
2376 | { |
2377 | nbAvailableBytes = 2; |
2378 | target = 2*8<<BITRES3; |
2379 | delta = 0; |
2380 | } |
2381 | |
2382 | if (st->vbr_count < 970) |
2383 | { |
2384 | st->vbr_count++; |
2385 | alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16))(1.f/(((st->vbr_count+20)))); |
2386 | } else |
2387 | alpha = QCONST16(.001f,15)(.001f); |
2388 | /* How many bits have we used in excess of what we're allowed */ |
2389 | if (st->constrained_vbr) |
2390 | st->vbr_reservoir += target - vbr_rate; |
2391 | /*printf ("%d\n", st->vbr_reservoir);*/ |
2392 | |
2393 | /* Compute the offset we need to apply in order to reach the target */ |
2394 | if (st->constrained_vbr) |
2395 | { |
2396 | st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift)((alpha)*((delta*(1<<lm_diff))-st->vbr_offset-st-> vbr_drift)); |
2397 | st->vbr_offset = -st->vbr_drift; |
2398 | } |
2399 | /*printf ("%d\n", st->vbr_drift);*/ |
2400 | |
2401 | if (st->constrained_vbr && st->vbr_reservoir < 0) |
2402 | { |
2403 | /* We're under the min value -- increase rate */ |
2404 | int adjust = (-st->vbr_reservoir)/(8<<BITRES3); |
2405 | /* Unless we're just coding silence */ |
2406 | nbAvailableBytes += silence?0:adjust; |
2407 | st->vbr_reservoir = 0; |
2408 | /*printf ("+%d\n", adjust);*/ |
2409 | } |
2410 | nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes)((nbCompressedBytes) < (nbAvailableBytes) ? (nbCompressedBytes ) : (nbAvailableBytes)); |
2411 | /*printf("%d\n", nbCompressedBytes*50*8);*/ |
2412 | /* This moves the raw bits to take into account the new compressed size */ |
2413 | ec_enc_shrink(enc, nbCompressedBytes); |
2414 | } |
2415 | |
2416 | /* Bit allocation */ |
2417 | ALLOC(fine_quant, nbEBands, int)fine_quant = ((int*)__builtin_alloca (sizeof(int)*(nbEBands)) ); |
2418 | ALLOC(pulses, nbEBands, int)pulses = ((int*)__builtin_alloca (sizeof(int)*(nbEBands))); |
2419 | ALLOC(fine_priority, nbEBands, int)fine_priority = ((int*)__builtin_alloca (sizeof(int)*(nbEBands ))); |
2420 | |
2421 | /* bits = packet size - where we are - safety*/ |
2422 | bits = (((opus_int32)nbCompressedBytes*8)<<BITRES3) - (opus_int32)ec_tell_frac(enc) - 1; |
2423 | anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES3) ? (1<<BITRES3) : 0; |
2424 | bits -= anti_collapse_rsv; |
2425 | signalBandwidth = end-1; |
2426 | #ifndef DISABLE_FLOAT_API |
2427 | if (st->analysis.valid) |
2428 | { |
2429 | int min_bandwidth; |
2430 | if (equiv_rate < (opus_int32)32000*C) |
2431 | min_bandwidth = 13; |
2432 | else if (equiv_rate < (opus_int32)48000*C) |
2433 | min_bandwidth = 16; |
2434 | else if (equiv_rate < (opus_int32)60000*C) |
2435 | min_bandwidth = 18; |
2436 | else if (equiv_rate < (opus_int32)80000*C) |
2437 | min_bandwidth = 19; |
2438 | else |
2439 | min_bandwidth = 20; |
2440 | signalBandwidth = IMAX(st->analysis.bandwidth, min_bandwidth)((st->analysis.bandwidth) > (min_bandwidth) ? (st->analysis .bandwidth) : (min_bandwidth)); |
2441 | } |
2442 | #endif |
2443 | if (st->lfe) |
2444 | signalBandwidth = 1; |
2445 | codedBands = clt_compute_allocation(mode, start, end, offsets, cap, |
2446 | alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, |
2447 | fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); |
2448 | if (st->lastCodedBands) |
2449 | st->lastCodedBands = IMIN(st->lastCodedBands+1,IMAX(st->lastCodedBands-1,codedBands))((st->lastCodedBands+1) < (((st->lastCodedBands-1) > (codedBands) ? (st->lastCodedBands-1) : (codedBands))) ? ( st->lastCodedBands+1) : (((st->lastCodedBands-1) > ( codedBands) ? (st->lastCodedBands-1) : (codedBands)))); |
2450 | else |
2451 | st->lastCodedBands = codedBands; |
2452 | |
2453 | quant_fine_energy(mode, start, end, oldBandE, error, fine_quant, enc, C); |
2454 | |
2455 | /* Residual quantisation */ |
2456 | ALLOC(collapse_masks, C*nbEBands, unsigned char)collapse_masks = ((unsigned char*)__builtin_alloca (sizeof(unsigned char)*(C*nbEBands))); |
2457 | quant_all_bands(1, mode, start, end, X, C==2 ? X+N : NULL((void*)0), collapse_masks, |
2458 | bandE, pulses, shortBlocks, st->spread_decision, |
2459 | dual_stereo, st->intensity, tf_res, nbCompressedBytes*(8<<BITRES3)-anti_collapse_rsv, |
2460 | balance, enc, LM, codedBands, &st->rng, st->complexity, st->arch, st->disable_inv); |
2461 | |
2462 | if (anti_collapse_rsv > 0) |
2463 | { |
2464 | anti_collapse_on = st->consec_transient<2; |
2465 | #ifdef FUZZING |
2466 | anti_collapse_on = rand()&0x1; |
2467 | #endif |
2468 | ec_enc_bits(enc, anti_collapse_on, 1); |
2469 | } |
2470 | quant_energy_finalise(mode, start, end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); |
2471 | OPUS_CLEAR(energyError, nbEBands*CC)(memset((energyError), 0, (nbEBands*CC)*sizeof(*(energyError) ))); |
2472 | c=0; |
2473 | do { |
2474 | for (i=start;i<end;i++) |
2475 | { |
2476 | energyError[i+c*nbEBands] = MAXG(-GCONST(0.5f), MING(GCONST(0.5f), error[i+c*nbEBands]))((-(0.5f)) > ((((0.5f)) < (error[i+c*nbEBands]) ? ((0.5f )) : (error[i+c*nbEBands]))) ? (-(0.5f)) : ((((0.5f)) < (error [i+c*nbEBands]) ? ((0.5f)) : (error[i+c*nbEBands])))); |
2477 | } |
2478 | } while (++c < C); |
2479 | |
2480 | if (silence) |
2481 | { |
2482 | for (i=0;i<C*nbEBands;i++) |
2483 | oldBandE[i] = -GCONST(28.f)(28.f); |
2484 | } |
2485 | |
2486 | #ifdef RESYNTH |
2487 | /* Re-synthesis of the coded audio if required */ |
2488 | { |
2489 | celt_sig *out_mem[2]; |
2490 | |
2491 | if (anti_collapse_on) |
2492 | { |
2493 | anti_collapse(mode, X, collapse_masks, LM, C, N, |
2494 | start, end, oldBandE, oldLogE, oldLogE2, pulses, st->rng, 1, st->arch); |
2495 | } |
2496 | |
2497 | c=0; do { |
2498 | OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2)(memmove((st->syn_mem[c]), (st->syn_mem[c]+N), (2*1024 - N+overlap/2)*sizeof(*(st->syn_mem[c])) + 0*((st->syn_mem [c])-(st->syn_mem[c]+N)) )); |
2499 | } while (++c<CC); |
2500 | |
2501 | c=0; do { |
2502 | out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD1024-N; |
2503 | } while (++c<CC); |
2504 | |
2505 | celt_synthesis(mode, X, out_mem, oldBandE, start, effEnd, |
2506 | C, CC, isTransient, LM, st->upsample, silence, st->arch); |
2507 | |
2508 | c=0; do { |
2509 | st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD)((st->prefilter_period) > (15) ? (st->prefilter_period ) : (15)); |
2510 | st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD)((st->prefilter_period_old) > (15) ? (st->prefilter_period_old ) : (15)); |
2511 | comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, |
2512 | st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, |
2513 | mode->window, overlap, st->arch); |
2514 | if (LM!=0) |
2515 | comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, |
2516 | st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, |
2517 | mode->window, overlap, st->arch); |
2518 | } while (++c<CC); |
2519 | |
2520 | /* We reuse freq[] as scratch space for the de-emphasis */ |
2521 | deemphasis(out_mem, (opus_res*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, 0); |
2522 | st->prefilter_period_old = st->prefilter_period; |
2523 | st->prefilter_gain_old = st->prefilter_gain; |
2524 | st->prefilter_tapset_old = st->prefilter_tapset; |
2525 | } |
2526 | #endif |
2527 | |
2528 | st->prefilter_period = pitch_index; |
2529 | st->prefilter_gain = gain1; |
2530 | st->prefilter_tapset = prefilter_tapset; |
2531 | #ifdef RESYNTH |
2532 | if (LM!=0) |
2533 | { |
2534 | st->prefilter_period_old = st->prefilter_period; |
2535 | st->prefilter_gain_old = st->prefilter_gain; |
2536 | st->prefilter_tapset_old = st->prefilter_tapset; |
2537 | } |
2538 | #endif |
2539 | |
2540 | if (CC==2&&C==1) { |
2541 | OPUS_COPY(&oldBandE[nbEBands], oldBandE, nbEBands)(memcpy((&oldBandE[nbEBands]), (oldBandE), (nbEBands)*sizeof (*(&oldBandE[nbEBands])) + 0*((&oldBandE[nbEBands])-( oldBandE)) )); |
2542 | } |
2543 | |
2544 | if (!isTransient) |
2545 | { |
2546 | OPUS_COPY(oldLogE2, oldLogE, CC*nbEBands)(memcpy((oldLogE2), (oldLogE), (CC*nbEBands)*sizeof(*(oldLogE2 )) + 0*((oldLogE2)-(oldLogE)) )); |
2547 | OPUS_COPY(oldLogE, oldBandE, CC*nbEBands)(memcpy((oldLogE), (oldBandE), (CC*nbEBands)*sizeof(*(oldLogE )) + 0*((oldLogE)-(oldBandE)) )); |
2548 | } else { |
2549 | for (i=0;i<CC*nbEBands;i++) |
2550 | oldLogE[i] = MING(oldLogE[i], oldBandE[i])((oldLogE[i]) < (oldBandE[i]) ? (oldLogE[i]) : (oldBandE[i ])); |
2551 | } |
2552 | /* In case start or end were to change */ |
2553 | c=0; do |
2554 | { |
2555 | for (i=0;i<start;i++) |
2556 | { |
2557 | oldBandE[c*nbEBands+i]=0; |
2558 | oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-GCONST(28.f)(28.f); |
2559 | } |
2560 | for (i=end;i<nbEBands;i++) |
2561 | { |
2562 | oldBandE[c*nbEBands+i]=0; |
2563 | oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-GCONST(28.f)(28.f); |
2564 | } |
2565 | } while (++c<CC); |
2566 | |
2567 | if (isTransient || transient_got_disabled) |
2568 | st->consec_transient++; |
2569 | else |
2570 | st->consec_transient=0; |
2571 | st->rng = enc->rng; |
2572 | |
2573 | /* If there's any room left (can only happen for very high rates), |
2574 | it's already filled with zeros */ |
2575 | ec_enc_done(enc); |
2576 | |
2577 | #ifdef CUSTOM_MODES |
2578 | if (st->signalling) |
2579 | nbCompressedBytes++; |
2580 | #endif |
2581 | |
2582 | RESTORE_STACK; |
2583 | if (ec_get_error(enc)) |
2584 | return OPUS_INTERNAL_ERROR-3; |
2585 | else |
2586 | return nbCompressedBytes; |
2587 | } |
2588 | |
2589 | |
2590 | #ifdef CUSTOM_MODES |
2591 | |
2592 | #if defined(FIXED_POINT) && !defined(ENABLE_RES24) |
2593 | int opus_custom_encode(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
2594 | { |
2595 | return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL((void*)0)); |
2596 | } |
2597 | #else |
2598 | int opus_custom_encode(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
2599 | { |
2600 | int j, ret, C, N; |
2601 | VARDECL(opus_res, in)opus_res *in; |
2602 | ALLOC_STACK; |
2603 | |
2604 | if (pcm==NULL((void*)0)) |
2605 | return OPUS_BAD_ARG-1; |
2606 | |
2607 | C = st->channels; |
2608 | N = frame_size; |
2609 | ALLOC(in, C*N, opus_res)in = ((opus_res*)__builtin_alloca (sizeof(opus_res)*(C*N))); |
2610 | |
2611 | for (j=0;j<C*N;j++) |
2612 | in[j] = INT16TORES(pcm[j])((pcm[j])*(1/32768.f)); |
2613 | |
2614 | ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL((void*)0)); |
2615 | #ifdef RESYNTH |
2616 | for (j=0;j<C*N;j++) |
2617 | ((opus_int16*)pcm)[j]=RES2INT16(in[j])FLOAT2INT16(in[j]); |
2618 | #endif |
2619 | RESTORE_STACK; |
2620 | return ret; |
2621 | } |
2622 | #endif |
2623 | |
2624 | |
2625 | #if defined(FIXED_POINT) && defined(ENABLE_RES24) |
2626 | int opus_custom_encode24(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const opus_int32 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
2627 | { |
2628 | return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL((void*)0)); |
2629 | } |
2630 | #else |
2631 | int opus_custom_encode24(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const opus_int32 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
2632 | { |
2633 | int j, ret, C, N; |
2634 | VARDECL(opus_res, in)opus_res *in; |
2635 | ALLOC_STACK; |
2636 | |
2637 | if (pcm==NULL((void*)0)) |
2638 | return OPUS_BAD_ARG-1; |
2639 | |
2640 | C = st->channels; |
2641 | N = frame_size; |
2642 | ALLOC(in, C*N, opus_res)in = ((opus_res*)__builtin_alloca (sizeof(opus_res)*(C*N))); |
2643 | |
2644 | for (j=0;j<C*N;j++) |
2645 | in[j] = INT24TORES(pcm[j])((1.f/32768.f/256.)*(pcm[j])); |
2646 | |
2647 | ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL((void*)0)); |
2648 | #ifdef RESYNTH |
2649 | for (j=0;j<C*N;j++) |
2650 | ((opus_int32*)pcm)[j]=RES2INT24(in[j])float2int(32768.f*256.f*(in[j])); |
2651 | #endif |
2652 | RESTORE_STACK; |
2653 | return ret; |
2654 | } |
2655 | #endif |
2656 | |
2657 | |
2658 | #ifndef DISABLE_FLOAT_API |
2659 | |
2660 | # if !defined(FIXED_POINT) |
2661 | int opus_custom_encode_float(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
2662 | { |
2663 | return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL((void*)0)); |
2664 | } |
2665 | # else |
2666 | int opus_custom_encode_float(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
2667 | { |
2668 | int j, ret, C, N; |
2669 | VARDECL(opus_res, in)opus_res *in; |
2670 | ALLOC_STACK; |
2671 | |
2672 | if (pcm==NULL((void*)0)) |
2673 | return OPUS_BAD_ARG-1; |
2674 | |
2675 | C = st->channels; |
2676 | N = frame_size; |
2677 | ALLOC(in, C*N, opus_res)in = ((opus_res*)__builtin_alloca (sizeof(opus_res)*(C*N))); |
2678 | |
2679 | for (j=0;j<C*N;j++) |
2680 | in[j] = FLOAT2RES(pcm[j])(pcm[j]); |
2681 | |
2682 | ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL((void*)0)); |
2683 | #ifdef RESYNTH |
2684 | for (j=0;j<C*N;j++) |
2685 | ((float*)pcm)[j]=RES2FLOAT(in[j])(in[j]); |
2686 | #endif |
2687 | RESTORE_STACK; |
2688 | return ret; |
2689 | } |
2690 | # endif |
2691 | |
2692 | #endif |
2693 | |
2694 | #endif /* CUSTOM_MODES */ |
2695 | |
2696 | int opus_custom_encoder_ctl(CELTEncoderOpusCustomEncoder * OPUS_RESTRICTrestrict st, int request, ...) |
2697 | { |
2698 | va_list ap; |
2699 | |
2700 | va_start(ap, request)__builtin_va_start(ap, request); |
2701 | switch (request) |
2702 | { |
2703 | case OPUS_SET_COMPLEXITY_REQUEST4010: |
2704 | { |
2705 | int value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2706 | if (value<0 || value>10) |
2707 | goto bad_arg; |
2708 | st->complexity = value; |
2709 | } |
2710 | break; |
2711 | case CELT_SET_START_BAND_REQUEST10010: |
2712 | { |
2713 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2714 | if (value<0 || value>=st->mode->nbEBands) |
2715 | goto bad_arg; |
2716 | st->start = value; |
2717 | } |
2718 | break; |
2719 | case CELT_SET_END_BAND_REQUEST10012: |
2720 | { |
2721 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2722 | if (value<1 || value>st->mode->nbEBands) |
2723 | goto bad_arg; |
2724 | st->end = value; |
2725 | } |
2726 | break; |
2727 | case CELT_SET_PREDICTION_REQUEST10002: |
2728 | { |
2729 | int value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2730 | if (value<0 || value>2) |
2731 | goto bad_arg; |
2732 | st->disable_pf = value<=1; |
2733 | st->force_intra = value==0; |
2734 | } |
2735 | break; |
2736 | case OPUS_SET_PACKET_LOSS_PERC_REQUEST4014: |
2737 | { |
2738 | int value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2739 | if (value<0 || value>100) |
2740 | goto bad_arg; |
2741 | st->loss_rate = value; |
2742 | } |
2743 | break; |
2744 | case OPUS_SET_VBR_CONSTRAINT_REQUEST4020: |
2745 | { |
2746 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2747 | st->constrained_vbr = value; |
2748 | } |
2749 | break; |
2750 | case OPUS_SET_VBR_REQUEST4006: |
2751 | { |
2752 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2753 | st->vbr = value; |
2754 | } |
2755 | break; |
2756 | case OPUS_SET_BITRATE_REQUEST4002: |
2757 | { |
2758 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2759 | if (value<=500 && value!=OPUS_BITRATE_MAX-1) |
2760 | goto bad_arg; |
2761 | value = IMIN(value, 260000*st->channels)((value) < (260000*st->channels) ? (value) : (260000*st ->channels)); |
2762 | st->bitrate = value; |
2763 | } |
2764 | break; |
2765 | case CELT_SET_CHANNELS_REQUEST10008: |
2766 | { |
2767 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2768 | if (value<1 || value>2) |
2769 | goto bad_arg; |
2770 | st->stream_channels = value; |
2771 | } |
2772 | break; |
2773 | case OPUS_SET_LSB_DEPTH_REQUEST4036: |
2774 | { |
2775 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2776 | if (value<8 || value>24) |
2777 | goto bad_arg; |
2778 | st->lsb_depth=value; |
2779 | } |
2780 | break; |
2781 | case OPUS_GET_LSB_DEPTH_REQUEST4037: |
2782 | { |
2783 | opus_int32 *value = va_arg(ap, opus_int32*)__builtin_va_arg(ap, opus_int32*); |
2784 | *value=st->lsb_depth; |
2785 | } |
2786 | break; |
2787 | case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST4046: |
2788 | { |
2789 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2790 | if(value<0 || value>1) |
2791 | { |
2792 | goto bad_arg; |
2793 | } |
2794 | st->disable_inv = value; |
2795 | } |
2796 | break; |
2797 | case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST4047: |
2798 | { |
2799 | opus_int32 *value = va_arg(ap, opus_int32*)__builtin_va_arg(ap, opus_int32*); |
2800 | if (!value) |
2801 | { |
2802 | goto bad_arg; |
2803 | } |
2804 | *value = st->disable_inv; |
2805 | } |
2806 | break; |
2807 | case OPUS_RESET_STATE4028: |
2808 | { |
2809 | int i; |
2810 | celt_glog *oldBandE, *oldLogE, *oldLogE2; |
2811 | oldBandE = (celt_glog*)(st->in_mem+st->channels*(st->mode->overlap+COMBFILTER_MAXPERIOD1024)); |
2812 | oldLogE = oldBandE + st->channels*st->mode->nbEBands; |
2813 | oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; |
2814 | OPUS_CLEAR((char*)&st->ENCODER_RESET_START,(memset(((char*)&st->rng), 0, (opus_custom_encoder_get_size (st->mode, st->channels)- ((char*)&st->rng - (char *)st))*sizeof(*((char*)&st->rng)))) |
2815 | opus_custom_encoder_get_size(st->mode, st->channels)-(memset(((char*)&st->rng), 0, (opus_custom_encoder_get_size (st->mode, st->channels)- ((char*)&st->rng - (char *)st))*sizeof(*((char*)&st->rng)))) |
2816 | ((char*)&st->ENCODER_RESET_START - (char*)st))(memset(((char*)&st->rng), 0, (opus_custom_encoder_get_size (st->mode, st->channels)- ((char*)&st->rng - (char *)st))*sizeof(*((char*)&st->rng)))); |
2817 | for (i=0;i<st->channels*st->mode->nbEBands;i++) |
2818 | oldLogE[i]=oldLogE2[i]=-GCONST(28.f)(28.f); |
2819 | st->vbr_offset = 0; |
2820 | st->delayedIntra = 1; |
2821 | st->spread_decision = SPREAD_NORMAL(2); |
2822 | st->tonal_average = 256; |
2823 | st->hf_average = 0; |
2824 | st->tapset_decision = 0; |
2825 | } |
2826 | break; |
2827 | #ifdef CUSTOM_MODES |
2828 | case CELT_SET_INPUT_CLIPPING_REQUEST10004: |
2829 | { |
2830 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2831 | st->clip = value; |
2832 | } |
2833 | break; |
2834 | #endif |
2835 | case CELT_SET_SIGNALLING_REQUEST10016: |
2836 | { |
2837 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2838 | st->signalling = value; |
2839 | } |
2840 | break; |
2841 | case CELT_SET_ANALYSIS_REQUEST10022: |
2842 | { |
2843 | AnalysisInfo *info = va_arg(ap, AnalysisInfo *)__builtin_va_arg(ap, AnalysisInfo *); |
2844 | if (info) |
2845 | OPUS_COPY(&st->analysis, info, 1)(memcpy((&st->analysis), (info), (1)*sizeof(*(&st-> analysis)) + 0*((&st->analysis)-(info)) )); |
2846 | } |
2847 | break; |
2848 | case CELT_SET_SILK_INFO_REQUEST10028: |
2849 | { |
2850 | SILKInfo *info = va_arg(ap, SILKInfo *)__builtin_va_arg(ap, SILKInfo *); |
2851 | if (info) |
2852 | OPUS_COPY(&st->silk_info, info, 1)(memcpy((&st->silk_info), (info), (1)*sizeof(*(&st ->silk_info)) + 0*((&st->silk_info)-(info)) )); |
2853 | } |
2854 | break; |
2855 | case CELT_GET_MODE_REQUEST10015: |
2856 | { |
2857 | const CELTModeOpusCustomMode ** value = va_arg(ap, const CELTMode**)__builtin_va_arg(ap, const OpusCustomMode**); |
2858 | if (value==0) |
2859 | goto bad_arg; |
2860 | *value=st->mode; |
2861 | } |
2862 | break; |
2863 | case OPUS_GET_FINAL_RANGE_REQUEST4031: |
2864 | { |
2865 | opus_uint32 * value = va_arg(ap, opus_uint32 *)__builtin_va_arg(ap, opus_uint32 *); |
2866 | if (value==0) |
2867 | goto bad_arg; |
2868 | *value=st->rng; |
2869 | } |
2870 | break; |
2871 | case OPUS_SET_LFE_REQUEST10024: |
2872 | { |
2873 | opus_int32 value = va_arg(ap, opus_int32)__builtin_va_arg(ap, opus_int32); |
2874 | st->lfe = value; |
2875 | } |
2876 | break; |
2877 | case OPUS_SET_ENERGY_MASK_REQUEST10026: |
2878 | { |
2879 | celt_glog *value = va_arg(ap, celt_glog*)__builtin_va_arg(ap, celt_glog*); |
2880 | st->energy_mask = value; |
2881 | } |
2882 | break; |
2883 | default: |
2884 | goto bad_request; |
2885 | } |
2886 | va_end(ap)__builtin_va_end(ap); |
2887 | return OPUS_OK0; |
2888 | bad_arg: |
2889 | va_end(ap)__builtin_va_end(ap); |
2890 | return OPUS_BAD_ARG-1; |
2891 | bad_request: |
2892 | va_end(ap)__builtin_va_end(ap); |
2893 | return OPUS_UNIMPLEMENTED-5; |
2894 | } |