| File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-tor-scan-converter.c |
| Warning: | line 1176, column 6 Access to field 'dy' results in a dereference of a null pointer (loaded from variable 'e') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ | |||
| 2 | /* glitter-paths - polygon scan converter | |||
| 3 | * | |||
| 4 | * Copyright (c) 2008 M Joonas Pihlaja | |||
| 5 | * Copyright (c) 2007 David Turner | |||
| 6 | * | |||
| 7 | * Permission is hereby granted, free of charge, to any person | |||
| 8 | * obtaining a copy of this software and associated documentation | |||
| 9 | * files (the "Software"), to deal in the Software without | |||
| 10 | * restriction, including without limitation the rights to use, | |||
| 11 | * copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
| 12 | * copies of the Software, and to permit persons to whom the | |||
| 13 | * Software is furnished to do so, subject to the following | |||
| 14 | * conditions: | |||
| 15 | * | |||
| 16 | * The above copyright notice and this permission notice shall be | |||
| 17 | * included in all copies or substantial portions of the Software. | |||
| 18 | * | |||
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||
| 20 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |||
| 21 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
| 22 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |||
| 23 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | |||
| 24 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |||
| 25 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |||
| 26 | * OTHER DEALINGS IN THE SOFTWARE. | |||
| 27 | */ | |||
| 28 | /* This is the Glitter paths scan converter incorporated into cairo. | |||
| 29 | * The source is from commit 734c53237a867a773640bd5b64816249fa1730f8 | |||
| 30 | * of | |||
| 31 | * | |||
| 32 | * https://gitweb.freedesktop.org/?p=users/joonas/glitter-paths | |||
| 33 | */ | |||
| 34 | /* Glitter-paths is a stand alone polygon rasteriser derived from | |||
| 35 | * David Turner's reimplementation of Tor Anderssons's 15x17 | |||
| 36 | * supersampling rasteriser from the Apparition graphics library. The | |||
| 37 | * main new feature here is cheaply choosing per-scan line between | |||
| 38 | * doing fully analytical coverage computation for an entire row at a | |||
| 39 | * time vs. using a supersampling approach. | |||
| 40 | * | |||
| 41 | * David Turner's code can be found at | |||
| 42 | * | |||
| 43 | * http://david.freetype.org/rasterizer-shootout/raster-comparison-20070813.tar.bz2 | |||
| 44 | * | |||
| 45 | * In particular this file incorporates large parts of ftgrays_tor10.h | |||
| 46 | * from raster-comparison-20070813.tar.bz2 | |||
| 47 | */ | |||
| 48 | /* Overview | |||
| 49 | * | |||
| 50 | * A scan converter's basic purpose to take polygon edges and convert | |||
| 51 | * them into an RLE compressed A8 mask. This one works in two phases: | |||
| 52 | * gathering edges and generating spans. | |||
| 53 | * | |||
| 54 | * 1) As the user feeds the scan converter edges they are vertically | |||
| 55 | * clipped and bucketted into a _polygon_ data structure. The edges | |||
| 56 | * are also snapped from the user's coordinates to the subpixel grid | |||
| 57 | * coordinates used during scan conversion. | |||
| 58 | * | |||
| 59 | * user | |||
| 60 | * | | |||
| 61 | * | edges | |||
| 62 | * V | |||
| 63 | * polygon buckets | |||
| 64 | * | |||
| 65 | * 2) Generating spans works by performing a vertical sweep of pixel | |||
| 66 | * rows from top to bottom and maintaining an _active_list_ of edges | |||
| 67 | * that intersect the row. From the active list the fill rule | |||
| 68 | * determines which edges are the left and right edges of the start of | |||
| 69 | * each span, and their contribution is then accumulated into a pixel | |||
| 70 | * coverage list (_cell_list_) as coverage deltas. Once the coverage | |||
| 71 | * deltas of all edges are known we can form spans of constant pixel | |||
| 72 | * coverage by summing the deltas during a traversal of the cell list. | |||
| 73 | * At the end of a pixel row the cell list is sent to a coverage | |||
| 74 | * blitter for rendering to some target surface. | |||
| 75 | * | |||
| 76 | * The pixel coverages are computed by either supersampling the row | |||
| 77 | * and box filtering a mono rasterisation, or by computing the exact | |||
| 78 | * coverages of edges in the active list. The supersampling method is | |||
| 79 | * used whenever some edge starts or stops within the row or there are | |||
| 80 | * edge intersections in the row. | |||
| 81 | * | |||
| 82 | * polygon bucket for \ | |||
| 83 | * current pixel row | | |||
| 84 | * | | | |||
| 85 | * | activate new edges | Repeat GRID_Y times if we | |||
| 86 | * V \ are supersampling this row, | |||
| 87 | * active list / or just once if we're computing | |||
| 88 | * | | analytical coverage. | |||
| 89 | * | coverage deltas | | |||
| 90 | * V | | |||
| 91 | * pixel coverage list / | |||
| 92 | * | | |||
| 93 | * V | |||
| 94 | * coverage blitter | |||
| 95 | */ | |||
| 96 | #include "cairoint.h" | |||
| 97 | #include "cairo-spans-private.h" | |||
| 98 | #include "cairo-error-private.h" | |||
| 99 | ||||
| 100 | #include <stdlib.h> | |||
| 101 | #include <string.h> | |||
| 102 | #include <limits.h> | |||
| 103 | #include <setjmp.h> | |||
| 104 | ||||
| 105 | /*------------------------------------------------------------------------- | |||
| 106 | * cairo specific config | |||
| 107 | */ | |||
| 108 | #define Istatic static | |||
| 109 | ||||
| 110 | /* Prefer cairo's status type. */ | |||
| 111 | #define GLITTER_HAVE_STATUS_T1 1 | |||
| 112 | #define GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS CAIRO_STATUS_SUCCESS | |||
| 113 | #define GLITTER_STATUS_NO_MEMORYCAIRO_STATUS_NO_MEMORY CAIRO_STATUS_NO_MEMORY | |||
| 114 | typedef cairo_status_t glitter_status_t; | |||
| 115 | ||||
| 116 | /* The input coordinate scale and the rasterisation grid scales. */ | |||
| 117 | #define GLITTER_INPUT_BITS8 CAIRO_FIXED_FRAC_BITS8 | |||
| 118 | #define GRID_X_BITS8 CAIRO_FIXED_FRAC_BITS8 | |||
| 119 | #define GRID_Y15 15 | |||
| 120 | ||||
| 121 | /* Set glitter up to use a cairo span renderer to do the coverage | |||
| 122 | * blitting. */ | |||
| 123 | struct pool; | |||
| 124 | struct cell_list; | |||
| 125 | ||||
| 126 | /*------------------------------------------------------------------------- | |||
| 127 | * glitter-paths.h | |||
| 128 | */ | |||
| 129 | ||||
| 130 | /* "Input scaled" numbers are fixed precision reals with multiplier | |||
| 131 | * 2**GLITTER_INPUT_BITS. Input coordinates are given to glitter as | |||
| 132 | * pixel scaled numbers. These get converted to the internal grid | |||
| 133 | * scaled numbers as soon as possible. Internal overflow is possible | |||
| 134 | * if GRID_X/Y inside glitter-paths.c is larger than | |||
| 135 | * 1<<GLITTER_INPUT_BITS. */ | |||
| 136 | #ifndef GLITTER_INPUT_BITS8 | |||
| 137 | # define GLITTER_INPUT_BITS8 8 | |||
| 138 | #endif | |||
| 139 | #define GLITTER_INPUT_SCALE(1<<8) (1<<GLITTER_INPUT_BITS8) | |||
| 140 | typedef int glitter_input_scaled_t; | |||
| 141 | ||||
| 142 | #if !GLITTER_HAVE_STATUS_T1 | |||
| 143 | typedef enum { | |||
| 144 | GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS = 0, | |||
| 145 | GLITTER_STATUS_NO_MEMORYCAIRO_STATUS_NO_MEMORY | |||
| 146 | } glitter_status_t; | |||
| 147 | #endif | |||
| 148 | ||||
| 149 | #ifndef Istatic | |||
| 150 | # define Istatic /*static*/ | |||
| 151 | #endif | |||
| 152 | ||||
| 153 | /* Opaque type for scan converting. */ | |||
| 154 | typedef struct glitter_scan_converter glitter_scan_converter_t; | |||
| 155 | ||||
| 156 | /* Reset a scan converter to accept polygon edges and set the clip box | |||
| 157 | * in pixels. Allocates O(ymax-ymin) bytes of memory. The clip box | |||
| 158 | * is set to integer pixel coordinates xmin <= x < xmax, ymin <= y < | |||
| 159 | * ymax. */ | |||
| 160 | Istatic glitter_status_t | |||
| 161 | glitter_scan_converter_reset( | |||
| 162 | glitter_scan_converter_t *converter, | |||
| 163 | int xmin, int ymin, | |||
| 164 | int xmax, int ymax); | |||
| 165 | ||||
| 166 | /* Render the polygon in the scan converter to the given A8 format | |||
| 167 | * image raster. Only the pixels accessible as pixels[y*stride+x] for | |||
| 168 | * x,y inside the clip box are written to, where xmin <= x < xmax, | |||
| 169 | * ymin <= y < ymax. The image is assumed to be clear on input. | |||
| 170 | * | |||
| 171 | * If nonzero_fill is true then the interior of the polygon is | |||
| 172 | * computed with the non-zero fill rule. Otherwise the even-odd fill | |||
| 173 | * rule is used. | |||
| 174 | * | |||
| 175 | * The scan converter must be reset or destroyed after this call. */ | |||
| 176 | ||||
| 177 | /*------------------------------------------------------------------------- | |||
| 178 | * glitter-paths.c: Implementation internal types | |||
| 179 | */ | |||
| 180 | #include <stdlib.h> | |||
| 181 | #include <string.h> | |||
| 182 | #include <limits.h> | |||
| 183 | ||||
| 184 | /* All polygon coordinates are snapped onto a subsample grid. "Grid | |||
| 185 | * scaled" numbers are fixed precision reals with multiplier GRID_X or | |||
| 186 | * GRID_Y. */ | |||
| 187 | typedef int grid_scaled_t; | |||
| 188 | typedef int grid_scaled_x_t; | |||
| 189 | typedef int grid_scaled_y_t; | |||
| 190 | ||||
| 191 | /* Default x/y scale factors. | |||
| 192 | * You can either define GRID_X/Y_BITS to get a power-of-two scale | |||
| 193 | * or define GRID_X/Y separately. */ | |||
| 194 | #if !defined(GRID_X(1 << 8)) && !defined(GRID_X_BITS8) | |||
| 195 | # define GRID_X_BITS8 8 | |||
| 196 | #endif | |||
| 197 | #if !defined(GRID_Y15) && !defined(GRID_Y_BITS) | |||
| 198 | # define GRID_Y15 15 | |||
| 199 | #endif | |||
| 200 | ||||
| 201 | /* Use GRID_X/Y_BITS to define GRID_X/Y if they're available. */ | |||
| 202 | #ifdef GRID_X_BITS8 | |||
| 203 | # define GRID_X(1 << 8) (1 << GRID_X_BITS8) | |||
| 204 | #endif | |||
| 205 | #ifdef GRID_Y_BITS | |||
| 206 | # define GRID_Y15 (1 << GRID_Y_BITS) | |||
| 207 | #endif | |||
| 208 | ||||
| 209 | /* The GRID_X_TO_INT_FRAC macro splits a grid scaled coordinate into | |||
| 210 | * integer and fractional parts. The integer part is floored. */ | |||
| 211 | #if defined(GRID_X_TO_INT_FRAC) | |||
| 212 | /* do nothing */ | |||
| 213 | #elif defined(GRID_X_BITS8) | |||
| 214 | # define GRID_X_TO_INT_FRAC(x, i, f)do { (f) = (x) & ((1 << (8)) - 1); (i) = (x) >> (8); } while (0) \ | |||
| 215 | _GRID_TO_INT_FRAC_shift(x, i, f, GRID_X_BITS)do { (f) = (x) & ((1 << (8)) - 1); (i) = (x) >> (8); } while (0) | |||
| 216 | #else | |||
| 217 | # define GRID_X_TO_INT_FRAC(x, i, f)do { (f) = (x) & ((1 << (8)) - 1); (i) = (x) >> (8); } while (0) \ | |||
| 218 | _GRID_TO_INT_FRAC_general(x, i, f, GRID_X)do { (i) = (x) / ((1 << 8)); (f) = (x) % ((1 << 8 )); if ((f) < 0) { --(i); (f) += ((1 << 8)); } } while (0) | |||
| 219 | #endif | |||
| 220 | ||||
| 221 | #define _GRID_TO_INT_FRAC_general(t, i, f, m)do { (i) = (t) / (m); (f) = (t) % (m); if ((f) < 0) { --(i ); (f) += (m); } } while (0) do { \ | |||
| 222 | (i) = (t) / (m); \ | |||
| 223 | (f) = (t) % (m); \ | |||
| 224 | if ((f) < 0) { \ | |||
| 225 | --(i); \ | |||
| 226 | (f) += (m); \ | |||
| 227 | } \ | |||
| 228 | } while (0) | |||
| 229 | ||||
| 230 | #define _GRID_TO_INT_FRAC_shift(t, i, f, b)do { (f) = (t) & ((1 << (b)) - 1); (i) = (t) >> (b); } while (0) do { \ | |||
| 231 | (f) = (t) & ((1 << (b)) - 1); \ | |||
| 232 | (i) = (t) >> (b); \ | |||
| 233 | } while (0) | |||
| 234 | ||||
| 235 | /* A grid area is a real in [0,1] scaled by 2*GRID_X*GRID_Y. We want | |||
| 236 | * to be able to represent exactly areas of subpixel trapezoids whose | |||
| 237 | * vertices are given in grid scaled coordinates. The scale factor | |||
| 238 | * comes from needing to accurately represent the area 0.5*dx*dy of a | |||
| 239 | * triangle with base dx and height dy in grid scaled numbers. */ | |||
| 240 | #define GRID_XY(2*(1 << 8)*15) (2*GRID_X(1 << 8)*GRID_Y15) /* Unit area on the grid. */ | |||
| 241 | ||||
| 242 | /* GRID_AREA_TO_ALPHA(area): map [0,GRID_XY] to [0,255]. */ | |||
| 243 | #if GRID_XY(2*(1 << 8)*15) == 510 | |||
| 244 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c)+1) >> 1) | |||
| 245 | #elif GRID_XY(2*(1 << 8)*15) == 255 | |||
| 246 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (c) | |||
| 247 | #elif GRID_XY(2*(1 << 8)*15) == 64 | |||
| 248 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) << 2) | -(((c) & 0x40) >> 6)) | |||
| 249 | #elif GRID_XY(2*(1 << 8)*15) == 128 | |||
| 250 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) ((((c) << 1) | -((c) >> 7)) & 255) | |||
| 251 | #elif GRID_XY(2*(1 << 8)*15) == 256 | |||
| 252 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) | -((c) >> 8)) & 255) | |||
| 253 | #elif GRID_XY(2*(1 << 8)*15) == 15 | |||
| 254 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) << 4) + (c)) | |||
| 255 | #elif GRID_XY(2*(1 << 8)*15) == 2*256*15 | |||
| 256 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) + ((c)<<4) + 256) >> 9) | |||
| 257 | #else | |||
| 258 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c)*255 + GRID_XY(2*(1 << 8)*15)/2) / GRID_XY(2*(1 << 8)*15)) | |||
| 259 | #endif | |||
| 260 | ||||
| 261 | #define UNROLL3(x)x x x x x x | |||
| 262 | ||||
| 263 | struct quorem { | |||
| 264 | int32_t quo; | |||
| 265 | int64_t rem; | |||
| 266 | }; | |||
| 267 | ||||
| 268 | /* Header for a chunk of memory in a memory pool. */ | |||
| 269 | struct _pool_chunk { | |||
| 270 | /* # bytes used in this chunk. */ | |||
| 271 | size_t size; | |||
| 272 | ||||
| 273 | /* # bytes total in this chunk */ | |||
| 274 | size_t capacity; | |||
| 275 | ||||
| 276 | /* Pointer to the previous chunk or %NULL if this is the sentinel | |||
| 277 | * chunk in the pool header. */ | |||
| 278 | struct _pool_chunk *prev_chunk; | |||
| 279 | ||||
| 280 | /* Actual data starts here. Well aligned even for 64 bit types. */ | |||
| 281 | int64_t data; | |||
| 282 | }; | |||
| 283 | ||||
| 284 | /* The int64_t data member of _pool_chunk just exists to enforce alignment, | |||
| 285 | * it shouldn't be included in the allocated size for the struct. */ | |||
| 286 | #define SIZEOF_POOL_CHUNK(sizeof(struct _pool_chunk) - sizeof(int64_t)) (sizeof(struct _pool_chunk) - sizeof(int64_t)) | |||
| 287 | ||||
| 288 | /* A memory pool. This is supposed to be embedded on the stack or | |||
| 289 | * within some other structure. It may optionally be followed by an | |||
| 290 | * embedded array from which requests are fulfilled until | |||
| 291 | * malloc needs to be called to allocate a first real chunk. */ | |||
| 292 | struct pool { | |||
| 293 | /* Chunk we're allocating from. */ | |||
| 294 | struct _pool_chunk *current; | |||
| 295 | ||||
| 296 | jmp_buf *jmp; | |||
| 297 | ||||
| 298 | /* Free list of previously allocated chunks. All have >= default | |||
| 299 | * capacity. */ | |||
| 300 | struct _pool_chunk *first_free; | |||
| 301 | ||||
| 302 | /* The default capacity of a chunk. */ | |||
| 303 | size_t default_capacity; | |||
| 304 | ||||
| 305 | /* Header for the sentinel chunk. Directly following the pool | |||
| 306 | * struct should be some space for embedded elements from which | |||
| 307 | * the sentinel chunk allocates from. This is expressed as a char | |||
| 308 | * array so that the 'int64_t data' member of _pool_chunk isn't | |||
| 309 | * included. This way embedding struct pool in other structs works | |||
| 310 | * without wasting space. */ | |||
| 311 | char sentinel[SIZEOF_POOL_CHUNK(sizeof(struct _pool_chunk) - sizeof(int64_t))]; | |||
| 312 | }; | |||
| 313 | ||||
| 314 | /* A polygon edge. */ | |||
| 315 | struct edge { | |||
| 316 | /* Next in y-bucket or active list. */ | |||
| 317 | struct edge *next, *prev; | |||
| 318 | ||||
| 319 | /* The clipped y of the top of the edge. */ | |||
| 320 | grid_scaled_y_t ytop; | |||
| 321 | ||||
| 322 | /* Number of subsample rows remaining to scan convert of this | |||
| 323 | * edge. */ | |||
| 324 | grid_scaled_y_t height_left; | |||
| 325 | ||||
| 326 | /* Original sign of the edge: +1 for downwards, -1 for upwards | |||
| 327 | * edges. */ | |||
| 328 | int dir; | |||
| 329 | int cell; | |||
| 330 | ||||
| 331 | /* Current x coordinate while the edge is on the active | |||
| 332 | * list. Initialised to the x coordinate of the top of the | |||
| 333 | * edge. The quotient is in grid_scaled_x_t units and the | |||
| 334 | * remainder is mod dy in grid_scaled_y_t units.*/ | |||
| 335 | struct quorem x; | |||
| 336 | ||||
| 337 | /* Advance of the current x when moving down a subsample line. */ | |||
| 338 | struct quorem dxdy; | |||
| 339 | ||||
| 340 | /* Advance of the current x when moving down a full pixel | |||
| 341 | * row. Only initialised when the height of the edge is large | |||
| 342 | * enough that there's a chance the edge could be stepped by a | |||
| 343 | * full row's worth of subsample rows at a time. */ | |||
| 344 | struct quorem dxdy_full; | |||
| 345 | ||||
| 346 | /* y2-y1 after orienting the edge downwards. */ | |||
| 347 | int64_t dy; | |||
| 348 | }; | |||
| 349 | ||||
| 350 | #define EDGE_Y_BUCKET_INDEX(y, ymin)(((y) - (ymin))/15) (((y) - (ymin))/GRID_Y15) | |||
| 351 | ||||
| 352 | /* A collection of sorted and vertically clipped edges of the polygon. | |||
| 353 | * Edges are moved from the polygon to an active list while scan | |||
| 354 | * converting. */ | |||
| 355 | struct polygon { | |||
| 356 | /* The vertical clip extents. */ | |||
| 357 | grid_scaled_y_t ymin, ymax; | |||
| 358 | ||||
| 359 | /* Array of edges all starting in the same bucket. An edge is put | |||
| 360 | * into bucket EDGE_BUCKET_INDEX(edge->ytop, polygon->ymin) when | |||
| 361 | * it is added to the polygon. */ | |||
| 362 | struct edge **y_buckets; | |||
| 363 | struct edge *y_buckets_embedded[64]; | |||
| 364 | ||||
| 365 | struct { | |||
| 366 | struct pool base[1]; | |||
| 367 | struct edge embedded[32]; | |||
| 368 | } edge_pool; | |||
| 369 | }; | |||
| 370 | ||||
| 371 | /* A cell records the effect on pixel coverage of polygon edges | |||
| 372 | * passing through a pixel. It contains two accumulators of pixel | |||
| 373 | * coverage. | |||
| 374 | * | |||
| 375 | * Consider the effects of a polygon edge on the coverage of a pixel | |||
| 376 | * it intersects and that of the following one. The coverage of the | |||
| 377 | * following pixel is the height of the edge multiplied by the width | |||
| 378 | * of the pixel, and the coverage of the pixel itself is the area of | |||
| 379 | * the trapezoid formed by the edge and the right side of the pixel. | |||
| 380 | * | |||
| 381 | * +-----------------------+-----------------------+ | |||
| 382 | * | | | | |||
| 383 | * | | | | |||
| 384 | * |_______________________|_______________________| | |||
| 385 | * | \...................|.......................|\ | |||
| 386 | * | \..................|.......................| | | |||
| 387 | * | \.................|.......................| | | |||
| 388 | * | \....covered.....|.......................| | | |||
| 389 | * | \....area.......|.......................| } covered height | |||
| 390 | * | \..............|.......................| | | |||
| 391 | * |uncovered\.............|.......................| | | |||
| 392 | * | area \............|.......................| | | |||
| 393 | * |___________\...........|.......................|/ | |||
| 394 | * | | | | |||
| 395 | * | | | | |||
| 396 | * | | | | |||
| 397 | * +-----------------------+-----------------------+ | |||
| 398 | * | |||
| 399 | * Since the coverage of the following pixel will always be a multiple | |||
| 400 | * of the width of the pixel, we can store the height of the covered | |||
| 401 | * area instead. The coverage of the pixel itself is the total | |||
| 402 | * coverage minus the area of the uncovered area to the left of the | |||
| 403 | * edge. As it's faster to compute the uncovered area we only store | |||
| 404 | * that and subtract it from the total coverage later when forming | |||
| 405 | * spans to blit. | |||
| 406 | * | |||
| 407 | * The heights and areas are signed, with left edges of the polygon | |||
| 408 | * having positive sign and right edges having negative sign. When | |||
| 409 | * two edges intersect they swap their left/rightness so their | |||
| 410 | * contribution above and below the intersection point must be | |||
| 411 | * computed separately. */ | |||
| 412 | struct cell { | |||
| 413 | struct cell *next; | |||
| 414 | int x; | |||
| 415 | int16_t uncovered_area; | |||
| 416 | int16_t covered_height; | |||
| 417 | }; | |||
| 418 | ||||
| 419 | /* A cell list represents the scan line sparsely as cells ordered by | |||
| 420 | * ascending x. It is geared towards scanning the cells in order | |||
| 421 | * using an internal cursor. */ | |||
| 422 | struct cell_list { | |||
| 423 | /* Sentinel nodes */ | |||
| 424 | struct cell head, tail; | |||
| 425 | ||||
| 426 | /* Cursor state for iterating through the cell list. */ | |||
| 427 | struct cell *cursor, *rewind; | |||
| 428 | ||||
| 429 | /* Cells in the cell list are owned by the cell list and are | |||
| 430 | * allocated from this pool. */ | |||
| 431 | struct { | |||
| 432 | struct pool base[1]; | |||
| 433 | struct cell embedded[32]; | |||
| 434 | } cell_pool; | |||
| 435 | }; | |||
| 436 | ||||
| 437 | struct cell_pair { | |||
| 438 | struct cell *cell1; | |||
| 439 | struct cell *cell2; | |||
| 440 | }; | |||
| 441 | ||||
| 442 | /* The active list contains edges in the current scan line ordered by | |||
| 443 | * the x-coordinate of the intercept of the edge and the scan line. */ | |||
| 444 | struct active_list { | |||
| 445 | /* Leftmost edge on the current scan line. */ | |||
| 446 | struct edge head, tail; | |||
| 447 | ||||
| 448 | /* A lower bound on the height of the active edges is used to | |||
| 449 | * estimate how soon some active edge ends. We can't advance the | |||
| 450 | * scan conversion by a full pixel row if an edge ends somewhere | |||
| 451 | * within it. */ | |||
| 452 | grid_scaled_y_t min_height; | |||
| 453 | int is_vertical; | |||
| 454 | }; | |||
| 455 | ||||
| 456 | struct glitter_scan_converter { | |||
| 457 | struct polygon polygon[1]; | |||
| 458 | struct active_list active[1]; | |||
| 459 | struct cell_list coverages[1]; | |||
| 460 | ||||
| 461 | cairo_half_open_span_t *spans; | |||
| 462 | cairo_half_open_span_t spans_embedded[64]; | |||
| 463 | ||||
| 464 | /* Clip box. */ | |||
| 465 | grid_scaled_x_t xmin, xmax; | |||
| 466 | grid_scaled_y_t ymin, ymax; | |||
| 467 | }; | |||
| 468 | ||||
| 469 | static struct _pool_chunk * | |||
| 470 | _pool_chunk_init( | |||
| 471 | struct _pool_chunk *p, | |||
| 472 | struct _pool_chunk *prev_chunk, | |||
| 473 | size_t capacity) | |||
| 474 | { | |||
| 475 | p->prev_chunk = prev_chunk; | |||
| 476 | p->size = 0; | |||
| 477 | p->capacity = capacity; | |||
| 478 | return p; | |||
| 479 | } | |||
| 480 | ||||
| 481 | static struct _pool_chunk * | |||
| 482 | _pool_chunk_create(struct pool *pool, size_t size) | |||
| 483 | { | |||
| 484 | struct _pool_chunk *p; | |||
| 485 | ||||
| 486 | p = _cairo_malloc (SIZEOF_POOL_CHUNK + size)(((sizeof(struct _pool_chunk) - sizeof(int64_t)) + size) != 0 ? malloc((sizeof(struct _pool_chunk) - sizeof(int64_t)) + size ) : ((void*)0)); | |||
| 487 | if (unlikely (NULL == p)(__builtin_expect (!!(((void*)0) == p), 0))) | |||
| 488 | longjmp (*pool->jmp, _cairo_error (CAIRO_STATUS_NO_MEMORY)); | |||
| 489 | ||||
| 490 | return _pool_chunk_init(p, pool->current, size); | |||
| 491 | } | |||
| 492 | ||||
| 493 | static void | |||
| 494 | pool_init(struct pool *pool, | |||
| 495 | jmp_buf *jmp, | |||
| 496 | size_t default_capacity, | |||
| 497 | size_t embedded_capacity) | |||
| 498 | { | |||
| 499 | pool->jmp = jmp; | |||
| 500 | pool->current = (void*) pool->sentinel; | |||
| 501 | pool->first_free = NULL((void*)0); | |||
| 502 | pool->default_capacity = default_capacity; | |||
| 503 | _pool_chunk_init(pool->current, NULL((void*)0), embedded_capacity); | |||
| 504 | } | |||
| 505 | ||||
| 506 | static void | |||
| 507 | pool_fini(struct pool *pool) | |||
| 508 | { | |||
| 509 | struct _pool_chunk *p = pool->current; | |||
| 510 | do { | |||
| 511 | while (NULL((void*)0) != p) { | |||
| 512 | struct _pool_chunk *prev = p->prev_chunk; | |||
| 513 | if (p != (void *) pool->sentinel) | |||
| 514 | free(p); | |||
| 515 | p = prev; | |||
| 516 | } | |||
| 517 | p = pool->first_free; | |||
| 518 | pool->first_free = NULL((void*)0); | |||
| 519 | } while (NULL((void*)0) != p); | |||
| 520 | } | |||
| 521 | ||||
| 522 | /* Satisfy an allocation by first allocating a new large enough chunk | |||
| 523 | * and adding it to the head of the pool's chunk list. This function | |||
| 524 | * is called as a fallback if pool_alloc() couldn't do a quick | |||
| 525 | * allocation from the current chunk in the pool. */ | |||
| 526 | static void * | |||
| 527 | _pool_alloc_from_new_chunk( | |||
| 528 | struct pool *pool, | |||
| 529 | size_t size) | |||
| 530 | { | |||
| 531 | struct _pool_chunk *chunk; | |||
| 532 | void *obj; | |||
| 533 | size_t capacity; | |||
| 534 | ||||
| 535 | /* If the allocation is smaller than the default chunk size then | |||
| 536 | * try getting a chunk off the free list. Force alloc of a new | |||
| 537 | * chunk for large requests. */ | |||
| 538 | capacity = size; | |||
| 539 | chunk = NULL((void*)0); | |||
| 540 | if (size < pool->default_capacity) { | |||
| 541 | capacity = pool->default_capacity; | |||
| 542 | chunk = pool->first_free; | |||
| 543 | if (chunk) { | |||
| 544 | pool->first_free = chunk->prev_chunk; | |||
| 545 | _pool_chunk_init(chunk, pool->current, chunk->capacity); | |||
| 546 | } | |||
| 547 | } | |||
| 548 | ||||
| 549 | if (NULL((void*)0) == chunk) | |||
| 550 | chunk = _pool_chunk_create (pool, capacity); | |||
| 551 | pool->current = chunk; | |||
| 552 | ||||
| 553 | obj = ((unsigned char*)&chunk->data + chunk->size); | |||
| 554 | chunk->size += size; | |||
| 555 | return obj; | |||
| 556 | } | |||
| 557 | ||||
| 558 | /* Allocate size bytes from the pool. The first allocated address | |||
| 559 | * returned from a pool is aligned to 8 bytes. Subsequent | |||
| 560 | * addresses will maintain alignment as long as multiples of 8 are | |||
| 561 | * allocated. Returns the address of a new memory area or %NULL on | |||
| 562 | * allocation failures. The pool retains ownership of the returned | |||
| 563 | * memory. */ | |||
| 564 | inline static void * | |||
| 565 | pool_alloc (struct pool *pool, size_t size) | |||
| 566 | { | |||
| 567 | struct _pool_chunk *chunk = pool->current; | |||
| 568 | ||||
| 569 | if (size <= chunk->capacity - chunk->size) { | |||
| 570 | void *obj = ((unsigned char*)&chunk->data + chunk->size); | |||
| 571 | chunk->size += size; | |||
| 572 | return obj; | |||
| 573 | } else { | |||
| 574 | return _pool_alloc_from_new_chunk(pool, size); | |||
| 575 | } | |||
| 576 | } | |||
| 577 | ||||
| 578 | /* Relinquish all pool_alloced memory back to the pool. */ | |||
| 579 | static void | |||
| 580 | pool_reset (struct pool *pool) | |||
| 581 | { | |||
| 582 | /* Transfer all used chunks to the chunk free list. */ | |||
| 583 | struct _pool_chunk *chunk = pool->current; | |||
| 584 | if (chunk != (void *) pool->sentinel) { | |||
| 585 | while (chunk->prev_chunk != (void *) pool->sentinel) { | |||
| 586 | chunk = chunk->prev_chunk; | |||
| 587 | } | |||
| 588 | chunk->prev_chunk = pool->first_free; | |||
| 589 | pool->first_free = pool->current; | |||
| 590 | } | |||
| 591 | /* Reset the sentinel as the current chunk. */ | |||
| 592 | pool->current = (void *) pool->sentinel; | |||
| 593 | pool->current->size = 0; | |||
| 594 | } | |||
| 595 | ||||
| 596 | /* Rewinds the cell list's cursor to the beginning. After rewinding | |||
| 597 | * we're good to cell_list_find() the cell any x coordinate. */ | |||
| 598 | inline static void | |||
| 599 | cell_list_rewind (struct cell_list *cells) | |||
| 600 | { | |||
| 601 | cells->cursor = &cells->head; | |||
| 602 | } | |||
| 603 | ||||
| 604 | inline static void | |||
| 605 | cell_list_maybe_rewind (struct cell_list *cells, int x) | |||
| 606 | { | |||
| 607 | if (x < cells->cursor->x) { | |||
| 608 | cells->cursor = cells->rewind; | |||
| 609 | if (x < cells->cursor->x) | |||
| 610 | cells->cursor = &cells->head; | |||
| 611 | } | |||
| 612 | } | |||
| 613 | ||||
| 614 | inline static void | |||
| 615 | cell_list_set_rewind (struct cell_list *cells) | |||
| 616 | { | |||
| 617 | cells->rewind = cells->cursor; | |||
| 618 | } | |||
| 619 | ||||
| 620 | static void | |||
| 621 | cell_list_init(struct cell_list *cells, jmp_buf *jmp) | |||
| 622 | { | |||
| 623 | pool_init(cells->cell_pool.base, jmp, | |||
| 624 | 256*sizeof(struct cell), | |||
| 625 | sizeof(cells->cell_pool.embedded)); | |||
| 626 | cells->tail.next = NULL((void*)0); | |||
| 627 | cells->tail.x = INT_MAX2147483647; | |||
| 628 | cells->head.x = INT_MIN(-2147483647 -1); | |||
| 629 | cells->head.next = &cells->tail; | |||
| 630 | cell_list_rewind (cells); | |||
| 631 | } | |||
| 632 | ||||
| 633 | static void | |||
| 634 | cell_list_fini(struct cell_list *cells) | |||
| 635 | { | |||
| 636 | pool_fini (cells->cell_pool.base); | |||
| 637 | } | |||
| 638 | ||||
| 639 | /* Empty the cell list. This is called at the start of every pixel | |||
| 640 | * row. */ | |||
| 641 | inline static void | |||
| 642 | cell_list_reset (struct cell_list *cells) | |||
| 643 | { | |||
| 644 | cell_list_rewind (cells); | |||
| 645 | cells->head.next = &cells->tail; | |||
| 646 | pool_reset (cells->cell_pool.base); | |||
| 647 | } | |||
| 648 | ||||
| 649 | inline static struct cell * | |||
| 650 | cell_list_alloc (struct cell_list *cells, | |||
| 651 | struct cell *tail, | |||
| 652 | int x) | |||
| 653 | { | |||
| 654 | struct cell *cell; | |||
| 655 | ||||
| 656 | cell = pool_alloc (cells->cell_pool.base, sizeof (struct cell)); | |||
| 657 | cell->next = tail->next; | |||
| 658 | tail->next = cell; | |||
| 659 | cell->x = x; | |||
| 660 | *(uint32_t *)&cell->uncovered_area = 0; | |||
| 661 | ||||
| 662 | return cell; | |||
| 663 | } | |||
| 664 | ||||
| 665 | /* Find a cell at the given x-coordinate. Returns %NULL if a new cell | |||
| 666 | * needed to be allocated but couldn't be. Cells must be found with | |||
| 667 | * non-decreasing x-coordinate until the cell list is rewound using | |||
| 668 | * cell_list_rewind(). Ownership of the returned cell is retained by | |||
| 669 | * the cell list. */ | |||
| 670 | inline static struct cell * | |||
| 671 | cell_list_find (struct cell_list *cells, int x) | |||
| 672 | { | |||
| 673 | struct cell *tail = cells->cursor; | |||
| 674 | ||||
| 675 | if (tail->x == x) | |||
| 676 | return tail; | |||
| 677 | ||||
| 678 | while (1) { | |||
| 679 | UNROLL3({{ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
| 680 | if (tail->next->x > x){ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
| 681 | break;{ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
| 682 | tail = tail->next;{ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
| 683 | }){ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; }; | |||
| 684 | } | |||
| 685 | ||||
| 686 | if (tail->x != x) | |||
| 687 | tail = cell_list_alloc (cells, tail, x); | |||
| 688 | return cells->cursor = tail; | |||
| 689 | ||||
| 690 | } | |||
| 691 | ||||
| 692 | /* Find two cells at x1 and x2. This is exactly equivalent | |||
| 693 | * to | |||
| 694 | * | |||
| 695 | * pair.cell1 = cell_list_find(cells, x1); | |||
| 696 | * pair.cell2 = cell_list_find(cells, x2); | |||
| 697 | * | |||
| 698 | * except with less function call overhead. */ | |||
| 699 | inline static struct cell_pair | |||
| 700 | cell_list_find_pair(struct cell_list *cells, int x1, int x2) | |||
| 701 | { | |||
| 702 | struct cell_pair pair; | |||
| 703 | ||||
| 704 | pair.cell1 = cells->cursor; | |||
| 705 | while (1) { | |||
| 706 | UNROLL3({{ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
| 707 | if (pair.cell1->next->x > x1){ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
| 708 | break;{ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
| 709 | pair.cell1 = pair.cell1->next;{ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
| 710 | }){ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; }; | |||
| 711 | } | |||
| 712 | if (pair.cell1->x != x1) | |||
| 713 | pair.cell1 = cell_list_alloc (cells, pair.cell1, x1); | |||
| 714 | ||||
| 715 | pair.cell2 = pair.cell1; | |||
| 716 | while (1) { | |||
| 717 | UNROLL3({{ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
| 718 | if (pair.cell2->next->x > x2){ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
| 719 | break;{ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
| 720 | pair.cell2 = pair.cell2->next;{ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
| 721 | }){ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; }; | |||
| 722 | } | |||
| 723 | if (pair.cell2->x != x2) | |||
| 724 | pair.cell2 = cell_list_alloc (cells, pair.cell2, x2); | |||
| 725 | ||||
| 726 | cells->cursor = pair.cell2; | |||
| 727 | return pair; | |||
| 728 | } | |||
| 729 | ||||
| 730 | /* Add a subpixel span covering [x1, x2) to the coverage cells. */ | |||
| 731 | inline static void | |||
| 732 | cell_list_add_subspan(struct cell_list *cells, | |||
| 733 | grid_scaled_x_t x1, | |||
| 734 | grid_scaled_x_t x2) | |||
| 735 | { | |||
| 736 | int ix1, fx1; | |||
| 737 | int ix2, fx2; | |||
| 738 | ||||
| 739 | if (x1 == x2) | |||
| 740 | return; | |||
| 741 | ||||
| 742 | GRID_X_TO_INT_FRAC(x1, ix1, fx1)do { (fx1) = (x1) & ((1 << (8)) - 1); (ix1) = (x1) >> (8); } while (0); | |||
| 743 | GRID_X_TO_INT_FRAC(x2, ix2, fx2)do { (fx2) = (x2) & ((1 << (8)) - 1); (ix2) = (x2) >> (8); } while (0); | |||
| 744 | ||||
| 745 | if (ix1 != ix2) { | |||
| 746 | struct cell_pair p; | |||
| 747 | p = cell_list_find_pair(cells, ix1, ix2); | |||
| 748 | p.cell1->uncovered_area += 2*fx1; | |||
| 749 | ++p.cell1->covered_height; | |||
| 750 | p.cell2->uncovered_area -= 2*fx2; | |||
| 751 | --p.cell2->covered_height; | |||
| 752 | } else { | |||
| 753 | struct cell *cell = cell_list_find(cells, ix1); | |||
| 754 | cell->uncovered_area += 2*(fx1-fx2); | |||
| 755 | } | |||
| 756 | } | |||
| 757 | ||||
| 758 | inline static void full_step (struct edge *e) | |||
| 759 | { | |||
| 760 | if (e->dy == 0) | |||
| 761 | return; | |||
| 762 | ||||
| 763 | e->x.quo += e->dxdy_full.quo; | |||
| 764 | e->x.rem += e->dxdy_full.rem; | |||
| 765 | if (e->x.rem < 0) { | |||
| 766 | e->x.quo--; | |||
| 767 | e->x.rem += e->dy; | |||
| 768 | } else if (e->x.rem >= e->dy) { | |||
| 769 | ++e->x.quo; | |||
| 770 | e->x.rem -= e->dy; | |||
| 771 | } | |||
| 772 | ||||
| 773 | e->cell = e->x.quo + (e->x.rem >= e->dy/2); | |||
| 774 | } | |||
| 775 | ||||
| 776 | ||||
| 777 | /* Adds the analytical coverage of an edge crossing the current pixel | |||
| 778 | * row to the coverage cells and advances the edge's x position to the | |||
| 779 | * following row. | |||
| 780 | * | |||
| 781 | * This function is only called when we know that during this pixel row: | |||
| 782 | * | |||
| 783 | * 1) The relative order of all edges on the active list doesn't | |||
| 784 | * change. In particular, no edges intersect within this row to pixel | |||
| 785 | * precision. | |||
| 786 | * | |||
| 787 | * 2) No new edges start in this row. | |||
| 788 | * | |||
| 789 | * 3) No existing edges end mid-row. | |||
| 790 | * | |||
| 791 | * This function depends on being called with all edges from the | |||
| 792 | * active list in the order they appear on the list (i.e. with | |||
| 793 | * non-decreasing x-coordinate.) */ | |||
| 794 | static void | |||
| 795 | cell_list_render_edge(struct cell_list *cells, | |||
| 796 | struct edge *edge, | |||
| 797 | int sign) | |||
| 798 | { | |||
| 799 | struct quorem x1, x2; | |||
| 800 | grid_scaled_x_t fx1, fx2; | |||
| 801 | int ix1, ix2; | |||
| 802 | ||||
| 803 | x1 = edge->x; | |||
| 804 | full_step (edge); | |||
| 805 | x2 = edge->x; | |||
| 806 | ||||
| 807 | /* Step back from the sample location (half-subrow) to the pixel origin */ | |||
| 808 | if (edge->dy) { | |||
| 809 | x1.quo -= edge->dxdy.quo / 2; | |||
| 810 | x1.rem -= edge->dxdy.rem / 2; | |||
| 811 | if (x1.rem < 0) { | |||
| 812 | --x1.quo; | |||
| 813 | x1.rem += edge->dy; | |||
| 814 | } else if (x1.rem >= edge->dy) { | |||
| 815 | ++x1.quo; | |||
| 816 | x1.rem -= edge->dy; | |||
| 817 | } | |||
| 818 | ||||
| 819 | x2.quo -= edge->dxdy.quo / 2; | |||
| 820 | x2.rem -= edge->dxdy.rem / 2; | |||
| 821 | if (x2.rem < 0) { | |||
| 822 | --x2.quo; | |||
| 823 | x2.rem += edge->dy; | |||
| 824 | } else if (x2.rem >= edge->dy) { | |||
| 825 | ++x2.quo; | |||
| 826 | x2.rem -= edge->dy; | |||
| 827 | } | |||
| 828 | } | |||
| 829 | ||||
| 830 | GRID_X_TO_INT_FRAC(x1.quo, ix1, fx1)do { (fx1) = (x1.quo) & ((1 << (8)) - 1); (ix1) = ( x1.quo) >> (8); } while (0); | |||
| 831 | GRID_X_TO_INT_FRAC(x2.quo, ix2, fx2)do { (fx2) = (x2.quo) & ((1 << (8)) - 1); (ix2) = ( x2.quo) >> (8); } while (0); | |||
| 832 | ||||
| 833 | cell_list_maybe_rewind(cells, MIN(ix1, ix2)((ix1) < (ix2) ? (ix1) : (ix2))); | |||
| 834 | ||||
| 835 | /* Edge is entirely within a column? */ | |||
| 836 | if (ix1 == ix2) { | |||
| 837 | /* We always know that ix1 is >= the cell list cursor in this | |||
| 838 | * case due to the no-intersections precondition. */ | |||
| 839 | struct cell *cell = cell_list_find(cells, ix1); | |||
| 840 | cell->covered_height += sign*GRID_Y15; | |||
| 841 | cell->uncovered_area += sign*(fx1 + fx2)*GRID_Y15; | |||
| 842 | return; | |||
| 843 | } | |||
| 844 | ||||
| 845 | /* Orient the edge left-to-right. */ | |||
| 846 | if (ix2 < ix1) { | |||
| 847 | struct quorem tx; | |||
| 848 | int t; | |||
| 849 | ||||
| 850 | t = ix1; | |||
| 851 | ix1 = ix2; | |||
| 852 | ix2 = t; | |||
| 853 | ||||
| 854 | t = fx1; | |||
| 855 | fx1 = fx2; | |||
| 856 | fx2 = t; | |||
| 857 | ||||
| 858 | tx = x1; | |||
| 859 | x1 = x2; | |||
| 860 | x2 = tx; | |||
| 861 | } | |||
| 862 | ||||
| 863 | /* Add coverage for all pixels [ix1,ix2] on this row crossed | |||
| 864 | * by the edge. */ | |||
| 865 | { | |||
| 866 | struct cell_pair pair; | |||
| 867 | struct quorem y; | |||
| 868 | int64_t tmp, dx; | |||
| 869 | int y_last; | |||
| 870 | ||||
| 871 | dx = (x2.quo - x1.quo) * edge->dy + (x2.rem - x1.rem); | |||
| 872 | ||||
| 873 | tmp = (ix1 + 1) * GRID_X(1 << 8) * edge->dy; | |||
| 874 | tmp -= x1.quo * edge->dy + x1.rem; | |||
| 875 | tmp *= GRID_Y15; | |||
| 876 | ||||
| 877 | y.quo = tmp / dx; | |||
| 878 | y.rem = tmp % dx; | |||
| 879 | ||||
| 880 | /* When rendering a previous edge on the active list we may | |||
| 881 | * advance the cell list cursor past the leftmost pixel of the | |||
| 882 | * current edge even though the two edges don't intersect. | |||
| 883 | * e.g. consider two edges going down and rightwards: | |||
| 884 | * | |||
| 885 | * --\_+---\_+-----+-----+---- | |||
| 886 | * \_ \_ | | | |||
| 887 | * | \_ | \_ | | | |||
| 888 | * | \_| \_| | | |||
| 889 | * | \_ \_ | | |||
| 890 | * ----+-----+-\---+-\---+---- | |||
| 891 | * | |||
| 892 | * The left edge touches cells past the starting cell of the | |||
| 893 | * right edge. Fortunately such cases are rare. | |||
| 894 | */ | |||
| 895 | ||||
| 896 | pair = cell_list_find_pair(cells, ix1, ix1+1); | |||
| 897 | pair.cell1->uncovered_area += sign*y.quo*(GRID_X(1 << 8) + fx1); | |||
| 898 | pair.cell1->covered_height += sign*y.quo; | |||
| 899 | y_last = y.quo; | |||
| 900 | ||||
| 901 | if (ix1+1 < ix2) { | |||
| 902 | struct cell *cell = pair.cell2; | |||
| 903 | struct quorem dydx_full; | |||
| 904 | ||||
| 905 | dydx_full.quo = GRID_Y15 * GRID_X(1 << 8) * edge->dy / dx; | |||
| 906 | dydx_full.rem = GRID_Y15 * GRID_X(1 << 8) * edge->dy % dx; | |||
| 907 | ||||
| 908 | ++ix1; | |||
| 909 | do { | |||
| 910 | y.quo += dydx_full.quo; | |||
| 911 | y.rem += dydx_full.rem; | |||
| 912 | if (y.rem >= dx) { | |||
| 913 | y.quo++; | |||
| 914 | y.rem -= dx; | |||
| 915 | } | |||
| 916 | ||||
| 917 | cell->uncovered_area += sign*(y.quo - y_last)*GRID_X(1 << 8); | |||
| 918 | cell->covered_height += sign*(y.quo - y_last); | |||
| 919 | y_last = y.quo; | |||
| 920 | ||||
| 921 | ++ix1; | |||
| 922 | cell = cell_list_find(cells, ix1); | |||
| 923 | } while (ix1 != ix2); | |||
| 924 | ||||
| 925 | pair.cell2 = cell; | |||
| 926 | } | |||
| 927 | pair.cell2->uncovered_area += sign*(GRID_Y15 - y_last)*fx2; | |||
| 928 | pair.cell2->covered_height += sign*(GRID_Y15 - y_last); | |||
| 929 | } | |||
| 930 | } | |||
| 931 | ||||
| 932 | static void | |||
| 933 | polygon_init (struct polygon *polygon, jmp_buf *jmp) | |||
| 934 | { | |||
| 935 | polygon->ymin = polygon->ymax = 0; | |||
| 936 | polygon->y_buckets = polygon->y_buckets_embedded; | |||
| 937 | pool_init (polygon->edge_pool.base, jmp, | |||
| 938 | 8192 - sizeof (struct _pool_chunk), | |||
| 939 | sizeof (polygon->edge_pool.embedded)); | |||
| 940 | } | |||
| 941 | ||||
| 942 | static void | |||
| 943 | polygon_fini (struct polygon *polygon) | |||
| 944 | { | |||
| 945 | if (polygon->y_buckets != polygon->y_buckets_embedded) | |||
| 946 | free (polygon->y_buckets); | |||
| 947 | ||||
| 948 | pool_fini (polygon->edge_pool.base); | |||
| 949 | } | |||
| 950 | ||||
| 951 | /* Empties the polygon of all edges. The polygon is then prepared to | |||
| 952 | * receive new edges and clip them to the vertical range | |||
| 953 | * [ymin,ymax). */ | |||
| 954 | static glitter_status_t | |||
| 955 | polygon_reset (struct polygon *polygon, | |||
| 956 | grid_scaled_y_t ymin, | |||
| 957 | grid_scaled_y_t ymax) | |||
| 958 | { | |||
| 959 | unsigned h = ymax - ymin; | |||
| 960 | unsigned num_buckets = EDGE_Y_BUCKET_INDEX(ymax + GRID_Y-1, ymin)(((ymax + 15 -1) - (ymin))/15); | |||
| 961 | ||||
| 962 | pool_reset(polygon->edge_pool.base); | |||
| 963 | ||||
| 964 | if (unlikely (h > 0x7FFFFFFFU - GRID_Y)(__builtin_expect (!!(h > 0x7FFFFFFFU - 15), 0))) | |||
| 965 | goto bail_no_mem; /* even if you could, you wouldn't want to. */ | |||
| 966 | ||||
| 967 | if (polygon->y_buckets != polygon->y_buckets_embedded) | |||
| 968 | free (polygon->y_buckets); | |||
| 969 | ||||
| 970 | polygon->y_buckets = polygon->y_buckets_embedded; | |||
| 971 | if (num_buckets > ARRAY_LENGTH (polygon->y_buckets_embedded)((int) (sizeof (polygon->y_buckets_embedded) / sizeof (polygon ->y_buckets_embedded[0])))) { | |||
| 972 | polygon->y_buckets = _cairo_malloc_ab (num_buckets, | |||
| 973 | sizeof (struct edge *)); | |||
| 974 | if (unlikely (NULL == polygon->y_buckets)(__builtin_expect (!!(((void*)0) == polygon->y_buckets), 0 ))) | |||
| 975 | goto bail_no_mem; | |||
| 976 | } | |||
| 977 | memset (polygon->y_buckets, 0, num_buckets * sizeof (struct edge *)); | |||
| 978 | ||||
| 979 | polygon->ymin = ymin; | |||
| 980 | polygon->ymax = ymax; | |||
| 981 | return GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS; | |||
| 982 | ||||
| 983 | bail_no_mem: | |||
| 984 | polygon->ymin = 0; | |||
| 985 | polygon->ymax = 0; | |||
| 986 | return GLITTER_STATUS_NO_MEMORYCAIRO_STATUS_NO_MEMORY; | |||
| 987 | } | |||
| 988 | ||||
| 989 | static void | |||
| 990 | _polygon_insert_edge_into_its_y_bucket(struct polygon *polygon, | |||
| 991 | struct edge *e) | |||
| 992 | { | |||
| 993 | unsigned ix = EDGE_Y_BUCKET_INDEX(e->ytop, polygon->ymin)(((e->ytop) - (polygon->ymin))/15); | |||
| 994 | struct edge **ptail = &polygon->y_buckets[ix]; | |||
| 995 | e->next = *ptail; | |||
| 996 | *ptail = e; | |||
| 997 | } | |||
| 998 | ||||
| 999 | static void | |||
| 1000 | active_list_reset (struct active_list *active) | |||
| 1001 | { | |||
| 1002 | active->head.height_left = INT_MAX2147483647; | |||
| 1003 | active->head.dy = 0; | |||
| 1004 | active->head.cell = INT_MIN(-2147483647 -1); | |||
| 1005 | active->head.prev = NULL((void*)0); | |||
| 1006 | active->head.next = &active->tail; | |||
| 1007 | active->tail.prev = &active->head; | |||
| 1008 | active->tail.next = NULL((void*)0); | |||
| 1009 | active->tail.cell = INT_MAX2147483647; | |||
| 1010 | active->tail.height_left = INT_MAX2147483647; | |||
| 1011 | active->tail.dy = 0; | |||
| 1012 | active->min_height = 0; | |||
| 1013 | active->is_vertical = 1; | |||
| 1014 | } | |||
| 1015 | ||||
| 1016 | static void | |||
| 1017 | active_list_init(struct active_list *active) | |||
| 1018 | { | |||
| 1019 | active_list_reset(active); | |||
| 1020 | } | |||
| 1021 | ||||
| 1022 | /* | |||
| 1023 | * Merge two sorted edge lists. | |||
| 1024 | * Input: | |||
| 1025 | * - head_a: The head of the first list. | |||
| 1026 | * - head_b: The head of the second list; head_b cannot be NULL. | |||
| 1027 | * Output: | |||
| 1028 | * Returns the head of the merged list. | |||
| 1029 | * | |||
| 1030 | * Implementation notes: | |||
| 1031 | * To make it fast (in particular, to reduce to an insertion sort whenever | |||
| 1032 | * one of the two input lists only has a single element) we iterate through | |||
| 1033 | * a list until its head becomes greater than the head of the other list, | |||
| 1034 | * then we switch their roles. As soon as one of the two lists is empty, we | |||
| 1035 | * just attach the other one to the current list and exit. | |||
| 1036 | * Writes to memory are only needed to "switch" lists (as it also requires | |||
| 1037 | * attaching to the output list the list which we will be iterating next) and | |||
| 1038 | * to attach the last non-empty list. | |||
| 1039 | */ | |||
| 1040 | static struct edge * | |||
| 1041 | merge_sorted_edges (struct edge *head_a, struct edge *head_b) | |||
| 1042 | { | |||
| 1043 | struct edge *head, **next, *prev; | |||
| 1044 | int32_t x; | |||
| 1045 | ||||
| 1046 | prev = head_a->prev; | |||
| 1047 | next = &head; | |||
| 1048 | if (head_a->cell <= head_b->cell) { | |||
| 1049 | head = head_a; | |||
| 1050 | } else { | |||
| 1051 | head = head_b; | |||
| 1052 | head_b->prev = prev; | |||
| 1053 | goto start_with_b; | |||
| 1054 | } | |||
| 1055 | ||||
| 1056 | do { | |||
| 1057 | x = head_b->cell; | |||
| 1058 | while (head_a != NULL((void*)0) && head_a->cell <= x) { | |||
| 1059 | prev = head_a; | |||
| 1060 | next = &head_a->next; | |||
| 1061 | head_a = head_a->next; | |||
| 1062 | } | |||
| 1063 | ||||
| 1064 | head_b->prev = prev; | |||
| 1065 | *next = head_b; | |||
| 1066 | if (head_a == NULL((void*)0)) | |||
| 1067 | return head; | |||
| 1068 | ||||
| 1069 | start_with_b: | |||
| 1070 | x = head_a->cell; | |||
| 1071 | while (head_b != NULL((void*)0) && head_b->cell <= x) { | |||
| 1072 | prev = head_b; | |||
| 1073 | next = &head_b->next; | |||
| 1074 | head_b = head_b->next; | |||
| 1075 | } | |||
| 1076 | ||||
| 1077 | head_a->prev = prev; | |||
| 1078 | *next = head_a; | |||
| 1079 | if (head_b == NULL((void*)0)) | |||
| 1080 | return head; | |||
| 1081 | } while (1); | |||
| 1082 | } | |||
| 1083 | ||||
| 1084 | /* | |||
| 1085 | * Sort (part of) a list. | |||
| 1086 | * Input: | |||
| 1087 | * - list: The list to be sorted; list cannot be NULL. | |||
| 1088 | * - limit: Recursion limit. | |||
| 1089 | * Output: | |||
| 1090 | * - head_out: The head of the sorted list containing the first 2^(level+1) elements of the | |||
| 1091 | * input list; if the input list has fewer elements, head_out be a sorted list | |||
| 1092 | * containing all the elements of the input list. | |||
| 1093 | * Returns the head of the list of unprocessed elements (NULL if the sorted list contains | |||
| 1094 | * all the elements of the input list). | |||
| 1095 | * | |||
| 1096 | * Implementation notes: | |||
| 1097 | * Special case single element list, unroll/inline the sorting of the first two elements. | |||
| 1098 | * Some tail recursion is used since we iterate on the bottom-up solution of the problem | |||
| 1099 | * (we start with a small sorted list and keep merging other lists of the same size to it). | |||
| 1100 | */ | |||
| 1101 | static struct edge * | |||
| 1102 | sort_edges (struct edge *list, | |||
| 1103 | unsigned int level, | |||
| 1104 | struct edge **head_out) | |||
| 1105 | { | |||
| 1106 | struct edge *head_other, *remaining; | |||
| 1107 | unsigned int i; | |||
| 1108 | ||||
| 1109 | head_other = list->next; | |||
| 1110 | ||||
| 1111 | if (head_other == NULL((void*)0)) { | |||
| 1112 | *head_out = list; | |||
| 1113 | return NULL((void*)0); | |||
| 1114 | } | |||
| 1115 | ||||
| 1116 | remaining = head_other->next; | |||
| 1117 | if (list->cell <= head_other->cell) { | |||
| 1118 | *head_out = list; | |||
| 1119 | head_other->next = NULL((void*)0); | |||
| 1120 | } else { | |||
| 1121 | *head_out = head_other; | |||
| 1122 | head_other->prev = list->prev; | |||
| 1123 | head_other->next = list; | |||
| 1124 | list->prev = head_other; | |||
| 1125 | list->next = NULL((void*)0); | |||
| 1126 | } | |||
| 1127 | ||||
| 1128 | for (i = 0; i < level && remaining; i++) { | |||
| 1129 | remaining = sort_edges (remaining, i, &head_other); | |||
| 1130 | *head_out = merge_sorted_edges (*head_out, head_other); | |||
| 1131 | } | |||
| 1132 | ||||
| 1133 | return remaining; | |||
| 1134 | } | |||
| 1135 | ||||
| 1136 | static struct edge * | |||
| 1137 | merge_unsorted_edges (struct edge *head, struct edge *unsorted) | |||
| 1138 | { | |||
| 1139 | sort_edges (unsorted, UINT_MAX(2147483647 *2U +1U), &unsorted); | |||
| 1140 | return merge_sorted_edges (head, unsorted); | |||
| 1141 | } | |||
| 1142 | ||||
| 1143 | /* Test if the edges on the active list can be safely advanced by a | |||
| 1144 | * full row without intersections or any edges ending. */ | |||
| 1145 | inline static int | |||
| 1146 | can_do_full_row (struct active_list *active) | |||
| 1147 | { | |||
| 1148 | const struct edge *e; | |||
| 1149 | int prev_x = INT_MIN(-2147483647 -1); | |||
| 1150 | ||||
| 1151 | /* Recomputes the minimum height of all edges on the active | |||
| 1152 | * list if we have been dropping edges. */ | |||
| 1153 | if (active->min_height <= 0) { | |||
| 1154 | int min_height = INT_MAX2147483647; | |||
| 1155 | int is_vertical = 1; | |||
| 1156 | ||||
| 1157 | e = active->head.next; | |||
| 1158 | while (NULL((void*)0) != e) { | |||
| 1159 | if (e->height_left < min_height) | |||
| 1160 | min_height = e->height_left; | |||
| 1161 | is_vertical &= e->dy == 0; | |||
| 1162 | e = e->next; | |||
| 1163 | } | |||
| 1164 | ||||
| 1165 | active->is_vertical = is_vertical; | |||
| 1166 | active->min_height = min_height; | |||
| 1167 | } | |||
| 1168 | ||||
| 1169 | if (active->min_height
| |||
| 1170 | return 0; | |||
| 1171 | ||||
| 1172 | /* Check for intersections as no edges end during the next row. */ | |||
| 1173 | for (e = active->head.next; e != &active->tail; e = e->next) { | |||
| 1174 | int cell; | |||
| 1175 | ||||
| 1176 | if (e->dy) { | |||
| ||||
| 1177 | struct quorem x = e->x; | |||
| 1178 | x.quo += e->dxdy_full.quo; | |||
| 1179 | x.rem += e->dxdy_full.rem; | |||
| 1180 | if (x.rem < 0) { | |||
| 1181 | x.quo--; | |||
| 1182 | x.rem += e->dy; | |||
| 1183 | } else if (x.rem >= e->dy) { | |||
| 1184 | x.quo++; | |||
| 1185 | x.rem -= e->dy; | |||
| 1186 | } | |||
| 1187 | cell = x.quo + (x.rem >= e->dy/2); | |||
| 1188 | } else | |||
| 1189 | cell = e->cell; | |||
| 1190 | ||||
| 1191 | if (cell < prev_x) | |||
| 1192 | return 0; | |||
| 1193 | ||||
| 1194 | prev_x = cell; | |||
| 1195 | } | |||
| 1196 | ||||
| 1197 | return 1; | |||
| 1198 | } | |||
| 1199 | ||||
| 1200 | /* Merges edges on the given subpixel row from the polygon to the | |||
| 1201 | * active_list. */ | |||
| 1202 | inline static void | |||
| 1203 | active_list_merge_edges_from_bucket(struct active_list *active, | |||
| 1204 | struct edge *edges) | |||
| 1205 | { | |||
| 1206 | active->head.next = merge_unsorted_edges (active->head.next, edges); | |||
| 1207 | } | |||
| 1208 | ||||
| 1209 | inline static int | |||
| 1210 | polygon_fill_buckets (struct active_list *active, | |||
| 1211 | struct edge *edge, | |||
| 1212 | int y, | |||
| 1213 | struct edge **buckets) | |||
| 1214 | { | |||
| 1215 | grid_scaled_y_t min_height = active->min_height; | |||
| 1216 | int is_vertical = active->is_vertical; | |||
| 1217 | int max_suby = 0; | |||
| 1218 | ||||
| 1219 | while (edge) { | |||
| 1220 | struct edge *next = edge->next; | |||
| 1221 | int suby = edge->ytop - y; | |||
| 1222 | if (buckets[suby]) | |||
| 1223 | buckets[suby]->prev = edge; | |||
| 1224 | edge->next = buckets[suby]; | |||
| 1225 | edge->prev = NULL((void*)0); | |||
| 1226 | buckets[suby] = edge; | |||
| 1227 | if (edge->height_left < min_height) | |||
| 1228 | min_height = edge->height_left; | |||
| 1229 | is_vertical &= edge->dy == 0; | |||
| 1230 | edge = next; | |||
| 1231 | if (suby > max_suby) | |||
| 1232 | max_suby = suby; | |||
| 1233 | } | |||
| 1234 | ||||
| 1235 | active->is_vertical = is_vertical; | |||
| 1236 | active->min_height = min_height; | |||
| 1237 | ||||
| 1238 | return max_suby; | |||
| 1239 | } | |||
| 1240 | ||||
| 1241 | static void step (struct edge *edge) | |||
| 1242 | { | |||
| 1243 | if (edge->dy == 0) | |||
| 1244 | return; | |||
| 1245 | ||||
| 1246 | edge->x.quo += edge->dxdy.quo; | |||
| 1247 | edge->x.rem += edge->dxdy.rem; | |||
| 1248 | if (edge->x.rem < 0) { | |||
| 1249 | --edge->x.quo; | |||
| 1250 | edge->x.rem += edge->dy; | |||
| 1251 | } else if (edge->x.rem >= edge->dy) { | |||
| 1252 | ++edge->x.quo; | |||
| 1253 | edge->x.rem -= edge->dy; | |||
| 1254 | } | |||
| 1255 | ||||
| 1256 | edge->cell = edge->x.quo + (edge->x.rem >= edge->dy/2); | |||
| 1257 | } | |||
| 1258 | ||||
| 1259 | inline static void | |||
| 1260 | sub_row (struct active_list *active, | |||
| 1261 | struct cell_list *coverages, | |||
| 1262 | unsigned int mask) | |||
| 1263 | { | |||
| 1264 | struct edge *edge = active->head.next; | |||
| 1265 | int xstart = INT_MIN(-2147483647 -1), prev_x = INT_MIN(-2147483647 -1); | |||
| 1266 | int winding = 0; | |||
| 1267 | ||||
| 1268 | cell_list_rewind (coverages); | |||
| 1269 | ||||
| 1270 | while (&active->tail != edge) { | |||
| 1271 | struct edge *next = edge->next; | |||
| 1272 | int xend = edge->cell; | |||
| 1273 | ||||
| 1274 | if (--edge->height_left) { | |||
| 1275 | step (edge); | |||
| 1276 | ||||
| 1277 | if (edge->cell < prev_x) { | |||
| 1278 | struct edge *pos = edge->prev; | |||
| 1279 | pos->next = next; | |||
| 1280 | next->prev = pos; | |||
| 1281 | do { | |||
| 1282 | pos = pos->prev; | |||
| 1283 | } while (edge->cell < pos->cell); | |||
| 1284 | pos->next->prev = edge; | |||
| 1285 | edge->next = pos->next; | |||
| 1286 | edge->prev = pos; | |||
| 1287 | pos->next = edge; | |||
| 1288 | } else | |||
| 1289 | prev_x = edge->cell; | |||
| 1290 | active->min_height = -1; | |||
| 1291 | } else { | |||
| 1292 | edge->prev->next = next; | |||
| 1293 | next->prev = edge->prev; | |||
| 1294 | } | |||
| 1295 | ||||
| 1296 | winding += edge->dir; | |||
| 1297 | if ((winding & mask) == 0) { | |||
| 1298 | if (next->cell != xend) { | |||
| 1299 | cell_list_add_subspan (coverages, xstart, xend); | |||
| 1300 | xstart = INT_MIN(-2147483647 -1); | |||
| 1301 | } | |||
| 1302 | } else if (xstart == INT_MIN(-2147483647 -1)) | |||
| 1303 | xstart = xend; | |||
| 1304 | ||||
| 1305 | edge = next; | |||
| 1306 | } | |||
| 1307 | } | |||
| 1308 | ||||
| 1309 | inline static void dec (struct active_list *a, struct edge *e, int h) | |||
| 1310 | { | |||
| 1311 | e->height_left -= h; | |||
| 1312 | if (e->height_left == 0) { | |||
| 1313 | e->prev->next = e->next; | |||
| 1314 | e->next->prev = e->prev; | |||
| 1315 | a->min_height = -1; | |||
| 1316 | } | |||
| 1317 | } | |||
| 1318 | ||||
| 1319 | static void | |||
| 1320 | full_row (struct active_list *active, | |||
| 1321 | struct cell_list *coverages, | |||
| 1322 | unsigned int mask) | |||
| 1323 | { | |||
| 1324 | struct edge *left = active->head.next; | |||
| 1325 | ||||
| 1326 | while (&active->tail != left) { | |||
| 1327 | struct edge *right; | |||
| 1328 | int winding; | |||
| 1329 | ||||
| 1330 | dec (active, left, GRID_Y15); | |||
| 1331 | ||||
| 1332 | winding = left->dir; | |||
| 1333 | right = left->next; | |||
| 1334 | do { | |||
| 1335 | dec (active, right, GRID_Y15); | |||
| 1336 | ||||
| 1337 | winding += right->dir; | |||
| 1338 | if ((winding & mask) == 0 && right->next->cell != right->cell) | |||
| 1339 | break; | |||
| 1340 | ||||
| 1341 | full_step (right); | |||
| 1342 | ||||
| 1343 | right = right->next; | |||
| 1344 | } while (1); | |||
| 1345 | ||||
| 1346 | cell_list_set_rewind (coverages); | |||
| 1347 | cell_list_render_edge (coverages, left, +1); | |||
| 1348 | cell_list_render_edge (coverages, right, -1); | |||
| 1349 | ||||
| 1350 | left = right->next; | |||
| 1351 | } | |||
| 1352 | } | |||
| 1353 | ||||
| 1354 | static void | |||
| 1355 | _glitter_scan_converter_init(glitter_scan_converter_t *converter, jmp_buf *jmp) | |||
| 1356 | { | |||
| 1357 | polygon_init(converter->polygon, jmp); | |||
| 1358 | active_list_init(converter->active); | |||
| 1359 | cell_list_init(converter->coverages, jmp); | |||
| 1360 | converter->xmin=0; | |||
| 1361 | converter->ymin=0; | |||
| 1362 | converter->xmax=0; | |||
| 1363 | converter->ymax=0; | |||
| 1364 | } | |||
| 1365 | ||||
| 1366 | static void | |||
| 1367 | _glitter_scan_converter_fini(glitter_scan_converter_t *self) | |||
| 1368 | { | |||
| 1369 | if (self->spans != self->spans_embedded) | |||
| 1370 | free (self->spans); | |||
| 1371 | ||||
| 1372 | polygon_fini(self->polygon); | |||
| 1373 | cell_list_fini(self->coverages); | |||
| 1374 | ||||
| 1375 | self->xmin=0; | |||
| 1376 | self->ymin=0; | |||
| 1377 | self->xmax=0; | |||
| 1378 | self->ymax=0; | |||
| 1379 | } | |||
| 1380 | ||||
| 1381 | static grid_scaled_t | |||
| 1382 | int_to_grid_scaled(int i, int scale) | |||
| 1383 | { | |||
| 1384 | /* Clamp to max/min representable scaled number. */ | |||
| 1385 | if (i >= 0) { | |||
| 1386 | if (i >= INT_MAX2147483647/scale) | |||
| 1387 | i = INT_MAX2147483647/scale; | |||
| 1388 | } | |||
| 1389 | else { | |||
| 1390 | if (i <= INT_MIN(-2147483647 -1)/scale) | |||
| 1391 | i = INT_MIN(-2147483647 -1)/scale; | |||
| 1392 | } | |||
| 1393 | return i*scale; | |||
| 1394 | } | |||
| 1395 | ||||
| 1396 | #define int_to_grid_scaled_x(x)int_to_grid_scaled((x), (1 << 8)) int_to_grid_scaled((x), GRID_X(1 << 8)) | |||
| 1397 | #define int_to_grid_scaled_y(x)int_to_grid_scaled((x), 15) int_to_grid_scaled((x), GRID_Y15) | |||
| 1398 | ||||
| 1399 | Istatic glitter_status_t | |||
| 1400 | glitter_scan_converter_reset( | |||
| 1401 | glitter_scan_converter_t *converter, | |||
| 1402 | int xmin, int ymin, | |||
| 1403 | int xmax, int ymax) | |||
| 1404 | { | |||
| 1405 | glitter_status_t status; | |||
| 1406 | int max_num_spans; | |||
| 1407 | ||||
| 1408 | converter->xmin = 0; converter->xmax = 0; | |||
| 1409 | converter->ymin = 0; converter->ymax = 0; | |||
| 1410 | ||||
| 1411 | max_num_spans = xmax - xmin + 1; | |||
| 1412 | ||||
| 1413 | if (max_num_spans > ARRAY_LENGTH(converter->spans_embedded)((int) (sizeof (converter->spans_embedded) / sizeof (converter ->spans_embedded[0])))) { | |||
| 1414 | converter->spans = _cairo_malloc_ab (max_num_spans, | |||
| 1415 | sizeof (cairo_half_open_span_t)); | |||
| 1416 | if (unlikely (converter->spans == NULL)(__builtin_expect (!!(converter->spans == ((void*)0)), 0))) | |||
| 1417 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 1418 | } else | |||
| 1419 | converter->spans = converter->spans_embedded; | |||
| 1420 | ||||
| 1421 | xmin = int_to_grid_scaled_x(xmin)int_to_grid_scaled((xmin), (1 << 8)); | |||
| 1422 | ymin = int_to_grid_scaled_y(ymin)int_to_grid_scaled((ymin), 15); | |||
| 1423 | xmax = int_to_grid_scaled_x(xmax)int_to_grid_scaled((xmax), (1 << 8)); | |||
| 1424 | ymax = int_to_grid_scaled_y(ymax)int_to_grid_scaled((ymax), 15); | |||
| 1425 | ||||
| 1426 | active_list_reset(converter->active); | |||
| 1427 | cell_list_reset(converter->coverages); | |||
| 1428 | status = polygon_reset(converter->polygon, ymin, ymax); | |||
| 1429 | if (status) | |||
| 1430 | return status; | |||
| 1431 | ||||
| 1432 | converter->xmin = xmin; | |||
| 1433 | converter->xmax = xmax; | |||
| 1434 | converter->ymin = ymin; | |||
| 1435 | converter->ymax = ymax; | |||
| 1436 | return GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS; | |||
| 1437 | } | |||
| 1438 | ||||
| 1439 | /* INPUT_TO_GRID_X/Y (in_coord, out_grid_scaled, grid_scale) | |||
| 1440 | * These macros convert an input coordinate in the client's | |||
| 1441 | * device space to the rasterisation grid. | |||
| 1442 | */ | |||
| 1443 | /* Gah.. this bit of ugly defines INPUT_TO_GRID_X/Y so as to use | |||
| 1444 | * shifts if possible, and something saneish if not. | |||
| 1445 | */ | |||
| 1446 | #if !defined(INPUT_TO_GRID_Y) && defined(GRID_Y_BITS) && GRID_Y_BITS <= GLITTER_INPUT_BITS8 | |||
| 1447 | # define INPUT_TO_GRID_Y(in, out)do { long long tmp__ = (long long)(15) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) (out) = (in) >> (GLITTER_INPUT_BITS8 - GRID_Y_BITS) | |||
| 1448 | #else | |||
| 1449 | # define INPUT_TO_GRID_Y(in, out)do { long long tmp__ = (long long)(15) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) INPUT_TO_GRID_general(in, out, GRID_Y)do { long long tmp__ = (long long)(15) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) | |||
| 1450 | #endif | |||
| 1451 | ||||
| 1452 | #if !defined(INPUT_TO_GRID_X) && defined(GRID_X_BITS8) && GRID_X_BITS8 <= GLITTER_INPUT_BITS8 | |||
| 1453 | # define INPUT_TO_GRID_X(in, out)(out) = (in) >> (8 - 8) (out) = (in) >> (GLITTER_INPUT_BITS8 - GRID_X_BITS8) | |||
| 1454 | #else | |||
| 1455 | # define INPUT_TO_GRID_X(in, out)(out) = (in) >> (8 - 8) INPUT_TO_GRID_general(in, out, GRID_X)do { long long tmp__ = (long long)((1 << 8)) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) | |||
| 1456 | #endif | |||
| 1457 | ||||
| 1458 | #define INPUT_TO_GRID_general(in, out, grid_scale)do { long long tmp__ = (long long)(grid_scale) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) do { \ | |||
| 1459 | long long tmp__ = (long long)(grid_scale) * (in); \ | |||
| 1460 | tmp__ += 1 << (GLITTER_INPUT_BITS8-1); \ | |||
| 1461 | tmp__ >>= GLITTER_INPUT_BITS8; \ | |||
| 1462 | (out) = tmp__; \ | |||
| 1463 | } while (0) | |||
| 1464 | ||||
| 1465 | inline static void | |||
| 1466 | polygon_add_edge (struct polygon *polygon, | |||
| 1467 | const cairo_edge_t *edge) | |||
| 1468 | { | |||
| 1469 | struct edge *e; | |||
| 1470 | grid_scaled_y_t ytop, ybot; | |||
| 1471 | const cairo_point_t *p1, *p2; | |||
| 1472 | ||||
| 1473 | INPUT_TO_GRID_Y (edge->top, ytop)do { long long tmp__ = (long long)(15) * (edge->top); tmp__ += 1 << (8 -1); tmp__ >>= 8; (ytop) = tmp__; } while (0); | |||
| 1474 | if (ytop < polygon->ymin) | |||
| 1475 | ytop = polygon->ymin; | |||
| 1476 | ||||
| 1477 | INPUT_TO_GRID_Y (edge->bottom, ybot)do { long long tmp__ = (long long)(15) * (edge->bottom); tmp__ += 1 << (8 -1); tmp__ >>= 8; (ybot) = tmp__; } while (0); | |||
| 1478 | if (ybot > polygon->ymax) | |||
| 1479 | ybot = polygon->ymax; | |||
| 1480 | ||||
| 1481 | if (ybot <= ytop) | |||
| 1482 | return; | |||
| 1483 | ||||
| 1484 | e = pool_alloc (polygon->edge_pool.base, sizeof (struct edge)); | |||
| 1485 | ||||
| 1486 | e->ytop = ytop; | |||
| 1487 | e->height_left = ybot - ytop; | |||
| 1488 | if (edge->line.p2.y > edge->line.p1.y) { | |||
| 1489 | e->dir = edge->dir; | |||
| 1490 | p1 = &edge->line.p1; | |||
| 1491 | p2 = &edge->line.p2; | |||
| 1492 | } else { | |||
| 1493 | e->dir = -edge->dir; | |||
| 1494 | p1 = &edge->line.p2; | |||
| 1495 | p2 = &edge->line.p1; | |||
| 1496 | } | |||
| 1497 | ||||
| 1498 | if (p2->x == p1->x) { | |||
| 1499 | e->cell = p1->x; | |||
| 1500 | e->x.quo = p1->x; | |||
| 1501 | e->x.rem = 0; | |||
| 1502 | e->dxdy.quo = e->dxdy.rem = 0; | |||
| 1503 | e->dxdy_full.quo = e->dxdy_full.rem = 0; | |||
| 1504 | e->dy = 0; | |||
| 1505 | } else { | |||
| 1506 | int64_t Ex, Ey, tmp; | |||
| 1507 | ||||
| 1508 | Ex = (int64_t)(p2->x - p1->x) * GRID_X(1 << 8); | |||
| 1509 | Ey = (int64_t)(p2->y - p1->y) * GRID_Y15 * (2 << GLITTER_INPUT_BITS8); | |||
| 1510 | ||||
| 1511 | e->dxdy.quo = Ex * (2 << GLITTER_INPUT_BITS8) / Ey; | |||
| 1512 | e->dxdy.rem = Ex * (2 << GLITTER_INPUT_BITS8) % Ey; | |||
| 1513 | ||||
| 1514 | tmp = (int64_t)(2*ytop + 1) << GLITTER_INPUT_BITS8; | |||
| 1515 | tmp -= (int64_t)p1->y * GRID_Y15 * 2; | |||
| 1516 | tmp *= Ex; | |||
| 1517 | e->x.quo = tmp / Ey; | |||
| 1518 | e->x.rem = tmp % Ey; | |||
| 1519 | ||||
| 1520 | #if GRID_X_BITS8 == GLITTER_INPUT_BITS8 | |||
| 1521 | e->x.quo += p1->x; | |||
| 1522 | #else | |||
| 1523 | tmp = (int64_t)p1->x * GRID_X(1 << 8); | |||
| 1524 | e->x.quo += tmp >> GLITTER_INPUT_BITS8; | |||
| 1525 | e->x.rem += ((tmp & ((1 << GLITTER_INPUT_BITS8) - 1)) * Ey) / (1 << GLITTER_INPUT_BITS8); | |||
| 1526 | #endif | |||
| 1527 | ||||
| 1528 | if (e->x.rem < 0) { | |||
| 1529 | e->x.quo--; | |||
| 1530 | e->x.rem += Ey; | |||
| 1531 | } else if (e->x.rem >= Ey) { | |||
| 1532 | e->x.quo++; | |||
| 1533 | e->x.rem -= Ey; | |||
| 1534 | } | |||
| 1535 | ||||
| 1536 | if (e->height_left >= GRID_Y15) { | |||
| 1537 | tmp = Ex * (2 * GRID_Y15 << GLITTER_INPUT_BITS8); | |||
| 1538 | e->dxdy_full.quo = tmp / Ey; | |||
| 1539 | e->dxdy_full.rem = tmp % Ey; | |||
| 1540 | } else | |||
| 1541 | e->dxdy_full.quo = e->dxdy_full.rem = 0; | |||
| 1542 | ||||
| 1543 | e->cell = e->x.quo + (e->x.rem >= Ey/2); | |||
| 1544 | e->dy = Ey; | |||
| 1545 | } | |||
| 1546 | ||||
| 1547 | _polygon_insert_edge_into_its_y_bucket (polygon, e); | |||
| 1548 | } | |||
| 1549 | ||||
| 1550 | /* Add a new polygon edge from pixel (x1,y1) to (x2,y2) to the scan | |||
| 1551 | * converter. The coordinates represent pixel positions scaled by | |||
| 1552 | * 2**GLITTER_PIXEL_BITS. If this function fails then the scan | |||
| 1553 | * converter should be reset or destroyed. Dir must be +1 or -1, | |||
| 1554 | * with the latter reversing the orientation of the edge. */ | |||
| 1555 | Istatic void | |||
| 1556 | glitter_scan_converter_add_edge (glitter_scan_converter_t *converter, | |||
| 1557 | const cairo_edge_t *edge) | |||
| 1558 | { | |||
| 1559 | polygon_add_edge (converter->polygon, edge); | |||
| 1560 | } | |||
| 1561 | ||||
| 1562 | static void | |||
| 1563 | step_edges (struct active_list *active, int count) | |||
| 1564 | { | |||
| 1565 | struct edge *edge; | |||
| 1566 | ||||
| 1567 | count *= GRID_Y15; | |||
| 1568 | for (edge = active->head.next; edge != &active->tail; edge = edge->next) { | |||
| 1569 | edge->height_left -= count; | |||
| 1570 | if (! edge->height_left) { | |||
| 1571 | edge->prev->next = edge->next; | |||
| 1572 | edge->next->prev = edge->prev; | |||
| 1573 | active->min_height = -1; | |||
| 1574 | } | |||
| 1575 | } | |||
| 1576 | } | |||
| 1577 | ||||
| 1578 | static glitter_status_t | |||
| 1579 | blit_a8 (struct cell_list *cells, | |||
| 1580 | cairo_span_renderer_t *renderer, | |||
| 1581 | cairo_half_open_span_t *spans, | |||
| 1582 | int y, int height, | |||
| 1583 | int xmin, int xmax) | |||
| 1584 | { | |||
| 1585 | struct cell *cell = cells->head.next; | |||
| 1586 | int prev_x = xmin, last_x = -1; | |||
| 1587 | int16_t cover = 0, last_cover = 0; | |||
| 1588 | unsigned num_spans; | |||
| 1589 | ||||
| 1590 | if (cell == &cells->tail) | |||
| 1591 | return CAIRO_STATUS_SUCCESS; | |||
| 1592 | ||||
| 1593 | /* Skip cells to the left of the clip region. */ | |||
| 1594 | while (cell->x < xmin) { | |||
| 1595 | cover += cell->covered_height; | |||
| 1596 | cell = cell->next; | |||
| 1597 | } | |||
| 1598 | cover *= GRID_X(1 << 8)*2; | |||
| 1599 | ||||
| 1600 | /* Form the spans from the coverages and areas. */ | |||
| 1601 | num_spans = 0; | |||
| 1602 | for (; cell->x < xmax; cell = cell->next) { | |||
| 1603 | int x = cell->x; | |||
| 1604 | int16_t area; | |||
| 1605 | ||||
| 1606 | if (x > prev_x && cover != last_cover) { | |||
| 1607 | spans[num_spans].x = prev_x; | |||
| 1608 | spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover)(((cover) + ((cover)<<4) + 256) >> 9); | |||
| 1609 | last_cover = cover; | |||
| 1610 | last_x = prev_x; | |||
| 1611 | ++num_spans; | |||
| 1612 | } | |||
| 1613 | ||||
| 1614 | cover += cell->covered_height*GRID_X(1 << 8)*2; | |||
| 1615 | area = cover - cell->uncovered_area; | |||
| 1616 | ||||
| 1617 | if (area != last_cover) { | |||
| 1618 | spans[num_spans].x = x; | |||
| 1619 | spans[num_spans].coverage = GRID_AREA_TO_ALPHA (area)(((area) + ((area)<<4) + 256) >> 9); | |||
| 1620 | last_cover = area; | |||
| 1621 | last_x = x; | |||
| 1622 | ++num_spans; | |||
| 1623 | } | |||
| 1624 | ||||
| 1625 | prev_x = x+1; | |||
| 1626 | } | |||
| 1627 | ||||
| 1628 | if (prev_x <= xmax && cover != last_cover) { | |||
| 1629 | spans[num_spans].x = prev_x; | |||
| 1630 | spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover)(((cover) + ((cover)<<4) + 256) >> 9); | |||
| 1631 | last_cover = cover; | |||
| 1632 | last_x = prev_x; | |||
| 1633 | ++num_spans; | |||
| 1634 | } | |||
| 1635 | ||||
| 1636 | if (last_x < xmax && last_cover) { | |||
| 1637 | spans[num_spans].x = xmax; | |||
| 1638 | spans[num_spans].coverage = 0; | |||
| 1639 | ++num_spans; | |||
| 1640 | } | |||
| 1641 | ||||
| 1642 | /* Dump them into the renderer. */ | |||
| 1643 | return renderer->render_rows (renderer, y, height, spans, num_spans); | |||
| 1644 | } | |||
| 1645 | ||||
| 1646 | #define GRID_AREA_TO_A1(A)(((((A) + ((A)<<4) + 256) >> 9) > 127) ? 255 : 0) ((GRID_AREA_TO_ALPHA (A)(((A) + ((A)<<4) + 256) >> 9) > 127) ? 255 : 0) | |||
| 1647 | static glitter_status_t | |||
| 1648 | blit_a1 (struct cell_list *cells, | |||
| 1649 | cairo_span_renderer_t *renderer, | |||
| 1650 | cairo_half_open_span_t *spans, | |||
| 1651 | int y, int height, | |||
| 1652 | int xmin, int xmax) | |||
| 1653 | { | |||
| 1654 | struct cell *cell = cells->head.next; | |||
| 1655 | int prev_x = xmin, last_x = -1; | |||
| 1656 | int16_t cover = 0; | |||
| 1657 | uint8_t coverage, last_cover = 0; | |||
| 1658 | unsigned num_spans; | |||
| 1659 | ||||
| 1660 | if (cell == &cells->tail) | |||
| 1661 | return CAIRO_STATUS_SUCCESS; | |||
| 1662 | ||||
| 1663 | /* Skip cells to the left of the clip region. */ | |||
| 1664 | while (cell->x < xmin) { | |||
| 1665 | cover += cell->covered_height; | |||
| 1666 | cell = cell->next; | |||
| 1667 | } | |||
| 1668 | cover *= GRID_X(1 << 8)*2; | |||
| 1669 | ||||
| 1670 | /* Form the spans from the coverages and areas. */ | |||
| 1671 | num_spans = 0; | |||
| 1672 | for (; cell->x < xmax; cell = cell->next) { | |||
| 1673 | int x = cell->x; | |||
| 1674 | int16_t area; | |||
| 1675 | ||||
| 1676 | coverage = GRID_AREA_TO_A1 (cover)(((((cover) + ((cover)<<4) + 256) >> 9) > 127) ? 255 : 0); | |||
| 1677 | if (x > prev_x && coverage != last_cover) { | |||
| 1678 | last_x = spans[num_spans].x = prev_x; | |||
| 1679 | last_cover = spans[num_spans].coverage = coverage; | |||
| 1680 | ++num_spans; | |||
| 1681 | } | |||
| 1682 | ||||
| 1683 | cover += cell->covered_height*GRID_X(1 << 8)*2; | |||
| 1684 | area = cover - cell->uncovered_area; | |||
| 1685 | ||||
| 1686 | coverage = GRID_AREA_TO_A1 (area)(((((area) + ((area)<<4) + 256) >> 9) > 127) ? 255 : 0); | |||
| 1687 | if (coverage != last_cover) { | |||
| 1688 | last_x = spans[num_spans].x = x; | |||
| 1689 | last_cover = spans[num_spans].coverage = coverage; | |||
| 1690 | ++num_spans; | |||
| 1691 | } | |||
| 1692 | ||||
| 1693 | prev_x = x+1; | |||
| 1694 | } | |||
| 1695 | ||||
| 1696 | coverage = GRID_AREA_TO_A1 (cover)(((((cover) + ((cover)<<4) + 256) >> 9) > 127) ? 255 : 0); | |||
| 1697 | if (prev_x <= xmax && coverage != last_cover) { | |||
| 1698 | last_x = spans[num_spans].x = prev_x; | |||
| 1699 | last_cover = spans[num_spans].coverage = coverage; | |||
| 1700 | ++num_spans; | |||
| 1701 | } | |||
| 1702 | ||||
| 1703 | if (last_x < xmax && last_cover) { | |||
| 1704 | spans[num_spans].x = xmax; | |||
| 1705 | spans[num_spans].coverage = 0; | |||
| 1706 | ++num_spans; | |||
| 1707 | } | |||
| 1708 | if (num_spans == 1) | |||
| 1709 | return CAIRO_STATUS_SUCCESS; | |||
| 1710 | ||||
| 1711 | /* Dump them into the renderer. */ | |||
| 1712 | return renderer->render_rows (renderer, y, height, spans, num_spans); | |||
| 1713 | } | |||
| 1714 | ||||
| 1715 | ||||
| 1716 | Istatic void | |||
| 1717 | glitter_scan_converter_render(glitter_scan_converter_t *converter, | |||
| 1718 | unsigned int winding_mask, | |||
| 1719 | int antialias, | |||
| 1720 | cairo_span_renderer_t *renderer) | |||
| 1721 | { | |||
| 1722 | int i, j; | |||
| 1723 | int ymax_i = converter->ymax / GRID_Y15; | |||
| 1724 | int ymin_i = converter->ymin / GRID_Y15; | |||
| 1725 | int xmin_i, xmax_i; | |||
| 1726 | int h = ymax_i - ymin_i; | |||
| 1727 | struct polygon *polygon = converter->polygon; | |||
| 1728 | struct cell_list *coverages = converter->coverages; | |||
| 1729 | struct active_list *active = converter->active; | |||
| 1730 | struct edge *buckets[GRID_Y15] = { 0 }; | |||
| 1731 | ||||
| 1732 | xmin_i = converter->xmin / GRID_X(1 << 8); | |||
| 1733 | xmax_i = converter->xmax / GRID_X(1 << 8); | |||
| 1734 | if (xmin_i >= xmax_i) | |||
| 1735 | return; | |||
| 1736 | ||||
| 1737 | /* Render each pixel row. */ | |||
| 1738 | for (i = 0; i < h; i = j) { | |||
| 1739 | int do_full_row = 0; | |||
| 1740 | ||||
| 1741 | j = i + 1; | |||
| 1742 | ||||
| 1743 | /* Determine if we can ignore this row or use the full pixel | |||
| 1744 | * stepper. */ | |||
| 1745 | if (polygon_fill_buckets (active, | |||
| 1746 | polygon->y_buckets[i], | |||
| 1747 | (i+ymin_i)*GRID_Y15, | |||
| 1748 | buckets) == 0) { | |||
| 1749 | if (buckets[0]) { | |||
| 1750 | active_list_merge_edges_from_bucket (active, buckets[0]); | |||
| 1751 | buckets[0] = NULL((void*)0); | |||
| 1752 | } | |||
| 1753 | ||||
| 1754 | if (active->head.next == &active->tail) { | |||
| 1755 | active->min_height = INT_MAX2147483647; | |||
| 1756 | active->is_vertical = 1; | |||
| 1757 | for (; j < h && ! polygon->y_buckets[j]; j++) | |||
| 1758 | ; | |||
| 1759 | continue; | |||
| 1760 | } | |||
| 1761 | ||||
| 1762 | do_full_row = can_do_full_row (active); | |||
| 1763 | } | |||
| 1764 | ||||
| 1765 | if (do_full_row) { | |||
| 1766 | /* Step by a full pixel row's worth. */ | |||
| 1767 | full_row (active, coverages, winding_mask); | |||
| 1768 | ||||
| 1769 | if (active->is_vertical) { | |||
| 1770 | while (j < h && | |||
| 1771 | polygon->y_buckets[j] == NULL((void*)0) && | |||
| 1772 | active->min_height >= 2*GRID_Y15) | |||
| 1773 | { | |||
| 1774 | active->min_height -= GRID_Y15; | |||
| 1775 | j++; | |||
| 1776 | } | |||
| 1777 | if (j != i + 1) | |||
| 1778 | step_edges (active, j - (i + 1)); | |||
| 1779 | } | |||
| 1780 | } else { | |||
| 1781 | int sub; | |||
| 1782 | ||||
| 1783 | /* Subsample this row. */ | |||
| 1784 | for (sub = 0; sub < GRID_Y15; sub++) { | |||
| 1785 | if (buckets[sub]) { | |||
| 1786 | active_list_merge_edges_from_bucket (active, buckets[sub]); | |||
| 1787 | buckets[sub] = NULL((void*)0); | |||
| 1788 | } | |||
| 1789 | sub_row (active, coverages, winding_mask); | |||
| 1790 | } | |||
| 1791 | } | |||
| 1792 | ||||
| 1793 | if (antialias) | |||
| 1794 | blit_a8 (coverages, renderer, converter->spans, | |||
| 1795 | i+ymin_i, j-i, xmin_i, xmax_i); | |||
| 1796 | else | |||
| 1797 | blit_a1 (coverages, renderer, converter->spans, | |||
| 1798 | i+ymin_i, j-i, xmin_i, xmax_i); | |||
| 1799 | cell_list_reset (coverages); | |||
| 1800 | ||||
| 1801 | active->min_height -= GRID_Y15; | |||
| 1802 | } | |||
| 1803 | } | |||
| 1804 | ||||
| 1805 | struct _cairo_tor_scan_converter { | |||
| 1806 | cairo_scan_converter_t base; | |||
| 1807 | ||||
| 1808 | glitter_scan_converter_t converter[1]; | |||
| 1809 | cairo_fill_rule_t fill_rule; | |||
| 1810 | cairo_antialias_t antialias; | |||
| 1811 | ||||
| 1812 | jmp_buf jmp; | |||
| 1813 | }; | |||
| 1814 | ||||
| 1815 | typedef struct _cairo_tor_scan_converter cairo_tor_scan_converter_t; | |||
| 1816 | ||||
| 1817 | static void | |||
| 1818 | _cairo_tor_scan_converter_destroy (void *converter) | |||
| 1819 | { | |||
| 1820 | cairo_tor_scan_converter_t *self = converter; | |||
| 1821 | if (self == NULL((void*)0)) { | |||
| 1822 | return; | |||
| 1823 | } | |||
| 1824 | _glitter_scan_converter_fini (self->converter); | |||
| 1825 | free(self); | |||
| 1826 | } | |||
| 1827 | ||||
| 1828 | cairo_status_t | |||
| 1829 | _cairo_tor_scan_converter_add_polygon (void *converter, | |||
| 1830 | const cairo_polygon_t *polygon) | |||
| 1831 | { | |||
| 1832 | cairo_tor_scan_converter_t *self = converter; | |||
| 1833 | int i; | |||
| 1834 | ||||
| 1835 | #if 0 | |||
| 1836 | FILE *file = fopen ("polygon.txt", "w"); | |||
| 1837 | _cairo_debug_print_polygon (file, polygon); | |||
| 1838 | fclose (file); | |||
| 1839 | #endif | |||
| 1840 | ||||
| 1841 | for (i = 0; i < polygon->num_edges; i++) | |||
| 1842 | glitter_scan_converter_add_edge (self->converter, &polygon->edges[i]); | |||
| 1843 | ||||
| 1844 | return CAIRO_STATUS_SUCCESS; | |||
| 1845 | } | |||
| 1846 | ||||
| 1847 | static cairo_status_t | |||
| 1848 | _cairo_tor_scan_converter_generate (void *converter, | |||
| 1849 | cairo_span_renderer_t *renderer) | |||
| 1850 | { | |||
| 1851 | cairo_tor_scan_converter_t *self = converter; | |||
| 1852 | cairo_status_t status; | |||
| 1853 | ||||
| 1854 | if ((status = setjmp (self->jmp)_setjmp (self->jmp))) | |||
| ||||
| 1855 | return _cairo_scan_converter_set_error (self, _cairo_error (status)); | |||
| 1856 | ||||
| 1857 | glitter_scan_converter_render (self->converter, | |||
| 1858 | self->fill_rule == CAIRO_FILL_RULE_WINDING ? ~0 : 1, | |||
| 1859 | self->antialias != CAIRO_ANTIALIAS_NONE, | |||
| 1860 | renderer); | |||
| 1861 | return CAIRO_STATUS_SUCCESS; | |||
| 1862 | } | |||
| 1863 | ||||
| 1864 | cairo_scan_converter_t * | |||
| 1865 | _cairo_tor_scan_converter_create (int xmin, | |||
| 1866 | int ymin, | |||
| 1867 | int xmax, | |||
| 1868 | int ymax, | |||
| 1869 | cairo_fill_rule_t fill_rule, | |||
| 1870 | cairo_antialias_t antialias) | |||
| 1871 | { | |||
| 1872 | cairo_tor_scan_converter_t *self; | |||
| 1873 | cairo_status_t status; | |||
| 1874 | ||||
| 1875 | self = _cairo_malloc (sizeof(struct _cairo_tor_scan_converter))((sizeof(struct _cairo_tor_scan_converter)) != 0 ? malloc(sizeof (struct _cairo_tor_scan_converter)) : ((void*)0)); | |||
| 1876 | if (unlikely (self == NULL)(__builtin_expect (!!(self == ((void*)0)), 0))) { | |||
| 1877 | status = _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 1878 | goto bail_nomem; | |||
| 1879 | } | |||
| 1880 | ||||
| 1881 | self->base.destroy = _cairo_tor_scan_converter_destroy; | |||
| 1882 | self->base.generate = _cairo_tor_scan_converter_generate; | |||
| 1883 | ||||
| 1884 | _glitter_scan_converter_init (self->converter, &self->jmp); | |||
| 1885 | status = glitter_scan_converter_reset (self->converter, | |||
| 1886 | xmin, ymin, xmax, ymax); | |||
| 1887 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1888 | goto bail; | |||
| 1889 | ||||
| 1890 | self->fill_rule = fill_rule; | |||
| 1891 | self->antialias = antialias; | |||
| 1892 | ||||
| 1893 | return &self->base; | |||
| 1894 | ||||
| 1895 | bail: | |||
| 1896 | self->base.destroy(&self->base); | |||
| 1897 | bail_nomem: | |||
| 1898 | return _cairo_scan_converter_create_in_error (status); | |||
| 1899 | } |