File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-tor-scan-converter.c |
Warning: | line 1176, column 6 Access to field 'dy' results in a dereference of a null pointer (loaded from variable 'e') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ | |||
2 | /* glitter-paths - polygon scan converter | |||
3 | * | |||
4 | * Copyright (c) 2008 M Joonas Pihlaja | |||
5 | * Copyright (c) 2007 David Turner | |||
6 | * | |||
7 | * Permission is hereby granted, free of charge, to any person | |||
8 | * obtaining a copy of this software and associated documentation | |||
9 | * files (the "Software"), to deal in the Software without | |||
10 | * restriction, including without limitation the rights to use, | |||
11 | * copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
12 | * copies of the Software, and to permit persons to whom the | |||
13 | * Software is furnished to do so, subject to the following | |||
14 | * conditions: | |||
15 | * | |||
16 | * The above copyright notice and this permission notice shall be | |||
17 | * included in all copies or substantial portions of the Software. | |||
18 | * | |||
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||
20 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |||
21 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
22 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |||
23 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | |||
24 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |||
25 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |||
26 | * OTHER DEALINGS IN THE SOFTWARE. | |||
27 | */ | |||
28 | /* This is the Glitter paths scan converter incorporated into cairo. | |||
29 | * The source is from commit 734c53237a867a773640bd5b64816249fa1730f8 | |||
30 | * of | |||
31 | * | |||
32 | * https://gitweb.freedesktop.org/?p=users/joonas/glitter-paths | |||
33 | */ | |||
34 | /* Glitter-paths is a stand alone polygon rasteriser derived from | |||
35 | * David Turner's reimplementation of Tor Anderssons's 15x17 | |||
36 | * supersampling rasteriser from the Apparition graphics library. The | |||
37 | * main new feature here is cheaply choosing per-scan line between | |||
38 | * doing fully analytical coverage computation for an entire row at a | |||
39 | * time vs. using a supersampling approach. | |||
40 | * | |||
41 | * David Turner's code can be found at | |||
42 | * | |||
43 | * http://david.freetype.org/rasterizer-shootout/raster-comparison-20070813.tar.bz2 | |||
44 | * | |||
45 | * In particular this file incorporates large parts of ftgrays_tor10.h | |||
46 | * from raster-comparison-20070813.tar.bz2 | |||
47 | */ | |||
48 | /* Overview | |||
49 | * | |||
50 | * A scan converter's basic purpose to take polygon edges and convert | |||
51 | * them into an RLE compressed A8 mask. This one works in two phases: | |||
52 | * gathering edges and generating spans. | |||
53 | * | |||
54 | * 1) As the user feeds the scan converter edges they are vertically | |||
55 | * clipped and bucketted into a _polygon_ data structure. The edges | |||
56 | * are also snapped from the user's coordinates to the subpixel grid | |||
57 | * coordinates used during scan conversion. | |||
58 | * | |||
59 | * user | |||
60 | * | | |||
61 | * | edges | |||
62 | * V | |||
63 | * polygon buckets | |||
64 | * | |||
65 | * 2) Generating spans works by performing a vertical sweep of pixel | |||
66 | * rows from top to bottom and maintaining an _active_list_ of edges | |||
67 | * that intersect the row. From the active list the fill rule | |||
68 | * determines which edges are the left and right edges of the start of | |||
69 | * each span, and their contribution is then accumulated into a pixel | |||
70 | * coverage list (_cell_list_) as coverage deltas. Once the coverage | |||
71 | * deltas of all edges are known we can form spans of constant pixel | |||
72 | * coverage by summing the deltas during a traversal of the cell list. | |||
73 | * At the end of a pixel row the cell list is sent to a coverage | |||
74 | * blitter for rendering to some target surface. | |||
75 | * | |||
76 | * The pixel coverages are computed by either supersampling the row | |||
77 | * and box filtering a mono rasterisation, or by computing the exact | |||
78 | * coverages of edges in the active list. The supersampling method is | |||
79 | * used whenever some edge starts or stops within the row or there are | |||
80 | * edge intersections in the row. | |||
81 | * | |||
82 | * polygon bucket for \ | |||
83 | * current pixel row | | |||
84 | * | | | |||
85 | * | activate new edges | Repeat GRID_Y times if we | |||
86 | * V \ are supersampling this row, | |||
87 | * active list / or just once if we're computing | |||
88 | * | | analytical coverage. | |||
89 | * | coverage deltas | | |||
90 | * V | | |||
91 | * pixel coverage list / | |||
92 | * | | |||
93 | * V | |||
94 | * coverage blitter | |||
95 | */ | |||
96 | #include "cairoint.h" | |||
97 | #include "cairo-spans-private.h" | |||
98 | #include "cairo-error-private.h" | |||
99 | ||||
100 | #include <stdlib.h> | |||
101 | #include <string.h> | |||
102 | #include <limits.h> | |||
103 | #include <setjmp.h> | |||
104 | ||||
105 | /*------------------------------------------------------------------------- | |||
106 | * cairo specific config | |||
107 | */ | |||
108 | #define Istatic static | |||
109 | ||||
110 | /* Prefer cairo's status type. */ | |||
111 | #define GLITTER_HAVE_STATUS_T1 1 | |||
112 | #define GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS CAIRO_STATUS_SUCCESS | |||
113 | #define GLITTER_STATUS_NO_MEMORYCAIRO_STATUS_NO_MEMORY CAIRO_STATUS_NO_MEMORY | |||
114 | typedef cairo_status_t glitter_status_t; | |||
115 | ||||
116 | /* The input coordinate scale and the rasterisation grid scales. */ | |||
117 | #define GLITTER_INPUT_BITS8 CAIRO_FIXED_FRAC_BITS8 | |||
118 | #define GRID_X_BITS8 CAIRO_FIXED_FRAC_BITS8 | |||
119 | #define GRID_Y15 15 | |||
120 | ||||
121 | /* Set glitter up to use a cairo span renderer to do the coverage | |||
122 | * blitting. */ | |||
123 | struct pool; | |||
124 | struct cell_list; | |||
125 | ||||
126 | /*------------------------------------------------------------------------- | |||
127 | * glitter-paths.h | |||
128 | */ | |||
129 | ||||
130 | /* "Input scaled" numbers are fixed precision reals with multiplier | |||
131 | * 2**GLITTER_INPUT_BITS. Input coordinates are given to glitter as | |||
132 | * pixel scaled numbers. These get converted to the internal grid | |||
133 | * scaled numbers as soon as possible. Internal overflow is possible | |||
134 | * if GRID_X/Y inside glitter-paths.c is larger than | |||
135 | * 1<<GLITTER_INPUT_BITS. */ | |||
136 | #ifndef GLITTER_INPUT_BITS8 | |||
137 | # define GLITTER_INPUT_BITS8 8 | |||
138 | #endif | |||
139 | #define GLITTER_INPUT_SCALE(1<<8) (1<<GLITTER_INPUT_BITS8) | |||
140 | typedef int glitter_input_scaled_t; | |||
141 | ||||
142 | #if !GLITTER_HAVE_STATUS_T1 | |||
143 | typedef enum { | |||
144 | GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS = 0, | |||
145 | GLITTER_STATUS_NO_MEMORYCAIRO_STATUS_NO_MEMORY | |||
146 | } glitter_status_t; | |||
147 | #endif | |||
148 | ||||
149 | #ifndef Istatic | |||
150 | # define Istatic /*static*/ | |||
151 | #endif | |||
152 | ||||
153 | /* Opaque type for scan converting. */ | |||
154 | typedef struct glitter_scan_converter glitter_scan_converter_t; | |||
155 | ||||
156 | /* Reset a scan converter to accept polygon edges and set the clip box | |||
157 | * in pixels. Allocates O(ymax-ymin) bytes of memory. The clip box | |||
158 | * is set to integer pixel coordinates xmin <= x < xmax, ymin <= y < | |||
159 | * ymax. */ | |||
160 | Istatic glitter_status_t | |||
161 | glitter_scan_converter_reset( | |||
162 | glitter_scan_converter_t *converter, | |||
163 | int xmin, int ymin, | |||
164 | int xmax, int ymax); | |||
165 | ||||
166 | /* Render the polygon in the scan converter to the given A8 format | |||
167 | * image raster. Only the pixels accessible as pixels[y*stride+x] for | |||
168 | * x,y inside the clip box are written to, where xmin <= x < xmax, | |||
169 | * ymin <= y < ymax. The image is assumed to be clear on input. | |||
170 | * | |||
171 | * If nonzero_fill is true then the interior of the polygon is | |||
172 | * computed with the non-zero fill rule. Otherwise the even-odd fill | |||
173 | * rule is used. | |||
174 | * | |||
175 | * The scan converter must be reset or destroyed after this call. */ | |||
176 | ||||
177 | /*------------------------------------------------------------------------- | |||
178 | * glitter-paths.c: Implementation internal types | |||
179 | */ | |||
180 | #include <stdlib.h> | |||
181 | #include <string.h> | |||
182 | #include <limits.h> | |||
183 | ||||
184 | /* All polygon coordinates are snapped onto a subsample grid. "Grid | |||
185 | * scaled" numbers are fixed precision reals with multiplier GRID_X or | |||
186 | * GRID_Y. */ | |||
187 | typedef int grid_scaled_t; | |||
188 | typedef int grid_scaled_x_t; | |||
189 | typedef int grid_scaled_y_t; | |||
190 | ||||
191 | /* Default x/y scale factors. | |||
192 | * You can either define GRID_X/Y_BITS to get a power-of-two scale | |||
193 | * or define GRID_X/Y separately. */ | |||
194 | #if !defined(GRID_X(1 << 8)) && !defined(GRID_X_BITS8) | |||
195 | # define GRID_X_BITS8 8 | |||
196 | #endif | |||
197 | #if !defined(GRID_Y15) && !defined(GRID_Y_BITS) | |||
198 | # define GRID_Y15 15 | |||
199 | #endif | |||
200 | ||||
201 | /* Use GRID_X/Y_BITS to define GRID_X/Y if they're available. */ | |||
202 | #ifdef GRID_X_BITS8 | |||
203 | # define GRID_X(1 << 8) (1 << GRID_X_BITS8) | |||
204 | #endif | |||
205 | #ifdef GRID_Y_BITS | |||
206 | # define GRID_Y15 (1 << GRID_Y_BITS) | |||
207 | #endif | |||
208 | ||||
209 | /* The GRID_X_TO_INT_FRAC macro splits a grid scaled coordinate into | |||
210 | * integer and fractional parts. The integer part is floored. */ | |||
211 | #if defined(GRID_X_TO_INT_FRAC) | |||
212 | /* do nothing */ | |||
213 | #elif defined(GRID_X_BITS8) | |||
214 | # define GRID_X_TO_INT_FRAC(x, i, f)do { (f) = (x) & ((1 << (8)) - 1); (i) = (x) >> (8); } while (0) \ | |||
215 | _GRID_TO_INT_FRAC_shift(x, i, f, GRID_X_BITS)do { (f) = (x) & ((1 << (8)) - 1); (i) = (x) >> (8); } while (0) | |||
216 | #else | |||
217 | # define GRID_X_TO_INT_FRAC(x, i, f)do { (f) = (x) & ((1 << (8)) - 1); (i) = (x) >> (8); } while (0) \ | |||
218 | _GRID_TO_INT_FRAC_general(x, i, f, GRID_X)do { (i) = (x) / ((1 << 8)); (f) = (x) % ((1 << 8 )); if ((f) < 0) { --(i); (f) += ((1 << 8)); } } while (0) | |||
219 | #endif | |||
220 | ||||
221 | #define _GRID_TO_INT_FRAC_general(t, i, f, m)do { (i) = (t) / (m); (f) = (t) % (m); if ((f) < 0) { --(i ); (f) += (m); } } while (0) do { \ | |||
222 | (i) = (t) / (m); \ | |||
223 | (f) = (t) % (m); \ | |||
224 | if ((f) < 0) { \ | |||
225 | --(i); \ | |||
226 | (f) += (m); \ | |||
227 | } \ | |||
228 | } while (0) | |||
229 | ||||
230 | #define _GRID_TO_INT_FRAC_shift(t, i, f, b)do { (f) = (t) & ((1 << (b)) - 1); (i) = (t) >> (b); } while (0) do { \ | |||
231 | (f) = (t) & ((1 << (b)) - 1); \ | |||
232 | (i) = (t) >> (b); \ | |||
233 | } while (0) | |||
234 | ||||
235 | /* A grid area is a real in [0,1] scaled by 2*GRID_X*GRID_Y. We want | |||
236 | * to be able to represent exactly areas of subpixel trapezoids whose | |||
237 | * vertices are given in grid scaled coordinates. The scale factor | |||
238 | * comes from needing to accurately represent the area 0.5*dx*dy of a | |||
239 | * triangle with base dx and height dy in grid scaled numbers. */ | |||
240 | #define GRID_XY(2*(1 << 8)*15) (2*GRID_X(1 << 8)*GRID_Y15) /* Unit area on the grid. */ | |||
241 | ||||
242 | /* GRID_AREA_TO_ALPHA(area): map [0,GRID_XY] to [0,255]. */ | |||
243 | #if GRID_XY(2*(1 << 8)*15) == 510 | |||
244 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c)+1) >> 1) | |||
245 | #elif GRID_XY(2*(1 << 8)*15) == 255 | |||
246 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (c) | |||
247 | #elif GRID_XY(2*(1 << 8)*15) == 64 | |||
248 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) << 2) | -(((c) & 0x40) >> 6)) | |||
249 | #elif GRID_XY(2*(1 << 8)*15) == 128 | |||
250 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) ((((c) << 1) | -((c) >> 7)) & 255) | |||
251 | #elif GRID_XY(2*(1 << 8)*15) == 256 | |||
252 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) | -((c) >> 8)) & 255) | |||
253 | #elif GRID_XY(2*(1 << 8)*15) == 15 | |||
254 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) << 4) + (c)) | |||
255 | #elif GRID_XY(2*(1 << 8)*15) == 2*256*15 | |||
256 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c) + ((c)<<4) + 256) >> 9) | |||
257 | #else | |||
258 | # define GRID_AREA_TO_ALPHA(c)(((c) + ((c)<<4) + 256) >> 9) (((c)*255 + GRID_XY(2*(1 << 8)*15)/2) / GRID_XY(2*(1 << 8)*15)) | |||
259 | #endif | |||
260 | ||||
261 | #define UNROLL3(x)x x x x x x | |||
262 | ||||
263 | struct quorem { | |||
264 | int32_t quo; | |||
265 | int64_t rem; | |||
266 | }; | |||
267 | ||||
268 | /* Header for a chunk of memory in a memory pool. */ | |||
269 | struct _pool_chunk { | |||
270 | /* # bytes used in this chunk. */ | |||
271 | size_t size; | |||
272 | ||||
273 | /* # bytes total in this chunk */ | |||
274 | size_t capacity; | |||
275 | ||||
276 | /* Pointer to the previous chunk or %NULL if this is the sentinel | |||
277 | * chunk in the pool header. */ | |||
278 | struct _pool_chunk *prev_chunk; | |||
279 | ||||
280 | /* Actual data starts here. Well aligned even for 64 bit types. */ | |||
281 | int64_t data; | |||
282 | }; | |||
283 | ||||
284 | /* The int64_t data member of _pool_chunk just exists to enforce alignment, | |||
285 | * it shouldn't be included in the allocated size for the struct. */ | |||
286 | #define SIZEOF_POOL_CHUNK(sizeof(struct _pool_chunk) - sizeof(int64_t)) (sizeof(struct _pool_chunk) - sizeof(int64_t)) | |||
287 | ||||
288 | /* A memory pool. This is supposed to be embedded on the stack or | |||
289 | * within some other structure. It may optionally be followed by an | |||
290 | * embedded array from which requests are fulfilled until | |||
291 | * malloc needs to be called to allocate a first real chunk. */ | |||
292 | struct pool { | |||
293 | /* Chunk we're allocating from. */ | |||
294 | struct _pool_chunk *current; | |||
295 | ||||
296 | jmp_buf *jmp; | |||
297 | ||||
298 | /* Free list of previously allocated chunks. All have >= default | |||
299 | * capacity. */ | |||
300 | struct _pool_chunk *first_free; | |||
301 | ||||
302 | /* The default capacity of a chunk. */ | |||
303 | size_t default_capacity; | |||
304 | ||||
305 | /* Header for the sentinel chunk. Directly following the pool | |||
306 | * struct should be some space for embedded elements from which | |||
307 | * the sentinel chunk allocates from. This is expressed as a char | |||
308 | * array so that the 'int64_t data' member of _pool_chunk isn't | |||
309 | * included. This way embedding struct pool in other structs works | |||
310 | * without wasting space. */ | |||
311 | char sentinel[SIZEOF_POOL_CHUNK(sizeof(struct _pool_chunk) - sizeof(int64_t))]; | |||
312 | }; | |||
313 | ||||
314 | /* A polygon edge. */ | |||
315 | struct edge { | |||
316 | /* Next in y-bucket or active list. */ | |||
317 | struct edge *next, *prev; | |||
318 | ||||
319 | /* The clipped y of the top of the edge. */ | |||
320 | grid_scaled_y_t ytop; | |||
321 | ||||
322 | /* Number of subsample rows remaining to scan convert of this | |||
323 | * edge. */ | |||
324 | grid_scaled_y_t height_left; | |||
325 | ||||
326 | /* Original sign of the edge: +1 for downwards, -1 for upwards | |||
327 | * edges. */ | |||
328 | int dir; | |||
329 | int cell; | |||
330 | ||||
331 | /* Current x coordinate while the edge is on the active | |||
332 | * list. Initialised to the x coordinate of the top of the | |||
333 | * edge. The quotient is in grid_scaled_x_t units and the | |||
334 | * remainder is mod dy in grid_scaled_y_t units.*/ | |||
335 | struct quorem x; | |||
336 | ||||
337 | /* Advance of the current x when moving down a subsample line. */ | |||
338 | struct quorem dxdy; | |||
339 | ||||
340 | /* Advance of the current x when moving down a full pixel | |||
341 | * row. Only initialised when the height of the edge is large | |||
342 | * enough that there's a chance the edge could be stepped by a | |||
343 | * full row's worth of subsample rows at a time. */ | |||
344 | struct quorem dxdy_full; | |||
345 | ||||
346 | /* y2-y1 after orienting the edge downwards. */ | |||
347 | int64_t dy; | |||
348 | }; | |||
349 | ||||
350 | #define EDGE_Y_BUCKET_INDEX(y, ymin)(((y) - (ymin))/15) (((y) - (ymin))/GRID_Y15) | |||
351 | ||||
352 | /* A collection of sorted and vertically clipped edges of the polygon. | |||
353 | * Edges are moved from the polygon to an active list while scan | |||
354 | * converting. */ | |||
355 | struct polygon { | |||
356 | /* The vertical clip extents. */ | |||
357 | grid_scaled_y_t ymin, ymax; | |||
358 | ||||
359 | /* Array of edges all starting in the same bucket. An edge is put | |||
360 | * into bucket EDGE_BUCKET_INDEX(edge->ytop, polygon->ymin) when | |||
361 | * it is added to the polygon. */ | |||
362 | struct edge **y_buckets; | |||
363 | struct edge *y_buckets_embedded[64]; | |||
364 | ||||
365 | struct { | |||
366 | struct pool base[1]; | |||
367 | struct edge embedded[32]; | |||
368 | } edge_pool; | |||
369 | }; | |||
370 | ||||
371 | /* A cell records the effect on pixel coverage of polygon edges | |||
372 | * passing through a pixel. It contains two accumulators of pixel | |||
373 | * coverage. | |||
374 | * | |||
375 | * Consider the effects of a polygon edge on the coverage of a pixel | |||
376 | * it intersects and that of the following one. The coverage of the | |||
377 | * following pixel is the height of the edge multiplied by the width | |||
378 | * of the pixel, and the coverage of the pixel itself is the area of | |||
379 | * the trapezoid formed by the edge and the right side of the pixel. | |||
380 | * | |||
381 | * +-----------------------+-----------------------+ | |||
382 | * | | | | |||
383 | * | | | | |||
384 | * |_______________________|_______________________| | |||
385 | * | \...................|.......................|\ | |||
386 | * | \..................|.......................| | | |||
387 | * | \.................|.......................| | | |||
388 | * | \....covered.....|.......................| | | |||
389 | * | \....area.......|.......................| } covered height | |||
390 | * | \..............|.......................| | | |||
391 | * |uncovered\.............|.......................| | | |||
392 | * | area \............|.......................| | | |||
393 | * |___________\...........|.......................|/ | |||
394 | * | | | | |||
395 | * | | | | |||
396 | * | | | | |||
397 | * +-----------------------+-----------------------+ | |||
398 | * | |||
399 | * Since the coverage of the following pixel will always be a multiple | |||
400 | * of the width of the pixel, we can store the height of the covered | |||
401 | * area instead. The coverage of the pixel itself is the total | |||
402 | * coverage minus the area of the uncovered area to the left of the | |||
403 | * edge. As it's faster to compute the uncovered area we only store | |||
404 | * that and subtract it from the total coverage later when forming | |||
405 | * spans to blit. | |||
406 | * | |||
407 | * The heights and areas are signed, with left edges of the polygon | |||
408 | * having positive sign and right edges having negative sign. When | |||
409 | * two edges intersect they swap their left/rightness so their | |||
410 | * contribution above and below the intersection point must be | |||
411 | * computed separately. */ | |||
412 | struct cell { | |||
413 | struct cell *next; | |||
414 | int x; | |||
415 | int16_t uncovered_area; | |||
416 | int16_t covered_height; | |||
417 | }; | |||
418 | ||||
419 | /* A cell list represents the scan line sparsely as cells ordered by | |||
420 | * ascending x. It is geared towards scanning the cells in order | |||
421 | * using an internal cursor. */ | |||
422 | struct cell_list { | |||
423 | /* Sentinel nodes */ | |||
424 | struct cell head, tail; | |||
425 | ||||
426 | /* Cursor state for iterating through the cell list. */ | |||
427 | struct cell *cursor, *rewind; | |||
428 | ||||
429 | /* Cells in the cell list are owned by the cell list and are | |||
430 | * allocated from this pool. */ | |||
431 | struct { | |||
432 | struct pool base[1]; | |||
433 | struct cell embedded[32]; | |||
434 | } cell_pool; | |||
435 | }; | |||
436 | ||||
437 | struct cell_pair { | |||
438 | struct cell *cell1; | |||
439 | struct cell *cell2; | |||
440 | }; | |||
441 | ||||
442 | /* The active list contains edges in the current scan line ordered by | |||
443 | * the x-coordinate of the intercept of the edge and the scan line. */ | |||
444 | struct active_list { | |||
445 | /* Leftmost edge on the current scan line. */ | |||
446 | struct edge head, tail; | |||
447 | ||||
448 | /* A lower bound on the height of the active edges is used to | |||
449 | * estimate how soon some active edge ends. We can't advance the | |||
450 | * scan conversion by a full pixel row if an edge ends somewhere | |||
451 | * within it. */ | |||
452 | grid_scaled_y_t min_height; | |||
453 | int is_vertical; | |||
454 | }; | |||
455 | ||||
456 | struct glitter_scan_converter { | |||
457 | struct polygon polygon[1]; | |||
458 | struct active_list active[1]; | |||
459 | struct cell_list coverages[1]; | |||
460 | ||||
461 | cairo_half_open_span_t *spans; | |||
462 | cairo_half_open_span_t spans_embedded[64]; | |||
463 | ||||
464 | /* Clip box. */ | |||
465 | grid_scaled_x_t xmin, xmax; | |||
466 | grid_scaled_y_t ymin, ymax; | |||
467 | }; | |||
468 | ||||
469 | static struct _pool_chunk * | |||
470 | _pool_chunk_init( | |||
471 | struct _pool_chunk *p, | |||
472 | struct _pool_chunk *prev_chunk, | |||
473 | size_t capacity) | |||
474 | { | |||
475 | p->prev_chunk = prev_chunk; | |||
476 | p->size = 0; | |||
477 | p->capacity = capacity; | |||
478 | return p; | |||
479 | } | |||
480 | ||||
481 | static struct _pool_chunk * | |||
482 | _pool_chunk_create(struct pool *pool, size_t size) | |||
483 | { | |||
484 | struct _pool_chunk *p; | |||
485 | ||||
486 | p = _cairo_malloc (SIZEOF_POOL_CHUNK + size)(((sizeof(struct _pool_chunk) - sizeof(int64_t)) + size) != 0 ? malloc((sizeof(struct _pool_chunk) - sizeof(int64_t)) + size ) : ((void*)0)); | |||
487 | if (unlikely (NULL == p)(__builtin_expect (!!(((void*)0) == p), 0))) | |||
488 | longjmp (*pool->jmp, _cairo_error (CAIRO_STATUS_NO_MEMORY)); | |||
489 | ||||
490 | return _pool_chunk_init(p, pool->current, size); | |||
491 | } | |||
492 | ||||
493 | static void | |||
494 | pool_init(struct pool *pool, | |||
495 | jmp_buf *jmp, | |||
496 | size_t default_capacity, | |||
497 | size_t embedded_capacity) | |||
498 | { | |||
499 | pool->jmp = jmp; | |||
500 | pool->current = (void*) pool->sentinel; | |||
501 | pool->first_free = NULL((void*)0); | |||
502 | pool->default_capacity = default_capacity; | |||
503 | _pool_chunk_init(pool->current, NULL((void*)0), embedded_capacity); | |||
504 | } | |||
505 | ||||
506 | static void | |||
507 | pool_fini(struct pool *pool) | |||
508 | { | |||
509 | struct _pool_chunk *p = pool->current; | |||
510 | do { | |||
511 | while (NULL((void*)0) != p) { | |||
512 | struct _pool_chunk *prev = p->prev_chunk; | |||
513 | if (p != (void *) pool->sentinel) | |||
514 | free(p); | |||
515 | p = prev; | |||
516 | } | |||
517 | p = pool->first_free; | |||
518 | pool->first_free = NULL((void*)0); | |||
519 | } while (NULL((void*)0) != p); | |||
520 | } | |||
521 | ||||
522 | /* Satisfy an allocation by first allocating a new large enough chunk | |||
523 | * and adding it to the head of the pool's chunk list. This function | |||
524 | * is called as a fallback if pool_alloc() couldn't do a quick | |||
525 | * allocation from the current chunk in the pool. */ | |||
526 | static void * | |||
527 | _pool_alloc_from_new_chunk( | |||
528 | struct pool *pool, | |||
529 | size_t size) | |||
530 | { | |||
531 | struct _pool_chunk *chunk; | |||
532 | void *obj; | |||
533 | size_t capacity; | |||
534 | ||||
535 | /* If the allocation is smaller than the default chunk size then | |||
536 | * try getting a chunk off the free list. Force alloc of a new | |||
537 | * chunk for large requests. */ | |||
538 | capacity = size; | |||
539 | chunk = NULL((void*)0); | |||
540 | if (size < pool->default_capacity) { | |||
541 | capacity = pool->default_capacity; | |||
542 | chunk = pool->first_free; | |||
543 | if (chunk) { | |||
544 | pool->first_free = chunk->prev_chunk; | |||
545 | _pool_chunk_init(chunk, pool->current, chunk->capacity); | |||
546 | } | |||
547 | } | |||
548 | ||||
549 | if (NULL((void*)0) == chunk) | |||
550 | chunk = _pool_chunk_create (pool, capacity); | |||
551 | pool->current = chunk; | |||
552 | ||||
553 | obj = ((unsigned char*)&chunk->data + chunk->size); | |||
554 | chunk->size += size; | |||
555 | return obj; | |||
556 | } | |||
557 | ||||
558 | /* Allocate size bytes from the pool. The first allocated address | |||
559 | * returned from a pool is aligned to 8 bytes. Subsequent | |||
560 | * addresses will maintain alignment as long as multiples of 8 are | |||
561 | * allocated. Returns the address of a new memory area or %NULL on | |||
562 | * allocation failures. The pool retains ownership of the returned | |||
563 | * memory. */ | |||
564 | inline static void * | |||
565 | pool_alloc (struct pool *pool, size_t size) | |||
566 | { | |||
567 | struct _pool_chunk *chunk = pool->current; | |||
568 | ||||
569 | if (size <= chunk->capacity - chunk->size) { | |||
570 | void *obj = ((unsigned char*)&chunk->data + chunk->size); | |||
571 | chunk->size += size; | |||
572 | return obj; | |||
573 | } else { | |||
574 | return _pool_alloc_from_new_chunk(pool, size); | |||
575 | } | |||
576 | } | |||
577 | ||||
578 | /* Relinquish all pool_alloced memory back to the pool. */ | |||
579 | static void | |||
580 | pool_reset (struct pool *pool) | |||
581 | { | |||
582 | /* Transfer all used chunks to the chunk free list. */ | |||
583 | struct _pool_chunk *chunk = pool->current; | |||
584 | if (chunk != (void *) pool->sentinel) { | |||
585 | while (chunk->prev_chunk != (void *) pool->sentinel) { | |||
586 | chunk = chunk->prev_chunk; | |||
587 | } | |||
588 | chunk->prev_chunk = pool->first_free; | |||
589 | pool->first_free = pool->current; | |||
590 | } | |||
591 | /* Reset the sentinel as the current chunk. */ | |||
592 | pool->current = (void *) pool->sentinel; | |||
593 | pool->current->size = 0; | |||
594 | } | |||
595 | ||||
596 | /* Rewinds the cell list's cursor to the beginning. After rewinding | |||
597 | * we're good to cell_list_find() the cell any x coordinate. */ | |||
598 | inline static void | |||
599 | cell_list_rewind (struct cell_list *cells) | |||
600 | { | |||
601 | cells->cursor = &cells->head; | |||
602 | } | |||
603 | ||||
604 | inline static void | |||
605 | cell_list_maybe_rewind (struct cell_list *cells, int x) | |||
606 | { | |||
607 | if (x < cells->cursor->x) { | |||
608 | cells->cursor = cells->rewind; | |||
609 | if (x < cells->cursor->x) | |||
610 | cells->cursor = &cells->head; | |||
611 | } | |||
612 | } | |||
613 | ||||
614 | inline static void | |||
615 | cell_list_set_rewind (struct cell_list *cells) | |||
616 | { | |||
617 | cells->rewind = cells->cursor; | |||
618 | } | |||
619 | ||||
620 | static void | |||
621 | cell_list_init(struct cell_list *cells, jmp_buf *jmp) | |||
622 | { | |||
623 | pool_init(cells->cell_pool.base, jmp, | |||
624 | 256*sizeof(struct cell), | |||
625 | sizeof(cells->cell_pool.embedded)); | |||
626 | cells->tail.next = NULL((void*)0); | |||
627 | cells->tail.x = INT_MAX2147483647; | |||
628 | cells->head.x = INT_MIN(-2147483647 -1); | |||
629 | cells->head.next = &cells->tail; | |||
630 | cell_list_rewind (cells); | |||
631 | } | |||
632 | ||||
633 | static void | |||
634 | cell_list_fini(struct cell_list *cells) | |||
635 | { | |||
636 | pool_fini (cells->cell_pool.base); | |||
637 | } | |||
638 | ||||
639 | /* Empty the cell list. This is called at the start of every pixel | |||
640 | * row. */ | |||
641 | inline static void | |||
642 | cell_list_reset (struct cell_list *cells) | |||
643 | { | |||
644 | cell_list_rewind (cells); | |||
645 | cells->head.next = &cells->tail; | |||
646 | pool_reset (cells->cell_pool.base); | |||
647 | } | |||
648 | ||||
649 | inline static struct cell * | |||
650 | cell_list_alloc (struct cell_list *cells, | |||
651 | struct cell *tail, | |||
652 | int x) | |||
653 | { | |||
654 | struct cell *cell; | |||
655 | ||||
656 | cell = pool_alloc (cells->cell_pool.base, sizeof (struct cell)); | |||
657 | cell->next = tail->next; | |||
658 | tail->next = cell; | |||
659 | cell->x = x; | |||
660 | *(uint32_t *)&cell->uncovered_area = 0; | |||
661 | ||||
662 | return cell; | |||
663 | } | |||
664 | ||||
665 | /* Find a cell at the given x-coordinate. Returns %NULL if a new cell | |||
666 | * needed to be allocated but couldn't be. Cells must be found with | |||
667 | * non-decreasing x-coordinate until the cell list is rewound using | |||
668 | * cell_list_rewind(). Ownership of the returned cell is retained by | |||
669 | * the cell list. */ | |||
670 | inline static struct cell * | |||
671 | cell_list_find (struct cell_list *cells, int x) | |||
672 | { | |||
673 | struct cell *tail = cells->cursor; | |||
674 | ||||
675 | if (tail->x == x) | |||
676 | return tail; | |||
677 | ||||
678 | while (1) { | |||
679 | UNROLL3({{ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
680 | if (tail->next->x > x){ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
681 | break;{ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
682 | tail = tail->next;{ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; } | |||
683 | }){ if (tail->next->x > x) break; tail = tail->next ; } { if (tail->next->x > x) break; tail = tail-> next; } { if (tail->next->x > x) break; tail = tail-> next; }; | |||
684 | } | |||
685 | ||||
686 | if (tail->x != x) | |||
687 | tail = cell_list_alloc (cells, tail, x); | |||
688 | return cells->cursor = tail; | |||
689 | ||||
690 | } | |||
691 | ||||
692 | /* Find two cells at x1 and x2. This is exactly equivalent | |||
693 | * to | |||
694 | * | |||
695 | * pair.cell1 = cell_list_find(cells, x1); | |||
696 | * pair.cell2 = cell_list_find(cells, x2); | |||
697 | * | |||
698 | * except with less function call overhead. */ | |||
699 | inline static struct cell_pair | |||
700 | cell_list_find_pair(struct cell_list *cells, int x1, int x2) | |||
701 | { | |||
702 | struct cell_pair pair; | |||
703 | ||||
704 | pair.cell1 = cells->cursor; | |||
705 | while (1) { | |||
706 | UNROLL3({{ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
707 | if (pair.cell1->next->x > x1){ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
708 | break;{ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
709 | pair.cell1 = pair.cell1->next;{ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; } | |||
710 | }){ if (pair.cell1->next->x > x1) break; pair.cell1 = pair .cell1->next; } { if (pair.cell1->next->x > x1) break ; pair.cell1 = pair.cell1->next; } { if (pair.cell1->next ->x > x1) break; pair.cell1 = pair.cell1->next; }; | |||
711 | } | |||
712 | if (pair.cell1->x != x1) | |||
713 | pair.cell1 = cell_list_alloc (cells, pair.cell1, x1); | |||
714 | ||||
715 | pair.cell2 = pair.cell1; | |||
716 | while (1) { | |||
717 | UNROLL3({{ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
718 | if (pair.cell2->next->x > x2){ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
719 | break;{ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
720 | pair.cell2 = pair.cell2->next;{ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; } | |||
721 | }){ if (pair.cell2->next->x > x2) break; pair.cell2 = pair .cell2->next; } { if (pair.cell2->next->x > x2) break ; pair.cell2 = pair.cell2->next; } { if (pair.cell2->next ->x > x2) break; pair.cell2 = pair.cell2->next; }; | |||
722 | } | |||
723 | if (pair.cell2->x != x2) | |||
724 | pair.cell2 = cell_list_alloc (cells, pair.cell2, x2); | |||
725 | ||||
726 | cells->cursor = pair.cell2; | |||
727 | return pair; | |||
728 | } | |||
729 | ||||
730 | /* Add a subpixel span covering [x1, x2) to the coverage cells. */ | |||
731 | inline static void | |||
732 | cell_list_add_subspan(struct cell_list *cells, | |||
733 | grid_scaled_x_t x1, | |||
734 | grid_scaled_x_t x2) | |||
735 | { | |||
736 | int ix1, fx1; | |||
737 | int ix2, fx2; | |||
738 | ||||
739 | if (x1 == x2) | |||
740 | return; | |||
741 | ||||
742 | GRID_X_TO_INT_FRAC(x1, ix1, fx1)do { (fx1) = (x1) & ((1 << (8)) - 1); (ix1) = (x1) >> (8); } while (0); | |||
743 | GRID_X_TO_INT_FRAC(x2, ix2, fx2)do { (fx2) = (x2) & ((1 << (8)) - 1); (ix2) = (x2) >> (8); } while (0); | |||
744 | ||||
745 | if (ix1 != ix2) { | |||
746 | struct cell_pair p; | |||
747 | p = cell_list_find_pair(cells, ix1, ix2); | |||
748 | p.cell1->uncovered_area += 2*fx1; | |||
749 | ++p.cell1->covered_height; | |||
750 | p.cell2->uncovered_area -= 2*fx2; | |||
751 | --p.cell2->covered_height; | |||
752 | } else { | |||
753 | struct cell *cell = cell_list_find(cells, ix1); | |||
754 | cell->uncovered_area += 2*(fx1-fx2); | |||
755 | } | |||
756 | } | |||
757 | ||||
758 | inline static void full_step (struct edge *e) | |||
759 | { | |||
760 | if (e->dy == 0) | |||
761 | return; | |||
762 | ||||
763 | e->x.quo += e->dxdy_full.quo; | |||
764 | e->x.rem += e->dxdy_full.rem; | |||
765 | if (e->x.rem < 0) { | |||
766 | e->x.quo--; | |||
767 | e->x.rem += e->dy; | |||
768 | } else if (e->x.rem >= e->dy) { | |||
769 | ++e->x.quo; | |||
770 | e->x.rem -= e->dy; | |||
771 | } | |||
772 | ||||
773 | e->cell = e->x.quo + (e->x.rem >= e->dy/2); | |||
774 | } | |||
775 | ||||
776 | ||||
777 | /* Adds the analytical coverage of an edge crossing the current pixel | |||
778 | * row to the coverage cells and advances the edge's x position to the | |||
779 | * following row. | |||
780 | * | |||
781 | * This function is only called when we know that during this pixel row: | |||
782 | * | |||
783 | * 1) The relative order of all edges on the active list doesn't | |||
784 | * change. In particular, no edges intersect within this row to pixel | |||
785 | * precision. | |||
786 | * | |||
787 | * 2) No new edges start in this row. | |||
788 | * | |||
789 | * 3) No existing edges end mid-row. | |||
790 | * | |||
791 | * This function depends on being called with all edges from the | |||
792 | * active list in the order they appear on the list (i.e. with | |||
793 | * non-decreasing x-coordinate.) */ | |||
794 | static void | |||
795 | cell_list_render_edge(struct cell_list *cells, | |||
796 | struct edge *edge, | |||
797 | int sign) | |||
798 | { | |||
799 | struct quorem x1, x2; | |||
800 | grid_scaled_x_t fx1, fx2; | |||
801 | int ix1, ix2; | |||
802 | ||||
803 | x1 = edge->x; | |||
804 | full_step (edge); | |||
805 | x2 = edge->x; | |||
806 | ||||
807 | /* Step back from the sample location (half-subrow) to the pixel origin */ | |||
808 | if (edge->dy) { | |||
809 | x1.quo -= edge->dxdy.quo / 2; | |||
810 | x1.rem -= edge->dxdy.rem / 2; | |||
811 | if (x1.rem < 0) { | |||
812 | --x1.quo; | |||
813 | x1.rem += edge->dy; | |||
814 | } else if (x1.rem >= edge->dy) { | |||
815 | ++x1.quo; | |||
816 | x1.rem -= edge->dy; | |||
817 | } | |||
818 | ||||
819 | x2.quo -= edge->dxdy.quo / 2; | |||
820 | x2.rem -= edge->dxdy.rem / 2; | |||
821 | if (x2.rem < 0) { | |||
822 | --x2.quo; | |||
823 | x2.rem += edge->dy; | |||
824 | } else if (x2.rem >= edge->dy) { | |||
825 | ++x2.quo; | |||
826 | x2.rem -= edge->dy; | |||
827 | } | |||
828 | } | |||
829 | ||||
830 | GRID_X_TO_INT_FRAC(x1.quo, ix1, fx1)do { (fx1) = (x1.quo) & ((1 << (8)) - 1); (ix1) = ( x1.quo) >> (8); } while (0); | |||
831 | GRID_X_TO_INT_FRAC(x2.quo, ix2, fx2)do { (fx2) = (x2.quo) & ((1 << (8)) - 1); (ix2) = ( x2.quo) >> (8); } while (0); | |||
832 | ||||
833 | cell_list_maybe_rewind(cells, MIN(ix1, ix2)((ix1) < (ix2) ? (ix1) : (ix2))); | |||
834 | ||||
835 | /* Edge is entirely within a column? */ | |||
836 | if (ix1 == ix2) { | |||
837 | /* We always know that ix1 is >= the cell list cursor in this | |||
838 | * case due to the no-intersections precondition. */ | |||
839 | struct cell *cell = cell_list_find(cells, ix1); | |||
840 | cell->covered_height += sign*GRID_Y15; | |||
841 | cell->uncovered_area += sign*(fx1 + fx2)*GRID_Y15; | |||
842 | return; | |||
843 | } | |||
844 | ||||
845 | /* Orient the edge left-to-right. */ | |||
846 | if (ix2 < ix1) { | |||
847 | struct quorem tx; | |||
848 | int t; | |||
849 | ||||
850 | t = ix1; | |||
851 | ix1 = ix2; | |||
852 | ix2 = t; | |||
853 | ||||
854 | t = fx1; | |||
855 | fx1 = fx2; | |||
856 | fx2 = t; | |||
857 | ||||
858 | tx = x1; | |||
859 | x1 = x2; | |||
860 | x2 = tx; | |||
861 | } | |||
862 | ||||
863 | /* Add coverage for all pixels [ix1,ix2] on this row crossed | |||
864 | * by the edge. */ | |||
865 | { | |||
866 | struct cell_pair pair; | |||
867 | struct quorem y; | |||
868 | int64_t tmp, dx; | |||
869 | int y_last; | |||
870 | ||||
871 | dx = (x2.quo - x1.quo) * edge->dy + (x2.rem - x1.rem); | |||
872 | ||||
873 | tmp = (ix1 + 1) * GRID_X(1 << 8) * edge->dy; | |||
874 | tmp -= x1.quo * edge->dy + x1.rem; | |||
875 | tmp *= GRID_Y15; | |||
876 | ||||
877 | y.quo = tmp / dx; | |||
878 | y.rem = tmp % dx; | |||
879 | ||||
880 | /* When rendering a previous edge on the active list we may | |||
881 | * advance the cell list cursor past the leftmost pixel of the | |||
882 | * current edge even though the two edges don't intersect. | |||
883 | * e.g. consider two edges going down and rightwards: | |||
884 | * | |||
885 | * --\_+---\_+-----+-----+---- | |||
886 | * \_ \_ | | | |||
887 | * | \_ | \_ | | | |||
888 | * | \_| \_| | | |||
889 | * | \_ \_ | | |||
890 | * ----+-----+-\---+-\---+---- | |||
891 | * | |||
892 | * The left edge touches cells past the starting cell of the | |||
893 | * right edge. Fortunately such cases are rare. | |||
894 | */ | |||
895 | ||||
896 | pair = cell_list_find_pair(cells, ix1, ix1+1); | |||
897 | pair.cell1->uncovered_area += sign*y.quo*(GRID_X(1 << 8) + fx1); | |||
898 | pair.cell1->covered_height += sign*y.quo; | |||
899 | y_last = y.quo; | |||
900 | ||||
901 | if (ix1+1 < ix2) { | |||
902 | struct cell *cell = pair.cell2; | |||
903 | struct quorem dydx_full; | |||
904 | ||||
905 | dydx_full.quo = GRID_Y15 * GRID_X(1 << 8) * edge->dy / dx; | |||
906 | dydx_full.rem = GRID_Y15 * GRID_X(1 << 8) * edge->dy % dx; | |||
907 | ||||
908 | ++ix1; | |||
909 | do { | |||
910 | y.quo += dydx_full.quo; | |||
911 | y.rem += dydx_full.rem; | |||
912 | if (y.rem >= dx) { | |||
913 | y.quo++; | |||
914 | y.rem -= dx; | |||
915 | } | |||
916 | ||||
917 | cell->uncovered_area += sign*(y.quo - y_last)*GRID_X(1 << 8); | |||
918 | cell->covered_height += sign*(y.quo - y_last); | |||
919 | y_last = y.quo; | |||
920 | ||||
921 | ++ix1; | |||
922 | cell = cell_list_find(cells, ix1); | |||
923 | } while (ix1 != ix2); | |||
924 | ||||
925 | pair.cell2 = cell; | |||
926 | } | |||
927 | pair.cell2->uncovered_area += sign*(GRID_Y15 - y_last)*fx2; | |||
928 | pair.cell2->covered_height += sign*(GRID_Y15 - y_last); | |||
929 | } | |||
930 | } | |||
931 | ||||
932 | static void | |||
933 | polygon_init (struct polygon *polygon, jmp_buf *jmp) | |||
934 | { | |||
935 | polygon->ymin = polygon->ymax = 0; | |||
936 | polygon->y_buckets = polygon->y_buckets_embedded; | |||
937 | pool_init (polygon->edge_pool.base, jmp, | |||
938 | 8192 - sizeof (struct _pool_chunk), | |||
939 | sizeof (polygon->edge_pool.embedded)); | |||
940 | } | |||
941 | ||||
942 | static void | |||
943 | polygon_fini (struct polygon *polygon) | |||
944 | { | |||
945 | if (polygon->y_buckets != polygon->y_buckets_embedded) | |||
946 | free (polygon->y_buckets); | |||
947 | ||||
948 | pool_fini (polygon->edge_pool.base); | |||
949 | } | |||
950 | ||||
951 | /* Empties the polygon of all edges. The polygon is then prepared to | |||
952 | * receive new edges and clip them to the vertical range | |||
953 | * [ymin,ymax). */ | |||
954 | static glitter_status_t | |||
955 | polygon_reset (struct polygon *polygon, | |||
956 | grid_scaled_y_t ymin, | |||
957 | grid_scaled_y_t ymax) | |||
958 | { | |||
959 | unsigned h = ymax - ymin; | |||
960 | unsigned num_buckets = EDGE_Y_BUCKET_INDEX(ymax + GRID_Y-1, ymin)(((ymax + 15 -1) - (ymin))/15); | |||
961 | ||||
962 | pool_reset(polygon->edge_pool.base); | |||
963 | ||||
964 | if (unlikely (h > 0x7FFFFFFFU - GRID_Y)(__builtin_expect (!!(h > 0x7FFFFFFFU - 15), 0))) | |||
965 | goto bail_no_mem; /* even if you could, you wouldn't want to. */ | |||
966 | ||||
967 | if (polygon->y_buckets != polygon->y_buckets_embedded) | |||
968 | free (polygon->y_buckets); | |||
969 | ||||
970 | polygon->y_buckets = polygon->y_buckets_embedded; | |||
971 | if (num_buckets > ARRAY_LENGTH (polygon->y_buckets_embedded)((int) (sizeof (polygon->y_buckets_embedded) / sizeof (polygon ->y_buckets_embedded[0])))) { | |||
972 | polygon->y_buckets = _cairo_malloc_ab (num_buckets, | |||
973 | sizeof (struct edge *)); | |||
974 | if (unlikely (NULL == polygon->y_buckets)(__builtin_expect (!!(((void*)0) == polygon->y_buckets), 0 ))) | |||
975 | goto bail_no_mem; | |||
976 | } | |||
977 | memset (polygon->y_buckets, 0, num_buckets * sizeof (struct edge *)); | |||
978 | ||||
979 | polygon->ymin = ymin; | |||
980 | polygon->ymax = ymax; | |||
981 | return GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS; | |||
982 | ||||
983 | bail_no_mem: | |||
984 | polygon->ymin = 0; | |||
985 | polygon->ymax = 0; | |||
986 | return GLITTER_STATUS_NO_MEMORYCAIRO_STATUS_NO_MEMORY; | |||
987 | } | |||
988 | ||||
989 | static void | |||
990 | _polygon_insert_edge_into_its_y_bucket(struct polygon *polygon, | |||
991 | struct edge *e) | |||
992 | { | |||
993 | unsigned ix = EDGE_Y_BUCKET_INDEX(e->ytop, polygon->ymin)(((e->ytop) - (polygon->ymin))/15); | |||
994 | struct edge **ptail = &polygon->y_buckets[ix]; | |||
995 | e->next = *ptail; | |||
996 | *ptail = e; | |||
997 | } | |||
998 | ||||
999 | static void | |||
1000 | active_list_reset (struct active_list *active) | |||
1001 | { | |||
1002 | active->head.height_left = INT_MAX2147483647; | |||
1003 | active->head.dy = 0; | |||
1004 | active->head.cell = INT_MIN(-2147483647 -1); | |||
1005 | active->head.prev = NULL((void*)0); | |||
1006 | active->head.next = &active->tail; | |||
1007 | active->tail.prev = &active->head; | |||
1008 | active->tail.next = NULL((void*)0); | |||
1009 | active->tail.cell = INT_MAX2147483647; | |||
1010 | active->tail.height_left = INT_MAX2147483647; | |||
1011 | active->tail.dy = 0; | |||
1012 | active->min_height = 0; | |||
1013 | active->is_vertical = 1; | |||
1014 | } | |||
1015 | ||||
1016 | static void | |||
1017 | active_list_init(struct active_list *active) | |||
1018 | { | |||
1019 | active_list_reset(active); | |||
1020 | } | |||
1021 | ||||
1022 | /* | |||
1023 | * Merge two sorted edge lists. | |||
1024 | * Input: | |||
1025 | * - head_a: The head of the first list. | |||
1026 | * - head_b: The head of the second list; head_b cannot be NULL. | |||
1027 | * Output: | |||
1028 | * Returns the head of the merged list. | |||
1029 | * | |||
1030 | * Implementation notes: | |||
1031 | * To make it fast (in particular, to reduce to an insertion sort whenever | |||
1032 | * one of the two input lists only has a single element) we iterate through | |||
1033 | * a list until its head becomes greater than the head of the other list, | |||
1034 | * then we switch their roles. As soon as one of the two lists is empty, we | |||
1035 | * just attach the other one to the current list and exit. | |||
1036 | * Writes to memory are only needed to "switch" lists (as it also requires | |||
1037 | * attaching to the output list the list which we will be iterating next) and | |||
1038 | * to attach the last non-empty list. | |||
1039 | */ | |||
1040 | static struct edge * | |||
1041 | merge_sorted_edges (struct edge *head_a, struct edge *head_b) | |||
1042 | { | |||
1043 | struct edge *head, **next, *prev; | |||
1044 | int32_t x; | |||
1045 | ||||
1046 | prev = head_a->prev; | |||
1047 | next = &head; | |||
1048 | if (head_a->cell <= head_b->cell) { | |||
1049 | head = head_a; | |||
1050 | } else { | |||
1051 | head = head_b; | |||
1052 | head_b->prev = prev; | |||
1053 | goto start_with_b; | |||
1054 | } | |||
1055 | ||||
1056 | do { | |||
1057 | x = head_b->cell; | |||
1058 | while (head_a != NULL((void*)0) && head_a->cell <= x) { | |||
1059 | prev = head_a; | |||
1060 | next = &head_a->next; | |||
1061 | head_a = head_a->next; | |||
1062 | } | |||
1063 | ||||
1064 | head_b->prev = prev; | |||
1065 | *next = head_b; | |||
1066 | if (head_a == NULL((void*)0)) | |||
1067 | return head; | |||
1068 | ||||
1069 | start_with_b: | |||
1070 | x = head_a->cell; | |||
1071 | while (head_b != NULL((void*)0) && head_b->cell <= x) { | |||
1072 | prev = head_b; | |||
1073 | next = &head_b->next; | |||
1074 | head_b = head_b->next; | |||
1075 | } | |||
1076 | ||||
1077 | head_a->prev = prev; | |||
1078 | *next = head_a; | |||
1079 | if (head_b == NULL((void*)0)) | |||
1080 | return head; | |||
1081 | } while (1); | |||
1082 | } | |||
1083 | ||||
1084 | /* | |||
1085 | * Sort (part of) a list. | |||
1086 | * Input: | |||
1087 | * - list: The list to be sorted; list cannot be NULL. | |||
1088 | * - limit: Recursion limit. | |||
1089 | * Output: | |||
1090 | * - head_out: The head of the sorted list containing the first 2^(level+1) elements of the | |||
1091 | * input list; if the input list has fewer elements, head_out be a sorted list | |||
1092 | * containing all the elements of the input list. | |||
1093 | * Returns the head of the list of unprocessed elements (NULL if the sorted list contains | |||
1094 | * all the elements of the input list). | |||
1095 | * | |||
1096 | * Implementation notes: | |||
1097 | * Special case single element list, unroll/inline the sorting of the first two elements. | |||
1098 | * Some tail recursion is used since we iterate on the bottom-up solution of the problem | |||
1099 | * (we start with a small sorted list and keep merging other lists of the same size to it). | |||
1100 | */ | |||
1101 | static struct edge * | |||
1102 | sort_edges (struct edge *list, | |||
1103 | unsigned int level, | |||
1104 | struct edge **head_out) | |||
1105 | { | |||
1106 | struct edge *head_other, *remaining; | |||
1107 | unsigned int i; | |||
1108 | ||||
1109 | head_other = list->next; | |||
1110 | ||||
1111 | if (head_other == NULL((void*)0)) { | |||
1112 | *head_out = list; | |||
1113 | return NULL((void*)0); | |||
1114 | } | |||
1115 | ||||
1116 | remaining = head_other->next; | |||
1117 | if (list->cell <= head_other->cell) { | |||
1118 | *head_out = list; | |||
1119 | head_other->next = NULL((void*)0); | |||
1120 | } else { | |||
1121 | *head_out = head_other; | |||
1122 | head_other->prev = list->prev; | |||
1123 | head_other->next = list; | |||
1124 | list->prev = head_other; | |||
1125 | list->next = NULL((void*)0); | |||
1126 | } | |||
1127 | ||||
1128 | for (i = 0; i < level && remaining; i++) { | |||
1129 | remaining = sort_edges (remaining, i, &head_other); | |||
1130 | *head_out = merge_sorted_edges (*head_out, head_other); | |||
1131 | } | |||
1132 | ||||
1133 | return remaining; | |||
1134 | } | |||
1135 | ||||
1136 | static struct edge * | |||
1137 | merge_unsorted_edges (struct edge *head, struct edge *unsorted) | |||
1138 | { | |||
1139 | sort_edges (unsorted, UINT_MAX(2147483647 *2U +1U), &unsorted); | |||
1140 | return merge_sorted_edges (head, unsorted); | |||
1141 | } | |||
1142 | ||||
1143 | /* Test if the edges on the active list can be safely advanced by a | |||
1144 | * full row without intersections or any edges ending. */ | |||
1145 | inline static int | |||
1146 | can_do_full_row (struct active_list *active) | |||
1147 | { | |||
1148 | const struct edge *e; | |||
1149 | int prev_x = INT_MIN(-2147483647 -1); | |||
1150 | ||||
1151 | /* Recomputes the minimum height of all edges on the active | |||
1152 | * list if we have been dropping edges. */ | |||
1153 | if (active->min_height <= 0) { | |||
1154 | int min_height = INT_MAX2147483647; | |||
1155 | int is_vertical = 1; | |||
1156 | ||||
1157 | e = active->head.next; | |||
1158 | while (NULL((void*)0) != e) { | |||
1159 | if (e->height_left < min_height) | |||
1160 | min_height = e->height_left; | |||
1161 | is_vertical &= e->dy == 0; | |||
1162 | e = e->next; | |||
1163 | } | |||
1164 | ||||
1165 | active->is_vertical = is_vertical; | |||
1166 | active->min_height = min_height; | |||
1167 | } | |||
1168 | ||||
1169 | if (active->min_height
| |||
1170 | return 0; | |||
1171 | ||||
1172 | /* Check for intersections as no edges end during the next row. */ | |||
1173 | for (e = active->head.next; e != &active->tail; e = e->next) { | |||
1174 | int cell; | |||
1175 | ||||
1176 | if (e->dy) { | |||
| ||||
1177 | struct quorem x = e->x; | |||
1178 | x.quo += e->dxdy_full.quo; | |||
1179 | x.rem += e->dxdy_full.rem; | |||
1180 | if (x.rem < 0) { | |||
1181 | x.quo--; | |||
1182 | x.rem += e->dy; | |||
1183 | } else if (x.rem >= e->dy) { | |||
1184 | x.quo++; | |||
1185 | x.rem -= e->dy; | |||
1186 | } | |||
1187 | cell = x.quo + (x.rem >= e->dy/2); | |||
1188 | } else | |||
1189 | cell = e->cell; | |||
1190 | ||||
1191 | if (cell < prev_x) | |||
1192 | return 0; | |||
1193 | ||||
1194 | prev_x = cell; | |||
1195 | } | |||
1196 | ||||
1197 | return 1; | |||
1198 | } | |||
1199 | ||||
1200 | /* Merges edges on the given subpixel row from the polygon to the | |||
1201 | * active_list. */ | |||
1202 | inline static void | |||
1203 | active_list_merge_edges_from_bucket(struct active_list *active, | |||
1204 | struct edge *edges) | |||
1205 | { | |||
1206 | active->head.next = merge_unsorted_edges (active->head.next, edges); | |||
1207 | } | |||
1208 | ||||
1209 | inline static int | |||
1210 | polygon_fill_buckets (struct active_list *active, | |||
1211 | struct edge *edge, | |||
1212 | int y, | |||
1213 | struct edge **buckets) | |||
1214 | { | |||
1215 | grid_scaled_y_t min_height = active->min_height; | |||
1216 | int is_vertical = active->is_vertical; | |||
1217 | int max_suby = 0; | |||
1218 | ||||
1219 | while (edge) { | |||
1220 | struct edge *next = edge->next; | |||
1221 | int suby = edge->ytop - y; | |||
1222 | if (buckets[suby]) | |||
1223 | buckets[suby]->prev = edge; | |||
1224 | edge->next = buckets[suby]; | |||
1225 | edge->prev = NULL((void*)0); | |||
1226 | buckets[suby] = edge; | |||
1227 | if (edge->height_left < min_height) | |||
1228 | min_height = edge->height_left; | |||
1229 | is_vertical &= edge->dy == 0; | |||
1230 | edge = next; | |||
1231 | if (suby > max_suby) | |||
1232 | max_suby = suby; | |||
1233 | } | |||
1234 | ||||
1235 | active->is_vertical = is_vertical; | |||
1236 | active->min_height = min_height; | |||
1237 | ||||
1238 | return max_suby; | |||
1239 | } | |||
1240 | ||||
1241 | static void step (struct edge *edge) | |||
1242 | { | |||
1243 | if (edge->dy == 0) | |||
1244 | return; | |||
1245 | ||||
1246 | edge->x.quo += edge->dxdy.quo; | |||
1247 | edge->x.rem += edge->dxdy.rem; | |||
1248 | if (edge->x.rem < 0) { | |||
1249 | --edge->x.quo; | |||
1250 | edge->x.rem += edge->dy; | |||
1251 | } else if (edge->x.rem >= edge->dy) { | |||
1252 | ++edge->x.quo; | |||
1253 | edge->x.rem -= edge->dy; | |||
1254 | } | |||
1255 | ||||
1256 | edge->cell = edge->x.quo + (edge->x.rem >= edge->dy/2); | |||
1257 | } | |||
1258 | ||||
1259 | inline static void | |||
1260 | sub_row (struct active_list *active, | |||
1261 | struct cell_list *coverages, | |||
1262 | unsigned int mask) | |||
1263 | { | |||
1264 | struct edge *edge = active->head.next; | |||
1265 | int xstart = INT_MIN(-2147483647 -1), prev_x = INT_MIN(-2147483647 -1); | |||
1266 | int winding = 0; | |||
1267 | ||||
1268 | cell_list_rewind (coverages); | |||
1269 | ||||
1270 | while (&active->tail != edge) { | |||
1271 | struct edge *next = edge->next; | |||
1272 | int xend = edge->cell; | |||
1273 | ||||
1274 | if (--edge->height_left) { | |||
1275 | step (edge); | |||
1276 | ||||
1277 | if (edge->cell < prev_x) { | |||
1278 | struct edge *pos = edge->prev; | |||
1279 | pos->next = next; | |||
1280 | next->prev = pos; | |||
1281 | do { | |||
1282 | pos = pos->prev; | |||
1283 | } while (edge->cell < pos->cell); | |||
1284 | pos->next->prev = edge; | |||
1285 | edge->next = pos->next; | |||
1286 | edge->prev = pos; | |||
1287 | pos->next = edge; | |||
1288 | } else | |||
1289 | prev_x = edge->cell; | |||
1290 | active->min_height = -1; | |||
1291 | } else { | |||
1292 | edge->prev->next = next; | |||
1293 | next->prev = edge->prev; | |||
1294 | } | |||
1295 | ||||
1296 | winding += edge->dir; | |||
1297 | if ((winding & mask) == 0) { | |||
1298 | if (next->cell != xend) { | |||
1299 | cell_list_add_subspan (coverages, xstart, xend); | |||
1300 | xstart = INT_MIN(-2147483647 -1); | |||
1301 | } | |||
1302 | } else if (xstart == INT_MIN(-2147483647 -1)) | |||
1303 | xstart = xend; | |||
1304 | ||||
1305 | edge = next; | |||
1306 | } | |||
1307 | } | |||
1308 | ||||
1309 | inline static void dec (struct active_list *a, struct edge *e, int h) | |||
1310 | { | |||
1311 | e->height_left -= h; | |||
1312 | if (e->height_left == 0) { | |||
1313 | e->prev->next = e->next; | |||
1314 | e->next->prev = e->prev; | |||
1315 | a->min_height = -1; | |||
1316 | } | |||
1317 | } | |||
1318 | ||||
1319 | static void | |||
1320 | full_row (struct active_list *active, | |||
1321 | struct cell_list *coverages, | |||
1322 | unsigned int mask) | |||
1323 | { | |||
1324 | struct edge *left = active->head.next; | |||
1325 | ||||
1326 | while (&active->tail != left) { | |||
1327 | struct edge *right; | |||
1328 | int winding; | |||
1329 | ||||
1330 | dec (active, left, GRID_Y15); | |||
1331 | ||||
1332 | winding = left->dir; | |||
1333 | right = left->next; | |||
1334 | do { | |||
1335 | dec (active, right, GRID_Y15); | |||
1336 | ||||
1337 | winding += right->dir; | |||
1338 | if ((winding & mask) == 0 && right->next->cell != right->cell) | |||
1339 | break; | |||
1340 | ||||
1341 | full_step (right); | |||
1342 | ||||
1343 | right = right->next; | |||
1344 | } while (1); | |||
1345 | ||||
1346 | cell_list_set_rewind (coverages); | |||
1347 | cell_list_render_edge (coverages, left, +1); | |||
1348 | cell_list_render_edge (coverages, right, -1); | |||
1349 | ||||
1350 | left = right->next; | |||
1351 | } | |||
1352 | } | |||
1353 | ||||
1354 | static void | |||
1355 | _glitter_scan_converter_init(glitter_scan_converter_t *converter, jmp_buf *jmp) | |||
1356 | { | |||
1357 | polygon_init(converter->polygon, jmp); | |||
1358 | active_list_init(converter->active); | |||
1359 | cell_list_init(converter->coverages, jmp); | |||
1360 | converter->xmin=0; | |||
1361 | converter->ymin=0; | |||
1362 | converter->xmax=0; | |||
1363 | converter->ymax=0; | |||
1364 | } | |||
1365 | ||||
1366 | static void | |||
1367 | _glitter_scan_converter_fini(glitter_scan_converter_t *self) | |||
1368 | { | |||
1369 | if (self->spans != self->spans_embedded) | |||
1370 | free (self->spans); | |||
1371 | ||||
1372 | polygon_fini(self->polygon); | |||
1373 | cell_list_fini(self->coverages); | |||
1374 | ||||
1375 | self->xmin=0; | |||
1376 | self->ymin=0; | |||
1377 | self->xmax=0; | |||
1378 | self->ymax=0; | |||
1379 | } | |||
1380 | ||||
1381 | static grid_scaled_t | |||
1382 | int_to_grid_scaled(int i, int scale) | |||
1383 | { | |||
1384 | /* Clamp to max/min representable scaled number. */ | |||
1385 | if (i >= 0) { | |||
1386 | if (i >= INT_MAX2147483647/scale) | |||
1387 | i = INT_MAX2147483647/scale; | |||
1388 | } | |||
1389 | else { | |||
1390 | if (i <= INT_MIN(-2147483647 -1)/scale) | |||
1391 | i = INT_MIN(-2147483647 -1)/scale; | |||
1392 | } | |||
1393 | return i*scale; | |||
1394 | } | |||
1395 | ||||
1396 | #define int_to_grid_scaled_x(x)int_to_grid_scaled((x), (1 << 8)) int_to_grid_scaled((x), GRID_X(1 << 8)) | |||
1397 | #define int_to_grid_scaled_y(x)int_to_grid_scaled((x), 15) int_to_grid_scaled((x), GRID_Y15) | |||
1398 | ||||
1399 | Istatic glitter_status_t | |||
1400 | glitter_scan_converter_reset( | |||
1401 | glitter_scan_converter_t *converter, | |||
1402 | int xmin, int ymin, | |||
1403 | int xmax, int ymax) | |||
1404 | { | |||
1405 | glitter_status_t status; | |||
1406 | int max_num_spans; | |||
1407 | ||||
1408 | converter->xmin = 0; converter->xmax = 0; | |||
1409 | converter->ymin = 0; converter->ymax = 0; | |||
1410 | ||||
1411 | max_num_spans = xmax - xmin + 1; | |||
1412 | ||||
1413 | if (max_num_spans > ARRAY_LENGTH(converter->spans_embedded)((int) (sizeof (converter->spans_embedded) / sizeof (converter ->spans_embedded[0])))) { | |||
1414 | converter->spans = _cairo_malloc_ab (max_num_spans, | |||
1415 | sizeof (cairo_half_open_span_t)); | |||
1416 | if (unlikely (converter->spans == NULL)(__builtin_expect (!!(converter->spans == ((void*)0)), 0))) | |||
1417 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
1418 | } else | |||
1419 | converter->spans = converter->spans_embedded; | |||
1420 | ||||
1421 | xmin = int_to_grid_scaled_x(xmin)int_to_grid_scaled((xmin), (1 << 8)); | |||
1422 | ymin = int_to_grid_scaled_y(ymin)int_to_grid_scaled((ymin), 15); | |||
1423 | xmax = int_to_grid_scaled_x(xmax)int_to_grid_scaled((xmax), (1 << 8)); | |||
1424 | ymax = int_to_grid_scaled_y(ymax)int_to_grid_scaled((ymax), 15); | |||
1425 | ||||
1426 | active_list_reset(converter->active); | |||
1427 | cell_list_reset(converter->coverages); | |||
1428 | status = polygon_reset(converter->polygon, ymin, ymax); | |||
1429 | if (status) | |||
1430 | return status; | |||
1431 | ||||
1432 | converter->xmin = xmin; | |||
1433 | converter->xmax = xmax; | |||
1434 | converter->ymin = ymin; | |||
1435 | converter->ymax = ymax; | |||
1436 | return GLITTER_STATUS_SUCCESSCAIRO_STATUS_SUCCESS; | |||
1437 | } | |||
1438 | ||||
1439 | /* INPUT_TO_GRID_X/Y (in_coord, out_grid_scaled, grid_scale) | |||
1440 | * These macros convert an input coordinate in the client's | |||
1441 | * device space to the rasterisation grid. | |||
1442 | */ | |||
1443 | /* Gah.. this bit of ugly defines INPUT_TO_GRID_X/Y so as to use | |||
1444 | * shifts if possible, and something saneish if not. | |||
1445 | */ | |||
1446 | #if !defined(INPUT_TO_GRID_Y) && defined(GRID_Y_BITS) && GRID_Y_BITS <= GLITTER_INPUT_BITS8 | |||
1447 | # define INPUT_TO_GRID_Y(in, out)do { long long tmp__ = (long long)(15) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) (out) = (in) >> (GLITTER_INPUT_BITS8 - GRID_Y_BITS) | |||
1448 | #else | |||
1449 | # define INPUT_TO_GRID_Y(in, out)do { long long tmp__ = (long long)(15) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) INPUT_TO_GRID_general(in, out, GRID_Y)do { long long tmp__ = (long long)(15) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) | |||
1450 | #endif | |||
1451 | ||||
1452 | #if !defined(INPUT_TO_GRID_X) && defined(GRID_X_BITS8) && GRID_X_BITS8 <= GLITTER_INPUT_BITS8 | |||
1453 | # define INPUT_TO_GRID_X(in, out)(out) = (in) >> (8 - 8) (out) = (in) >> (GLITTER_INPUT_BITS8 - GRID_X_BITS8) | |||
1454 | #else | |||
1455 | # define INPUT_TO_GRID_X(in, out)(out) = (in) >> (8 - 8) INPUT_TO_GRID_general(in, out, GRID_X)do { long long tmp__ = (long long)((1 << 8)) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) | |||
1456 | #endif | |||
1457 | ||||
1458 | #define INPUT_TO_GRID_general(in, out, grid_scale)do { long long tmp__ = (long long)(grid_scale) * (in); tmp__ += 1 << (8 -1); tmp__ >>= 8; (out) = tmp__; } while (0) do { \ | |||
1459 | long long tmp__ = (long long)(grid_scale) * (in); \ | |||
1460 | tmp__ += 1 << (GLITTER_INPUT_BITS8-1); \ | |||
1461 | tmp__ >>= GLITTER_INPUT_BITS8; \ | |||
1462 | (out) = tmp__; \ | |||
1463 | } while (0) | |||
1464 | ||||
1465 | inline static void | |||
1466 | polygon_add_edge (struct polygon *polygon, | |||
1467 | const cairo_edge_t *edge) | |||
1468 | { | |||
1469 | struct edge *e; | |||
1470 | grid_scaled_y_t ytop, ybot; | |||
1471 | const cairo_point_t *p1, *p2; | |||
1472 | ||||
1473 | INPUT_TO_GRID_Y (edge->top, ytop)do { long long tmp__ = (long long)(15) * (edge->top); tmp__ += 1 << (8 -1); tmp__ >>= 8; (ytop) = tmp__; } while (0); | |||
1474 | if (ytop < polygon->ymin) | |||
1475 | ytop = polygon->ymin; | |||
1476 | ||||
1477 | INPUT_TO_GRID_Y (edge->bottom, ybot)do { long long tmp__ = (long long)(15) * (edge->bottom); tmp__ += 1 << (8 -1); tmp__ >>= 8; (ybot) = tmp__; } while (0); | |||
1478 | if (ybot > polygon->ymax) | |||
1479 | ybot = polygon->ymax; | |||
1480 | ||||
1481 | if (ybot <= ytop) | |||
1482 | return; | |||
1483 | ||||
1484 | e = pool_alloc (polygon->edge_pool.base, sizeof (struct edge)); | |||
1485 | ||||
1486 | e->ytop = ytop; | |||
1487 | e->height_left = ybot - ytop; | |||
1488 | if (edge->line.p2.y > edge->line.p1.y) { | |||
1489 | e->dir = edge->dir; | |||
1490 | p1 = &edge->line.p1; | |||
1491 | p2 = &edge->line.p2; | |||
1492 | } else { | |||
1493 | e->dir = -edge->dir; | |||
1494 | p1 = &edge->line.p2; | |||
1495 | p2 = &edge->line.p1; | |||
1496 | } | |||
1497 | ||||
1498 | if (p2->x == p1->x) { | |||
1499 | e->cell = p1->x; | |||
1500 | e->x.quo = p1->x; | |||
1501 | e->x.rem = 0; | |||
1502 | e->dxdy.quo = e->dxdy.rem = 0; | |||
1503 | e->dxdy_full.quo = e->dxdy_full.rem = 0; | |||
1504 | e->dy = 0; | |||
1505 | } else { | |||
1506 | int64_t Ex, Ey, tmp; | |||
1507 | ||||
1508 | Ex = (int64_t)(p2->x - p1->x) * GRID_X(1 << 8); | |||
1509 | Ey = (int64_t)(p2->y - p1->y) * GRID_Y15 * (2 << GLITTER_INPUT_BITS8); | |||
1510 | ||||
1511 | e->dxdy.quo = Ex * (2 << GLITTER_INPUT_BITS8) / Ey; | |||
1512 | e->dxdy.rem = Ex * (2 << GLITTER_INPUT_BITS8) % Ey; | |||
1513 | ||||
1514 | tmp = (int64_t)(2*ytop + 1) << GLITTER_INPUT_BITS8; | |||
1515 | tmp -= (int64_t)p1->y * GRID_Y15 * 2; | |||
1516 | tmp *= Ex; | |||
1517 | e->x.quo = tmp / Ey; | |||
1518 | e->x.rem = tmp % Ey; | |||
1519 | ||||
1520 | #if GRID_X_BITS8 == GLITTER_INPUT_BITS8 | |||
1521 | e->x.quo += p1->x; | |||
1522 | #else | |||
1523 | tmp = (int64_t)p1->x * GRID_X(1 << 8); | |||
1524 | e->x.quo += tmp >> GLITTER_INPUT_BITS8; | |||
1525 | e->x.rem += ((tmp & ((1 << GLITTER_INPUT_BITS8) - 1)) * Ey) / (1 << GLITTER_INPUT_BITS8); | |||
1526 | #endif | |||
1527 | ||||
1528 | if (e->x.rem < 0) { | |||
1529 | e->x.quo--; | |||
1530 | e->x.rem += Ey; | |||
1531 | } else if (e->x.rem >= Ey) { | |||
1532 | e->x.quo++; | |||
1533 | e->x.rem -= Ey; | |||
1534 | } | |||
1535 | ||||
1536 | if (e->height_left >= GRID_Y15) { | |||
1537 | tmp = Ex * (2 * GRID_Y15 << GLITTER_INPUT_BITS8); | |||
1538 | e->dxdy_full.quo = tmp / Ey; | |||
1539 | e->dxdy_full.rem = tmp % Ey; | |||
1540 | } else | |||
1541 | e->dxdy_full.quo = e->dxdy_full.rem = 0; | |||
1542 | ||||
1543 | e->cell = e->x.quo + (e->x.rem >= Ey/2); | |||
1544 | e->dy = Ey; | |||
1545 | } | |||
1546 | ||||
1547 | _polygon_insert_edge_into_its_y_bucket (polygon, e); | |||
1548 | } | |||
1549 | ||||
1550 | /* Add a new polygon edge from pixel (x1,y1) to (x2,y2) to the scan | |||
1551 | * converter. The coordinates represent pixel positions scaled by | |||
1552 | * 2**GLITTER_PIXEL_BITS. If this function fails then the scan | |||
1553 | * converter should be reset or destroyed. Dir must be +1 or -1, | |||
1554 | * with the latter reversing the orientation of the edge. */ | |||
1555 | Istatic void | |||
1556 | glitter_scan_converter_add_edge (glitter_scan_converter_t *converter, | |||
1557 | const cairo_edge_t *edge) | |||
1558 | { | |||
1559 | polygon_add_edge (converter->polygon, edge); | |||
1560 | } | |||
1561 | ||||
1562 | static void | |||
1563 | step_edges (struct active_list *active, int count) | |||
1564 | { | |||
1565 | struct edge *edge; | |||
1566 | ||||
1567 | count *= GRID_Y15; | |||
1568 | for (edge = active->head.next; edge != &active->tail; edge = edge->next) { | |||
1569 | edge->height_left -= count; | |||
1570 | if (! edge->height_left) { | |||
1571 | edge->prev->next = edge->next; | |||
1572 | edge->next->prev = edge->prev; | |||
1573 | active->min_height = -1; | |||
1574 | } | |||
1575 | } | |||
1576 | } | |||
1577 | ||||
1578 | static glitter_status_t | |||
1579 | blit_a8 (struct cell_list *cells, | |||
1580 | cairo_span_renderer_t *renderer, | |||
1581 | cairo_half_open_span_t *spans, | |||
1582 | int y, int height, | |||
1583 | int xmin, int xmax) | |||
1584 | { | |||
1585 | struct cell *cell = cells->head.next; | |||
1586 | int prev_x = xmin, last_x = -1; | |||
1587 | int16_t cover = 0, last_cover = 0; | |||
1588 | unsigned num_spans; | |||
1589 | ||||
1590 | if (cell == &cells->tail) | |||
1591 | return CAIRO_STATUS_SUCCESS; | |||
1592 | ||||
1593 | /* Skip cells to the left of the clip region. */ | |||
1594 | while (cell->x < xmin) { | |||
1595 | cover += cell->covered_height; | |||
1596 | cell = cell->next; | |||
1597 | } | |||
1598 | cover *= GRID_X(1 << 8)*2; | |||
1599 | ||||
1600 | /* Form the spans from the coverages and areas. */ | |||
1601 | num_spans = 0; | |||
1602 | for (; cell->x < xmax; cell = cell->next) { | |||
1603 | int x = cell->x; | |||
1604 | int16_t area; | |||
1605 | ||||
1606 | if (x > prev_x && cover != last_cover) { | |||
1607 | spans[num_spans].x = prev_x; | |||
1608 | spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover)(((cover) + ((cover)<<4) + 256) >> 9); | |||
1609 | last_cover = cover; | |||
1610 | last_x = prev_x; | |||
1611 | ++num_spans; | |||
1612 | } | |||
1613 | ||||
1614 | cover += cell->covered_height*GRID_X(1 << 8)*2; | |||
1615 | area = cover - cell->uncovered_area; | |||
1616 | ||||
1617 | if (area != last_cover) { | |||
1618 | spans[num_spans].x = x; | |||
1619 | spans[num_spans].coverage = GRID_AREA_TO_ALPHA (area)(((area) + ((area)<<4) + 256) >> 9); | |||
1620 | last_cover = area; | |||
1621 | last_x = x; | |||
1622 | ++num_spans; | |||
1623 | } | |||
1624 | ||||
1625 | prev_x = x+1; | |||
1626 | } | |||
1627 | ||||
1628 | if (prev_x <= xmax && cover != last_cover) { | |||
1629 | spans[num_spans].x = prev_x; | |||
1630 | spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover)(((cover) + ((cover)<<4) + 256) >> 9); | |||
1631 | last_cover = cover; | |||
1632 | last_x = prev_x; | |||
1633 | ++num_spans; | |||
1634 | } | |||
1635 | ||||
1636 | if (last_x < xmax && last_cover) { | |||
1637 | spans[num_spans].x = xmax; | |||
1638 | spans[num_spans].coverage = 0; | |||
1639 | ++num_spans; | |||
1640 | } | |||
1641 | ||||
1642 | /* Dump them into the renderer. */ | |||
1643 | return renderer->render_rows (renderer, y, height, spans, num_spans); | |||
1644 | } | |||
1645 | ||||
1646 | #define GRID_AREA_TO_A1(A)(((((A) + ((A)<<4) + 256) >> 9) > 127) ? 255 : 0) ((GRID_AREA_TO_ALPHA (A)(((A) + ((A)<<4) + 256) >> 9) > 127) ? 255 : 0) | |||
1647 | static glitter_status_t | |||
1648 | blit_a1 (struct cell_list *cells, | |||
1649 | cairo_span_renderer_t *renderer, | |||
1650 | cairo_half_open_span_t *spans, | |||
1651 | int y, int height, | |||
1652 | int xmin, int xmax) | |||
1653 | { | |||
1654 | struct cell *cell = cells->head.next; | |||
1655 | int prev_x = xmin, last_x = -1; | |||
1656 | int16_t cover = 0; | |||
1657 | uint8_t coverage, last_cover = 0; | |||
1658 | unsigned num_spans; | |||
1659 | ||||
1660 | if (cell == &cells->tail) | |||
1661 | return CAIRO_STATUS_SUCCESS; | |||
1662 | ||||
1663 | /* Skip cells to the left of the clip region. */ | |||
1664 | while (cell->x < xmin) { | |||
1665 | cover += cell->covered_height; | |||
1666 | cell = cell->next; | |||
1667 | } | |||
1668 | cover *= GRID_X(1 << 8)*2; | |||
1669 | ||||
1670 | /* Form the spans from the coverages and areas. */ | |||
1671 | num_spans = 0; | |||
1672 | for (; cell->x < xmax; cell = cell->next) { | |||
1673 | int x = cell->x; | |||
1674 | int16_t area; | |||
1675 | ||||
1676 | coverage = GRID_AREA_TO_A1 (cover)(((((cover) + ((cover)<<4) + 256) >> 9) > 127) ? 255 : 0); | |||
1677 | if (x > prev_x && coverage != last_cover) { | |||
1678 | last_x = spans[num_spans].x = prev_x; | |||
1679 | last_cover = spans[num_spans].coverage = coverage; | |||
1680 | ++num_spans; | |||
1681 | } | |||
1682 | ||||
1683 | cover += cell->covered_height*GRID_X(1 << 8)*2; | |||
1684 | area = cover - cell->uncovered_area; | |||
1685 | ||||
1686 | coverage = GRID_AREA_TO_A1 (area)(((((area) + ((area)<<4) + 256) >> 9) > 127) ? 255 : 0); | |||
1687 | if (coverage != last_cover) { | |||
1688 | last_x = spans[num_spans].x = x; | |||
1689 | last_cover = spans[num_spans].coverage = coverage; | |||
1690 | ++num_spans; | |||
1691 | } | |||
1692 | ||||
1693 | prev_x = x+1; | |||
1694 | } | |||
1695 | ||||
1696 | coverage = GRID_AREA_TO_A1 (cover)(((((cover) + ((cover)<<4) + 256) >> 9) > 127) ? 255 : 0); | |||
1697 | if (prev_x <= xmax && coverage != last_cover) { | |||
1698 | last_x = spans[num_spans].x = prev_x; | |||
1699 | last_cover = spans[num_spans].coverage = coverage; | |||
1700 | ++num_spans; | |||
1701 | } | |||
1702 | ||||
1703 | if (last_x < xmax && last_cover) { | |||
1704 | spans[num_spans].x = xmax; | |||
1705 | spans[num_spans].coverage = 0; | |||
1706 | ++num_spans; | |||
1707 | } | |||
1708 | if (num_spans == 1) | |||
1709 | return CAIRO_STATUS_SUCCESS; | |||
1710 | ||||
1711 | /* Dump them into the renderer. */ | |||
1712 | return renderer->render_rows (renderer, y, height, spans, num_spans); | |||
1713 | } | |||
1714 | ||||
1715 | ||||
1716 | Istatic void | |||
1717 | glitter_scan_converter_render(glitter_scan_converter_t *converter, | |||
1718 | unsigned int winding_mask, | |||
1719 | int antialias, | |||
1720 | cairo_span_renderer_t *renderer) | |||
1721 | { | |||
1722 | int i, j; | |||
1723 | int ymax_i = converter->ymax / GRID_Y15; | |||
1724 | int ymin_i = converter->ymin / GRID_Y15; | |||
1725 | int xmin_i, xmax_i; | |||
1726 | int h = ymax_i - ymin_i; | |||
1727 | struct polygon *polygon = converter->polygon; | |||
1728 | struct cell_list *coverages = converter->coverages; | |||
1729 | struct active_list *active = converter->active; | |||
1730 | struct edge *buckets[GRID_Y15] = { 0 }; | |||
1731 | ||||
1732 | xmin_i = converter->xmin / GRID_X(1 << 8); | |||
1733 | xmax_i = converter->xmax / GRID_X(1 << 8); | |||
1734 | if (xmin_i >= xmax_i) | |||
1735 | return; | |||
1736 | ||||
1737 | /* Render each pixel row. */ | |||
1738 | for (i = 0; i < h; i = j) { | |||
1739 | int do_full_row = 0; | |||
1740 | ||||
1741 | j = i + 1; | |||
1742 | ||||
1743 | /* Determine if we can ignore this row or use the full pixel | |||
1744 | * stepper. */ | |||
1745 | if (polygon_fill_buckets (active, | |||
1746 | polygon->y_buckets[i], | |||
1747 | (i+ymin_i)*GRID_Y15, | |||
1748 | buckets) == 0) { | |||
1749 | if (buckets[0]) { | |||
1750 | active_list_merge_edges_from_bucket (active, buckets[0]); | |||
1751 | buckets[0] = NULL((void*)0); | |||
1752 | } | |||
1753 | ||||
1754 | if (active->head.next == &active->tail) { | |||
1755 | active->min_height = INT_MAX2147483647; | |||
1756 | active->is_vertical = 1; | |||
1757 | for (; j < h && ! polygon->y_buckets[j]; j++) | |||
1758 | ; | |||
1759 | continue; | |||
1760 | } | |||
1761 | ||||
1762 | do_full_row = can_do_full_row (active); | |||
1763 | } | |||
1764 | ||||
1765 | if (do_full_row) { | |||
1766 | /* Step by a full pixel row's worth. */ | |||
1767 | full_row (active, coverages, winding_mask); | |||
1768 | ||||
1769 | if (active->is_vertical) { | |||
1770 | while (j < h && | |||
1771 | polygon->y_buckets[j] == NULL((void*)0) && | |||
1772 | active->min_height >= 2*GRID_Y15) | |||
1773 | { | |||
1774 | active->min_height -= GRID_Y15; | |||
1775 | j++; | |||
1776 | } | |||
1777 | if (j != i + 1) | |||
1778 | step_edges (active, j - (i + 1)); | |||
1779 | } | |||
1780 | } else { | |||
1781 | int sub; | |||
1782 | ||||
1783 | /* Subsample this row. */ | |||
1784 | for (sub = 0; sub < GRID_Y15; sub++) { | |||
1785 | if (buckets[sub]) { | |||
1786 | active_list_merge_edges_from_bucket (active, buckets[sub]); | |||
1787 | buckets[sub] = NULL((void*)0); | |||
1788 | } | |||
1789 | sub_row (active, coverages, winding_mask); | |||
1790 | } | |||
1791 | } | |||
1792 | ||||
1793 | if (antialias) | |||
1794 | blit_a8 (coverages, renderer, converter->spans, | |||
1795 | i+ymin_i, j-i, xmin_i, xmax_i); | |||
1796 | else | |||
1797 | blit_a1 (coverages, renderer, converter->spans, | |||
1798 | i+ymin_i, j-i, xmin_i, xmax_i); | |||
1799 | cell_list_reset (coverages); | |||
1800 | ||||
1801 | active->min_height -= GRID_Y15; | |||
1802 | } | |||
1803 | } | |||
1804 | ||||
1805 | struct _cairo_tor_scan_converter { | |||
1806 | cairo_scan_converter_t base; | |||
1807 | ||||
1808 | glitter_scan_converter_t converter[1]; | |||
1809 | cairo_fill_rule_t fill_rule; | |||
1810 | cairo_antialias_t antialias; | |||
1811 | ||||
1812 | jmp_buf jmp; | |||
1813 | }; | |||
1814 | ||||
1815 | typedef struct _cairo_tor_scan_converter cairo_tor_scan_converter_t; | |||
1816 | ||||
1817 | static void | |||
1818 | _cairo_tor_scan_converter_destroy (void *converter) | |||
1819 | { | |||
1820 | cairo_tor_scan_converter_t *self = converter; | |||
1821 | if (self == NULL((void*)0)) { | |||
1822 | return; | |||
1823 | } | |||
1824 | _glitter_scan_converter_fini (self->converter); | |||
1825 | free(self); | |||
1826 | } | |||
1827 | ||||
1828 | cairo_status_t | |||
1829 | _cairo_tor_scan_converter_add_polygon (void *converter, | |||
1830 | const cairo_polygon_t *polygon) | |||
1831 | { | |||
1832 | cairo_tor_scan_converter_t *self = converter; | |||
1833 | int i; | |||
1834 | ||||
1835 | #if 0 | |||
1836 | FILE *file = fopen ("polygon.txt", "w"); | |||
1837 | _cairo_debug_print_polygon (file, polygon); | |||
1838 | fclose (file); | |||
1839 | #endif | |||
1840 | ||||
1841 | for (i = 0; i < polygon->num_edges; i++) | |||
1842 | glitter_scan_converter_add_edge (self->converter, &polygon->edges[i]); | |||
1843 | ||||
1844 | return CAIRO_STATUS_SUCCESS; | |||
1845 | } | |||
1846 | ||||
1847 | static cairo_status_t | |||
1848 | _cairo_tor_scan_converter_generate (void *converter, | |||
1849 | cairo_span_renderer_t *renderer) | |||
1850 | { | |||
1851 | cairo_tor_scan_converter_t *self = converter; | |||
1852 | cairo_status_t status; | |||
1853 | ||||
1854 | if ((status = setjmp (self->jmp)_setjmp (self->jmp))) | |||
| ||||
1855 | return _cairo_scan_converter_set_error (self, _cairo_error (status)); | |||
1856 | ||||
1857 | glitter_scan_converter_render (self->converter, | |||
1858 | self->fill_rule == CAIRO_FILL_RULE_WINDING ? ~0 : 1, | |||
1859 | self->antialias != CAIRO_ANTIALIAS_NONE, | |||
1860 | renderer); | |||
1861 | return CAIRO_STATUS_SUCCESS; | |||
1862 | } | |||
1863 | ||||
1864 | cairo_scan_converter_t * | |||
1865 | _cairo_tor_scan_converter_create (int xmin, | |||
1866 | int ymin, | |||
1867 | int xmax, | |||
1868 | int ymax, | |||
1869 | cairo_fill_rule_t fill_rule, | |||
1870 | cairo_antialias_t antialias) | |||
1871 | { | |||
1872 | cairo_tor_scan_converter_t *self; | |||
1873 | cairo_status_t status; | |||
1874 | ||||
1875 | self = _cairo_malloc (sizeof(struct _cairo_tor_scan_converter))((sizeof(struct _cairo_tor_scan_converter)) != 0 ? malloc(sizeof (struct _cairo_tor_scan_converter)) : ((void*)0)); | |||
1876 | if (unlikely (self == NULL)(__builtin_expect (!!(self == ((void*)0)), 0))) { | |||
1877 | status = _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
1878 | goto bail_nomem; | |||
1879 | } | |||
1880 | ||||
1881 | self->base.destroy = _cairo_tor_scan_converter_destroy; | |||
1882 | self->base.generate = _cairo_tor_scan_converter_generate; | |||
1883 | ||||
1884 | _glitter_scan_converter_init (self->converter, &self->jmp); | |||
1885 | status = glitter_scan_converter_reset (self->converter, | |||
1886 | xmin, ymin, xmax, ymax); | |||
1887 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1888 | goto bail; | |||
1889 | ||||
1890 | self->fill_rule = fill_rule; | |||
1891 | self->antialias = antialias; | |||
1892 | ||||
1893 | return &self->base; | |||
1894 | ||||
1895 | bail: | |||
1896 | self->base.destroy(&self->base); | |||
1897 | bail_nomem: | |||
1898 | return _cairo_scan_converter_create_in_error (status); | |||
1899 | } |