| File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-reduce.c |
| Warning: | line 955, column 1 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * Copyright © 2004 Carl Worth | |||
| 3 | * Copyright © 2006 Red Hat, Inc. | |||
| 4 | * Copyright © 2008 Chris Wilson | |||
| 5 | * | |||
| 6 | * This library is free software; you can redistribute it and/or | |||
| 7 | * modify it either under the terms of the GNU Lesser General Public | |||
| 8 | * License version 2.1 as published by the Free Software Foundation | |||
| 9 | * (the "LGPL") or, at your option, under the terms of the Mozilla | |||
| 10 | * Public License Version 1.1 (the "MPL"). If you do not alter this | |||
| 11 | * notice, a recipient may use your version of this file under either | |||
| 12 | * the MPL or the LGPL. | |||
| 13 | * | |||
| 14 | * You should have received a copy of the LGPL along with this library | |||
| 15 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software | |||
| 16 | * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA | |||
| 17 | * You should have received a copy of the MPL along with this library | |||
| 18 | * in the file COPYING-MPL-1.1 | |||
| 19 | * | |||
| 20 | * The contents of this file are subject to the Mozilla Public License | |||
| 21 | * Version 1.1 (the "License"); you may not use this file except in | |||
| 22 | * compliance with the License. You may obtain a copy of the License at | |||
| 23 | * http://www.mozilla.org/MPL/ | |||
| 24 | * | |||
| 25 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | |||
| 26 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for | |||
| 27 | * the specific language governing rights and limitations. | |||
| 28 | * | |||
| 29 | * The Original Code is the cairo graphics library. | |||
| 30 | * | |||
| 31 | * The Initial Developer of the Original Code is Carl Worth | |||
| 32 | * | |||
| 33 | * Contributor(s): | |||
| 34 | * Carl D. Worth <cworth@cworth.org> | |||
| 35 | * Chris Wilson <chris@chris-wilson.co.uk> | |||
| 36 | */ | |||
| 37 | ||||
| 38 | /* Provide definitions for standalone compilation */ | |||
| 39 | #include "cairoint.h" | |||
| 40 | ||||
| 41 | #include "cairo-error-private.h" | |||
| 42 | #include "cairo-freelist-private.h" | |||
| 43 | #include "cairo-combsort-inline.h" | |||
| 44 | ||||
| 45 | #define DEBUG_POLYGON0 0 | |||
| 46 | ||||
| 47 | typedef cairo_point_t cairo_bo_point32_t; | |||
| 48 | ||||
| 49 | typedef struct _cairo_bo_intersect_ordinate { | |||
| 50 | int32_t ordinate; | |||
| 51 | enum { EXACT, INEXACT } exactness; | |||
| 52 | } cairo_bo_intersect_ordinate_t; | |||
| 53 | ||||
| 54 | typedef struct _cairo_bo_intersect_point { | |||
| 55 | cairo_bo_intersect_ordinate_t x; | |||
| 56 | cairo_bo_intersect_ordinate_t y; | |||
| 57 | } cairo_bo_intersect_point_t; | |||
| 58 | ||||
| 59 | typedef struct _cairo_bo_edge cairo_bo_edge_t; | |||
| 60 | ||||
| 61 | typedef struct _cairo_bo_deferred { | |||
| 62 | cairo_bo_edge_t *right; | |||
| 63 | int32_t top; | |||
| 64 | } cairo_bo_deferred_t; | |||
| 65 | ||||
| 66 | struct _cairo_bo_edge { | |||
| 67 | cairo_edge_t edge; | |||
| 68 | cairo_bo_edge_t *prev; | |||
| 69 | cairo_bo_edge_t *next; | |||
| 70 | cairo_bo_deferred_t deferred; | |||
| 71 | }; | |||
| 72 | ||||
| 73 | /* the parent is always given by index/2 */ | |||
| 74 | #define PQ_PARENT_INDEX(i)((i) >> 1) ((i) >> 1) | |||
| 75 | #define PQ_FIRST_ENTRY1 1 | |||
| 76 | ||||
| 77 | /* left and right children are index * 2 and (index * 2) +1 respectively */ | |||
| 78 | #define PQ_LEFT_CHILD_INDEX(i)((i) << 1) ((i) << 1) | |||
| 79 | ||||
| 80 | typedef enum { | |||
| 81 | CAIRO_BO_EVENT_TYPE_STOP, | |||
| 82 | CAIRO_BO_EVENT_TYPE_INTERSECTION, | |||
| 83 | CAIRO_BO_EVENT_TYPE_START | |||
| 84 | } cairo_bo_event_type_t; | |||
| 85 | ||||
| 86 | typedef struct _cairo_bo_event { | |||
| 87 | cairo_bo_event_type_t type; | |||
| 88 | cairo_point_t point; | |||
| 89 | } cairo_bo_event_t; | |||
| 90 | ||||
| 91 | typedef struct _cairo_bo_start_event { | |||
| 92 | cairo_bo_event_type_t type; | |||
| 93 | cairo_point_t point; | |||
| 94 | cairo_bo_edge_t edge; | |||
| 95 | } cairo_bo_start_event_t; | |||
| 96 | ||||
| 97 | typedef struct _cairo_bo_queue_event { | |||
| 98 | cairo_bo_event_type_t type; | |||
| 99 | cairo_point_t point; | |||
| 100 | cairo_bo_edge_t *e1; | |||
| 101 | cairo_bo_edge_t *e2; | |||
| 102 | } cairo_bo_queue_event_t; | |||
| 103 | ||||
| 104 | typedef struct _pqueue { | |||
| 105 | int size, max_size; | |||
| 106 | ||||
| 107 | cairo_bo_event_t **elements; | |||
| 108 | cairo_bo_event_t *elements_embedded[1024]; | |||
| 109 | } pqueue_t; | |||
| 110 | ||||
| 111 | typedef struct _cairo_bo_event_queue { | |||
| 112 | cairo_freepool_t pool; | |||
| 113 | pqueue_t pqueue; | |||
| 114 | cairo_bo_event_t **start_events; | |||
| 115 | } cairo_bo_event_queue_t; | |||
| 116 | ||||
| 117 | typedef struct _cairo_bo_sweep_line { | |||
| 118 | cairo_bo_edge_t *head; | |||
| 119 | int32_t current_y; | |||
| 120 | cairo_bo_edge_t *current_edge; | |||
| 121 | } cairo_bo_sweep_line_t; | |||
| 122 | ||||
| 123 | static cairo_fixed_t | |||
| 124 | _line_compute_intersection_x_for_y (const cairo_line_t *line, | |||
| 125 | cairo_fixed_t y) | |||
| 126 | { | |||
| 127 | cairo_fixed_t x, dy; | |||
| 128 | ||||
| 129 | if (y == line->p1.y) | |||
| 130 | return line->p1.x; | |||
| 131 | if (y == line->p2.y) | |||
| 132 | return line->p2.x; | |||
| 133 | ||||
| 134 | x = line->p1.x; | |||
| 135 | dy = line->p2.y - line->p1.y; | |||
| 136 | if (dy != 0) { | |||
| 137 | x += _cairo_fixed_mul_div_floor (y - line->p1.y, | |||
| 138 | line->p2.x - line->p1.x, | |||
| 139 | dy); | |||
| 140 | } | |||
| 141 | ||||
| 142 | return x; | |||
| 143 | } | |||
| 144 | ||||
| 145 | static inline int | |||
| 146 | _cairo_bo_point32_compare (cairo_bo_point32_t const *a, | |||
| 147 | cairo_bo_point32_t const *b) | |||
| 148 | { | |||
| 149 | int cmp; | |||
| 150 | ||||
| 151 | cmp = a->y - b->y; | |||
| 152 | if (cmp) | |||
| 153 | return cmp; | |||
| 154 | ||||
| 155 | return a->x - b->x; | |||
| 156 | } | |||
| 157 | ||||
| 158 | /* Compare the slope of a to the slope of b, returning 1, 0, -1 if the | |||
| 159 | * slope a is respectively greater than, equal to, or less than the | |||
| 160 | * slope of b. | |||
| 161 | * | |||
| 162 | * For each edge, consider the direction vector formed from: | |||
| 163 | * | |||
| 164 | * top -> bottom | |||
| 165 | * | |||
| 166 | * which is: | |||
| 167 | * | |||
| 168 | * (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y) | |||
| 169 | * | |||
| 170 | * We then define the slope of each edge as dx/dy, (which is the | |||
| 171 | * inverse of the slope typically used in math instruction). We never | |||
| 172 | * compute a slope directly as the value approaches infinity, but we | |||
| 173 | * can derive a slope comparison without division as follows, (where | |||
| 174 | * the ? represents our compare operator). | |||
| 175 | * | |||
| 176 | * 1. slope(a) ? slope(b) | |||
| 177 | * 2. adx/ady ? bdx/bdy | |||
| 178 | * 3. (adx * bdy) ? (bdx * ady) | |||
| 179 | * | |||
| 180 | * Note that from step 2 to step 3 there is no change needed in the | |||
| 181 | * sign of the result since both ady and bdy are guaranteed to be | |||
| 182 | * greater than or equal to 0. | |||
| 183 | * | |||
| 184 | * When using this slope comparison to sort edges, some care is needed | |||
| 185 | * when interpreting the results. Since the slope compare operates on | |||
| 186 | * distance vectors from top to bottom it gives a correct left to | |||
| 187 | * right sort for edges that have a common top point, (such as two | |||
| 188 | * edges with start events at the same location). On the other hand, | |||
| 189 | * the sense of the result will be exactly reversed for two edges that | |||
| 190 | * have a common stop point. | |||
| 191 | */ | |||
| 192 | static inline int | |||
| 193 | _slope_compare (const cairo_bo_edge_t *a, | |||
| 194 | const cairo_bo_edge_t *b) | |||
| 195 | { | |||
| 196 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
| 197 | * bits. That's not true in general as there could be overflow. We | |||
| 198 | * should prevent that before the tessellation algorithm | |||
| 199 | * begins. | |||
| 200 | */ | |||
| 201 | int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
| 202 | int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x; | |||
| 203 | ||||
| 204 | /* Since the dy's are all positive by construction we can fast | |||
| 205 | * path several common cases. | |||
| 206 | */ | |||
| 207 | ||||
| 208 | /* First check for vertical lines. */ | |||
| 209 | if (adx == 0) | |||
| 210 | return -bdx; | |||
| 211 | if (bdx == 0) | |||
| 212 | return adx; | |||
| 213 | ||||
| 214 | /* Then where the two edges point in different directions wrt x. */ | |||
| 215 | if ((adx ^ bdx) < 0) | |||
| 216 | return adx; | |||
| 217 | ||||
| 218 | /* Finally we actually need to do the general comparison. */ | |||
| 219 | { | |||
| 220 | int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
| 221 | int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y; | |||
| 222 | cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy)((int64_t) (adx) * (bdy)); | |||
| 223 | cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady)((int64_t) (bdx) * (ady)); | |||
| 224 | ||||
| 225 | return _cairo_int64_cmp (adx_bdy, bdx_ady)((adx_bdy) == (bdx_ady) ? 0 : (adx_bdy) < (bdx_ady) ? -1 : 1); | |||
| 226 | } | |||
| 227 | } | |||
| 228 | ||||
| 229 | /* | |||
| 230 | * We need to compare the x-coordinates of a pair of lines for a particular y, | |||
| 231 | * without loss of precision. | |||
| 232 | * | |||
| 233 | * The x-coordinate along an edge for a given y is: | |||
| 234 | * X = A_x + (Y - A_y) * A_dx / A_dy | |||
| 235 | * | |||
| 236 | * So the inequality we wish to test is: | |||
| 237 | * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy, | |||
| 238 | * where ∘ is our inequality operator. | |||
| 239 | * | |||
| 240 | * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are | |||
| 241 | * all positive, so we can rearrange it thus without causing a sign change: | |||
| 242 | * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy | |||
| 243 | * - (Y - A_y) * A_dx * B_dy | |||
| 244 | * | |||
| 245 | * Given the assumption that all the deltas fit within 32 bits, we can compute | |||
| 246 | * this comparison directly using 128 bit arithmetic. For certain, but common, | |||
| 247 | * input we can reduce this down to a single 32 bit compare by inspecting the | |||
| 248 | * deltas. | |||
| 249 | * | |||
| 250 | * (And put the burden of the work on developing fast 128 bit ops, which are | |||
| 251 | * required throughout the tessellator.) | |||
| 252 | * | |||
| 253 | * See the similar discussion for _slope_compare(). | |||
| 254 | */ | |||
| 255 | static int | |||
| 256 | edges_compare_x_for_y_general (const cairo_bo_edge_t *a, | |||
| 257 | const cairo_bo_edge_t *b, | |||
| 258 | int32_t y) | |||
| 259 | { | |||
| 260 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
| 261 | * bits. That's not true in general as there could be overflow. We | |||
| 262 | * should prevent that before the tessellation algorithm | |||
| 263 | * begins. | |||
| 264 | */ | |||
| 265 | int32_t dx; | |||
| 266 | int32_t adx, ady; | |||
| 267 | int32_t bdx, bdy; | |||
| 268 | enum { | |||
| 269 | HAVE_NONE = 0x0, | |||
| 270 | HAVE_DX = 0x1, | |||
| 271 | HAVE_ADX = 0x2, | |||
| 272 | HAVE_DX_ADX = HAVE_DX | HAVE_ADX, | |||
| 273 | HAVE_BDX = 0x4, | |||
| 274 | HAVE_DX_BDX = HAVE_DX | HAVE_BDX, | |||
| 275 | HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX, | |||
| 276 | HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX | |||
| 277 | } have_dx_adx_bdx = HAVE_ALL; | |||
| 278 | ||||
| 279 | /* don't bother solving for abscissa if the edges' bounding boxes | |||
| 280 | * can be used to order them. */ | |||
| 281 | { | |||
| 282 | int32_t amin, amax; | |||
| 283 | int32_t bmin, bmax; | |||
| 284 | if (a->edge.line.p1.x < a->edge.line.p2.x) { | |||
| 285 | amin = a->edge.line.p1.x; | |||
| 286 | amax = a->edge.line.p2.x; | |||
| 287 | } else { | |||
| 288 | amin = a->edge.line.p2.x; | |||
| 289 | amax = a->edge.line.p1.x; | |||
| 290 | } | |||
| 291 | if (b->edge.line.p1.x < b->edge.line.p2.x) { | |||
| 292 | bmin = b->edge.line.p1.x; | |||
| 293 | bmax = b->edge.line.p2.x; | |||
| 294 | } else { | |||
| 295 | bmin = b->edge.line.p2.x; | |||
| 296 | bmax = b->edge.line.p1.x; | |||
| 297 | } | |||
| 298 | if (amax < bmin) return -1; | |||
| 299 | if (amin > bmax) return +1; | |||
| 300 | } | |||
| 301 | ||||
| 302 | ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
| 303 | adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
| 304 | if (adx == 0) | |||
| 305 | have_dx_adx_bdx &= ~HAVE_ADX; | |||
| 306 | ||||
| 307 | bdy = b->edge.line.p2.y - b->edge.line.p1.y; | |||
| 308 | bdx = b->edge.line.p2.x - b->edge.line.p1.x; | |||
| 309 | if (bdx == 0) | |||
| 310 | have_dx_adx_bdx &= ~HAVE_BDX; | |||
| 311 | ||||
| 312 | dx = a->edge.line.p1.x - b->edge.line.p1.x; | |||
| 313 | if (dx == 0) | |||
| 314 | have_dx_adx_bdx &= ~HAVE_DX; | |||
| 315 | ||||
| 316 | #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)_cairo_int64x64_128_mul(((int64_t) (ady) * (bdy)), ((int64_t) (dx))) | |||
| 317 | #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)_cairo_int64x64_128_mul(((int64_t) (adx) * (bdy)), ((int64_t) (y - a->edge.line.p1.y))) | |||
| 318 | #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)_cairo_int64x64_128_mul(((int64_t) (bdx) * (ady)), ((int64_t) (y - b->edge.line.p1.y))) | |||
| 319 | switch (have_dx_adx_bdx) { | |||
| 320 | default: | |||
| 321 | case HAVE_NONE: | |||
| 322 | return 0; | |||
| 323 | case HAVE_DX: | |||
| 324 | /* A_dy * B_dy * (A_x - B_x) ∘ 0 */ | |||
| 325 | return dx; /* ady * bdy is positive definite */ | |||
| 326 | case HAVE_ADX: | |||
| 327 | /* 0 ∘ - (Y - A_y) * A_dx * B_dy */ | |||
| 328 | return adx; /* bdy * (y - a->top.y) is positive definite */ | |||
| 329 | case HAVE_BDX: | |||
| 330 | /* 0 ∘ (Y - B_y) * B_dx * A_dy */ | |||
| 331 | return -bdx; /* ady * (y - b->top.y) is positive definite */ | |||
| 332 | case HAVE_ADX_BDX: | |||
| 333 | /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */ | |||
| 334 | if ((adx ^ bdx) < 0) { | |||
| 335 | return adx; | |||
| 336 | } else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */ | |||
| 337 | cairo_int64_t adx_bdy, bdx_ady; | |||
| 338 | ||||
| 339 | /* ∴ A_dx * B_dy ∘ B_dx * A_dy */ | |||
| 340 | ||||
| 341 | adx_bdy = _cairo_int32x32_64_mul (adx, bdy)((int64_t) (adx) * (bdy)); | |||
| 342 | bdx_ady = _cairo_int32x32_64_mul (bdx, ady)((int64_t) (bdx) * (ady)); | |||
| 343 | ||||
| 344 | return _cairo_int64_cmp (adx_bdy, bdx_ady)((adx_bdy) == (bdx_ady) ? 0 : (adx_bdy) < (bdx_ady) ? -1 : 1); | |||
| 345 | } else | |||
| 346 | return _cairo_int128_cmp (A, B); | |||
| 347 | case HAVE_DX_ADX: | |||
| 348 | /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */ | |||
| 349 | if ((-adx ^ dx) < 0) { | |||
| 350 | return dx; | |||
| 351 | } else { | |||
| 352 | cairo_int64_t ady_dx, dy_adx; | |||
| 353 | ||||
| 354 | ady_dx = _cairo_int32x32_64_mul (ady, dx)((int64_t) (ady) * (dx)); | |||
| 355 | dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx)((int64_t) (a->edge.line.p1.y - y) * (adx)); | |||
| 356 | ||||
| 357 | return _cairo_int64_cmp (ady_dx, dy_adx)((ady_dx) == (dy_adx) ? 0 : (ady_dx) < (dy_adx) ? -1 : 1); | |||
| 358 | } | |||
| 359 | case HAVE_DX_BDX: | |||
| 360 | /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */ | |||
| 361 | if ((bdx ^ dx) < 0) { | |||
| 362 | return dx; | |||
| 363 | } else { | |||
| 364 | cairo_int64_t bdy_dx, dy_bdx; | |||
| 365 | ||||
| 366 | bdy_dx = _cairo_int32x32_64_mul (bdy, dx)((int64_t) (bdy) * (dx)); | |||
| 367 | dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx)((int64_t) (y - b->edge.line.p1.y) * (bdx)); | |||
| 368 | ||||
| 369 | return _cairo_int64_cmp (bdy_dx, dy_bdx)((bdy_dx) == (dy_bdx) ? 0 : (bdy_dx) < (dy_bdx) ? -1 : 1); | |||
| 370 | } | |||
| 371 | case HAVE_ALL: | |||
| 372 | /* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */ | |||
| 373 | return _cairo_int128_cmp (L, _cairo_int128_sub (B, A)_cairo_uint128_sub(B,A)); | |||
| 374 | } | |||
| 375 | #undef B | |||
| 376 | #undef A | |||
| 377 | #undef L | |||
| 378 | } | |||
| 379 | ||||
| 380 | /* | |||
| 381 | * We need to compare the x-coordinate of a line for a particular y wrt to a | |||
| 382 | * given x, without loss of precision. | |||
| 383 | * | |||
| 384 | * The x-coordinate along an edge for a given y is: | |||
| 385 | * X = A_x + (Y - A_y) * A_dx / A_dy | |||
| 386 | * | |||
| 387 | * So the inequality we wish to test is: | |||
| 388 | * A_x + (Y - A_y) * A_dx / A_dy ∘ X | |||
| 389 | * where ∘ is our inequality operator. | |||
| 390 | * | |||
| 391 | * By construction, we know that A_dy (and (Y - A_y)) are | |||
| 392 | * all positive, so we can rearrange it thus without causing a sign change: | |||
| 393 | * (Y - A_y) * A_dx ∘ (X - A_x) * A_dy | |||
| 394 | * | |||
| 395 | * Given the assumption that all the deltas fit within 32 bits, we can compute | |||
| 396 | * this comparison directly using 64 bit arithmetic. | |||
| 397 | * | |||
| 398 | * See the similar discussion for _slope_compare() and | |||
| 399 | * edges_compare_x_for_y_general(). | |||
| 400 | */ | |||
| 401 | static int | |||
| 402 | edge_compare_for_y_against_x (const cairo_bo_edge_t *a, | |||
| 403 | int32_t y, | |||
| 404 | int32_t x) | |||
| 405 | { | |||
| 406 | int32_t adx, ady; | |||
| 407 | int32_t dx, dy; | |||
| 408 | cairo_int64_t L, R; | |||
| 409 | ||||
| 410 | if (x < a->edge.line.p1.x && x < a->edge.line.p2.x) | |||
| 411 | return 1; | |||
| 412 | if (x > a->edge.line.p1.x && x > a->edge.line.p2.x) | |||
| 413 | return -1; | |||
| 414 | ||||
| 415 | adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
| 416 | dx = x - a->edge.line.p1.x; | |||
| 417 | ||||
| 418 | if (adx == 0) | |||
| 419 | return -dx; | |||
| 420 | if (dx == 0 || (adx ^ dx) < 0) | |||
| 421 | return adx; | |||
| 422 | ||||
| 423 | dy = y - a->edge.line.p1.y; | |||
| 424 | ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
| 425 | ||||
| 426 | L = _cairo_int32x32_64_mul (dy, adx)((int64_t) (dy) * (adx)); | |||
| 427 | R = _cairo_int32x32_64_mul (dx, ady)((int64_t) (dx) * (ady)); | |||
| 428 | ||||
| 429 | return _cairo_int64_cmp (L, R)((L) == (R) ? 0 : (L) < (R) ? -1 : 1); | |||
| 430 | } | |||
| 431 | ||||
| 432 | static int | |||
| 433 | edges_compare_x_for_y (const cairo_bo_edge_t *a, | |||
| 434 | const cairo_bo_edge_t *b, | |||
| 435 | int32_t y) | |||
| 436 | { | |||
| 437 | /* If the sweep-line is currently on an end-point of a line, | |||
| 438 | * then we know its precise x value (and considering that we often need to | |||
| 439 | * compare events at end-points, this happens frequently enough to warrant | |||
| 440 | * special casing). | |||
| 441 | */ | |||
| 442 | enum { | |||
| 443 | HAVE_NEITHER = 0x0, | |||
| 444 | HAVE_AX = 0x1, | |||
| 445 | HAVE_BX = 0x2, | |||
| 446 | HAVE_BOTH = HAVE_AX | HAVE_BX | |||
| 447 | } have_ax_bx = HAVE_BOTH; | |||
| 448 | int32_t ax = 0, bx = 0; | |||
| 449 | ||||
| 450 | if (y == a->edge.line.p1.y) | |||
| 451 | ax = a->edge.line.p1.x; | |||
| 452 | else if (y == a->edge.line.p2.y) | |||
| 453 | ax = a->edge.line.p2.x; | |||
| 454 | else | |||
| 455 | have_ax_bx &= ~HAVE_AX; | |||
| 456 | ||||
| 457 | if (y == b->edge.line.p1.y) | |||
| 458 | bx = b->edge.line.p1.x; | |||
| 459 | else if (y == b->edge.line.p2.y) | |||
| 460 | bx = b->edge.line.p2.x; | |||
| 461 | else | |||
| 462 | have_ax_bx &= ~HAVE_BX; | |||
| 463 | ||||
| 464 | switch (have_ax_bx) { | |||
| 465 | default: | |||
| 466 | case HAVE_NEITHER: | |||
| 467 | return edges_compare_x_for_y_general (a, b, y); | |||
| 468 | case HAVE_AX: | |||
| 469 | return -edge_compare_for_y_against_x (b, y, ax); | |||
| 470 | case HAVE_BX: | |||
| 471 | return edge_compare_for_y_against_x (a, y, bx); | |||
| 472 | case HAVE_BOTH: | |||
| 473 | return ax - bx; | |||
| 474 | } | |||
| 475 | } | |||
| 476 | ||||
| 477 | static inline int | |||
| 478 | _line_equal (const cairo_line_t *a, const cairo_line_t *b) | |||
| 479 | { | |||
| 480 | return (a->p1.x == b->p1.x && a->p1.y == b->p1.y && | |||
| 481 | a->p2.x == b->p2.x && a->p2.y == b->p2.y); | |||
| 482 | } | |||
| 483 | ||||
| 484 | static int | |||
| 485 | _cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line, | |||
| 486 | const cairo_bo_edge_t *a, | |||
| 487 | const cairo_bo_edge_t *b) | |||
| 488 | { | |||
| 489 | int cmp; | |||
| 490 | ||||
| 491 | /* compare the edges if not identical */ | |||
| 492 | if (! _line_equal (&a->edge.line, &b->edge.line)) { | |||
| 493 | cmp = edges_compare_x_for_y (a, b, sweep_line->current_y); | |||
| 494 | if (cmp) | |||
| 495 | return cmp; | |||
| 496 | ||||
| 497 | /* The two edges intersect exactly at y, so fall back on slope | |||
| 498 | * comparison. We know that this compare_edges function will be | |||
| 499 | * called only when starting a new edge, (not when stopping an | |||
| 500 | * edge), so we don't have to worry about conditionally inverting | |||
| 501 | * the sense of _slope_compare. */ | |||
| 502 | cmp = _slope_compare (a, b); | |||
| 503 | if (cmp) | |||
| 504 | return cmp; | |||
| 505 | } | |||
| 506 | ||||
| 507 | /* We've got two collinear edges now. */ | |||
| 508 | return b->edge.bottom - a->edge.bottom; | |||
| 509 | } | |||
| 510 | ||||
| 511 | static inline cairo_int64_t | |||
| 512 | det32_64 (int32_t a, int32_t b, | |||
| 513 | int32_t c, int32_t d) | |||
| 514 | { | |||
| 515 | /* det = a * d - b * c */ | |||
| 516 | return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),((((int64_t) (a) * (d))) - (((int64_t) (b) * (c)))) | |||
| 517 | _cairo_int32x32_64_mul (b, c))((((int64_t) (a) * (d))) - (((int64_t) (b) * (c)))); | |||
| 518 | } | |||
| 519 | ||||
| 520 | static inline cairo_int128_t | |||
| 521 | det64x32_128 (cairo_int64_t a, int32_t b, | |||
| 522 | cairo_int64_t c, int32_t d) | |||
| 523 | { | |||
| 524 | /* det = a * d - b * c */ | |||
| 525 | return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),_cairo_uint128_sub(_cairo_int64x64_128_mul(a, ((int64_t) (d)) ),_cairo_int64x64_128_mul(c, ((int64_t) (b)))) | |||
| 526 | _cairo_int64x32_128_mul (c, b))_cairo_uint128_sub(_cairo_int64x64_128_mul(a, ((int64_t) (d)) ),_cairo_int64x64_128_mul(c, ((int64_t) (b)))); | |||
| 527 | } | |||
| 528 | ||||
| 529 | /* Compute the intersection of two lines as defined by two edges. The | |||
| 530 | * result is provided as a coordinate pair of 128-bit integers. | |||
| 531 | * | |||
| 532 | * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or | |||
| 533 | * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel. | |||
| 534 | */ | |||
| 535 | static cairo_bool_t | |||
| 536 | intersect_lines (cairo_bo_edge_t *a, | |||
| 537 | cairo_bo_edge_t *b, | |||
| 538 | cairo_bo_intersect_point_t *intersection) | |||
| 539 | { | |||
| 540 | cairo_int64_t a_det, b_det; | |||
| 541 | ||||
| 542 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
| 543 | * bits. That's not true in general as there could be overflow. We | |||
| 544 | * should prevent that before the tessellation algorithm begins. | |||
| 545 | * What we're doing to mitigate this is to perform clamping in | |||
| 546 | * cairo_bo_tessellate_polygon(). | |||
| 547 | */ | |||
| 548 | int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x; | |||
| 549 | int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y; | |||
| 550 | ||||
| 551 | int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x; | |||
| 552 | int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y; | |||
| 553 | ||||
| 554 | cairo_int64_t den_det; | |||
| 555 | cairo_int64_t R; | |||
| 556 | cairo_quorem64_t qr; | |||
| 557 | ||||
| 558 | den_det = det32_64 (dx1, dy1, dx2, dy2); | |||
| 559 | ||||
| 560 | /* Q: Can we determine that the lines do not intersect (within range) | |||
| 561 | * much more cheaply than computing the intersection point i.e. by | |||
| 562 | * avoiding the division? | |||
| 563 | * | |||
| 564 | * X = ax + t * adx = bx + s * bdx; | |||
| 565 | * Y = ay + t * ady = by + s * bdy; | |||
| 566 | * ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx) | |||
| 567 | * => t * L = R | |||
| 568 | * | |||
| 569 | * Therefore we can reject any intersection (under the criteria for | |||
| 570 | * valid intersection events) if: | |||
| 571 | * L^R < 0 => t < 0, or | |||
| 572 | * L<R => t > 1 | |||
| 573 | * | |||
| 574 | * (where top/bottom must at least extend to the line endpoints). | |||
| 575 | * | |||
| 576 | * A similar substitution can be performed for s, yielding: | |||
| 577 | * s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by) | |||
| 578 | */ | |||
| 579 | R = det32_64 (dx2, dy2, | |||
| 580 | b->edge.line.p1.x - a->edge.line.p1.x, | |||
| 581 | b->edge.line.p1.y - a->edge.line.p1.y); | |||
| 582 | if (_cairo_int64_negative (den_det)((den_det) < 0)) { | |||
| 583 | if (_cairo_int64_ge (den_det, R)(!((den_det) < (R)))) | |||
| 584 | return FALSE0; | |||
| 585 | } else { | |||
| 586 | if (_cairo_int64_le (den_det, R)(!((R) < (den_det)))) | |||
| 587 | return FALSE0; | |||
| 588 | } | |||
| 589 | ||||
| 590 | R = det32_64 (dy1, dx1, | |||
| 591 | a->edge.line.p1.y - b->edge.line.p1.y, | |||
| 592 | a->edge.line.p1.x - b->edge.line.p1.x); | |||
| 593 | if (_cairo_int64_negative (den_det)((den_det) < 0)) { | |||
| 594 | if (_cairo_int64_ge (den_det, R)(!((den_det) < (R)))) | |||
| 595 | return FALSE0; | |||
| 596 | } else { | |||
| 597 | if (_cairo_int64_le (den_det, R)(!((R) < (den_det)))) | |||
| 598 | return FALSE0; | |||
| 599 | } | |||
| 600 | ||||
| 601 | /* We now know that the two lines should intersect within range. */ | |||
| 602 | ||||
| 603 | a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y, | |||
| 604 | a->edge.line.p2.x, a->edge.line.p2.y); | |||
| 605 | b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y, | |||
| 606 | b->edge.line.p2.x, b->edge.line.p2.y); | |||
| 607 | ||||
| 608 | /* x = det (a_det, dx1, b_det, dx2) / den_det */ | |||
| 609 | qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1, | |||
| 610 | b_det, dx2), | |||
| 611 | den_det); | |||
| 612 | if (_cairo_int64_eq (qr.rem, den_det)((qr.rem) == (den_det))) | |||
| 613 | return FALSE0; | |||
| 614 | #if 0 | |||
| 615 | intersection->x.exactness = _cairo_int64_is_zero (qr.rem)((qr.rem) == 0) ? EXACT : INEXACT; | |||
| 616 | #else | |||
| 617 | intersection->x.exactness = EXACT; | |||
| 618 | if (! _cairo_int64_is_zero (qr.rem)((qr.rem) == 0)) { | |||
| 619 | if (_cairo_int64_negative (den_det)((den_det) < 0) ^ _cairo_int64_negative (qr.rem)((qr.rem) < 0)) | |||
| 620 | qr.rem = _cairo_int64_negate (qr.rem)(-(qr.rem)); | |||
| 621 | qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2))((qr.rem) * (((int64_t) (2)))); | |||
| 622 | if (_cairo_int64_ge (qr.rem, den_det)(!((qr.rem) < (den_det)))) { | |||
| 623 | qr.quo = _cairo_int64_add (qr.quo,((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))) | |||
| 624 | _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1))((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))); | |||
| 625 | } else | |||
| 626 | intersection->x.exactness = INEXACT; | |||
| 627 | } | |||
| 628 | #endif | |||
| 629 | intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo)((int32_t) (qr.quo)); | |||
| 630 | ||||
| 631 | /* y = det (a_det, dy1, b_det, dy2) / den_det */ | |||
| 632 | qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1, | |||
| 633 | b_det, dy2), | |||
| 634 | den_det); | |||
| 635 | if (_cairo_int64_eq (qr.rem, den_det)((qr.rem) == (den_det))) | |||
| 636 | return FALSE0; | |||
| 637 | #if 0 | |||
| 638 | intersection->y.exactness = _cairo_int64_is_zero (qr.rem)((qr.rem) == 0) ? EXACT : INEXACT; | |||
| 639 | #else | |||
| 640 | intersection->y.exactness = EXACT; | |||
| 641 | if (! _cairo_int64_is_zero (qr.rem)((qr.rem) == 0)) { | |||
| 642 | if (_cairo_int64_negative (den_det)((den_det) < 0) ^ _cairo_int64_negative (qr.rem)((qr.rem) < 0)) | |||
| 643 | qr.rem = _cairo_int64_negate (qr.rem)(-(qr.rem)); | |||
| 644 | qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2))((qr.rem) * (((int64_t) (2)))); | |||
| 645 | if (_cairo_int64_ge (qr.rem, den_det)(!((qr.rem) < (den_det)))) { | |||
| 646 | qr.quo = _cairo_int64_add (qr.quo,((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))) | |||
| 647 | _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1))((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))); | |||
| 648 | } else | |||
| 649 | intersection->y.exactness = INEXACT; | |||
| 650 | } | |||
| 651 | #endif | |||
| 652 | intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo)((int32_t) (qr.quo)); | |||
| 653 | ||||
| 654 | return TRUE1; | |||
| 655 | } | |||
| 656 | ||||
| 657 | static int | |||
| 658 | _cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t a, | |||
| 659 | int32_t b) | |||
| 660 | { | |||
| 661 | /* First compare the quotient */ | |||
| 662 | if (a.ordinate > b) | |||
| 663 | return +1; | |||
| 664 | if (a.ordinate < b) | |||
| 665 | return -1; | |||
| 666 | /* With quotient identical, if remainder is 0 then compare equal */ | |||
| 667 | /* Otherwise, the non-zero remainder makes a > b */ | |||
| 668 | return INEXACT == a.exactness; | |||
| 669 | } | |||
| 670 | ||||
| 671 | /* Does the given edge contain the given point. The point must already | |||
| 672 | * be known to be contained within the line determined by the edge, | |||
| 673 | * (most likely the point results from an intersection of this edge | |||
| 674 | * with another). | |||
| 675 | * | |||
| 676 | * If we had exact arithmetic, then this function would simply be a | |||
| 677 | * matter of examining whether the y value of the point lies within | |||
| 678 | * the range of y values of the edge. But since intersection points | |||
| 679 | * are not exact due to being rounded to the nearest integer within | |||
| 680 | * the available precision, we must also examine the x value of the | |||
| 681 | * point. | |||
| 682 | * | |||
| 683 | * The definition of "contains" here is that the given intersection | |||
| 684 | * point will be seen by the sweep line after the start event for the | |||
| 685 | * given edge and before the stop event for the edge. See the comments | |||
| 686 | * in the implementation for more details. | |||
| 687 | */ | |||
| 688 | static cairo_bool_t | |||
| 689 | _cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t *edge, | |||
| 690 | cairo_bo_intersect_point_t *point) | |||
| 691 | { | |||
| 692 | int cmp_top, cmp_bottom; | |||
| 693 | ||||
| 694 | /* XXX: When running the actual algorithm, we don't actually need to | |||
| 695 | * compare against edge->top at all here, since any intersection above | |||
| 696 | * top is eliminated early via a slope comparison. We're leaving these | |||
| 697 | * here for now only for the sake of the quadratic-time intersection | |||
| 698 | * finder which needs them. | |||
| 699 | */ | |||
| 700 | ||||
| 701 | cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y, | |||
| 702 | edge->edge.top); | |||
| 703 | cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y, | |||
| 704 | edge->edge.bottom); | |||
| 705 | ||||
| 706 | if (cmp_top < 0 || cmp_bottom > 0) | |||
| 707 | { | |||
| 708 | return FALSE0; | |||
| 709 | } | |||
| 710 | ||||
| 711 | if (cmp_top > 0 && cmp_bottom < 0) | |||
| 712 | { | |||
| 713 | return TRUE1; | |||
| 714 | } | |||
| 715 | ||||
| 716 | /* At this stage, the point lies on the same y value as either | |||
| 717 | * edge->top or edge->bottom, so we have to examine the x value in | |||
| 718 | * order to properly determine containment. */ | |||
| 719 | ||||
| 720 | /* If the y value of the point is the same as the y value of the | |||
| 721 | * top of the edge, then the x value of the point must be greater | |||
| 722 | * to be considered as inside the edge. Similarly, if the y value | |||
| 723 | * of the point is the same as the y value of the bottom of the | |||
| 724 | * edge, then the x value of the point must be less to be | |||
| 725 | * considered as inside. */ | |||
| 726 | ||||
| 727 | if (cmp_top == 0) { | |||
| 728 | cairo_fixed_t top_x; | |||
| 729 | ||||
| 730 | top_x = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
| 731 | edge->edge.top); | |||
| 732 | return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0; | |||
| 733 | } else { /* cmp_bottom == 0 */ | |||
| 734 | cairo_fixed_t bot_x; | |||
| 735 | ||||
| 736 | bot_x = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
| 737 | edge->edge.bottom); | |||
| 738 | return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0; | |||
| 739 | } | |||
| 740 | } | |||
| 741 | ||||
| 742 | /* Compute the intersection of two edges. The result is provided as a | |||
| 743 | * coordinate pair of 128-bit integers. | |||
| 744 | * | |||
| 745 | * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection | |||
| 746 | * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the | |||
| 747 | * intersection of the lines defined by the edges occurs outside of | |||
| 748 | * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges | |||
| 749 | * are exactly parallel. | |||
| 750 | * | |||
| 751 | * Note that when determining if a candidate intersection is "inside" | |||
| 752 | * an edge, we consider both the infinitesimal shortening and the | |||
| 753 | * infinitesimal tilt rules described by John Hobby. Specifically, if | |||
| 754 | * the intersection is exactly the same as an edge point, it is | |||
| 755 | * effectively outside (no intersection is returned). Also, if the | |||
| 756 | * intersection point has the same | |||
| 757 | */ | |||
| 758 | static cairo_bool_t | |||
| 759 | _cairo_bo_edge_intersect (cairo_bo_edge_t *a, | |||
| 760 | cairo_bo_edge_t *b, | |||
| 761 | cairo_bo_point32_t *intersection) | |||
| 762 | { | |||
| 763 | cairo_bo_intersect_point_t quorem; | |||
| 764 | ||||
| 765 | if (! intersect_lines (a, b, &quorem)) | |||
| 766 | return FALSE0; | |||
| 767 | ||||
| 768 | if (! _cairo_bo_edge_contains_intersect_point (a, &quorem)) | |||
| 769 | return FALSE0; | |||
| 770 | ||||
| 771 | if (! _cairo_bo_edge_contains_intersect_point (b, &quorem)) | |||
| 772 | return FALSE0; | |||
| 773 | ||||
| 774 | /* Now that we've correctly compared the intersection point and | |||
| 775 | * determined that it lies within the edge, then we know that we | |||
| 776 | * no longer need any more bits of storage for the intersection | |||
| 777 | * than we do for our edge coordinates. We also no longer need the | |||
| 778 | * remainder from the division. */ | |||
| 779 | intersection->x = quorem.x.ordinate; | |||
| 780 | intersection->y = quorem.y.ordinate; | |||
| 781 | ||||
| 782 | return TRUE1; | |||
| 783 | } | |||
| 784 | ||||
| 785 | static inline int | |||
| 786 | cairo_bo_event_compare (const cairo_bo_event_t *a, | |||
| 787 | const cairo_bo_event_t *b) | |||
| 788 | { | |||
| 789 | int cmp; | |||
| 790 | ||||
| 791 | cmp = _cairo_bo_point32_compare (&a->point, &b->point); | |||
| 792 | if (cmp) | |||
| 793 | return cmp; | |||
| 794 | ||||
| 795 | cmp = a->type - b->type; | |||
| 796 | if (cmp) | |||
| 797 | return cmp; | |||
| 798 | ||||
| 799 | return a - b; | |||
| 800 | } | |||
| 801 | ||||
| 802 | static inline void | |||
| 803 | _pqueue_init (pqueue_t *pq) | |||
| 804 | { | |||
| 805 | pq->max_size = ARRAY_LENGTH (pq->elements_embedded)((int) (sizeof (pq->elements_embedded) / sizeof (pq->elements_embedded [0]))); | |||
| 806 | pq->size = 0; | |||
| 807 | ||||
| 808 | pq->elements = pq->elements_embedded; | |||
| 809 | } | |||
| 810 | ||||
| 811 | static inline void | |||
| 812 | _pqueue_fini (pqueue_t *pq) | |||
| 813 | { | |||
| 814 | if (pq->elements != pq->elements_embedded) | |||
| 815 | free (pq->elements); | |||
| 816 | } | |||
| 817 | ||||
| 818 | static cairo_status_t | |||
| 819 | _pqueue_grow (pqueue_t *pq) | |||
| 820 | { | |||
| 821 | cairo_bo_event_t **new_elements; | |||
| 822 | pq->max_size *= 2; | |||
| 823 | ||||
| 824 | if (pq->elements == pq->elements_embedded) { | |||
| 825 | new_elements = _cairo_malloc_ab (pq->max_size, | |||
| 826 | sizeof (cairo_bo_event_t *)); | |||
| 827 | if (unlikely (new_elements == NULL)(__builtin_expect (!!(new_elements == ((void*)0)), 0))) | |||
| 828 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 829 | ||||
| 830 | memcpy (new_elements, pq->elements_embedded, | |||
| 831 | sizeof (pq->elements_embedded)); | |||
| 832 | } else { | |||
| 833 | new_elements = _cairo_realloc_ab (pq->elements, | |||
| 834 | pq->max_size, | |||
| 835 | sizeof (cairo_bo_event_t *)); | |||
| 836 | if (unlikely (new_elements == NULL)(__builtin_expect (!!(new_elements == ((void*)0)), 0))) | |||
| 837 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 838 | } | |||
| 839 | ||||
| 840 | pq->elements = new_elements; | |||
| 841 | return CAIRO_STATUS_SUCCESS; | |||
| 842 | } | |||
| 843 | ||||
| 844 | static inline cairo_status_t | |||
| 845 | _pqueue_push (pqueue_t *pq, cairo_bo_event_t *event) | |||
| 846 | { | |||
| 847 | cairo_bo_event_t **elements; | |||
| 848 | int i, parent; | |||
| 849 | ||||
| 850 | if (unlikely (pq->size + 1 == pq->max_size)(__builtin_expect (!!(pq->size + 1 == pq->max_size), 0) )) { | |||
| 851 | cairo_status_t status; | |||
| 852 | ||||
| 853 | status = _pqueue_grow (pq); | |||
| 854 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 855 | return status; | |||
| 856 | } | |||
| 857 | ||||
| 858 | elements = pq->elements; | |||
| 859 | ||||
| 860 | for (i = ++pq->size; | |||
| 861 | i != PQ_FIRST_ENTRY1 && | |||
| 862 | cairo_bo_event_compare (event, | |||
| 863 | elements[parent = PQ_PARENT_INDEX (i)((i) >> 1)]) < 0; | |||
| 864 | i = parent) | |||
| 865 | { | |||
| 866 | elements[i] = elements[parent]; | |||
| 867 | } | |||
| 868 | ||||
| 869 | elements[i] = event; | |||
| 870 | ||||
| 871 | return CAIRO_STATUS_SUCCESS; | |||
| 872 | } | |||
| 873 | ||||
| 874 | static inline void | |||
| 875 | _pqueue_pop (pqueue_t *pq) | |||
| 876 | { | |||
| 877 | cairo_bo_event_t **elements = pq->elements; | |||
| 878 | cairo_bo_event_t *tail; | |||
| 879 | int child, i; | |||
| 880 | ||||
| 881 | tail = elements[pq->size--]; | |||
| 882 | if (pq->size == 0) { | |||
| 883 | elements[PQ_FIRST_ENTRY1] = NULL((void*)0); | |||
| 884 | return; | |||
| 885 | } | |||
| 886 | ||||
| 887 | for (i = PQ_FIRST_ENTRY1; | |||
| 888 | (child = PQ_LEFT_CHILD_INDEX (i)((i) << 1)) <= pq->size; | |||
| 889 | i = child) | |||
| 890 | { | |||
| 891 | if (child != pq->size && | |||
| 892 | cairo_bo_event_compare (elements[child+1], | |||
| 893 | elements[child]) < 0) | |||
| 894 | { | |||
| 895 | child++; | |||
| 896 | } | |||
| 897 | ||||
| 898 | if (cairo_bo_event_compare (elements[child], tail) >= 0) | |||
| 899 | break; | |||
| 900 | ||||
| 901 | elements[i] = elements[child]; | |||
| 902 | } | |||
| 903 | elements[i] = tail; | |||
| 904 | } | |||
| 905 | ||||
| 906 | static inline cairo_status_t | |||
| 907 | _cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue, | |||
| 908 | cairo_bo_event_type_t type, | |||
| 909 | cairo_bo_edge_t *e1, | |||
| 910 | cairo_bo_edge_t *e2, | |||
| 911 | const cairo_point_t *point) | |||
| 912 | { | |||
| 913 | cairo_bo_queue_event_t *event; | |||
| 914 | ||||
| 915 | event = _cairo_freepool_alloc (&queue->pool); | |||
| 916 | if (unlikely (event == NULL)(__builtin_expect (!!(event == ((void*)0)), 0))) | |||
| 917 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 918 | ||||
| 919 | event->type = type; | |||
| 920 | event->e1 = e1; | |||
| 921 | event->e2 = e2; | |||
| 922 | event->point = *point; | |||
| 923 | ||||
| 924 | return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event); | |||
| 925 | } | |||
| 926 | ||||
| 927 | static void | |||
| 928 | _cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue, | |||
| 929 | cairo_bo_event_t *event) | |||
| 930 | { | |||
| 931 | _cairo_freepool_free (&queue->pool, event); | |||
| 932 | } | |||
| 933 | ||||
| 934 | static cairo_bo_event_t * | |||
| 935 | _cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue) | |||
| 936 | { | |||
| 937 | cairo_bo_event_t *event, *cmp; | |||
| 938 | ||||
| 939 | event = event_queue->pqueue.elements[PQ_FIRST_ENTRY1]; | |||
| 940 | cmp = *event_queue->start_events; | |||
| 941 | if (event == NULL((void*)0) || | |||
| 942 | (cmp != NULL((void*)0) && cairo_bo_event_compare (cmp, event) < 0)) | |||
| 943 | { | |||
| 944 | event = cmp; | |||
| 945 | event_queue->start_events++; | |||
| 946 | } | |||
| 947 | else | |||
| 948 | { | |||
| 949 | _pqueue_pop (&event_queue->pqueue); | |||
| 950 | } | |||
| 951 | ||||
| 952 | return event; | |||
| 953 | } | |||
| 954 | ||||
| 955 | CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| ||||
| 956 | cairo_bo_event_t *,static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| 957 | cairo_bo_event_compare)static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| 958 | ||||
| 959 | static void | |||
| 960 | _cairo_bo_event_queue_init (cairo_bo_event_queue_t *event_queue, | |||
| 961 | cairo_bo_event_t **start_events, | |||
| 962 | int num_events) | |||
| 963 | { | |||
| 964 | _cairo_bo_event_queue_sort (start_events, num_events); | |||
| 965 | start_events[num_events] = NULL((void*)0); | |||
| 966 | ||||
| 967 | event_queue->start_events = start_events; | |||
| 968 | ||||
| 969 | _cairo_freepool_init (&event_queue->pool, | |||
| 970 | sizeof (cairo_bo_queue_event_t)); | |||
| 971 | _pqueue_init (&event_queue->pqueue); | |||
| 972 | event_queue->pqueue.elements[PQ_FIRST_ENTRY1] = NULL((void*)0); | |||
| 973 | } | |||
| 974 | ||||
| 975 | static cairo_status_t | |||
| 976 | _cairo_bo_event_queue_insert_stop (cairo_bo_event_queue_t *event_queue, | |||
| 977 | cairo_bo_edge_t *edge) | |||
| 978 | { | |||
| 979 | cairo_bo_point32_t point; | |||
| 980 | ||||
| 981 | point.y = edge->edge.bottom; | |||
| 982 | point.x = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
| 983 | point.y); | |||
| 984 | return _cairo_bo_event_queue_insert (event_queue, | |||
| 985 | CAIRO_BO_EVENT_TYPE_STOP, | |||
| 986 | edge, NULL((void*)0), | |||
| 987 | &point); | |||
| 988 | } | |||
| 989 | ||||
| 990 | static void | |||
| 991 | _cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue) | |||
| 992 | { | |||
| 993 | _pqueue_fini (&event_queue->pqueue); | |||
| 994 | _cairo_freepool_fini (&event_queue->pool); | |||
| 995 | } | |||
| 996 | ||||
| 997 | static inline cairo_status_t | |||
| 998 | _cairo_bo_event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue, | |||
| 999 | cairo_bo_edge_t *left, | |||
| 1000 | cairo_bo_edge_t *right) | |||
| 1001 | { | |||
| 1002 | cairo_bo_point32_t intersection; | |||
| 1003 | ||||
| 1004 | if (_line_equal (&left->edge.line, &right->edge.line)) | |||
| 1005 | return CAIRO_STATUS_SUCCESS; | |||
| 1006 | ||||
| 1007 | /* The names "left" and "right" here are correct descriptions of | |||
| 1008 | * the order of the two edges within the active edge list. So if a | |||
| 1009 | * slope comparison also puts left less than right, then we know | |||
| 1010 | * that the intersection of these two segments has already | |||
| 1011 | * occurred before the current sweep line position. */ | |||
| 1012 | if (_slope_compare (left, right) <= 0) | |||
| 1013 | return CAIRO_STATUS_SUCCESS; | |||
| 1014 | ||||
| 1015 | if (! _cairo_bo_edge_intersect (left, right, &intersection)) | |||
| 1016 | return CAIRO_STATUS_SUCCESS; | |||
| 1017 | ||||
| 1018 | return _cairo_bo_event_queue_insert (event_queue, | |||
| 1019 | CAIRO_BO_EVENT_TYPE_INTERSECTION, | |||
| 1020 | left, right, | |||
| 1021 | &intersection); | |||
| 1022 | } | |||
| 1023 | ||||
| 1024 | static void | |||
| 1025 | _cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line) | |||
| 1026 | { | |||
| 1027 | sweep_line->head = NULL((void*)0); | |||
| 1028 | sweep_line->current_y = INT32_MIN(-2147483647-1); | |||
| 1029 | sweep_line->current_edge = NULL((void*)0); | |||
| 1030 | } | |||
| 1031 | ||||
| 1032 | static cairo_status_t | |||
| 1033 | _cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line, | |||
| 1034 | cairo_bo_edge_t *edge) | |||
| 1035 | { | |||
| 1036 | if (sweep_line->current_edge != NULL((void*)0)) { | |||
| 1037 | cairo_bo_edge_t *prev, *next; | |||
| 1038 | int cmp; | |||
| 1039 | ||||
| 1040 | cmp = _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
| 1041 | sweep_line->current_edge, | |||
| 1042 | edge); | |||
| 1043 | if (cmp < 0) { | |||
| 1044 | prev = sweep_line->current_edge; | |||
| 1045 | next = prev->next; | |||
| 1046 | while (next != NULL((void*)0) && | |||
| 1047 | _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
| 1048 | next, edge) < 0) | |||
| 1049 | { | |||
| 1050 | prev = next, next = prev->next; | |||
| 1051 | } | |||
| 1052 | ||||
| 1053 | prev->next = edge; | |||
| 1054 | edge->prev = prev; | |||
| 1055 | edge->next = next; | |||
| 1056 | if (next != NULL((void*)0)) | |||
| 1057 | next->prev = edge; | |||
| 1058 | } else if (cmp > 0) { | |||
| 1059 | next = sweep_line->current_edge; | |||
| 1060 | prev = next->prev; | |||
| 1061 | while (prev != NULL((void*)0) && | |||
| 1062 | _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
| 1063 | prev, edge) > 0) | |||
| 1064 | { | |||
| 1065 | next = prev, prev = next->prev; | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | next->prev = edge; | |||
| 1069 | edge->next = next; | |||
| 1070 | edge->prev = prev; | |||
| 1071 | if (prev != NULL((void*)0)) | |||
| 1072 | prev->next = edge; | |||
| 1073 | else | |||
| 1074 | sweep_line->head = edge; | |||
| 1075 | } else { | |||
| 1076 | prev = sweep_line->current_edge; | |||
| 1077 | edge->prev = prev; | |||
| 1078 | edge->next = prev->next; | |||
| 1079 | if (prev->next != NULL((void*)0)) | |||
| 1080 | prev->next->prev = edge; | |||
| 1081 | prev->next = edge; | |||
| 1082 | } | |||
| 1083 | } else { | |||
| 1084 | sweep_line->head = edge; | |||
| 1085 | } | |||
| 1086 | ||||
| 1087 | sweep_line->current_edge = edge; | |||
| 1088 | ||||
| 1089 | return CAIRO_STATUS_SUCCESS; | |||
| 1090 | } | |||
| 1091 | ||||
| 1092 | static void | |||
| 1093 | _cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line, | |||
| 1094 | cairo_bo_edge_t *edge) | |||
| 1095 | { | |||
| 1096 | if (edge->prev != NULL((void*)0)) | |||
| 1097 | edge->prev->next = edge->next; | |||
| 1098 | else | |||
| 1099 | sweep_line->head = edge->next; | |||
| 1100 | ||||
| 1101 | if (edge->next != NULL((void*)0)) | |||
| 1102 | edge->next->prev = edge->prev; | |||
| 1103 | ||||
| 1104 | if (sweep_line->current_edge == edge) | |||
| 1105 | sweep_line->current_edge = edge->prev ? edge->prev : edge->next; | |||
| 1106 | } | |||
| 1107 | ||||
| 1108 | static void | |||
| 1109 | _cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t *sweep_line, | |||
| 1110 | cairo_bo_edge_t *left, | |||
| 1111 | cairo_bo_edge_t *right) | |||
| 1112 | { | |||
| 1113 | if (left->prev != NULL((void*)0)) | |||
| 1114 | left->prev->next = right; | |||
| 1115 | else | |||
| 1116 | sweep_line->head = right; | |||
| 1117 | ||||
| 1118 | if (right->next != NULL((void*)0)) | |||
| 1119 | right->next->prev = left; | |||
| 1120 | ||||
| 1121 | left->next = right->next; | |||
| 1122 | right->next = left; | |||
| 1123 | ||||
| 1124 | right->prev = left->prev; | |||
| 1125 | left->prev = right; | |||
| 1126 | } | |||
| 1127 | ||||
| 1128 | static inline cairo_bool_t | |||
| 1129 | edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b) | |||
| 1130 | { | |||
| 1131 | if (_line_equal (&a->edge.line, &b->edge.line)) | |||
| 1132 | return TRUE1; | |||
| 1133 | ||||
| 1134 | if (_slope_compare (a, b)) | |||
| 1135 | return FALSE0; | |||
| 1136 | ||||
| 1137 | /* The choice of y is not truly arbitrary since we must guarantee that it | |||
| 1138 | * is greater than the start of either line. | |||
| 1139 | */ | |||
| 1140 | if (a->edge.line.p1.y == b->edge.line.p1.y) { | |||
| 1141 | return a->edge.line.p1.x == b->edge.line.p1.x; | |||
| 1142 | } else if (a->edge.line.p2.y == b->edge.line.p2.y) { | |||
| 1143 | return a->edge.line.p2.x == b->edge.line.p2.x; | |||
| 1144 | } else if (a->edge.line.p1.y < b->edge.line.p1.y) { | |||
| 1145 | return edge_compare_for_y_against_x (b, | |||
| 1146 | a->edge.line.p1.y, | |||
| 1147 | a->edge.line.p1.x) == 0; | |||
| 1148 | } else { | |||
| 1149 | return edge_compare_for_y_against_x (a, | |||
| 1150 | b->edge.line.p1.y, | |||
| 1151 | b->edge.line.p1.x) == 0; | |||
| 1152 | } | |||
| 1153 | } | |||
| 1154 | ||||
| 1155 | static void | |||
| 1156 | _cairo_bo_edge_end (cairo_bo_edge_t *left, | |||
| 1157 | int32_t bot, | |||
| 1158 | cairo_polygon_t *polygon) | |||
| 1159 | { | |||
| 1160 | cairo_bo_deferred_t *d = &left->deferred; | |||
| 1161 | ||||
| 1162 | if (likely (d->top < bot)(__builtin_expect (!!(d->top < bot), 1))) { | |||
| 1163 | _cairo_polygon_add_line (polygon, | |||
| 1164 | &left->edge.line, | |||
| 1165 | d->top, bot, | |||
| 1166 | 1); | |||
| 1167 | _cairo_polygon_add_line (polygon, | |||
| 1168 | &d->right->edge.line, | |||
| 1169 | d->top, bot, | |||
| 1170 | -1); | |||
| 1171 | } | |||
| 1172 | ||||
| 1173 | d->right = NULL((void*)0); | |||
| 1174 | } | |||
| 1175 | ||||
| 1176 | ||||
| 1177 | static inline void | |||
| 1178 | _cairo_bo_edge_start_or_continue (cairo_bo_edge_t *left, | |||
| 1179 | cairo_bo_edge_t *right, | |||
| 1180 | int top, | |||
| 1181 | cairo_polygon_t *polygon) | |||
| 1182 | { | |||
| 1183 | if (left->deferred.right == right) | |||
| 1184 | return; | |||
| 1185 | ||||
| 1186 | if (left->deferred.right != NULL((void*)0)) { | |||
| 1187 | if (right != NULL((void*)0) && edges_colinear (left->deferred.right, right)) | |||
| 1188 | { | |||
| 1189 | /* continuation on right, so just swap edges */ | |||
| 1190 | left->deferred.right = right; | |||
| 1191 | return; | |||
| 1192 | } | |||
| 1193 | ||||
| 1194 | _cairo_bo_edge_end (left, top, polygon); | |||
| 1195 | } | |||
| 1196 | ||||
| 1197 | if (right != NULL((void*)0) && ! edges_colinear (left, right)) { | |||
| 1198 | left->deferred.top = top; | |||
| 1199 | left->deferred.right = right; | |||
| 1200 | } | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | static inline void | |||
| 1204 | _active_edges_to_polygon (cairo_bo_edge_t *left, | |||
| 1205 | int32_t top, | |||
| 1206 | cairo_fill_rule_t fill_rule, | |||
| 1207 | cairo_polygon_t *polygon) | |||
| 1208 | { | |||
| 1209 | cairo_bo_edge_t *right; | |||
| 1210 | unsigned int mask; | |||
| 1211 | ||||
| 1212 | if (fill_rule == CAIRO_FILL_RULE_WINDING) | |||
| 1213 | mask = ~0; | |||
| 1214 | else | |||
| 1215 | mask = 1; | |||
| 1216 | ||||
| 1217 | while (left != NULL((void*)0)) { | |||
| 1218 | int in_out = left->edge.dir; | |||
| 1219 | ||||
| 1220 | right = left->next; | |||
| 1221 | if (left->deferred.right == NULL((void*)0)) { | |||
| 1222 | while (right != NULL((void*)0) && right->deferred.right == NULL((void*)0)) | |||
| 1223 | right = right->next; | |||
| 1224 | ||||
| 1225 | if (right != NULL((void*)0) && edges_colinear (left, right)) { | |||
| 1226 | /* continuation on left */ | |||
| 1227 | left->deferred = right->deferred; | |||
| 1228 | right->deferred.right = NULL((void*)0); | |||
| 1229 | } | |||
| 1230 | } | |||
| 1231 | ||||
| 1232 | right = left->next; | |||
| 1233 | while (right != NULL((void*)0)) { | |||
| 1234 | if (right->deferred.right != NULL((void*)0)) | |||
| 1235 | _cairo_bo_edge_end (right, top, polygon); | |||
| 1236 | ||||
| 1237 | in_out += right->edge.dir; | |||
| 1238 | if ((in_out & mask) == 0) { | |||
| 1239 | /* skip co-linear edges */ | |||
| 1240 | if (right->next == NULL((void*)0) || !edges_colinear (right, right->next)) | |||
| 1241 | break; | |||
| 1242 | } | |||
| 1243 | ||||
| 1244 | right = right->next; | |||
| 1245 | } | |||
| 1246 | ||||
| 1247 | _cairo_bo_edge_start_or_continue (left, right, top, polygon); | |||
| 1248 | ||||
| 1249 | left = right; | |||
| 1250 | if (left != NULL((void*)0)) | |||
| 1251 | left = left->next; | |||
| 1252 | } | |||
| 1253 | } | |||
| 1254 | ||||
| 1255 | ||||
| 1256 | static cairo_status_t | |||
| 1257 | _cairo_bentley_ottmann_tessellate_bo_edges (cairo_bo_event_t **start_events, | |||
| 1258 | int num_events, | |||
| 1259 | cairo_fill_rule_t fill_rule, | |||
| 1260 | cairo_polygon_t *polygon) | |||
| 1261 | { | |||
| 1262 | cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */ | |||
| 1263 | cairo_bo_event_queue_t event_queue; | |||
| 1264 | cairo_bo_sweep_line_t sweep_line; | |||
| 1265 | cairo_bo_event_t *event; | |||
| 1266 | cairo_bo_edge_t *left, *right; | |||
| 1267 | cairo_bo_edge_t *e1, *e2; | |||
| 1268 | ||||
| 1269 | _cairo_bo_event_queue_init (&event_queue, start_events, num_events); | |||
| 1270 | _cairo_bo_sweep_line_init (&sweep_line); | |||
| 1271 | ||||
| 1272 | while ((event = _cairo_bo_event_dequeue (&event_queue))) { | |||
| 1273 | if (event->point.y != sweep_line.current_y) { | |||
| 1274 | _active_edges_to_polygon (sweep_line.head, | |||
| 1275 | sweep_line.current_y, | |||
| 1276 | fill_rule, polygon); | |||
| 1277 | ||||
| 1278 | sweep_line.current_y = event->point.y; | |||
| 1279 | } | |||
| 1280 | ||||
| 1281 | switch (event->type) { | |||
| 1282 | case CAIRO_BO_EVENT_TYPE_START: | |||
| 1283 | e1 = &((cairo_bo_start_event_t *) event)->edge; | |||
| 1284 | ||||
| 1285 | status = _cairo_bo_sweep_line_insert (&sweep_line, e1); | |||
| 1286 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1287 | goto unwind; | |||
| 1288 | ||||
| 1289 | status = _cairo_bo_event_queue_insert_stop (&event_queue, e1); | |||
| 1290 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1291 | goto unwind; | |||
| 1292 | ||||
| 1293 | left = e1->prev; | |||
| 1294 | right = e1->next; | |||
| 1295 | ||||
| 1296 | if (left != NULL((void*)0)) { | |||
| 1297 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1); | |||
| 1298 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1299 | goto unwind; | |||
| 1300 | } | |||
| 1301 | ||||
| 1302 | if (right != NULL((void*)0)) { | |||
| 1303 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right); | |||
| 1304 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1305 | goto unwind; | |||
| 1306 | } | |||
| 1307 | ||||
| 1308 | break; | |||
| 1309 | ||||
| 1310 | case CAIRO_BO_EVENT_TYPE_STOP: | |||
| 1311 | e1 = ((cairo_bo_queue_event_t *) event)->e1; | |||
| 1312 | _cairo_bo_event_queue_delete (&event_queue, event); | |||
| 1313 | ||||
| 1314 | left = e1->prev; | |||
| 1315 | right = e1->next; | |||
| 1316 | ||||
| 1317 | _cairo_bo_sweep_line_delete (&sweep_line, e1); | |||
| 1318 | ||||
| 1319 | if (e1->deferred.right != NULL((void*)0)) | |||
| 1320 | _cairo_bo_edge_end (e1, e1->edge.bottom, polygon); | |||
| 1321 | ||||
| 1322 | if (left != NULL((void*)0) && right != NULL((void*)0)) { | |||
| 1323 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, right); | |||
| 1324 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1325 | goto unwind; | |||
| 1326 | } | |||
| 1327 | ||||
| 1328 | break; | |||
| 1329 | ||||
| 1330 | case CAIRO_BO_EVENT_TYPE_INTERSECTION: | |||
| 1331 | e1 = ((cairo_bo_queue_event_t *) event)->e1; | |||
| 1332 | e2 = ((cairo_bo_queue_event_t *) event)->e2; | |||
| 1333 | _cairo_bo_event_queue_delete (&event_queue, event); | |||
| 1334 | ||||
| 1335 | /* skip this intersection if its edges are not adjacent */ | |||
| 1336 | if (e2 != e1->next) | |||
| 1337 | break; | |||
| 1338 | ||||
| 1339 | left = e1->prev; | |||
| 1340 | right = e2->next; | |||
| 1341 | ||||
| 1342 | _cairo_bo_sweep_line_swap (&sweep_line, e1, e2); | |||
| 1343 | ||||
| 1344 | /* after the swap e2 is left of e1 */ | |||
| 1345 | ||||
| 1346 | if (left != NULL((void*)0)) { | |||
| 1347 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2); | |||
| 1348 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1349 | goto unwind; | |||
| 1350 | } | |||
| 1351 | ||||
| 1352 | if (right != NULL((void*)0)) { | |||
| 1353 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right); | |||
| 1354 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1355 | goto unwind; | |||
| 1356 | } | |||
| 1357 | ||||
| 1358 | break; | |||
| 1359 | } | |||
| 1360 | } | |||
| 1361 | ||||
| 1362 | unwind: | |||
| 1363 | _cairo_bo_event_queue_fini (&event_queue); | |||
| 1364 | ||||
| 1365 | return status; | |||
| 1366 | } | |||
| 1367 | ||||
| 1368 | cairo_status_t | |||
| 1369 | _cairo_polygon_reduce (cairo_polygon_t *polygon, | |||
| 1370 | cairo_fill_rule_t fill_rule) | |||
| 1371 | { | |||
| 1372 | cairo_status_t status; | |||
| 1373 | cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)((512 * sizeof (int)) / sizeof(cairo_bo_start_event_t))]; | |||
| 1374 | cairo_bo_start_event_t *events; | |||
| 1375 | cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events)((int) (sizeof (stack_events) / sizeof (stack_events[0]))) + 1]; | |||
| 1376 | cairo_bo_event_t **event_ptrs; | |||
| 1377 | int num_limits; | |||
| 1378 | int num_events; | |||
| 1379 | int i; | |||
| 1380 | ||||
| 1381 | num_events = polygon->num_edges; | |||
| 1382 | if (unlikely (0 == num_events)(__builtin_expect (!!(0 == num_events), 0))) | |||
| ||||
| 1383 | return CAIRO_STATUS_SUCCESS; | |||
| 1384 | ||||
| 1385 | if (DEBUG_POLYGON0) { | |||
| 1386 | FILE *file = fopen ("reduce_in.txt", "w"); | |||
| 1387 | _cairo_debug_print_polygon (file, polygon); | |||
| 1388 | fclose (file); | |||
| 1389 | } | |||
| 1390 | ||||
| 1391 | events = stack_events; | |||
| 1392 | event_ptrs = stack_event_ptrs; | |||
| 1393 | if (num_events > ARRAY_LENGTH (stack_events)((int) (sizeof (stack_events) / sizeof (stack_events[0])))) { | |||
| 1394 | events = _cairo_malloc_ab_plus_c (num_events, | |||
| 1395 | sizeof (cairo_bo_start_event_t) + | |||
| 1396 | sizeof (cairo_bo_event_t *), | |||
| 1397 | sizeof (cairo_bo_event_t *)); | |||
| 1398 | if (unlikely (events == NULL)(__builtin_expect (!!(events == ((void*)0)), 0))) | |||
| 1399 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 1400 | ||||
| 1401 | event_ptrs = (cairo_bo_event_t **) (events + num_events); | |||
| 1402 | } | |||
| 1403 | ||||
| 1404 | for (i = 0; i < num_events; i++) { | |||
| 1405 | event_ptrs[i] = (cairo_bo_event_t *) &events[i]; | |||
| 1406 | ||||
| 1407 | events[i].type = CAIRO_BO_EVENT_TYPE_START; | |||
| 1408 | events[i].point.y = polygon->edges[i].top; | |||
| 1409 | events[i].point.x = | |||
| 1410 | _line_compute_intersection_x_for_y (&polygon->edges[i].line, | |||
| 1411 | events[i].point.y); | |||
| 1412 | ||||
| 1413 | events[i].edge.edge = polygon->edges[i]; | |||
| 1414 | events[i].edge.deferred.right = NULL((void*)0); | |||
| 1415 | events[i].edge.prev = NULL((void*)0); | |||
| 1416 | events[i].edge.next = NULL((void*)0); | |||
| 1417 | } | |||
| 1418 | ||||
| 1419 | num_limits = polygon->num_limits; polygon->num_limits = 0; | |||
| 1420 | polygon->num_edges = 0; | |||
| 1421 | ||||
| 1422 | status = _cairo_bentley_ottmann_tessellate_bo_edges (event_ptrs, | |||
| 1423 | num_events, | |||
| 1424 | fill_rule, | |||
| 1425 | polygon); | |||
| 1426 | polygon->num_limits = num_limits; | |||
| 1427 | ||||
| 1428 | if (events != stack_events) | |||
| 1429 | free (events); | |||
| 1430 | ||||
| 1431 | if (DEBUG_POLYGON0) { | |||
| 1432 | FILE *file = fopen ("reduce_out.txt", "w"); | |||
| 1433 | _cairo_debug_print_polygon (file, polygon); | |||
| 1434 | fclose (file); | |||
| 1435 | } | |||
| 1436 | ||||
| 1437 | return status; | |||
| 1438 | } |