File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-reduce.c |
Warning: | line 955, column 1 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright © 2004 Carl Worth | |||
3 | * Copyright © 2006 Red Hat, Inc. | |||
4 | * Copyright © 2008 Chris Wilson | |||
5 | * | |||
6 | * This library is free software; you can redistribute it and/or | |||
7 | * modify it either under the terms of the GNU Lesser General Public | |||
8 | * License version 2.1 as published by the Free Software Foundation | |||
9 | * (the "LGPL") or, at your option, under the terms of the Mozilla | |||
10 | * Public License Version 1.1 (the "MPL"). If you do not alter this | |||
11 | * notice, a recipient may use your version of this file under either | |||
12 | * the MPL or the LGPL. | |||
13 | * | |||
14 | * You should have received a copy of the LGPL along with this library | |||
15 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software | |||
16 | * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA | |||
17 | * You should have received a copy of the MPL along with this library | |||
18 | * in the file COPYING-MPL-1.1 | |||
19 | * | |||
20 | * The contents of this file are subject to the Mozilla Public License | |||
21 | * Version 1.1 (the "License"); you may not use this file except in | |||
22 | * compliance with the License. You may obtain a copy of the License at | |||
23 | * http://www.mozilla.org/MPL/ | |||
24 | * | |||
25 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | |||
26 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for | |||
27 | * the specific language governing rights and limitations. | |||
28 | * | |||
29 | * The Original Code is the cairo graphics library. | |||
30 | * | |||
31 | * The Initial Developer of the Original Code is Carl Worth | |||
32 | * | |||
33 | * Contributor(s): | |||
34 | * Carl D. Worth <cworth@cworth.org> | |||
35 | * Chris Wilson <chris@chris-wilson.co.uk> | |||
36 | */ | |||
37 | ||||
38 | /* Provide definitions for standalone compilation */ | |||
39 | #include "cairoint.h" | |||
40 | ||||
41 | #include "cairo-error-private.h" | |||
42 | #include "cairo-freelist-private.h" | |||
43 | #include "cairo-combsort-inline.h" | |||
44 | ||||
45 | #define DEBUG_POLYGON0 0 | |||
46 | ||||
47 | typedef cairo_point_t cairo_bo_point32_t; | |||
48 | ||||
49 | typedef struct _cairo_bo_intersect_ordinate { | |||
50 | int32_t ordinate; | |||
51 | enum { EXACT, INEXACT } exactness; | |||
52 | } cairo_bo_intersect_ordinate_t; | |||
53 | ||||
54 | typedef struct _cairo_bo_intersect_point { | |||
55 | cairo_bo_intersect_ordinate_t x; | |||
56 | cairo_bo_intersect_ordinate_t y; | |||
57 | } cairo_bo_intersect_point_t; | |||
58 | ||||
59 | typedef struct _cairo_bo_edge cairo_bo_edge_t; | |||
60 | ||||
61 | typedef struct _cairo_bo_deferred { | |||
62 | cairo_bo_edge_t *right; | |||
63 | int32_t top; | |||
64 | } cairo_bo_deferred_t; | |||
65 | ||||
66 | struct _cairo_bo_edge { | |||
67 | cairo_edge_t edge; | |||
68 | cairo_bo_edge_t *prev; | |||
69 | cairo_bo_edge_t *next; | |||
70 | cairo_bo_deferred_t deferred; | |||
71 | }; | |||
72 | ||||
73 | /* the parent is always given by index/2 */ | |||
74 | #define PQ_PARENT_INDEX(i)((i) >> 1) ((i) >> 1) | |||
75 | #define PQ_FIRST_ENTRY1 1 | |||
76 | ||||
77 | /* left and right children are index * 2 and (index * 2) +1 respectively */ | |||
78 | #define PQ_LEFT_CHILD_INDEX(i)((i) << 1) ((i) << 1) | |||
79 | ||||
80 | typedef enum { | |||
81 | CAIRO_BO_EVENT_TYPE_STOP, | |||
82 | CAIRO_BO_EVENT_TYPE_INTERSECTION, | |||
83 | CAIRO_BO_EVENT_TYPE_START | |||
84 | } cairo_bo_event_type_t; | |||
85 | ||||
86 | typedef struct _cairo_bo_event { | |||
87 | cairo_bo_event_type_t type; | |||
88 | cairo_point_t point; | |||
89 | } cairo_bo_event_t; | |||
90 | ||||
91 | typedef struct _cairo_bo_start_event { | |||
92 | cairo_bo_event_type_t type; | |||
93 | cairo_point_t point; | |||
94 | cairo_bo_edge_t edge; | |||
95 | } cairo_bo_start_event_t; | |||
96 | ||||
97 | typedef struct _cairo_bo_queue_event { | |||
98 | cairo_bo_event_type_t type; | |||
99 | cairo_point_t point; | |||
100 | cairo_bo_edge_t *e1; | |||
101 | cairo_bo_edge_t *e2; | |||
102 | } cairo_bo_queue_event_t; | |||
103 | ||||
104 | typedef struct _pqueue { | |||
105 | int size, max_size; | |||
106 | ||||
107 | cairo_bo_event_t **elements; | |||
108 | cairo_bo_event_t *elements_embedded[1024]; | |||
109 | } pqueue_t; | |||
110 | ||||
111 | typedef struct _cairo_bo_event_queue { | |||
112 | cairo_freepool_t pool; | |||
113 | pqueue_t pqueue; | |||
114 | cairo_bo_event_t **start_events; | |||
115 | } cairo_bo_event_queue_t; | |||
116 | ||||
117 | typedef struct _cairo_bo_sweep_line { | |||
118 | cairo_bo_edge_t *head; | |||
119 | int32_t current_y; | |||
120 | cairo_bo_edge_t *current_edge; | |||
121 | } cairo_bo_sweep_line_t; | |||
122 | ||||
123 | static cairo_fixed_t | |||
124 | _line_compute_intersection_x_for_y (const cairo_line_t *line, | |||
125 | cairo_fixed_t y) | |||
126 | { | |||
127 | cairo_fixed_t x, dy; | |||
128 | ||||
129 | if (y == line->p1.y) | |||
130 | return line->p1.x; | |||
131 | if (y == line->p2.y) | |||
132 | return line->p2.x; | |||
133 | ||||
134 | x = line->p1.x; | |||
135 | dy = line->p2.y - line->p1.y; | |||
136 | if (dy != 0) { | |||
137 | x += _cairo_fixed_mul_div_floor (y - line->p1.y, | |||
138 | line->p2.x - line->p1.x, | |||
139 | dy); | |||
140 | } | |||
141 | ||||
142 | return x; | |||
143 | } | |||
144 | ||||
145 | static inline int | |||
146 | _cairo_bo_point32_compare (cairo_bo_point32_t const *a, | |||
147 | cairo_bo_point32_t const *b) | |||
148 | { | |||
149 | int cmp; | |||
150 | ||||
151 | cmp = a->y - b->y; | |||
152 | if (cmp) | |||
153 | return cmp; | |||
154 | ||||
155 | return a->x - b->x; | |||
156 | } | |||
157 | ||||
158 | /* Compare the slope of a to the slope of b, returning 1, 0, -1 if the | |||
159 | * slope a is respectively greater than, equal to, or less than the | |||
160 | * slope of b. | |||
161 | * | |||
162 | * For each edge, consider the direction vector formed from: | |||
163 | * | |||
164 | * top -> bottom | |||
165 | * | |||
166 | * which is: | |||
167 | * | |||
168 | * (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y) | |||
169 | * | |||
170 | * We then define the slope of each edge as dx/dy, (which is the | |||
171 | * inverse of the slope typically used in math instruction). We never | |||
172 | * compute a slope directly as the value approaches infinity, but we | |||
173 | * can derive a slope comparison without division as follows, (where | |||
174 | * the ? represents our compare operator). | |||
175 | * | |||
176 | * 1. slope(a) ? slope(b) | |||
177 | * 2. adx/ady ? bdx/bdy | |||
178 | * 3. (adx * bdy) ? (bdx * ady) | |||
179 | * | |||
180 | * Note that from step 2 to step 3 there is no change needed in the | |||
181 | * sign of the result since both ady and bdy are guaranteed to be | |||
182 | * greater than or equal to 0. | |||
183 | * | |||
184 | * When using this slope comparison to sort edges, some care is needed | |||
185 | * when interpreting the results. Since the slope compare operates on | |||
186 | * distance vectors from top to bottom it gives a correct left to | |||
187 | * right sort for edges that have a common top point, (such as two | |||
188 | * edges with start events at the same location). On the other hand, | |||
189 | * the sense of the result will be exactly reversed for two edges that | |||
190 | * have a common stop point. | |||
191 | */ | |||
192 | static inline int | |||
193 | _slope_compare (const cairo_bo_edge_t *a, | |||
194 | const cairo_bo_edge_t *b) | |||
195 | { | |||
196 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
197 | * bits. That's not true in general as there could be overflow. We | |||
198 | * should prevent that before the tessellation algorithm | |||
199 | * begins. | |||
200 | */ | |||
201 | int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
202 | int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x; | |||
203 | ||||
204 | /* Since the dy's are all positive by construction we can fast | |||
205 | * path several common cases. | |||
206 | */ | |||
207 | ||||
208 | /* First check for vertical lines. */ | |||
209 | if (adx == 0) | |||
210 | return -bdx; | |||
211 | if (bdx == 0) | |||
212 | return adx; | |||
213 | ||||
214 | /* Then where the two edges point in different directions wrt x. */ | |||
215 | if ((adx ^ bdx) < 0) | |||
216 | return adx; | |||
217 | ||||
218 | /* Finally we actually need to do the general comparison. */ | |||
219 | { | |||
220 | int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
221 | int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y; | |||
222 | cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy)((int64_t) (adx) * (bdy)); | |||
223 | cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady)((int64_t) (bdx) * (ady)); | |||
224 | ||||
225 | return _cairo_int64_cmp (adx_bdy, bdx_ady)((adx_bdy) == (bdx_ady) ? 0 : (adx_bdy) < (bdx_ady) ? -1 : 1); | |||
226 | } | |||
227 | } | |||
228 | ||||
229 | /* | |||
230 | * We need to compare the x-coordinates of a pair of lines for a particular y, | |||
231 | * without loss of precision. | |||
232 | * | |||
233 | * The x-coordinate along an edge for a given y is: | |||
234 | * X = A_x + (Y - A_y) * A_dx / A_dy | |||
235 | * | |||
236 | * So the inequality we wish to test is: | |||
237 | * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy, | |||
238 | * where ∘ is our inequality operator. | |||
239 | * | |||
240 | * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are | |||
241 | * all positive, so we can rearrange it thus without causing a sign change: | |||
242 | * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy | |||
243 | * - (Y - A_y) * A_dx * B_dy | |||
244 | * | |||
245 | * Given the assumption that all the deltas fit within 32 bits, we can compute | |||
246 | * this comparison directly using 128 bit arithmetic. For certain, but common, | |||
247 | * input we can reduce this down to a single 32 bit compare by inspecting the | |||
248 | * deltas. | |||
249 | * | |||
250 | * (And put the burden of the work on developing fast 128 bit ops, which are | |||
251 | * required throughout the tessellator.) | |||
252 | * | |||
253 | * See the similar discussion for _slope_compare(). | |||
254 | */ | |||
255 | static int | |||
256 | edges_compare_x_for_y_general (const cairo_bo_edge_t *a, | |||
257 | const cairo_bo_edge_t *b, | |||
258 | int32_t y) | |||
259 | { | |||
260 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
261 | * bits. That's not true in general as there could be overflow. We | |||
262 | * should prevent that before the tessellation algorithm | |||
263 | * begins. | |||
264 | */ | |||
265 | int32_t dx; | |||
266 | int32_t adx, ady; | |||
267 | int32_t bdx, bdy; | |||
268 | enum { | |||
269 | HAVE_NONE = 0x0, | |||
270 | HAVE_DX = 0x1, | |||
271 | HAVE_ADX = 0x2, | |||
272 | HAVE_DX_ADX = HAVE_DX | HAVE_ADX, | |||
273 | HAVE_BDX = 0x4, | |||
274 | HAVE_DX_BDX = HAVE_DX | HAVE_BDX, | |||
275 | HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX, | |||
276 | HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX | |||
277 | } have_dx_adx_bdx = HAVE_ALL; | |||
278 | ||||
279 | /* don't bother solving for abscissa if the edges' bounding boxes | |||
280 | * can be used to order them. */ | |||
281 | { | |||
282 | int32_t amin, amax; | |||
283 | int32_t bmin, bmax; | |||
284 | if (a->edge.line.p1.x < a->edge.line.p2.x) { | |||
285 | amin = a->edge.line.p1.x; | |||
286 | amax = a->edge.line.p2.x; | |||
287 | } else { | |||
288 | amin = a->edge.line.p2.x; | |||
289 | amax = a->edge.line.p1.x; | |||
290 | } | |||
291 | if (b->edge.line.p1.x < b->edge.line.p2.x) { | |||
292 | bmin = b->edge.line.p1.x; | |||
293 | bmax = b->edge.line.p2.x; | |||
294 | } else { | |||
295 | bmin = b->edge.line.p2.x; | |||
296 | bmax = b->edge.line.p1.x; | |||
297 | } | |||
298 | if (amax < bmin) return -1; | |||
299 | if (amin > bmax) return +1; | |||
300 | } | |||
301 | ||||
302 | ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
303 | adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
304 | if (adx == 0) | |||
305 | have_dx_adx_bdx &= ~HAVE_ADX; | |||
306 | ||||
307 | bdy = b->edge.line.p2.y - b->edge.line.p1.y; | |||
308 | bdx = b->edge.line.p2.x - b->edge.line.p1.x; | |||
309 | if (bdx == 0) | |||
310 | have_dx_adx_bdx &= ~HAVE_BDX; | |||
311 | ||||
312 | dx = a->edge.line.p1.x - b->edge.line.p1.x; | |||
313 | if (dx == 0) | |||
314 | have_dx_adx_bdx &= ~HAVE_DX; | |||
315 | ||||
316 | #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)_cairo_int64x64_128_mul(((int64_t) (ady) * (bdy)), ((int64_t) (dx))) | |||
317 | #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)_cairo_int64x64_128_mul(((int64_t) (adx) * (bdy)), ((int64_t) (y - a->edge.line.p1.y))) | |||
318 | #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)_cairo_int64x64_128_mul(((int64_t) (bdx) * (ady)), ((int64_t) (y - b->edge.line.p1.y))) | |||
319 | switch (have_dx_adx_bdx) { | |||
320 | default: | |||
321 | case HAVE_NONE: | |||
322 | return 0; | |||
323 | case HAVE_DX: | |||
324 | /* A_dy * B_dy * (A_x - B_x) ∘ 0 */ | |||
325 | return dx; /* ady * bdy is positive definite */ | |||
326 | case HAVE_ADX: | |||
327 | /* 0 ∘ - (Y - A_y) * A_dx * B_dy */ | |||
328 | return adx; /* bdy * (y - a->top.y) is positive definite */ | |||
329 | case HAVE_BDX: | |||
330 | /* 0 ∘ (Y - B_y) * B_dx * A_dy */ | |||
331 | return -bdx; /* ady * (y - b->top.y) is positive definite */ | |||
332 | case HAVE_ADX_BDX: | |||
333 | /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */ | |||
334 | if ((adx ^ bdx) < 0) { | |||
335 | return adx; | |||
336 | } else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */ | |||
337 | cairo_int64_t adx_bdy, bdx_ady; | |||
338 | ||||
339 | /* ∴ A_dx * B_dy ∘ B_dx * A_dy */ | |||
340 | ||||
341 | adx_bdy = _cairo_int32x32_64_mul (adx, bdy)((int64_t) (adx) * (bdy)); | |||
342 | bdx_ady = _cairo_int32x32_64_mul (bdx, ady)((int64_t) (bdx) * (ady)); | |||
343 | ||||
344 | return _cairo_int64_cmp (adx_bdy, bdx_ady)((adx_bdy) == (bdx_ady) ? 0 : (adx_bdy) < (bdx_ady) ? -1 : 1); | |||
345 | } else | |||
346 | return _cairo_int128_cmp (A, B); | |||
347 | case HAVE_DX_ADX: | |||
348 | /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */ | |||
349 | if ((-adx ^ dx) < 0) { | |||
350 | return dx; | |||
351 | } else { | |||
352 | cairo_int64_t ady_dx, dy_adx; | |||
353 | ||||
354 | ady_dx = _cairo_int32x32_64_mul (ady, dx)((int64_t) (ady) * (dx)); | |||
355 | dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx)((int64_t) (a->edge.line.p1.y - y) * (adx)); | |||
356 | ||||
357 | return _cairo_int64_cmp (ady_dx, dy_adx)((ady_dx) == (dy_adx) ? 0 : (ady_dx) < (dy_adx) ? -1 : 1); | |||
358 | } | |||
359 | case HAVE_DX_BDX: | |||
360 | /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */ | |||
361 | if ((bdx ^ dx) < 0) { | |||
362 | return dx; | |||
363 | } else { | |||
364 | cairo_int64_t bdy_dx, dy_bdx; | |||
365 | ||||
366 | bdy_dx = _cairo_int32x32_64_mul (bdy, dx)((int64_t) (bdy) * (dx)); | |||
367 | dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx)((int64_t) (y - b->edge.line.p1.y) * (bdx)); | |||
368 | ||||
369 | return _cairo_int64_cmp (bdy_dx, dy_bdx)((bdy_dx) == (dy_bdx) ? 0 : (bdy_dx) < (dy_bdx) ? -1 : 1); | |||
370 | } | |||
371 | case HAVE_ALL: | |||
372 | /* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */ | |||
373 | return _cairo_int128_cmp (L, _cairo_int128_sub (B, A)_cairo_uint128_sub(B,A)); | |||
374 | } | |||
375 | #undef B | |||
376 | #undef A | |||
377 | #undef L | |||
378 | } | |||
379 | ||||
380 | /* | |||
381 | * We need to compare the x-coordinate of a line for a particular y wrt to a | |||
382 | * given x, without loss of precision. | |||
383 | * | |||
384 | * The x-coordinate along an edge for a given y is: | |||
385 | * X = A_x + (Y - A_y) * A_dx / A_dy | |||
386 | * | |||
387 | * So the inequality we wish to test is: | |||
388 | * A_x + (Y - A_y) * A_dx / A_dy ∘ X | |||
389 | * where ∘ is our inequality operator. | |||
390 | * | |||
391 | * By construction, we know that A_dy (and (Y - A_y)) are | |||
392 | * all positive, so we can rearrange it thus without causing a sign change: | |||
393 | * (Y - A_y) * A_dx ∘ (X - A_x) * A_dy | |||
394 | * | |||
395 | * Given the assumption that all the deltas fit within 32 bits, we can compute | |||
396 | * this comparison directly using 64 bit arithmetic. | |||
397 | * | |||
398 | * See the similar discussion for _slope_compare() and | |||
399 | * edges_compare_x_for_y_general(). | |||
400 | */ | |||
401 | static int | |||
402 | edge_compare_for_y_against_x (const cairo_bo_edge_t *a, | |||
403 | int32_t y, | |||
404 | int32_t x) | |||
405 | { | |||
406 | int32_t adx, ady; | |||
407 | int32_t dx, dy; | |||
408 | cairo_int64_t L, R; | |||
409 | ||||
410 | if (x < a->edge.line.p1.x && x < a->edge.line.p2.x) | |||
411 | return 1; | |||
412 | if (x > a->edge.line.p1.x && x > a->edge.line.p2.x) | |||
413 | return -1; | |||
414 | ||||
415 | adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
416 | dx = x - a->edge.line.p1.x; | |||
417 | ||||
418 | if (adx == 0) | |||
419 | return -dx; | |||
420 | if (dx == 0 || (adx ^ dx) < 0) | |||
421 | return adx; | |||
422 | ||||
423 | dy = y - a->edge.line.p1.y; | |||
424 | ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
425 | ||||
426 | L = _cairo_int32x32_64_mul (dy, adx)((int64_t) (dy) * (adx)); | |||
427 | R = _cairo_int32x32_64_mul (dx, ady)((int64_t) (dx) * (ady)); | |||
428 | ||||
429 | return _cairo_int64_cmp (L, R)((L) == (R) ? 0 : (L) < (R) ? -1 : 1); | |||
430 | } | |||
431 | ||||
432 | static int | |||
433 | edges_compare_x_for_y (const cairo_bo_edge_t *a, | |||
434 | const cairo_bo_edge_t *b, | |||
435 | int32_t y) | |||
436 | { | |||
437 | /* If the sweep-line is currently on an end-point of a line, | |||
438 | * then we know its precise x value (and considering that we often need to | |||
439 | * compare events at end-points, this happens frequently enough to warrant | |||
440 | * special casing). | |||
441 | */ | |||
442 | enum { | |||
443 | HAVE_NEITHER = 0x0, | |||
444 | HAVE_AX = 0x1, | |||
445 | HAVE_BX = 0x2, | |||
446 | HAVE_BOTH = HAVE_AX | HAVE_BX | |||
447 | } have_ax_bx = HAVE_BOTH; | |||
448 | int32_t ax = 0, bx = 0; | |||
449 | ||||
450 | if (y == a->edge.line.p1.y) | |||
451 | ax = a->edge.line.p1.x; | |||
452 | else if (y == a->edge.line.p2.y) | |||
453 | ax = a->edge.line.p2.x; | |||
454 | else | |||
455 | have_ax_bx &= ~HAVE_AX; | |||
456 | ||||
457 | if (y == b->edge.line.p1.y) | |||
458 | bx = b->edge.line.p1.x; | |||
459 | else if (y == b->edge.line.p2.y) | |||
460 | bx = b->edge.line.p2.x; | |||
461 | else | |||
462 | have_ax_bx &= ~HAVE_BX; | |||
463 | ||||
464 | switch (have_ax_bx) { | |||
465 | default: | |||
466 | case HAVE_NEITHER: | |||
467 | return edges_compare_x_for_y_general (a, b, y); | |||
468 | case HAVE_AX: | |||
469 | return -edge_compare_for_y_against_x (b, y, ax); | |||
470 | case HAVE_BX: | |||
471 | return edge_compare_for_y_against_x (a, y, bx); | |||
472 | case HAVE_BOTH: | |||
473 | return ax - bx; | |||
474 | } | |||
475 | } | |||
476 | ||||
477 | static inline int | |||
478 | _line_equal (const cairo_line_t *a, const cairo_line_t *b) | |||
479 | { | |||
480 | return (a->p1.x == b->p1.x && a->p1.y == b->p1.y && | |||
481 | a->p2.x == b->p2.x && a->p2.y == b->p2.y); | |||
482 | } | |||
483 | ||||
484 | static int | |||
485 | _cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line, | |||
486 | const cairo_bo_edge_t *a, | |||
487 | const cairo_bo_edge_t *b) | |||
488 | { | |||
489 | int cmp; | |||
490 | ||||
491 | /* compare the edges if not identical */ | |||
492 | if (! _line_equal (&a->edge.line, &b->edge.line)) { | |||
493 | cmp = edges_compare_x_for_y (a, b, sweep_line->current_y); | |||
494 | if (cmp) | |||
495 | return cmp; | |||
496 | ||||
497 | /* The two edges intersect exactly at y, so fall back on slope | |||
498 | * comparison. We know that this compare_edges function will be | |||
499 | * called only when starting a new edge, (not when stopping an | |||
500 | * edge), so we don't have to worry about conditionally inverting | |||
501 | * the sense of _slope_compare. */ | |||
502 | cmp = _slope_compare (a, b); | |||
503 | if (cmp) | |||
504 | return cmp; | |||
505 | } | |||
506 | ||||
507 | /* We've got two collinear edges now. */ | |||
508 | return b->edge.bottom - a->edge.bottom; | |||
509 | } | |||
510 | ||||
511 | static inline cairo_int64_t | |||
512 | det32_64 (int32_t a, int32_t b, | |||
513 | int32_t c, int32_t d) | |||
514 | { | |||
515 | /* det = a * d - b * c */ | |||
516 | return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),((((int64_t) (a) * (d))) - (((int64_t) (b) * (c)))) | |||
517 | _cairo_int32x32_64_mul (b, c))((((int64_t) (a) * (d))) - (((int64_t) (b) * (c)))); | |||
518 | } | |||
519 | ||||
520 | static inline cairo_int128_t | |||
521 | det64x32_128 (cairo_int64_t a, int32_t b, | |||
522 | cairo_int64_t c, int32_t d) | |||
523 | { | |||
524 | /* det = a * d - b * c */ | |||
525 | return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),_cairo_uint128_sub(_cairo_int64x64_128_mul(a, ((int64_t) (d)) ),_cairo_int64x64_128_mul(c, ((int64_t) (b)))) | |||
526 | _cairo_int64x32_128_mul (c, b))_cairo_uint128_sub(_cairo_int64x64_128_mul(a, ((int64_t) (d)) ),_cairo_int64x64_128_mul(c, ((int64_t) (b)))); | |||
527 | } | |||
528 | ||||
529 | /* Compute the intersection of two lines as defined by two edges. The | |||
530 | * result is provided as a coordinate pair of 128-bit integers. | |||
531 | * | |||
532 | * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or | |||
533 | * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel. | |||
534 | */ | |||
535 | static cairo_bool_t | |||
536 | intersect_lines (cairo_bo_edge_t *a, | |||
537 | cairo_bo_edge_t *b, | |||
538 | cairo_bo_intersect_point_t *intersection) | |||
539 | { | |||
540 | cairo_int64_t a_det, b_det; | |||
541 | ||||
542 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
543 | * bits. That's not true in general as there could be overflow. We | |||
544 | * should prevent that before the tessellation algorithm begins. | |||
545 | * What we're doing to mitigate this is to perform clamping in | |||
546 | * cairo_bo_tessellate_polygon(). | |||
547 | */ | |||
548 | int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x; | |||
549 | int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y; | |||
550 | ||||
551 | int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x; | |||
552 | int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y; | |||
553 | ||||
554 | cairo_int64_t den_det; | |||
555 | cairo_int64_t R; | |||
556 | cairo_quorem64_t qr; | |||
557 | ||||
558 | den_det = det32_64 (dx1, dy1, dx2, dy2); | |||
559 | ||||
560 | /* Q: Can we determine that the lines do not intersect (within range) | |||
561 | * much more cheaply than computing the intersection point i.e. by | |||
562 | * avoiding the division? | |||
563 | * | |||
564 | * X = ax + t * adx = bx + s * bdx; | |||
565 | * Y = ay + t * ady = by + s * bdy; | |||
566 | * ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx) | |||
567 | * => t * L = R | |||
568 | * | |||
569 | * Therefore we can reject any intersection (under the criteria for | |||
570 | * valid intersection events) if: | |||
571 | * L^R < 0 => t < 0, or | |||
572 | * L<R => t > 1 | |||
573 | * | |||
574 | * (where top/bottom must at least extend to the line endpoints). | |||
575 | * | |||
576 | * A similar substitution can be performed for s, yielding: | |||
577 | * s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by) | |||
578 | */ | |||
579 | R = det32_64 (dx2, dy2, | |||
580 | b->edge.line.p1.x - a->edge.line.p1.x, | |||
581 | b->edge.line.p1.y - a->edge.line.p1.y); | |||
582 | if (_cairo_int64_negative (den_det)((den_det) < 0)) { | |||
583 | if (_cairo_int64_ge (den_det, R)(!((den_det) < (R)))) | |||
584 | return FALSE0; | |||
585 | } else { | |||
586 | if (_cairo_int64_le (den_det, R)(!((R) < (den_det)))) | |||
587 | return FALSE0; | |||
588 | } | |||
589 | ||||
590 | R = det32_64 (dy1, dx1, | |||
591 | a->edge.line.p1.y - b->edge.line.p1.y, | |||
592 | a->edge.line.p1.x - b->edge.line.p1.x); | |||
593 | if (_cairo_int64_negative (den_det)((den_det) < 0)) { | |||
594 | if (_cairo_int64_ge (den_det, R)(!((den_det) < (R)))) | |||
595 | return FALSE0; | |||
596 | } else { | |||
597 | if (_cairo_int64_le (den_det, R)(!((R) < (den_det)))) | |||
598 | return FALSE0; | |||
599 | } | |||
600 | ||||
601 | /* We now know that the two lines should intersect within range. */ | |||
602 | ||||
603 | a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y, | |||
604 | a->edge.line.p2.x, a->edge.line.p2.y); | |||
605 | b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y, | |||
606 | b->edge.line.p2.x, b->edge.line.p2.y); | |||
607 | ||||
608 | /* x = det (a_det, dx1, b_det, dx2) / den_det */ | |||
609 | qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1, | |||
610 | b_det, dx2), | |||
611 | den_det); | |||
612 | if (_cairo_int64_eq (qr.rem, den_det)((qr.rem) == (den_det))) | |||
613 | return FALSE0; | |||
614 | #if 0 | |||
615 | intersection->x.exactness = _cairo_int64_is_zero (qr.rem)((qr.rem) == 0) ? EXACT : INEXACT; | |||
616 | #else | |||
617 | intersection->x.exactness = EXACT; | |||
618 | if (! _cairo_int64_is_zero (qr.rem)((qr.rem) == 0)) { | |||
619 | if (_cairo_int64_negative (den_det)((den_det) < 0) ^ _cairo_int64_negative (qr.rem)((qr.rem) < 0)) | |||
620 | qr.rem = _cairo_int64_negate (qr.rem)(-(qr.rem)); | |||
621 | qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2))((qr.rem) * (((int64_t) (2)))); | |||
622 | if (_cairo_int64_ge (qr.rem, den_det)(!((qr.rem) < (den_det)))) { | |||
623 | qr.quo = _cairo_int64_add (qr.quo,((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))) | |||
624 | _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1))((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))); | |||
625 | } else | |||
626 | intersection->x.exactness = INEXACT; | |||
627 | } | |||
628 | #endif | |||
629 | intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo)((int32_t) (qr.quo)); | |||
630 | ||||
631 | /* y = det (a_det, dy1, b_det, dy2) / den_det */ | |||
632 | qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1, | |||
633 | b_det, dy2), | |||
634 | den_det); | |||
635 | if (_cairo_int64_eq (qr.rem, den_det)((qr.rem) == (den_det))) | |||
636 | return FALSE0; | |||
637 | #if 0 | |||
638 | intersection->y.exactness = _cairo_int64_is_zero (qr.rem)((qr.rem) == 0) ? EXACT : INEXACT; | |||
639 | #else | |||
640 | intersection->y.exactness = EXACT; | |||
641 | if (! _cairo_int64_is_zero (qr.rem)((qr.rem) == 0)) { | |||
642 | if (_cairo_int64_negative (den_det)((den_det) < 0) ^ _cairo_int64_negative (qr.rem)((qr.rem) < 0)) | |||
643 | qr.rem = _cairo_int64_negate (qr.rem)(-(qr.rem)); | |||
644 | qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2))((qr.rem) * (((int64_t) (2)))); | |||
645 | if (_cairo_int64_ge (qr.rem, den_det)(!((qr.rem) < (den_det)))) { | |||
646 | qr.quo = _cairo_int64_add (qr.quo,((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))) | |||
647 | _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1))((qr.quo) + (((int64_t) (((qr.quo) < 0) ? -1 : 1)))); | |||
648 | } else | |||
649 | intersection->y.exactness = INEXACT; | |||
650 | } | |||
651 | #endif | |||
652 | intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo)((int32_t) (qr.quo)); | |||
653 | ||||
654 | return TRUE1; | |||
655 | } | |||
656 | ||||
657 | static int | |||
658 | _cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t a, | |||
659 | int32_t b) | |||
660 | { | |||
661 | /* First compare the quotient */ | |||
662 | if (a.ordinate > b) | |||
663 | return +1; | |||
664 | if (a.ordinate < b) | |||
665 | return -1; | |||
666 | /* With quotient identical, if remainder is 0 then compare equal */ | |||
667 | /* Otherwise, the non-zero remainder makes a > b */ | |||
668 | return INEXACT == a.exactness; | |||
669 | } | |||
670 | ||||
671 | /* Does the given edge contain the given point. The point must already | |||
672 | * be known to be contained within the line determined by the edge, | |||
673 | * (most likely the point results from an intersection of this edge | |||
674 | * with another). | |||
675 | * | |||
676 | * If we had exact arithmetic, then this function would simply be a | |||
677 | * matter of examining whether the y value of the point lies within | |||
678 | * the range of y values of the edge. But since intersection points | |||
679 | * are not exact due to being rounded to the nearest integer within | |||
680 | * the available precision, we must also examine the x value of the | |||
681 | * point. | |||
682 | * | |||
683 | * The definition of "contains" here is that the given intersection | |||
684 | * point will be seen by the sweep line after the start event for the | |||
685 | * given edge and before the stop event for the edge. See the comments | |||
686 | * in the implementation for more details. | |||
687 | */ | |||
688 | static cairo_bool_t | |||
689 | _cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t *edge, | |||
690 | cairo_bo_intersect_point_t *point) | |||
691 | { | |||
692 | int cmp_top, cmp_bottom; | |||
693 | ||||
694 | /* XXX: When running the actual algorithm, we don't actually need to | |||
695 | * compare against edge->top at all here, since any intersection above | |||
696 | * top is eliminated early via a slope comparison. We're leaving these | |||
697 | * here for now only for the sake of the quadratic-time intersection | |||
698 | * finder which needs them. | |||
699 | */ | |||
700 | ||||
701 | cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y, | |||
702 | edge->edge.top); | |||
703 | cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y, | |||
704 | edge->edge.bottom); | |||
705 | ||||
706 | if (cmp_top < 0 || cmp_bottom > 0) | |||
707 | { | |||
708 | return FALSE0; | |||
709 | } | |||
710 | ||||
711 | if (cmp_top > 0 && cmp_bottom < 0) | |||
712 | { | |||
713 | return TRUE1; | |||
714 | } | |||
715 | ||||
716 | /* At this stage, the point lies on the same y value as either | |||
717 | * edge->top or edge->bottom, so we have to examine the x value in | |||
718 | * order to properly determine containment. */ | |||
719 | ||||
720 | /* If the y value of the point is the same as the y value of the | |||
721 | * top of the edge, then the x value of the point must be greater | |||
722 | * to be considered as inside the edge. Similarly, if the y value | |||
723 | * of the point is the same as the y value of the bottom of the | |||
724 | * edge, then the x value of the point must be less to be | |||
725 | * considered as inside. */ | |||
726 | ||||
727 | if (cmp_top == 0) { | |||
728 | cairo_fixed_t top_x; | |||
729 | ||||
730 | top_x = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
731 | edge->edge.top); | |||
732 | return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0; | |||
733 | } else { /* cmp_bottom == 0 */ | |||
734 | cairo_fixed_t bot_x; | |||
735 | ||||
736 | bot_x = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
737 | edge->edge.bottom); | |||
738 | return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0; | |||
739 | } | |||
740 | } | |||
741 | ||||
742 | /* Compute the intersection of two edges. The result is provided as a | |||
743 | * coordinate pair of 128-bit integers. | |||
744 | * | |||
745 | * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection | |||
746 | * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the | |||
747 | * intersection of the lines defined by the edges occurs outside of | |||
748 | * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges | |||
749 | * are exactly parallel. | |||
750 | * | |||
751 | * Note that when determining if a candidate intersection is "inside" | |||
752 | * an edge, we consider both the infinitesimal shortening and the | |||
753 | * infinitesimal tilt rules described by John Hobby. Specifically, if | |||
754 | * the intersection is exactly the same as an edge point, it is | |||
755 | * effectively outside (no intersection is returned). Also, if the | |||
756 | * intersection point has the same | |||
757 | */ | |||
758 | static cairo_bool_t | |||
759 | _cairo_bo_edge_intersect (cairo_bo_edge_t *a, | |||
760 | cairo_bo_edge_t *b, | |||
761 | cairo_bo_point32_t *intersection) | |||
762 | { | |||
763 | cairo_bo_intersect_point_t quorem; | |||
764 | ||||
765 | if (! intersect_lines (a, b, &quorem)) | |||
766 | return FALSE0; | |||
767 | ||||
768 | if (! _cairo_bo_edge_contains_intersect_point (a, &quorem)) | |||
769 | return FALSE0; | |||
770 | ||||
771 | if (! _cairo_bo_edge_contains_intersect_point (b, &quorem)) | |||
772 | return FALSE0; | |||
773 | ||||
774 | /* Now that we've correctly compared the intersection point and | |||
775 | * determined that it lies within the edge, then we know that we | |||
776 | * no longer need any more bits of storage for the intersection | |||
777 | * than we do for our edge coordinates. We also no longer need the | |||
778 | * remainder from the division. */ | |||
779 | intersection->x = quorem.x.ordinate; | |||
780 | intersection->y = quorem.y.ordinate; | |||
781 | ||||
782 | return TRUE1; | |||
783 | } | |||
784 | ||||
785 | static inline int | |||
786 | cairo_bo_event_compare (const cairo_bo_event_t *a, | |||
787 | const cairo_bo_event_t *b) | |||
788 | { | |||
789 | int cmp; | |||
790 | ||||
791 | cmp = _cairo_bo_point32_compare (&a->point, &b->point); | |||
792 | if (cmp) | |||
793 | return cmp; | |||
794 | ||||
795 | cmp = a->type - b->type; | |||
796 | if (cmp) | |||
797 | return cmp; | |||
798 | ||||
799 | return a - b; | |||
800 | } | |||
801 | ||||
802 | static inline void | |||
803 | _pqueue_init (pqueue_t *pq) | |||
804 | { | |||
805 | pq->max_size = ARRAY_LENGTH (pq->elements_embedded)((int) (sizeof (pq->elements_embedded) / sizeof (pq->elements_embedded [0]))); | |||
806 | pq->size = 0; | |||
807 | ||||
808 | pq->elements = pq->elements_embedded; | |||
809 | } | |||
810 | ||||
811 | static inline void | |||
812 | _pqueue_fini (pqueue_t *pq) | |||
813 | { | |||
814 | if (pq->elements != pq->elements_embedded) | |||
815 | free (pq->elements); | |||
816 | } | |||
817 | ||||
818 | static cairo_status_t | |||
819 | _pqueue_grow (pqueue_t *pq) | |||
820 | { | |||
821 | cairo_bo_event_t **new_elements; | |||
822 | pq->max_size *= 2; | |||
823 | ||||
824 | if (pq->elements == pq->elements_embedded) { | |||
825 | new_elements = _cairo_malloc_ab (pq->max_size, | |||
826 | sizeof (cairo_bo_event_t *)); | |||
827 | if (unlikely (new_elements == NULL)(__builtin_expect (!!(new_elements == ((void*)0)), 0))) | |||
828 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
829 | ||||
830 | memcpy (new_elements, pq->elements_embedded, | |||
831 | sizeof (pq->elements_embedded)); | |||
832 | } else { | |||
833 | new_elements = _cairo_realloc_ab (pq->elements, | |||
834 | pq->max_size, | |||
835 | sizeof (cairo_bo_event_t *)); | |||
836 | if (unlikely (new_elements == NULL)(__builtin_expect (!!(new_elements == ((void*)0)), 0))) | |||
837 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
838 | } | |||
839 | ||||
840 | pq->elements = new_elements; | |||
841 | return CAIRO_STATUS_SUCCESS; | |||
842 | } | |||
843 | ||||
844 | static inline cairo_status_t | |||
845 | _pqueue_push (pqueue_t *pq, cairo_bo_event_t *event) | |||
846 | { | |||
847 | cairo_bo_event_t **elements; | |||
848 | int i, parent; | |||
849 | ||||
850 | if (unlikely (pq->size + 1 == pq->max_size)(__builtin_expect (!!(pq->size + 1 == pq->max_size), 0) )) { | |||
851 | cairo_status_t status; | |||
852 | ||||
853 | status = _pqueue_grow (pq); | |||
854 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
855 | return status; | |||
856 | } | |||
857 | ||||
858 | elements = pq->elements; | |||
859 | ||||
860 | for (i = ++pq->size; | |||
861 | i != PQ_FIRST_ENTRY1 && | |||
862 | cairo_bo_event_compare (event, | |||
863 | elements[parent = PQ_PARENT_INDEX (i)((i) >> 1)]) < 0; | |||
864 | i = parent) | |||
865 | { | |||
866 | elements[i] = elements[parent]; | |||
867 | } | |||
868 | ||||
869 | elements[i] = event; | |||
870 | ||||
871 | return CAIRO_STATUS_SUCCESS; | |||
872 | } | |||
873 | ||||
874 | static inline void | |||
875 | _pqueue_pop (pqueue_t *pq) | |||
876 | { | |||
877 | cairo_bo_event_t **elements = pq->elements; | |||
878 | cairo_bo_event_t *tail; | |||
879 | int child, i; | |||
880 | ||||
881 | tail = elements[pq->size--]; | |||
882 | if (pq->size == 0) { | |||
883 | elements[PQ_FIRST_ENTRY1] = NULL((void*)0); | |||
884 | return; | |||
885 | } | |||
886 | ||||
887 | for (i = PQ_FIRST_ENTRY1; | |||
888 | (child = PQ_LEFT_CHILD_INDEX (i)((i) << 1)) <= pq->size; | |||
889 | i = child) | |||
890 | { | |||
891 | if (child != pq->size && | |||
892 | cairo_bo_event_compare (elements[child+1], | |||
893 | elements[child]) < 0) | |||
894 | { | |||
895 | child++; | |||
896 | } | |||
897 | ||||
898 | if (cairo_bo_event_compare (elements[child], tail) >= 0) | |||
899 | break; | |||
900 | ||||
901 | elements[i] = elements[child]; | |||
902 | } | |||
903 | elements[i] = tail; | |||
904 | } | |||
905 | ||||
906 | static inline cairo_status_t | |||
907 | _cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue, | |||
908 | cairo_bo_event_type_t type, | |||
909 | cairo_bo_edge_t *e1, | |||
910 | cairo_bo_edge_t *e2, | |||
911 | const cairo_point_t *point) | |||
912 | { | |||
913 | cairo_bo_queue_event_t *event; | |||
914 | ||||
915 | event = _cairo_freepool_alloc (&queue->pool); | |||
916 | if (unlikely (event == NULL)(__builtin_expect (!!(event == ((void*)0)), 0))) | |||
917 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
918 | ||||
919 | event->type = type; | |||
920 | event->e1 = e1; | |||
921 | event->e2 = e2; | |||
922 | event->point = *point; | |||
923 | ||||
924 | return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event); | |||
925 | } | |||
926 | ||||
927 | static void | |||
928 | _cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue, | |||
929 | cairo_bo_event_t *event) | |||
930 | { | |||
931 | _cairo_freepool_free (&queue->pool, event); | |||
932 | } | |||
933 | ||||
934 | static cairo_bo_event_t * | |||
935 | _cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue) | |||
936 | { | |||
937 | cairo_bo_event_t *event, *cmp; | |||
938 | ||||
939 | event = event_queue->pqueue.elements[PQ_FIRST_ENTRY1]; | |||
940 | cmp = *event_queue->start_events; | |||
941 | if (event == NULL((void*)0) || | |||
942 | (cmp != NULL((void*)0) && cairo_bo_event_compare (cmp, event) < 0)) | |||
943 | { | |||
944 | event = cmp; | |||
945 | event_queue->start_events++; | |||
946 | } | |||
947 | else | |||
948 | { | |||
949 | _pqueue_pop (&event_queue->pqueue); | |||
950 | } | |||
951 | ||||
952 | return event; | |||
953 | } | |||
954 | ||||
955 | CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| ||||
956 | cairo_bo_event_t *,static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
957 | cairo_bo_event_compare)static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
958 | ||||
959 | static void | |||
960 | _cairo_bo_event_queue_init (cairo_bo_event_queue_t *event_queue, | |||
961 | cairo_bo_event_t **start_events, | |||
962 | int num_events) | |||
963 | { | |||
964 | _cairo_bo_event_queue_sort (start_events, num_events); | |||
965 | start_events[num_events] = NULL((void*)0); | |||
966 | ||||
967 | event_queue->start_events = start_events; | |||
968 | ||||
969 | _cairo_freepool_init (&event_queue->pool, | |||
970 | sizeof (cairo_bo_queue_event_t)); | |||
971 | _pqueue_init (&event_queue->pqueue); | |||
972 | event_queue->pqueue.elements[PQ_FIRST_ENTRY1] = NULL((void*)0); | |||
973 | } | |||
974 | ||||
975 | static cairo_status_t | |||
976 | _cairo_bo_event_queue_insert_stop (cairo_bo_event_queue_t *event_queue, | |||
977 | cairo_bo_edge_t *edge) | |||
978 | { | |||
979 | cairo_bo_point32_t point; | |||
980 | ||||
981 | point.y = edge->edge.bottom; | |||
982 | point.x = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
983 | point.y); | |||
984 | return _cairo_bo_event_queue_insert (event_queue, | |||
985 | CAIRO_BO_EVENT_TYPE_STOP, | |||
986 | edge, NULL((void*)0), | |||
987 | &point); | |||
988 | } | |||
989 | ||||
990 | static void | |||
991 | _cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue) | |||
992 | { | |||
993 | _pqueue_fini (&event_queue->pqueue); | |||
994 | _cairo_freepool_fini (&event_queue->pool); | |||
995 | } | |||
996 | ||||
997 | static inline cairo_status_t | |||
998 | _cairo_bo_event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue, | |||
999 | cairo_bo_edge_t *left, | |||
1000 | cairo_bo_edge_t *right) | |||
1001 | { | |||
1002 | cairo_bo_point32_t intersection; | |||
1003 | ||||
1004 | if (_line_equal (&left->edge.line, &right->edge.line)) | |||
1005 | return CAIRO_STATUS_SUCCESS; | |||
1006 | ||||
1007 | /* The names "left" and "right" here are correct descriptions of | |||
1008 | * the order of the two edges within the active edge list. So if a | |||
1009 | * slope comparison also puts left less than right, then we know | |||
1010 | * that the intersection of these two segments has already | |||
1011 | * occurred before the current sweep line position. */ | |||
1012 | if (_slope_compare (left, right) <= 0) | |||
1013 | return CAIRO_STATUS_SUCCESS; | |||
1014 | ||||
1015 | if (! _cairo_bo_edge_intersect (left, right, &intersection)) | |||
1016 | return CAIRO_STATUS_SUCCESS; | |||
1017 | ||||
1018 | return _cairo_bo_event_queue_insert (event_queue, | |||
1019 | CAIRO_BO_EVENT_TYPE_INTERSECTION, | |||
1020 | left, right, | |||
1021 | &intersection); | |||
1022 | } | |||
1023 | ||||
1024 | static void | |||
1025 | _cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line) | |||
1026 | { | |||
1027 | sweep_line->head = NULL((void*)0); | |||
1028 | sweep_line->current_y = INT32_MIN(-2147483647-1); | |||
1029 | sweep_line->current_edge = NULL((void*)0); | |||
1030 | } | |||
1031 | ||||
1032 | static cairo_status_t | |||
1033 | _cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line, | |||
1034 | cairo_bo_edge_t *edge) | |||
1035 | { | |||
1036 | if (sweep_line->current_edge != NULL((void*)0)) { | |||
1037 | cairo_bo_edge_t *prev, *next; | |||
1038 | int cmp; | |||
1039 | ||||
1040 | cmp = _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
1041 | sweep_line->current_edge, | |||
1042 | edge); | |||
1043 | if (cmp < 0) { | |||
1044 | prev = sweep_line->current_edge; | |||
1045 | next = prev->next; | |||
1046 | while (next != NULL((void*)0) && | |||
1047 | _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
1048 | next, edge) < 0) | |||
1049 | { | |||
1050 | prev = next, next = prev->next; | |||
1051 | } | |||
1052 | ||||
1053 | prev->next = edge; | |||
1054 | edge->prev = prev; | |||
1055 | edge->next = next; | |||
1056 | if (next != NULL((void*)0)) | |||
1057 | next->prev = edge; | |||
1058 | } else if (cmp > 0) { | |||
1059 | next = sweep_line->current_edge; | |||
1060 | prev = next->prev; | |||
1061 | while (prev != NULL((void*)0) && | |||
1062 | _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
1063 | prev, edge) > 0) | |||
1064 | { | |||
1065 | next = prev, prev = next->prev; | |||
1066 | } | |||
1067 | ||||
1068 | next->prev = edge; | |||
1069 | edge->next = next; | |||
1070 | edge->prev = prev; | |||
1071 | if (prev != NULL((void*)0)) | |||
1072 | prev->next = edge; | |||
1073 | else | |||
1074 | sweep_line->head = edge; | |||
1075 | } else { | |||
1076 | prev = sweep_line->current_edge; | |||
1077 | edge->prev = prev; | |||
1078 | edge->next = prev->next; | |||
1079 | if (prev->next != NULL((void*)0)) | |||
1080 | prev->next->prev = edge; | |||
1081 | prev->next = edge; | |||
1082 | } | |||
1083 | } else { | |||
1084 | sweep_line->head = edge; | |||
1085 | } | |||
1086 | ||||
1087 | sweep_line->current_edge = edge; | |||
1088 | ||||
1089 | return CAIRO_STATUS_SUCCESS; | |||
1090 | } | |||
1091 | ||||
1092 | static void | |||
1093 | _cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line, | |||
1094 | cairo_bo_edge_t *edge) | |||
1095 | { | |||
1096 | if (edge->prev != NULL((void*)0)) | |||
1097 | edge->prev->next = edge->next; | |||
1098 | else | |||
1099 | sweep_line->head = edge->next; | |||
1100 | ||||
1101 | if (edge->next != NULL((void*)0)) | |||
1102 | edge->next->prev = edge->prev; | |||
1103 | ||||
1104 | if (sweep_line->current_edge == edge) | |||
1105 | sweep_line->current_edge = edge->prev ? edge->prev : edge->next; | |||
1106 | } | |||
1107 | ||||
1108 | static void | |||
1109 | _cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t *sweep_line, | |||
1110 | cairo_bo_edge_t *left, | |||
1111 | cairo_bo_edge_t *right) | |||
1112 | { | |||
1113 | if (left->prev != NULL((void*)0)) | |||
1114 | left->prev->next = right; | |||
1115 | else | |||
1116 | sweep_line->head = right; | |||
1117 | ||||
1118 | if (right->next != NULL((void*)0)) | |||
1119 | right->next->prev = left; | |||
1120 | ||||
1121 | left->next = right->next; | |||
1122 | right->next = left; | |||
1123 | ||||
1124 | right->prev = left->prev; | |||
1125 | left->prev = right; | |||
1126 | } | |||
1127 | ||||
1128 | static inline cairo_bool_t | |||
1129 | edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b) | |||
1130 | { | |||
1131 | if (_line_equal (&a->edge.line, &b->edge.line)) | |||
1132 | return TRUE1; | |||
1133 | ||||
1134 | if (_slope_compare (a, b)) | |||
1135 | return FALSE0; | |||
1136 | ||||
1137 | /* The choice of y is not truly arbitrary since we must guarantee that it | |||
1138 | * is greater than the start of either line. | |||
1139 | */ | |||
1140 | if (a->edge.line.p1.y == b->edge.line.p1.y) { | |||
1141 | return a->edge.line.p1.x == b->edge.line.p1.x; | |||
1142 | } else if (a->edge.line.p2.y == b->edge.line.p2.y) { | |||
1143 | return a->edge.line.p2.x == b->edge.line.p2.x; | |||
1144 | } else if (a->edge.line.p1.y < b->edge.line.p1.y) { | |||
1145 | return edge_compare_for_y_against_x (b, | |||
1146 | a->edge.line.p1.y, | |||
1147 | a->edge.line.p1.x) == 0; | |||
1148 | } else { | |||
1149 | return edge_compare_for_y_against_x (a, | |||
1150 | b->edge.line.p1.y, | |||
1151 | b->edge.line.p1.x) == 0; | |||
1152 | } | |||
1153 | } | |||
1154 | ||||
1155 | static void | |||
1156 | _cairo_bo_edge_end (cairo_bo_edge_t *left, | |||
1157 | int32_t bot, | |||
1158 | cairo_polygon_t *polygon) | |||
1159 | { | |||
1160 | cairo_bo_deferred_t *d = &left->deferred; | |||
1161 | ||||
1162 | if (likely (d->top < bot)(__builtin_expect (!!(d->top < bot), 1))) { | |||
1163 | _cairo_polygon_add_line (polygon, | |||
1164 | &left->edge.line, | |||
1165 | d->top, bot, | |||
1166 | 1); | |||
1167 | _cairo_polygon_add_line (polygon, | |||
1168 | &d->right->edge.line, | |||
1169 | d->top, bot, | |||
1170 | -1); | |||
1171 | } | |||
1172 | ||||
1173 | d->right = NULL((void*)0); | |||
1174 | } | |||
1175 | ||||
1176 | ||||
1177 | static inline void | |||
1178 | _cairo_bo_edge_start_or_continue (cairo_bo_edge_t *left, | |||
1179 | cairo_bo_edge_t *right, | |||
1180 | int top, | |||
1181 | cairo_polygon_t *polygon) | |||
1182 | { | |||
1183 | if (left->deferred.right == right) | |||
1184 | return; | |||
1185 | ||||
1186 | if (left->deferred.right != NULL((void*)0)) { | |||
1187 | if (right != NULL((void*)0) && edges_colinear (left->deferred.right, right)) | |||
1188 | { | |||
1189 | /* continuation on right, so just swap edges */ | |||
1190 | left->deferred.right = right; | |||
1191 | return; | |||
1192 | } | |||
1193 | ||||
1194 | _cairo_bo_edge_end (left, top, polygon); | |||
1195 | } | |||
1196 | ||||
1197 | if (right != NULL((void*)0) && ! edges_colinear (left, right)) { | |||
1198 | left->deferred.top = top; | |||
1199 | left->deferred.right = right; | |||
1200 | } | |||
1201 | } | |||
1202 | ||||
1203 | static inline void | |||
1204 | _active_edges_to_polygon (cairo_bo_edge_t *left, | |||
1205 | int32_t top, | |||
1206 | cairo_fill_rule_t fill_rule, | |||
1207 | cairo_polygon_t *polygon) | |||
1208 | { | |||
1209 | cairo_bo_edge_t *right; | |||
1210 | unsigned int mask; | |||
1211 | ||||
1212 | if (fill_rule == CAIRO_FILL_RULE_WINDING) | |||
1213 | mask = ~0; | |||
1214 | else | |||
1215 | mask = 1; | |||
1216 | ||||
1217 | while (left != NULL((void*)0)) { | |||
1218 | int in_out = left->edge.dir; | |||
1219 | ||||
1220 | right = left->next; | |||
1221 | if (left->deferred.right == NULL((void*)0)) { | |||
1222 | while (right != NULL((void*)0) && right->deferred.right == NULL((void*)0)) | |||
1223 | right = right->next; | |||
1224 | ||||
1225 | if (right != NULL((void*)0) && edges_colinear (left, right)) { | |||
1226 | /* continuation on left */ | |||
1227 | left->deferred = right->deferred; | |||
1228 | right->deferred.right = NULL((void*)0); | |||
1229 | } | |||
1230 | } | |||
1231 | ||||
1232 | right = left->next; | |||
1233 | while (right != NULL((void*)0)) { | |||
1234 | if (right->deferred.right != NULL((void*)0)) | |||
1235 | _cairo_bo_edge_end (right, top, polygon); | |||
1236 | ||||
1237 | in_out += right->edge.dir; | |||
1238 | if ((in_out & mask) == 0) { | |||
1239 | /* skip co-linear edges */ | |||
1240 | if (right->next == NULL((void*)0) || !edges_colinear (right, right->next)) | |||
1241 | break; | |||
1242 | } | |||
1243 | ||||
1244 | right = right->next; | |||
1245 | } | |||
1246 | ||||
1247 | _cairo_bo_edge_start_or_continue (left, right, top, polygon); | |||
1248 | ||||
1249 | left = right; | |||
1250 | if (left != NULL((void*)0)) | |||
1251 | left = left->next; | |||
1252 | } | |||
1253 | } | |||
1254 | ||||
1255 | ||||
1256 | static cairo_status_t | |||
1257 | _cairo_bentley_ottmann_tessellate_bo_edges (cairo_bo_event_t **start_events, | |||
1258 | int num_events, | |||
1259 | cairo_fill_rule_t fill_rule, | |||
1260 | cairo_polygon_t *polygon) | |||
1261 | { | |||
1262 | cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */ | |||
1263 | cairo_bo_event_queue_t event_queue; | |||
1264 | cairo_bo_sweep_line_t sweep_line; | |||
1265 | cairo_bo_event_t *event; | |||
1266 | cairo_bo_edge_t *left, *right; | |||
1267 | cairo_bo_edge_t *e1, *e2; | |||
1268 | ||||
1269 | _cairo_bo_event_queue_init (&event_queue, start_events, num_events); | |||
1270 | _cairo_bo_sweep_line_init (&sweep_line); | |||
1271 | ||||
1272 | while ((event = _cairo_bo_event_dequeue (&event_queue))) { | |||
1273 | if (event->point.y != sweep_line.current_y) { | |||
1274 | _active_edges_to_polygon (sweep_line.head, | |||
1275 | sweep_line.current_y, | |||
1276 | fill_rule, polygon); | |||
1277 | ||||
1278 | sweep_line.current_y = event->point.y; | |||
1279 | } | |||
1280 | ||||
1281 | switch (event->type) { | |||
1282 | case CAIRO_BO_EVENT_TYPE_START: | |||
1283 | e1 = &((cairo_bo_start_event_t *) event)->edge; | |||
1284 | ||||
1285 | status = _cairo_bo_sweep_line_insert (&sweep_line, e1); | |||
1286 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1287 | goto unwind; | |||
1288 | ||||
1289 | status = _cairo_bo_event_queue_insert_stop (&event_queue, e1); | |||
1290 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1291 | goto unwind; | |||
1292 | ||||
1293 | left = e1->prev; | |||
1294 | right = e1->next; | |||
1295 | ||||
1296 | if (left != NULL((void*)0)) { | |||
1297 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1); | |||
1298 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1299 | goto unwind; | |||
1300 | } | |||
1301 | ||||
1302 | if (right != NULL((void*)0)) { | |||
1303 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right); | |||
1304 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1305 | goto unwind; | |||
1306 | } | |||
1307 | ||||
1308 | break; | |||
1309 | ||||
1310 | case CAIRO_BO_EVENT_TYPE_STOP: | |||
1311 | e1 = ((cairo_bo_queue_event_t *) event)->e1; | |||
1312 | _cairo_bo_event_queue_delete (&event_queue, event); | |||
1313 | ||||
1314 | left = e1->prev; | |||
1315 | right = e1->next; | |||
1316 | ||||
1317 | _cairo_bo_sweep_line_delete (&sweep_line, e1); | |||
1318 | ||||
1319 | if (e1->deferred.right != NULL((void*)0)) | |||
1320 | _cairo_bo_edge_end (e1, e1->edge.bottom, polygon); | |||
1321 | ||||
1322 | if (left != NULL((void*)0) && right != NULL((void*)0)) { | |||
1323 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, right); | |||
1324 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1325 | goto unwind; | |||
1326 | } | |||
1327 | ||||
1328 | break; | |||
1329 | ||||
1330 | case CAIRO_BO_EVENT_TYPE_INTERSECTION: | |||
1331 | e1 = ((cairo_bo_queue_event_t *) event)->e1; | |||
1332 | e2 = ((cairo_bo_queue_event_t *) event)->e2; | |||
1333 | _cairo_bo_event_queue_delete (&event_queue, event); | |||
1334 | ||||
1335 | /* skip this intersection if its edges are not adjacent */ | |||
1336 | if (e2 != e1->next) | |||
1337 | break; | |||
1338 | ||||
1339 | left = e1->prev; | |||
1340 | right = e2->next; | |||
1341 | ||||
1342 | _cairo_bo_sweep_line_swap (&sweep_line, e1, e2); | |||
1343 | ||||
1344 | /* after the swap e2 is left of e1 */ | |||
1345 | ||||
1346 | if (left != NULL((void*)0)) { | |||
1347 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2); | |||
1348 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1349 | goto unwind; | |||
1350 | } | |||
1351 | ||||
1352 | if (right != NULL((void*)0)) { | |||
1353 | status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right); | |||
1354 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
1355 | goto unwind; | |||
1356 | } | |||
1357 | ||||
1358 | break; | |||
1359 | } | |||
1360 | } | |||
1361 | ||||
1362 | unwind: | |||
1363 | _cairo_bo_event_queue_fini (&event_queue); | |||
1364 | ||||
1365 | return status; | |||
1366 | } | |||
1367 | ||||
1368 | cairo_status_t | |||
1369 | _cairo_polygon_reduce (cairo_polygon_t *polygon, | |||
1370 | cairo_fill_rule_t fill_rule) | |||
1371 | { | |||
1372 | cairo_status_t status; | |||
1373 | cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)((512 * sizeof (int)) / sizeof(cairo_bo_start_event_t))]; | |||
1374 | cairo_bo_start_event_t *events; | |||
1375 | cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events)((int) (sizeof (stack_events) / sizeof (stack_events[0]))) + 1]; | |||
1376 | cairo_bo_event_t **event_ptrs; | |||
1377 | int num_limits; | |||
1378 | int num_events; | |||
1379 | int i; | |||
1380 | ||||
1381 | num_events = polygon->num_edges; | |||
1382 | if (unlikely (0 == num_events)(__builtin_expect (!!(0 == num_events), 0))) | |||
| ||||
1383 | return CAIRO_STATUS_SUCCESS; | |||
1384 | ||||
1385 | if (DEBUG_POLYGON0) { | |||
1386 | FILE *file = fopen ("reduce_in.txt", "w"); | |||
1387 | _cairo_debug_print_polygon (file, polygon); | |||
1388 | fclose (file); | |||
1389 | } | |||
1390 | ||||
1391 | events = stack_events; | |||
1392 | event_ptrs = stack_event_ptrs; | |||
1393 | if (num_events > ARRAY_LENGTH (stack_events)((int) (sizeof (stack_events) / sizeof (stack_events[0])))) { | |||
1394 | events = _cairo_malloc_ab_plus_c (num_events, | |||
1395 | sizeof (cairo_bo_start_event_t) + | |||
1396 | sizeof (cairo_bo_event_t *), | |||
1397 | sizeof (cairo_bo_event_t *)); | |||
1398 | if (unlikely (events == NULL)(__builtin_expect (!!(events == ((void*)0)), 0))) | |||
1399 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
1400 | ||||
1401 | event_ptrs = (cairo_bo_event_t **) (events + num_events); | |||
1402 | } | |||
1403 | ||||
1404 | for (i = 0; i < num_events; i++) { | |||
1405 | event_ptrs[i] = (cairo_bo_event_t *) &events[i]; | |||
1406 | ||||
1407 | events[i].type = CAIRO_BO_EVENT_TYPE_START; | |||
1408 | events[i].point.y = polygon->edges[i].top; | |||
1409 | events[i].point.x = | |||
1410 | _line_compute_intersection_x_for_y (&polygon->edges[i].line, | |||
1411 | events[i].point.y); | |||
1412 | ||||
1413 | events[i].edge.edge = polygon->edges[i]; | |||
1414 | events[i].edge.deferred.right = NULL((void*)0); | |||
1415 | events[i].edge.prev = NULL((void*)0); | |||
1416 | events[i].edge.next = NULL((void*)0); | |||
1417 | } | |||
1418 | ||||
1419 | num_limits = polygon->num_limits; polygon->num_limits = 0; | |||
1420 | polygon->num_edges = 0; | |||
1421 | ||||
1422 | status = _cairo_bentley_ottmann_tessellate_bo_edges (event_ptrs, | |||
1423 | num_events, | |||
1424 | fill_rule, | |||
1425 | polygon); | |||
1426 | polygon->num_limits = num_limits; | |||
1427 | ||||
1428 | if (events != stack_events) | |||
1429 | free (events); | |||
1430 | ||||
1431 | if (DEBUG_POLYGON0) { | |||
1432 | FILE *file = fopen ("reduce_out.txt", "w"); | |||
1433 | _cairo_debug_print_polygon (file, polygon); | |||
1434 | fclose (file); | |||
1435 | } | |||
1436 | ||||
1437 | return status; | |||
1438 | } |