| File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c |
| Warning: | line 886, column 1 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * Copyright © 2004 Carl Worth | |||
| 3 | * Copyright © 2006 Red Hat, Inc. | |||
| 4 | * Copyright © 2008 Chris Wilson | |||
| 5 | * | |||
| 6 | * This library is free software; you can redistribute it and/or | |||
| 7 | * modify it either under the terms of the GNU Lesser General Public | |||
| 8 | * License version 2.1 as published by the Free Software Foundation | |||
| 9 | * (the "LGPL") or, at your option, under the terms of the Mozilla | |||
| 10 | * Public License Version 1.1 (the "MPL"). If you do not alter this | |||
| 11 | * notice, a recipient may use your version of this file under either | |||
| 12 | * the MPL or the LGPL. | |||
| 13 | * | |||
| 14 | * You should have received a copy of the LGPL along with this library | |||
| 15 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software | |||
| 16 | * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA | |||
| 17 | * You should have received a copy of the MPL along with this library | |||
| 18 | * in the file COPYING-MPL-1.1 | |||
| 19 | * | |||
| 20 | * The contents of this file are subject to the Mozilla Public License | |||
| 21 | * Version 1.1 (the "License"); you may not use this file except in | |||
| 22 | * compliance with the License. You may obtain a copy of the License at | |||
| 23 | * http://www.mozilla.org/MPL/ | |||
| 24 | * | |||
| 25 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | |||
| 26 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for | |||
| 27 | * the specific language governing rights and limitations. | |||
| 28 | * | |||
| 29 | * The Original Code is the cairo graphics library. | |||
| 30 | * | |||
| 31 | * The Initial Developer of the Original Code is Carl Worth | |||
| 32 | * | |||
| 33 | * Contributor(s): | |||
| 34 | * Carl D. Worth <cworth@cworth.org> | |||
| 35 | * Chris Wilson <chris@chris-wilson.co.uk> | |||
| 36 | */ | |||
| 37 | ||||
| 38 | /* Provide definitions for standalone compilation */ | |||
| 39 | #include "cairoint.h" | |||
| 40 | ||||
| 41 | #include "cairo-error-private.h" | |||
| 42 | #include "cairo-freelist-private.h" | |||
| 43 | #include "cairo-combsort-inline.h" | |||
| 44 | ||||
| 45 | ||||
| 46 | typedef struct _cairo_bo_intersect_ordinate { | |||
| 47 | int32_t ordinate; | |||
| 48 | enum { EXCESS = -1, EXACT = 0, DEFAULT = 1 } approx; | |||
| 49 | } cairo_bo_intersect_ordinate_t; | |||
| 50 | ||||
| 51 | typedef struct _cairo_bo_intersect_point { | |||
| 52 | cairo_bo_intersect_ordinate_t x; | |||
| 53 | cairo_bo_intersect_ordinate_t y; | |||
| 54 | } cairo_bo_intersect_point_t; | |||
| 55 | ||||
| 56 | typedef struct _cairo_bo_edge cairo_bo_edge_t; | |||
| 57 | ||||
| 58 | typedef struct _cairo_bo_deferred { | |||
| 59 | cairo_bo_edge_t *other; | |||
| 60 | int32_t top; | |||
| 61 | } cairo_bo_deferred_t; | |||
| 62 | ||||
| 63 | struct _cairo_bo_edge { | |||
| 64 | int a_or_b; | |||
| 65 | cairo_edge_t edge; | |||
| 66 | cairo_bo_edge_t *prev; | |||
| 67 | cairo_bo_edge_t *next; | |||
| 68 | cairo_bo_deferred_t deferred; | |||
| 69 | }; | |||
| 70 | ||||
| 71 | /* the parent is always given by index/2 */ | |||
| 72 | #define PQ_PARENT_INDEX(i)((i) >> 1) ((i) >> 1) | |||
| 73 | #define PQ_FIRST_ENTRY1 1 | |||
| 74 | ||||
| 75 | /* left and right children are index * 2 and (index * 2) +1 respectively */ | |||
| 76 | #define PQ_LEFT_CHILD_INDEX(i)((i) << 1) ((i) << 1) | |||
| 77 | ||||
| 78 | typedef enum { | |||
| 79 | CAIRO_BO_EVENT_TYPE_STOP = -1, | |||
| 80 | CAIRO_BO_EVENT_TYPE_INTERSECTION, | |||
| 81 | CAIRO_BO_EVENT_TYPE_START | |||
| 82 | } cairo_bo_event_type_t; | |||
| 83 | ||||
| 84 | typedef struct _cairo_bo_event { | |||
| 85 | cairo_bo_event_type_t type; | |||
| 86 | cairo_bo_intersect_point_t point; | |||
| 87 | } cairo_bo_event_t; | |||
| 88 | ||||
| 89 | typedef struct _cairo_bo_start_event { | |||
| 90 | cairo_bo_event_type_t type; | |||
| 91 | cairo_bo_intersect_point_t point; | |||
| 92 | cairo_bo_edge_t edge; | |||
| 93 | } cairo_bo_start_event_t; | |||
| 94 | ||||
| 95 | typedef struct _cairo_bo_queue_event { | |||
| 96 | cairo_bo_event_type_t type; | |||
| 97 | cairo_bo_intersect_point_t point; | |||
| 98 | cairo_bo_edge_t *e1; | |||
| 99 | cairo_bo_edge_t *e2; | |||
| 100 | } cairo_bo_queue_event_t; | |||
| 101 | ||||
| 102 | typedef struct _pqueue { | |||
| 103 | int size, max_size; | |||
| 104 | ||||
| 105 | cairo_bo_event_t **elements; | |||
| 106 | cairo_bo_event_t *elements_embedded[1024]; | |||
| 107 | } pqueue_t; | |||
| 108 | ||||
| 109 | typedef struct _cairo_bo_event_queue { | |||
| 110 | cairo_freepool_t pool; | |||
| 111 | pqueue_t pqueue; | |||
| 112 | cairo_bo_event_t **start_events; | |||
| 113 | } cairo_bo_event_queue_t; | |||
| 114 | ||||
| 115 | typedef struct _cairo_bo_sweep_line { | |||
| 116 | cairo_bo_edge_t *head; | |||
| 117 | int32_t current_y; | |||
| 118 | cairo_bo_edge_t *current_edge; | |||
| 119 | } cairo_bo_sweep_line_t; | |||
| 120 | ||||
| 121 | static cairo_fixed_t | |||
| 122 | _line_compute_intersection_x_for_y (const cairo_line_t *line, | |||
| 123 | cairo_fixed_t y) | |||
| 124 | { | |||
| 125 | cairo_fixed_t x, dy; | |||
| 126 | ||||
| 127 | if (y == line->p1.y) | |||
| 128 | return line->p1.x; | |||
| 129 | if (y == line->p2.y) | |||
| 130 | return line->p2.x; | |||
| 131 | ||||
| 132 | x = line->p1.x; | |||
| 133 | dy = line->p2.y - line->p1.y; | |||
| 134 | if (dy != 0) { | |||
| 135 | x += _cairo_fixed_mul_div_floor (y - line->p1.y, | |||
| 136 | line->p2.x - line->p1.x, | |||
| 137 | dy); | |||
| 138 | } | |||
| 139 | ||||
| 140 | return x; | |||
| 141 | } | |||
| 142 | ||||
| 143 | static inline int | |||
| 144 | _cairo_bo_point32_compare (cairo_bo_intersect_point_t const *a, | |||
| 145 | cairo_bo_intersect_point_t const *b) | |||
| 146 | { | |||
| 147 | int cmp; | |||
| 148 | ||||
| 149 | cmp = a->y.ordinate - b->y.ordinate; | |||
| 150 | if (cmp) | |||
| 151 | return cmp; | |||
| 152 | ||||
| 153 | cmp = a->y.approx - b->y.approx; | |||
| 154 | if (cmp) | |||
| 155 | return cmp; | |||
| 156 | ||||
| 157 | return a->x.ordinate - b->x.ordinate; | |||
| 158 | } | |||
| 159 | ||||
| 160 | /* Compare the slope of a to the slope of b, returning 1, 0, -1 if the | |||
| 161 | * slope a is respectively greater than, equal to, or less than the | |||
| 162 | * slope of b. | |||
| 163 | * | |||
| 164 | * For each edge, consider the direction vector formed from: | |||
| 165 | * | |||
| 166 | * top -> bottom | |||
| 167 | * | |||
| 168 | * which is: | |||
| 169 | * | |||
| 170 | * (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y) | |||
| 171 | * | |||
| 172 | * We then define the slope of each edge as dx/dy, (which is the | |||
| 173 | * inverse of the slope typically used in math instruction). We never | |||
| 174 | * compute a slope directly as the value approaches infinity, but we | |||
| 175 | * can derive a slope comparison without division as follows, (where | |||
| 176 | * the ? represents our compare operator). | |||
| 177 | * | |||
| 178 | * 1. slope(a) ? slope(b) | |||
| 179 | * 2. adx/ady ? bdx/bdy | |||
| 180 | * 3. (adx * bdy) ? (bdx * ady) | |||
| 181 | * | |||
| 182 | * Note that from step 2 to step 3 there is no change needed in the | |||
| 183 | * sign of the result since both ady and bdy are guaranteed to be | |||
| 184 | * greater than or equal to 0. | |||
| 185 | * | |||
| 186 | * When using this slope comparison to sort edges, some care is needed | |||
| 187 | * when interpreting the results. Since the slope compare operates on | |||
| 188 | * distance vectors from top to bottom it gives a correct left to | |||
| 189 | * right sort for edges that have a common top point, (such as two | |||
| 190 | * edges with start events at the same location). On the other hand, | |||
| 191 | * the sense of the result will be exactly reversed for two edges that | |||
| 192 | * have a common stop point. | |||
| 193 | */ | |||
| 194 | static inline int | |||
| 195 | _slope_compare (const cairo_bo_edge_t *a, | |||
| 196 | const cairo_bo_edge_t *b) | |||
| 197 | { | |||
| 198 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
| 199 | * bits. That's not true in general as there could be overflow. We | |||
| 200 | * should prevent that before the tessellation algorithm | |||
| 201 | * begins. | |||
| 202 | */ | |||
| 203 | int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
| 204 | int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x; | |||
| 205 | ||||
| 206 | /* Since the dy's are all positive by construction we can fast | |||
| 207 | * path several common cases. | |||
| 208 | */ | |||
| 209 | ||||
| 210 | /* First check for vertical lines. */ | |||
| 211 | if (adx == 0) | |||
| 212 | return -bdx; | |||
| 213 | if (bdx == 0) | |||
| 214 | return adx; | |||
| 215 | ||||
| 216 | /* Then where the two edges point in different directions wrt x. */ | |||
| 217 | if ((adx ^ bdx) < 0) | |||
| 218 | return adx; | |||
| 219 | ||||
| 220 | /* Finally we actually need to do the general comparison. */ | |||
| 221 | { | |||
| 222 | int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
| 223 | int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y; | |||
| 224 | cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy)((int64_t) (adx) * (bdy)); | |||
| 225 | cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady)((int64_t) (bdx) * (ady)); | |||
| 226 | ||||
| 227 | return _cairo_int64_cmp (adx_bdy, bdx_ady)((adx_bdy) == (bdx_ady) ? 0 : (adx_bdy) < (bdx_ady) ? -1 : 1); | |||
| 228 | } | |||
| 229 | } | |||
| 230 | ||||
| 231 | /* | |||
| 232 | * We need to compare the x-coordinates of a pair of lines for a particular y, | |||
| 233 | * without loss of precision. | |||
| 234 | * | |||
| 235 | * The x-coordinate along an edge for a given y is: | |||
| 236 | * X = A_x + (Y - A_y) * A_dx / A_dy | |||
| 237 | * | |||
| 238 | * So the inequality we wish to test is: | |||
| 239 | * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy, | |||
| 240 | * where ∘ is our inequality operator. | |||
| 241 | * | |||
| 242 | * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are | |||
| 243 | * all positive, so we can rearrange it thus without causing a sign change: | |||
| 244 | * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy | |||
| 245 | * - (Y - A_y) * A_dx * B_dy | |||
| 246 | * | |||
| 247 | * Given the assumption that all the deltas fit within 32 bits, we can compute | |||
| 248 | * this comparison directly using 128 bit arithmetic. For certain, but common, | |||
| 249 | * input we can reduce this down to a single 32 bit compare by inspecting the | |||
| 250 | * deltas. | |||
| 251 | * | |||
| 252 | * (And put the burden of the work on developing fast 128 bit ops, which are | |||
| 253 | * required throughout the tessellator.) | |||
| 254 | * | |||
| 255 | * See the similar discussion for _slope_compare(). | |||
| 256 | */ | |||
| 257 | static int | |||
| 258 | edges_compare_x_for_y_general (const cairo_bo_edge_t *a, | |||
| 259 | const cairo_bo_edge_t *b, | |||
| 260 | int32_t y) | |||
| 261 | { | |||
| 262 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
| 263 | * bits. That's not true in general as there could be overflow. We | |||
| 264 | * should prevent that before the tessellation algorithm | |||
| 265 | * begins. | |||
| 266 | */ | |||
| 267 | int32_t dx; | |||
| 268 | int32_t adx, ady; | |||
| 269 | int32_t bdx, bdy; | |||
| 270 | enum { | |||
| 271 | HAVE_NONE = 0x0, | |||
| 272 | HAVE_DX = 0x1, | |||
| 273 | HAVE_ADX = 0x2, | |||
| 274 | HAVE_DX_ADX = HAVE_DX | HAVE_ADX, | |||
| 275 | HAVE_BDX = 0x4, | |||
| 276 | HAVE_DX_BDX = HAVE_DX | HAVE_BDX, | |||
| 277 | HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX, | |||
| 278 | HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX | |||
| 279 | } have_dx_adx_bdx = HAVE_ALL; | |||
| 280 | ||||
| 281 | /* don't bother solving for abscissa if the edges' bounding boxes | |||
| 282 | * can be used to order them. */ | |||
| 283 | { | |||
| 284 | int32_t amin, amax; | |||
| 285 | int32_t bmin, bmax; | |||
| 286 | if (a->edge.line.p1.x < a->edge.line.p2.x) { | |||
| 287 | amin = a->edge.line.p1.x; | |||
| 288 | amax = a->edge.line.p2.x; | |||
| 289 | } else { | |||
| 290 | amin = a->edge.line.p2.x; | |||
| 291 | amax = a->edge.line.p1.x; | |||
| 292 | } | |||
| 293 | if (b->edge.line.p1.x < b->edge.line.p2.x) { | |||
| 294 | bmin = b->edge.line.p1.x; | |||
| 295 | bmax = b->edge.line.p2.x; | |||
| 296 | } else { | |||
| 297 | bmin = b->edge.line.p2.x; | |||
| 298 | bmax = b->edge.line.p1.x; | |||
| 299 | } | |||
| 300 | if (amax < bmin) return -1; | |||
| 301 | if (amin > bmax) return +1; | |||
| 302 | } | |||
| 303 | ||||
| 304 | ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
| 305 | adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
| 306 | if (adx == 0) | |||
| 307 | have_dx_adx_bdx &= ~HAVE_ADX; | |||
| 308 | ||||
| 309 | bdy = b->edge.line.p2.y - b->edge.line.p1.y; | |||
| 310 | bdx = b->edge.line.p2.x - b->edge.line.p1.x; | |||
| 311 | if (bdx == 0) | |||
| 312 | have_dx_adx_bdx &= ~HAVE_BDX; | |||
| 313 | ||||
| 314 | dx = a->edge.line.p1.x - b->edge.line.p1.x; | |||
| 315 | if (dx == 0) | |||
| 316 | have_dx_adx_bdx &= ~HAVE_DX; | |||
| 317 | ||||
| 318 | #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)_cairo_int64x64_128_mul(((int64_t) (ady) * (bdy)), ((int64_t) (dx))) | |||
| 319 | #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)_cairo_int64x64_128_mul(((int64_t) (adx) * (bdy)), ((int64_t) (y - a->edge.line.p1.y))) | |||
| 320 | #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)_cairo_int64x64_128_mul(((int64_t) (bdx) * (ady)), ((int64_t) (y - b->edge.line.p1.y))) | |||
| 321 | switch (have_dx_adx_bdx) { | |||
| 322 | default: | |||
| 323 | case HAVE_NONE: | |||
| 324 | return 0; | |||
| 325 | case HAVE_DX: | |||
| 326 | /* A_dy * B_dy * (A_x - B_x) ∘ 0 */ | |||
| 327 | return dx; /* ady * bdy is positive definite */ | |||
| 328 | case HAVE_ADX: | |||
| 329 | /* 0 ∘ - (Y - A_y) * A_dx * B_dy */ | |||
| 330 | return adx; /* bdy * (y - a->top.y) is positive definite */ | |||
| 331 | case HAVE_BDX: | |||
| 332 | /* 0 ∘ (Y - B_y) * B_dx * A_dy */ | |||
| 333 | return -bdx; /* ady * (y - b->top.y) is positive definite */ | |||
| 334 | case HAVE_ADX_BDX: | |||
| 335 | /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */ | |||
| 336 | if ((adx ^ bdx) < 0) { | |||
| 337 | return adx; | |||
| 338 | } else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */ | |||
| 339 | cairo_int64_t adx_bdy, bdx_ady; | |||
| 340 | ||||
| 341 | /* ∴ A_dx * B_dy ∘ B_dx * A_dy */ | |||
| 342 | ||||
| 343 | adx_bdy = _cairo_int32x32_64_mul (adx, bdy)((int64_t) (adx) * (bdy)); | |||
| 344 | bdx_ady = _cairo_int32x32_64_mul (bdx, ady)((int64_t) (bdx) * (ady)); | |||
| 345 | ||||
| 346 | return _cairo_int64_cmp (adx_bdy, bdx_ady)((adx_bdy) == (bdx_ady) ? 0 : (adx_bdy) < (bdx_ady) ? -1 : 1); | |||
| 347 | } else | |||
| 348 | return _cairo_int128_cmp (A, B); | |||
| 349 | case HAVE_DX_ADX: | |||
| 350 | /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */ | |||
| 351 | if ((-adx ^ dx) < 0) { | |||
| 352 | return dx; | |||
| 353 | } else { | |||
| 354 | cairo_int64_t ady_dx, dy_adx; | |||
| 355 | ||||
| 356 | ady_dx = _cairo_int32x32_64_mul (ady, dx)((int64_t) (ady) * (dx)); | |||
| 357 | dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx)((int64_t) (a->edge.line.p1.y - y) * (adx)); | |||
| 358 | ||||
| 359 | return _cairo_int64_cmp (ady_dx, dy_adx)((ady_dx) == (dy_adx) ? 0 : (ady_dx) < (dy_adx) ? -1 : 1); | |||
| 360 | } | |||
| 361 | case HAVE_DX_BDX: | |||
| 362 | /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */ | |||
| 363 | if ((bdx ^ dx) < 0) { | |||
| 364 | return dx; | |||
| 365 | } else { | |||
| 366 | cairo_int64_t bdy_dx, dy_bdx; | |||
| 367 | ||||
| 368 | bdy_dx = _cairo_int32x32_64_mul (bdy, dx)((int64_t) (bdy) * (dx)); | |||
| 369 | dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx)((int64_t) (y - b->edge.line.p1.y) * (bdx)); | |||
| 370 | ||||
| 371 | return _cairo_int64_cmp (bdy_dx, dy_bdx)((bdy_dx) == (dy_bdx) ? 0 : (bdy_dx) < (dy_bdx) ? -1 : 1); | |||
| 372 | } | |||
| 373 | case HAVE_ALL: | |||
| 374 | /* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */ | |||
| 375 | return _cairo_int128_cmp (L, _cairo_int128_sub (B, A)_cairo_uint128_sub(B,A)); | |||
| 376 | } | |||
| 377 | #undef B | |||
| 378 | #undef A | |||
| 379 | #undef L | |||
| 380 | } | |||
| 381 | ||||
| 382 | /* | |||
| 383 | * We need to compare the x-coordinate of a line for a particular y wrt to a | |||
| 384 | * given x, without loss of precision. | |||
| 385 | * | |||
| 386 | * The x-coordinate along an edge for a given y is: | |||
| 387 | * X = A_x + (Y - A_y) * A_dx / A_dy | |||
| 388 | * | |||
| 389 | * So the inequality we wish to test is: | |||
| 390 | * A_x + (Y - A_y) * A_dx / A_dy ∘ X | |||
| 391 | * where ∘ is our inequality operator. | |||
| 392 | * | |||
| 393 | * By construction, we know that A_dy (and (Y - A_y)) are | |||
| 394 | * all positive, so we can rearrange it thus without causing a sign change: | |||
| 395 | * (Y - A_y) * A_dx ∘ (X - A_x) * A_dy | |||
| 396 | * | |||
| 397 | * Given the assumption that all the deltas fit within 32 bits, we can compute | |||
| 398 | * this comparison directly using 64 bit arithmetic. | |||
| 399 | * | |||
| 400 | * See the similar discussion for _slope_compare() and | |||
| 401 | * edges_compare_x_for_y_general(). | |||
| 402 | */ | |||
| 403 | static int | |||
| 404 | edge_compare_for_y_against_x (const cairo_bo_edge_t *a, | |||
| 405 | int32_t y, | |||
| 406 | int32_t x) | |||
| 407 | { | |||
| 408 | int32_t adx, ady; | |||
| 409 | int32_t dx, dy; | |||
| 410 | cairo_int64_t L, R; | |||
| 411 | ||||
| 412 | if (x < a->edge.line.p1.x && x < a->edge.line.p2.x) | |||
| 413 | return 1; | |||
| 414 | if (x > a->edge.line.p1.x && x > a->edge.line.p2.x) | |||
| 415 | return -1; | |||
| 416 | ||||
| 417 | adx = a->edge.line.p2.x - a->edge.line.p1.x; | |||
| 418 | dx = x - a->edge.line.p1.x; | |||
| 419 | ||||
| 420 | if (adx == 0) | |||
| 421 | return -dx; | |||
| 422 | if (dx == 0 || (adx ^ dx) < 0) | |||
| 423 | return adx; | |||
| 424 | ||||
| 425 | dy = y - a->edge.line.p1.y; | |||
| 426 | ady = a->edge.line.p2.y - a->edge.line.p1.y; | |||
| 427 | ||||
| 428 | L = _cairo_int32x32_64_mul (dy, adx)((int64_t) (dy) * (adx)); | |||
| 429 | R = _cairo_int32x32_64_mul (dx, ady)((int64_t) (dx) * (ady)); | |||
| 430 | ||||
| 431 | return _cairo_int64_cmp (L, R)((L) == (R) ? 0 : (L) < (R) ? -1 : 1); | |||
| 432 | } | |||
| 433 | ||||
| 434 | static int | |||
| 435 | edges_compare_x_for_y (const cairo_bo_edge_t *a, | |||
| 436 | const cairo_bo_edge_t *b, | |||
| 437 | int32_t y) | |||
| 438 | { | |||
| 439 | /* If the sweep-line is currently on an end-point of a line, | |||
| 440 | * then we know its precise x value (and considering that we often need to | |||
| 441 | * compare events at end-points, this happens frequently enough to warrant | |||
| 442 | * special casing). | |||
| 443 | */ | |||
| 444 | enum { | |||
| 445 | HAVE_NEITHER = 0x0, | |||
| 446 | HAVE_AX = 0x1, | |||
| 447 | HAVE_BX = 0x2, | |||
| 448 | HAVE_BOTH = HAVE_AX | HAVE_BX | |||
| 449 | } have_ax_bx = HAVE_BOTH; | |||
| 450 | int32_t ax = 0, bx = 0; | |||
| 451 | ||||
| 452 | if (y == a->edge.line.p1.y) | |||
| 453 | ax = a->edge.line.p1.x; | |||
| 454 | else if (y == a->edge.line.p2.y) | |||
| 455 | ax = a->edge.line.p2.x; | |||
| 456 | else | |||
| 457 | have_ax_bx &= ~HAVE_AX; | |||
| 458 | ||||
| 459 | if (y == b->edge.line.p1.y) | |||
| 460 | bx = b->edge.line.p1.x; | |||
| 461 | else if (y == b->edge.line.p2.y) | |||
| 462 | bx = b->edge.line.p2.x; | |||
| 463 | else | |||
| 464 | have_ax_bx &= ~HAVE_BX; | |||
| 465 | ||||
| 466 | switch (have_ax_bx) { | |||
| 467 | default: | |||
| 468 | case HAVE_NEITHER: | |||
| 469 | return edges_compare_x_for_y_general (a, b, y); | |||
| 470 | case HAVE_AX: | |||
| 471 | return -edge_compare_for_y_against_x (b, y, ax); | |||
| 472 | case HAVE_BX: | |||
| 473 | return edge_compare_for_y_against_x (a, y, bx); | |||
| 474 | case HAVE_BOTH: | |||
| 475 | return ax - bx; | |||
| 476 | } | |||
| 477 | } | |||
| 478 | ||||
| 479 | static inline int | |||
| 480 | _line_equal (const cairo_line_t *a, const cairo_line_t *b) | |||
| 481 | { | |||
| 482 | return a->p1.x == b->p1.x && a->p1.y == b->p1.y && | |||
| 483 | a->p2.x == b->p2.x && a->p2.y == b->p2.y; | |||
| 484 | } | |||
| 485 | ||||
| 486 | static int | |||
| 487 | _cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line, | |||
| 488 | const cairo_bo_edge_t *a, | |||
| 489 | const cairo_bo_edge_t *b) | |||
| 490 | { | |||
| 491 | int cmp; | |||
| 492 | ||||
| 493 | /* compare the edges if not identical */ | |||
| 494 | if (! _line_equal (&a->edge.line, &b->edge.line)) { | |||
| 495 | cmp = edges_compare_x_for_y (a, b, sweep_line->current_y); | |||
| 496 | if (cmp) | |||
| 497 | return cmp; | |||
| 498 | ||||
| 499 | /* The two edges intersect exactly at y, so fall back on slope | |||
| 500 | * comparison. We know that this compare_edges function will be | |||
| 501 | * called only when starting a new edge, (not when stopping an | |||
| 502 | * edge), so we don't have to worry about conditionally inverting | |||
| 503 | * the sense of _slope_compare. */ | |||
| 504 | cmp = _slope_compare (a, b); | |||
| 505 | if (cmp) | |||
| 506 | return cmp; | |||
| 507 | } | |||
| 508 | ||||
| 509 | /* We've got two collinear edges now. */ | |||
| 510 | return b->edge.bottom - a->edge.bottom; | |||
| 511 | } | |||
| 512 | ||||
| 513 | static inline cairo_int64_t | |||
| 514 | det32_64 (int32_t a, int32_t b, | |||
| 515 | int32_t c, int32_t d) | |||
| 516 | { | |||
| 517 | /* det = a * d - b * c */ | |||
| 518 | return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),((((int64_t) (a) * (d))) - (((int64_t) (b) * (c)))) | |||
| 519 | _cairo_int32x32_64_mul (b, c))((((int64_t) (a) * (d))) - (((int64_t) (b) * (c)))); | |||
| 520 | } | |||
| 521 | ||||
| 522 | static inline cairo_int128_t | |||
| 523 | det64x32_128 (cairo_int64_t a, int32_t b, | |||
| 524 | cairo_int64_t c, int32_t d) | |||
| 525 | { | |||
| 526 | /* det = a * d - b * c */ | |||
| 527 | return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),_cairo_uint128_sub(_cairo_int64x64_128_mul(a, ((int64_t) (d)) ),_cairo_int64x64_128_mul(c, ((int64_t) (b)))) | |||
| 528 | _cairo_int64x32_128_mul (c, b))_cairo_uint128_sub(_cairo_int64x64_128_mul(a, ((int64_t) (d)) ),_cairo_int64x64_128_mul(c, ((int64_t) (b)))); | |||
| 529 | } | |||
| 530 | ||||
| 531 | static inline cairo_bo_intersect_ordinate_t | |||
| 532 | round_to_nearest (cairo_quorem64_t d, | |||
| 533 | cairo_int64_t den) | |||
| 534 | { | |||
| 535 | cairo_bo_intersect_ordinate_t ordinate; | |||
| 536 | int32_t quo = d.quo; | |||
| 537 | cairo_int64_t drem_2 = _cairo_int64_mul (d.rem, _cairo_int32_to_int64 (2))((d.rem) * (((int64_t) (2)))); | |||
| 538 | ||||
| 539 | /* assert (! _cairo_int64_negative (den));*/ | |||
| 540 | ||||
| 541 | if (_cairo_int64_lt (drem_2, _cairo_int64_negate (den))((drem_2) < ((-(den))))) { | |||
| 542 | quo -= 1; | |||
| 543 | drem_2 = _cairo_int64_negate (drem_2)(-(drem_2)); | |||
| 544 | } else if (_cairo_int64_le (den, drem_2)(!((drem_2) < (den)))) { | |||
| 545 | quo += 1; | |||
| 546 | drem_2 = _cairo_int64_negate (drem_2)(-(drem_2)); | |||
| 547 | } | |||
| 548 | ||||
| 549 | ordinate.ordinate = quo; | |||
| 550 | ordinate.approx = _cairo_int64_is_zero (drem_2)((drem_2) == 0) ? EXACT : _cairo_int64_negative (drem_2)((drem_2) < 0) ? EXCESS : DEFAULT; | |||
| 551 | ||||
| 552 | return ordinate; | |||
| 553 | } | |||
| 554 | ||||
| 555 | /* Compute the intersection of two lines as defined by two edges. The | |||
| 556 | * result is provided as a coordinate pair of 128-bit integers. | |||
| 557 | * | |||
| 558 | * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or | |||
| 559 | * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel. | |||
| 560 | */ | |||
| 561 | static cairo_bool_t | |||
| 562 | intersect_lines (cairo_bo_edge_t *a, | |||
| 563 | cairo_bo_edge_t *b, | |||
| 564 | cairo_bo_intersect_point_t *intersection) | |||
| 565 | { | |||
| 566 | cairo_int64_t a_det, b_det; | |||
| 567 | ||||
| 568 | /* XXX: We're assuming here that dx and dy will still fit in 32 | |||
| 569 | * bits. That's not true in general as there could be overflow. We | |||
| 570 | * should prevent that before the tessellation algorithm begins. | |||
| 571 | * What we're doing to mitigate this is to perform clamping in | |||
| 572 | * cairo_bo_tessellate_polygon(). | |||
| 573 | */ | |||
| 574 | int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x; | |||
| 575 | int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y; | |||
| 576 | ||||
| 577 | int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x; | |||
| 578 | int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y; | |||
| 579 | ||||
| 580 | cairo_int64_t den_det; | |||
| 581 | cairo_int64_t R; | |||
| 582 | cairo_quorem64_t qr; | |||
| 583 | ||||
| 584 | den_det = det32_64 (dx1, dy1, dx2, dy2); | |||
| 585 | ||||
| 586 | /* Q: Can we determine that the lines do not intersect (within range) | |||
| 587 | * much more cheaply than computing the intersection point i.e. by | |||
| 588 | * avoiding the division? | |||
| 589 | * | |||
| 590 | * X = ax + t * adx = bx + s * bdx; | |||
| 591 | * Y = ay + t * ady = by + s * bdy; | |||
| 592 | * ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx) | |||
| 593 | * => t * L = R | |||
| 594 | * | |||
| 595 | * Therefore we can reject any intersection (under the criteria for | |||
| 596 | * valid intersection events) if: | |||
| 597 | * L^R < 0 => t < 0, or | |||
| 598 | * L<R => t > 1 | |||
| 599 | * | |||
| 600 | * (where top/bottom must at least extend to the line endpoints). | |||
| 601 | * | |||
| 602 | * A similar substitution can be performed for s, yielding: | |||
| 603 | * s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by) | |||
| 604 | */ | |||
| 605 | R = det32_64 (dx2, dy2, | |||
| 606 | b->edge.line.p1.x - a->edge.line.p1.x, | |||
| 607 | b->edge.line.p1.y - a->edge.line.p1.y); | |||
| 608 | if (_cairo_int64_le (den_det, R)(!((R) < (den_det)))) | |||
| 609 | return FALSE0; | |||
| 610 | ||||
| 611 | R = det32_64 (dy1, dx1, | |||
| 612 | a->edge.line.p1.y - b->edge.line.p1.y, | |||
| 613 | a->edge.line.p1.x - b->edge.line.p1.x); | |||
| 614 | if (_cairo_int64_le (den_det, R)(!((R) < (den_det)))) | |||
| 615 | return FALSE0; | |||
| 616 | ||||
| 617 | /* We now know that the two lines should intersect within range. */ | |||
| 618 | ||||
| 619 | a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y, | |||
| 620 | a->edge.line.p2.x, a->edge.line.p2.y); | |||
| 621 | b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y, | |||
| 622 | b->edge.line.p2.x, b->edge.line.p2.y); | |||
| 623 | ||||
| 624 | /* x = det (a_det, dx1, b_det, dx2) / den_det */ | |||
| 625 | qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1, | |||
| 626 | b_det, dx2), | |||
| 627 | den_det); | |||
| 628 | if (_cairo_int64_eq (qr.rem, den_det)((qr.rem) == (den_det))) | |||
| 629 | return FALSE0; | |||
| 630 | ||||
| 631 | intersection->x = round_to_nearest (qr, den_det); | |||
| 632 | ||||
| 633 | /* y = det (a_det, dy1, b_det, dy2) / den_det */ | |||
| 634 | qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1, | |||
| 635 | b_det, dy2), | |||
| 636 | den_det); | |||
| 637 | if (_cairo_int64_eq (qr.rem, den_det)((qr.rem) == (den_det))) | |||
| 638 | return FALSE0; | |||
| 639 | ||||
| 640 | intersection->y = round_to_nearest (qr, den_det); | |||
| 641 | ||||
| 642 | return TRUE1; | |||
| 643 | } | |||
| 644 | ||||
| 645 | static int | |||
| 646 | _cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t a, | |||
| 647 | int32_t b) | |||
| 648 | { | |||
| 649 | /* First compare the quotient */ | |||
| 650 | if (a.ordinate > b) | |||
| 651 | return +1; | |||
| 652 | if (a.ordinate < b) | |||
| 653 | return -1; | |||
| 654 | ||||
| 655 | return a.approx; /* == EXCESS ? -1 : a.approx == EXACT ? 0 : 1;*/ | |||
| 656 | } | |||
| 657 | ||||
| 658 | /* Does the given edge contain the given point. The point must already | |||
| 659 | * be known to be contained within the line determined by the edge, | |||
| 660 | * (most likely the point results from an intersection of this edge | |||
| 661 | * with another). | |||
| 662 | * | |||
| 663 | * If we had exact arithmetic, then this function would simply be a | |||
| 664 | * matter of examining whether the y value of the point lies within | |||
| 665 | * the range of y values of the edge. But since intersection points | |||
| 666 | * are not exact due to being rounded to the nearest integer within | |||
| 667 | * the available precision, we must also examine the x value of the | |||
| 668 | * point. | |||
| 669 | * | |||
| 670 | * The definition of "contains" here is that the given intersection | |||
| 671 | * point will be seen by the sweep line after the start event for the | |||
| 672 | * given edge and before the stop event for the edge. See the comments | |||
| 673 | * in the implementation for more details. | |||
| 674 | */ | |||
| 675 | static cairo_bool_t | |||
| 676 | _cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t *edge, | |||
| 677 | cairo_bo_intersect_point_t *point) | |||
| 678 | { | |||
| 679 | return _cairo_bo_intersect_ordinate_32_compare (point->y, | |||
| 680 | edge->edge.bottom) < 0; | |||
| 681 | } | |||
| 682 | ||||
| 683 | /* Compute the intersection of two edges. The result is provided as a | |||
| 684 | * coordinate pair of 128-bit integers. | |||
| 685 | * | |||
| 686 | * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection | |||
| 687 | * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the | |||
| 688 | * intersection of the lines defined by the edges occurs outside of | |||
| 689 | * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges | |||
| 690 | * are exactly parallel. | |||
| 691 | * | |||
| 692 | * Note that when determining if a candidate intersection is "inside" | |||
| 693 | * an edge, we consider both the infinitesimal shortening and the | |||
| 694 | * infinitesimal tilt rules described by John Hobby. Specifically, if | |||
| 695 | * the intersection is exactly the same as an edge point, it is | |||
| 696 | * effectively outside (no intersection is returned). Also, if the | |||
| 697 | * intersection point has the same | |||
| 698 | */ | |||
| 699 | static cairo_bool_t | |||
| 700 | _cairo_bo_edge_intersect (cairo_bo_edge_t *a, | |||
| 701 | cairo_bo_edge_t *b, | |||
| 702 | cairo_bo_intersect_point_t *intersection) | |||
| 703 | { | |||
| 704 | if (! intersect_lines (a, b, intersection)) | |||
| 705 | return FALSE0; | |||
| 706 | ||||
| 707 | if (! _cairo_bo_edge_contains_intersect_point (a, intersection)) | |||
| 708 | return FALSE0; | |||
| 709 | ||||
| 710 | if (! _cairo_bo_edge_contains_intersect_point (b, intersection)) | |||
| 711 | return FALSE0; | |||
| 712 | ||||
| 713 | return TRUE1; | |||
| 714 | } | |||
| 715 | ||||
| 716 | static inline int | |||
| 717 | cairo_bo_event_compare (const cairo_bo_event_t *a, | |||
| 718 | const cairo_bo_event_t *b) | |||
| 719 | { | |||
| 720 | int cmp; | |||
| 721 | ||||
| 722 | cmp = _cairo_bo_point32_compare (&a->point, &b->point); | |||
| 723 | if (cmp) | |||
| 724 | return cmp; | |||
| 725 | ||||
| 726 | cmp = a->type - b->type; | |||
| 727 | if (cmp) | |||
| 728 | return cmp; | |||
| 729 | ||||
| 730 | return a < b ? -1 : a == b ? 0 : 1; | |||
| 731 | } | |||
| 732 | ||||
| 733 | static inline void | |||
| 734 | _pqueue_init (pqueue_t *pq) | |||
| 735 | { | |||
| 736 | pq->max_size = ARRAY_LENGTH (pq->elements_embedded)((int) (sizeof (pq->elements_embedded) / sizeof (pq->elements_embedded [0]))); | |||
| 737 | pq->size = 0; | |||
| 738 | ||||
| 739 | pq->elements = pq->elements_embedded; | |||
| 740 | } | |||
| 741 | ||||
| 742 | static inline void | |||
| 743 | _pqueue_fini (pqueue_t *pq) | |||
| 744 | { | |||
| 745 | if (pq->elements != pq->elements_embedded) | |||
| 746 | free (pq->elements); | |||
| 747 | } | |||
| 748 | ||||
| 749 | static cairo_status_t | |||
| 750 | _pqueue_grow (pqueue_t *pq) | |||
| 751 | { | |||
| 752 | cairo_bo_event_t **new_elements; | |||
| 753 | pq->max_size *= 2; | |||
| 754 | ||||
| 755 | if (pq->elements == pq->elements_embedded) { | |||
| 756 | new_elements = _cairo_malloc_ab (pq->max_size, | |||
| 757 | sizeof (cairo_bo_event_t *)); | |||
| 758 | if (unlikely (new_elements == NULL)(__builtin_expect (!!(new_elements == ((void*)0)), 0))) | |||
| 759 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 760 | ||||
| 761 | memcpy (new_elements, pq->elements_embedded, | |||
| 762 | sizeof (pq->elements_embedded)); | |||
| 763 | } else { | |||
| 764 | new_elements = _cairo_realloc_ab (pq->elements, | |||
| 765 | pq->max_size, | |||
| 766 | sizeof (cairo_bo_event_t *)); | |||
| 767 | if (unlikely (new_elements == NULL)(__builtin_expect (!!(new_elements == ((void*)0)), 0))) | |||
| 768 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 769 | } | |||
| 770 | ||||
| 771 | pq->elements = new_elements; | |||
| 772 | return CAIRO_STATUS_SUCCESS; | |||
| 773 | } | |||
| 774 | ||||
| 775 | static inline cairo_status_t | |||
| 776 | _pqueue_push (pqueue_t *pq, cairo_bo_event_t *event) | |||
| 777 | { | |||
| 778 | cairo_bo_event_t **elements; | |||
| 779 | int i, parent; | |||
| 780 | ||||
| 781 | if (unlikely (pq->size + 1 == pq->max_size)(__builtin_expect (!!(pq->size + 1 == pq->max_size), 0) )) { | |||
| 782 | cairo_status_t status; | |||
| 783 | ||||
| 784 | status = _pqueue_grow (pq); | |||
| 785 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 786 | return status; | |||
| 787 | } | |||
| 788 | ||||
| 789 | elements = pq->elements; | |||
| 790 | ||||
| 791 | for (i = ++pq->size; | |||
| 792 | i != PQ_FIRST_ENTRY1 && | |||
| 793 | cairo_bo_event_compare (event, | |||
| 794 | elements[parent = PQ_PARENT_INDEX (i)((i) >> 1)]) < 0; | |||
| 795 | i = parent) | |||
| 796 | { | |||
| 797 | elements[i] = elements[parent]; | |||
| 798 | } | |||
| 799 | ||||
| 800 | elements[i] = event; | |||
| 801 | ||||
| 802 | return CAIRO_STATUS_SUCCESS; | |||
| 803 | } | |||
| 804 | ||||
| 805 | static inline void | |||
| 806 | _pqueue_pop (pqueue_t *pq) | |||
| 807 | { | |||
| 808 | cairo_bo_event_t **elements = pq->elements; | |||
| 809 | cairo_bo_event_t *tail; | |||
| 810 | int child, i; | |||
| 811 | ||||
| 812 | tail = elements[pq->size--]; | |||
| 813 | if (pq->size == 0) { | |||
| 814 | elements[PQ_FIRST_ENTRY1] = NULL((void*)0); | |||
| 815 | return; | |||
| 816 | } | |||
| 817 | ||||
| 818 | for (i = PQ_FIRST_ENTRY1; | |||
| 819 | (child = PQ_LEFT_CHILD_INDEX (i)((i) << 1)) <= pq->size; | |||
| 820 | i = child) | |||
| 821 | { | |||
| 822 | if (child != pq->size && | |||
| 823 | cairo_bo_event_compare (elements[child+1], | |||
| 824 | elements[child]) < 0) | |||
| 825 | { | |||
| 826 | child++; | |||
| 827 | } | |||
| 828 | ||||
| 829 | if (cairo_bo_event_compare (elements[child], tail) >= 0) | |||
| 830 | break; | |||
| 831 | ||||
| 832 | elements[i] = elements[child]; | |||
| 833 | } | |||
| 834 | elements[i] = tail; | |||
| 835 | } | |||
| 836 | ||||
| 837 | static inline cairo_status_t | |||
| 838 | _cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue, | |||
| 839 | cairo_bo_event_type_t type, | |||
| 840 | cairo_bo_edge_t *e1, | |||
| 841 | cairo_bo_edge_t *e2, | |||
| 842 | const cairo_bo_intersect_point_t *point) | |||
| 843 | { | |||
| 844 | cairo_bo_queue_event_t *event; | |||
| 845 | ||||
| 846 | event = _cairo_freepool_alloc (&queue->pool); | |||
| 847 | if (unlikely (event == NULL)(__builtin_expect (!!(event == ((void*)0)), 0))) | |||
| 848 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 849 | ||||
| 850 | event->type = type; | |||
| 851 | event->e1 = e1; | |||
| 852 | event->e2 = e2; | |||
| 853 | event->point = *point; | |||
| 854 | ||||
| 855 | return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event); | |||
| 856 | } | |||
| 857 | ||||
| 858 | static void | |||
| 859 | _cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue, | |||
| 860 | cairo_bo_event_t *event) | |||
| 861 | { | |||
| 862 | _cairo_freepool_free (&queue->pool, event); | |||
| 863 | } | |||
| 864 | ||||
| 865 | static cairo_bo_event_t * | |||
| 866 | _cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue) | |||
| 867 | { | |||
| 868 | cairo_bo_event_t *event, *cmp; | |||
| 869 | ||||
| 870 | event = event_queue->pqueue.elements[PQ_FIRST_ENTRY1]; | |||
| 871 | cmp = *event_queue->start_events; | |||
| 872 | if (event == NULL((void*)0) || | |||
| 873 | (cmp != NULL((void*)0) && cairo_bo_event_compare (cmp, event) < 0)) | |||
| 874 | { | |||
| 875 | event = cmp; | |||
| 876 | event_queue->start_events++; | |||
| 877 | } | |||
| 878 | else | |||
| 879 | { | |||
| 880 | _pqueue_pop (&event_queue->pqueue); | |||
| 881 | } | |||
| 882 | ||||
| 883 | return event; | |||
| 884 | } | |||
| 885 | ||||
| 886 | CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| ||||
| 887 | cairo_bo_event_t *,static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| 888 | cairo_bo_event_compare)static void _cairo_bo_event_queue_sort (cairo_bo_event_t * *base , unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap ; if (cairo_bo_event_compare (base[i], base[j]) > 0 ) { cairo_bo_event_t * tmp; tmp = base[i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } | |||
| 889 | ||||
| 890 | static void | |||
| 891 | _cairo_bo_event_queue_init (cairo_bo_event_queue_t *event_queue, | |||
| 892 | cairo_bo_event_t **start_events, | |||
| 893 | int num_events) | |||
| 894 | { | |||
| 895 | _cairo_bo_event_queue_sort (start_events, num_events); | |||
| 896 | start_events[num_events] = NULL((void*)0); | |||
| 897 | ||||
| 898 | event_queue->start_events = start_events; | |||
| 899 | ||||
| 900 | _cairo_freepool_init (&event_queue->pool, | |||
| 901 | sizeof (cairo_bo_queue_event_t)); | |||
| 902 | _pqueue_init (&event_queue->pqueue); | |||
| 903 | event_queue->pqueue.elements[PQ_FIRST_ENTRY1] = NULL((void*)0); | |||
| 904 | } | |||
| 905 | ||||
| 906 | static cairo_status_t | |||
| 907 | event_queue_insert_stop (cairo_bo_event_queue_t *event_queue, | |||
| 908 | cairo_bo_edge_t *edge) | |||
| 909 | { | |||
| 910 | cairo_bo_intersect_point_t point; | |||
| 911 | ||||
| 912 | point.y.ordinate = edge->edge.bottom; | |||
| 913 | point.y.approx = EXACT; | |||
| 914 | point.x.ordinate = _line_compute_intersection_x_for_y (&edge->edge.line, | |||
| 915 | point.y.ordinate); | |||
| 916 | point.x.approx = EXACT; | |||
| 917 | ||||
| 918 | return _cairo_bo_event_queue_insert (event_queue, | |||
| 919 | CAIRO_BO_EVENT_TYPE_STOP, | |||
| 920 | edge, NULL((void*)0), | |||
| 921 | &point); | |||
| 922 | } | |||
| 923 | ||||
| 924 | static void | |||
| 925 | _cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue) | |||
| 926 | { | |||
| 927 | _pqueue_fini (&event_queue->pqueue); | |||
| 928 | _cairo_freepool_fini (&event_queue->pool); | |||
| 929 | } | |||
| 930 | ||||
| 931 | static inline cairo_status_t | |||
| 932 | event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue, | |||
| 933 | cairo_bo_edge_t *left, | |||
| 934 | cairo_bo_edge_t *right) | |||
| 935 | { | |||
| 936 | cairo_bo_intersect_point_t intersection; | |||
| 937 | ||||
| 938 | if (_line_equal (&left->edge.line, &right->edge.line)) | |||
| 939 | return CAIRO_STATUS_SUCCESS; | |||
| 940 | ||||
| 941 | /* The names "left" and "right" here are correct descriptions of | |||
| 942 | * the order of the two edges within the active edge list. So if a | |||
| 943 | * slope comparison also puts left less than right, then we know | |||
| 944 | * that the intersection of these two segments has already | |||
| 945 | * occurred before the current sweep line position. */ | |||
| 946 | if (_slope_compare (left, right) <= 0) | |||
| 947 | return CAIRO_STATUS_SUCCESS; | |||
| 948 | ||||
| 949 | if (! _cairo_bo_edge_intersect (left, right, &intersection)) | |||
| 950 | return CAIRO_STATUS_SUCCESS; | |||
| 951 | ||||
| 952 | return _cairo_bo_event_queue_insert (event_queue, | |||
| 953 | CAIRO_BO_EVENT_TYPE_INTERSECTION, | |||
| 954 | left, right, | |||
| 955 | &intersection); | |||
| 956 | } | |||
| 957 | ||||
| 958 | static void | |||
| 959 | _cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line) | |||
| 960 | { | |||
| 961 | sweep_line->head = NULL((void*)0); | |||
| 962 | sweep_line->current_y = INT32_MIN(-2147483647-1); | |||
| 963 | sweep_line->current_edge = NULL((void*)0); | |||
| 964 | } | |||
| 965 | ||||
| 966 | static cairo_status_t | |||
| 967 | sweep_line_insert (cairo_bo_sweep_line_t *sweep_line, | |||
| 968 | cairo_bo_edge_t *edge) | |||
| 969 | { | |||
| 970 | if (sweep_line->current_edge != NULL((void*)0)) { | |||
| 971 | cairo_bo_edge_t *prev, *next; | |||
| 972 | int cmp; | |||
| 973 | ||||
| 974 | cmp = _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
| 975 | sweep_line->current_edge, | |||
| 976 | edge); | |||
| 977 | if (cmp < 0) { | |||
| 978 | prev = sweep_line->current_edge; | |||
| 979 | next = prev->next; | |||
| 980 | while (next != NULL((void*)0) && | |||
| 981 | _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
| 982 | next, edge) < 0) | |||
| 983 | { | |||
| 984 | prev = next, next = prev->next; | |||
| 985 | } | |||
| 986 | ||||
| 987 | prev->next = edge; | |||
| 988 | edge->prev = prev; | |||
| 989 | edge->next = next; | |||
| 990 | if (next != NULL((void*)0)) | |||
| 991 | next->prev = edge; | |||
| 992 | } else if (cmp > 0) { | |||
| 993 | next = sweep_line->current_edge; | |||
| 994 | prev = next->prev; | |||
| 995 | while (prev != NULL((void*)0) && | |||
| 996 | _cairo_bo_sweep_line_compare_edges (sweep_line, | |||
| 997 | prev, edge) > 0) | |||
| 998 | { | |||
| 999 | next = prev, prev = next->prev; | |||
| 1000 | } | |||
| 1001 | ||||
| 1002 | next->prev = edge; | |||
| 1003 | edge->next = next; | |||
| 1004 | edge->prev = prev; | |||
| 1005 | if (prev != NULL((void*)0)) | |||
| 1006 | prev->next = edge; | |||
| 1007 | else | |||
| 1008 | sweep_line->head = edge; | |||
| 1009 | } else { | |||
| 1010 | prev = sweep_line->current_edge; | |||
| 1011 | edge->prev = prev; | |||
| 1012 | edge->next = prev->next; | |||
| 1013 | if (prev->next != NULL((void*)0)) | |||
| 1014 | prev->next->prev = edge; | |||
| 1015 | prev->next = edge; | |||
| 1016 | } | |||
| 1017 | } else { | |||
| 1018 | sweep_line->head = edge; | |||
| 1019 | } | |||
| 1020 | ||||
| 1021 | sweep_line->current_edge = edge; | |||
| 1022 | ||||
| 1023 | return CAIRO_STATUS_SUCCESS; | |||
| 1024 | } | |||
| 1025 | ||||
| 1026 | static void | |||
| 1027 | _cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line, | |||
| 1028 | cairo_bo_edge_t *edge) | |||
| 1029 | { | |||
| 1030 | if (edge->prev != NULL((void*)0)) | |||
| 1031 | edge->prev->next = edge->next; | |||
| 1032 | else | |||
| 1033 | sweep_line->head = edge->next; | |||
| 1034 | ||||
| 1035 | if (edge->next != NULL((void*)0)) | |||
| 1036 | edge->next->prev = edge->prev; | |||
| 1037 | ||||
| 1038 | if (sweep_line->current_edge == edge) | |||
| 1039 | sweep_line->current_edge = edge->prev ? edge->prev : edge->next; | |||
| 1040 | } | |||
| 1041 | ||||
| 1042 | static void | |||
| 1043 | _cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t *sweep_line, | |||
| 1044 | cairo_bo_edge_t *left, | |||
| 1045 | cairo_bo_edge_t *right) | |||
| 1046 | { | |||
| 1047 | if (left->prev != NULL((void*)0)) | |||
| 1048 | left->prev->next = right; | |||
| 1049 | else | |||
| 1050 | sweep_line->head = right; | |||
| 1051 | ||||
| 1052 | if (right->next != NULL((void*)0)) | |||
| 1053 | right->next->prev = left; | |||
| 1054 | ||||
| 1055 | left->next = right->next; | |||
| 1056 | right->next = left; | |||
| 1057 | ||||
| 1058 | right->prev = left->prev; | |||
| 1059 | left->prev = right; | |||
| 1060 | } | |||
| 1061 | ||||
| 1062 | static inline cairo_bool_t | |||
| 1063 | edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b) | |||
| 1064 | { | |||
| 1065 | if (_line_equal (&a->edge.line, &b->edge.line)) | |||
| 1066 | return TRUE1; | |||
| 1067 | ||||
| 1068 | if (_slope_compare (a, b)) | |||
| 1069 | return FALSE0; | |||
| 1070 | ||||
| 1071 | /* The choice of y is not truly arbitrary since we must guarantee that it | |||
| 1072 | * is greater than the start of either line. | |||
| 1073 | */ | |||
| 1074 | if (a->edge.line.p1.y == b->edge.line.p1.y) { | |||
| 1075 | return a->edge.line.p1.x == b->edge.line.p1.x; | |||
| 1076 | } else if (a->edge.line.p1.y < b->edge.line.p1.y) { | |||
| 1077 | return edge_compare_for_y_against_x (b, | |||
| 1078 | a->edge.line.p1.y, | |||
| 1079 | a->edge.line.p1.x) == 0; | |||
| 1080 | } else { | |||
| 1081 | return edge_compare_for_y_against_x (a, | |||
| 1082 | b->edge.line.p1.y, | |||
| 1083 | b->edge.line.p1.x) == 0; | |||
| 1084 | } | |||
| 1085 | } | |||
| 1086 | ||||
| 1087 | static void | |||
| 1088 | edges_end (cairo_bo_edge_t *left, | |||
| 1089 | int32_t bot, | |||
| 1090 | cairo_polygon_t *polygon) | |||
| 1091 | { | |||
| 1092 | cairo_bo_deferred_t *l = &left->deferred; | |||
| 1093 | cairo_bo_edge_t *right = l->other; | |||
| 1094 | ||||
| 1095 | assert(right->deferred.other == NULL)((void) sizeof ((right->deferred.other == ((void*)0)) ? 1 : 0), __extension__ ({ if (right->deferred.other == ((void* )0)) ; else __assert_fail ("right->deferred.other == NULL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1095, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1096 | if (likely (l->top < bot)(__builtin_expect (!!(l->top < bot), 1))) { | |||
| 1097 | _cairo_polygon_add_line (polygon, &left->edge.line, l->top, bot, 1); | |||
| 1098 | _cairo_polygon_add_line (polygon, &right->edge.line, l->top, bot, -1); | |||
| 1099 | } | |||
| 1100 | ||||
| 1101 | l->other = NULL((void*)0); | |||
| 1102 | } | |||
| 1103 | ||||
| 1104 | static inline void | |||
| 1105 | edges_start_or_continue (cairo_bo_edge_t *left, | |||
| 1106 | cairo_bo_edge_t *right, | |||
| 1107 | int top, | |||
| 1108 | cairo_polygon_t *polygon) | |||
| 1109 | { | |||
| 1110 | assert (right != NULL)((void) sizeof ((right != ((void*)0)) ? 1 : 0), __extension__ ({ if (right != ((void*)0)) ; else __assert_fail ("right != NULL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1110, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1111 | assert (right->deferred.other == NULL)((void) sizeof ((right->deferred.other == ((void*)0)) ? 1 : 0), __extension__ ({ if (right->deferred.other == ((void* )0)) ; else __assert_fail ("right->deferred.other == NULL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1111, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1112 | ||||
| 1113 | if (left->deferred.other == right) | |||
| 1114 | return; | |||
| 1115 | ||||
| 1116 | if (left->deferred.other != NULL((void*)0)) { | |||
| 1117 | if (edges_colinear (left->deferred.other, right)) { | |||
| 1118 | cairo_bo_edge_t *old = left->deferred.other; | |||
| 1119 | ||||
| 1120 | /* continuation on right, extend right to cover both */ | |||
| 1121 | assert (old->deferred.other == NULL)((void) sizeof ((old->deferred.other == ((void*)0)) ? 1 : 0 ), __extension__ ({ if (old->deferred.other == ((void*)0)) ; else __assert_fail ("old->deferred.other == NULL", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1121, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1122 | assert (old->edge.line.p2.y > old->edge.line.p1.y)((void) sizeof ((old->edge.line.p2.y > old->edge.line .p1.y) ? 1 : 0), __extension__ ({ if (old->edge.line.p2.y > old->edge.line.p1.y) ; else __assert_fail ("old->edge.line.p2.y > old->edge.line.p1.y" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1122, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1123 | ||||
| 1124 | if (old->edge.line.p1.y < right->edge.line.p1.y) | |||
| 1125 | right->edge.line.p1 = old->edge.line.p1; | |||
| 1126 | if (old->edge.line.p2.y > right->edge.line.p2.y) | |||
| 1127 | right->edge.line.p2 = old->edge.line.p2; | |||
| 1128 | left->deferred.other = right; | |||
| 1129 | return; | |||
| 1130 | } | |||
| 1131 | ||||
| 1132 | edges_end (left, top, polygon); | |||
| 1133 | } | |||
| 1134 | ||||
| 1135 | if (! edges_colinear (left, right)) { | |||
| 1136 | left->deferred.top = top; | |||
| 1137 | left->deferred.other = right; | |||
| 1138 | } | |||
| 1139 | } | |||
| 1140 | ||||
| 1141 | #define is_zero(w)((w)[0] == 0 || (w)[1] == 0) ((w)[0] == 0 || (w)[1] == 0) | |||
| 1142 | ||||
| 1143 | static inline void | |||
| 1144 | active_edges (cairo_bo_edge_t *left, | |||
| 1145 | int32_t top, | |||
| 1146 | cairo_polygon_t *polygon) | |||
| 1147 | { | |||
| 1148 | cairo_bo_edge_t *right; | |||
| 1149 | int winding[2] = {0, 0}; | |||
| 1150 | ||||
| 1151 | /* Yes, this is naive. Consider this a placeholder. */ | |||
| 1152 | ||||
| 1153 | while (left != NULL((void*)0)) { | |||
| 1154 | assert (is_zero (winding))((void) sizeof ((((winding)[0] == 0 || (winding)[1] == 0)) ? 1 : 0), __extension__ ({ if (((winding)[0] == 0 || (winding)[1 ] == 0)) ; else __assert_fail ("is_zero (winding)", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1154, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1155 | ||||
| 1156 | do { | |||
| 1157 | winding[left->a_or_b] += left->edge.dir; | |||
| 1158 | if (! is_zero (winding)((winding)[0] == 0 || (winding)[1] == 0)) | |||
| 1159 | break; | |||
| 1160 | ||||
| 1161 | if unlikely ((left->deferred.other))(__builtin_expect (!!((left->deferred.other)), 0)) | |||
| 1162 | edges_end (left, top, polygon); | |||
| 1163 | ||||
| 1164 | left = left->next; | |||
| 1165 | if (! left) | |||
| 1166 | return; | |||
| 1167 | } while (1); | |||
| 1168 | ||||
| 1169 | right = left->next; | |||
| 1170 | while (right) { | |||
| 1171 | if unlikely ((right->deferred.other))(__builtin_expect (!!((right->deferred.other)), 0)) | |||
| 1172 | edges_end (right, top, polygon); | |||
| 1173 | ||||
| 1174 | winding[right->a_or_b] += right->edge.dir; | |||
| 1175 | if (is_zero (winding)((winding)[0] == 0 || (winding)[1] == 0)) { | |||
| 1176 | if (right->next == NULL((void*)0) || | |||
| 1177 | ! edges_colinear (right, right->next)) | |||
| 1178 | break; | |||
| 1179 | } | |||
| 1180 | ||||
| 1181 | right = right->next; | |||
| 1182 | }; | |||
| 1183 | if (! right) | |||
| 1184 | return; | |||
| 1185 | ||||
| 1186 | edges_start_or_continue (left, right, top, polygon); | |||
| 1187 | ||||
| 1188 | left = right->next; | |||
| 1189 | } | |||
| 1190 | } | |||
| 1191 | ||||
| 1192 | static cairo_status_t | |||
| 1193 | intersection_sweep (cairo_bo_event_t **start_events, | |||
| 1194 | int num_events, | |||
| 1195 | cairo_polygon_t *polygon) | |||
| 1196 | { | |||
| 1197 | cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */ | |||
| 1198 | cairo_bo_event_queue_t event_queue; | |||
| 1199 | cairo_bo_sweep_line_t sweep_line; | |||
| 1200 | cairo_bo_event_t *event; | |||
| 1201 | cairo_bo_edge_t *left, *right; | |||
| 1202 | cairo_bo_edge_t *e1, *e2; | |||
| 1203 | ||||
| 1204 | _cairo_bo_event_queue_init (&event_queue, start_events, num_events); | |||
| 1205 | _cairo_bo_sweep_line_init (&sweep_line); | |||
| 1206 | ||||
| 1207 | while ((event = _cairo_bo_event_dequeue (&event_queue))) { | |||
| 1208 | if (event->point.y.ordinate != sweep_line.current_y) { | |||
| 1209 | active_edges (sweep_line.head, | |||
| 1210 | sweep_line.current_y, | |||
| 1211 | polygon); | |||
| 1212 | sweep_line.current_y = event->point.y.ordinate; | |||
| 1213 | } | |||
| 1214 | ||||
| 1215 | switch (event->type) { | |||
| 1216 | case CAIRO_BO_EVENT_TYPE_START: | |||
| 1217 | e1 = &((cairo_bo_start_event_t *) event)->edge; | |||
| 1218 | ||||
| 1219 | status = sweep_line_insert (&sweep_line, e1); | |||
| 1220 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1221 | goto unwind; | |||
| 1222 | ||||
| 1223 | status = event_queue_insert_stop (&event_queue, e1); | |||
| 1224 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1225 | goto unwind; | |||
| 1226 | ||||
| 1227 | left = e1->prev; | |||
| 1228 | right = e1->next; | |||
| 1229 | ||||
| 1230 | if (left != NULL((void*)0)) { | |||
| 1231 | status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1); | |||
| 1232 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1233 | goto unwind; | |||
| 1234 | } | |||
| 1235 | ||||
| 1236 | if (right != NULL((void*)0)) { | |||
| 1237 | status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right); | |||
| 1238 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1239 | goto unwind; | |||
| 1240 | } | |||
| 1241 | ||||
| 1242 | break; | |||
| 1243 | ||||
| 1244 | case CAIRO_BO_EVENT_TYPE_STOP: | |||
| 1245 | e1 = ((cairo_bo_queue_event_t *) event)->e1; | |||
| 1246 | _cairo_bo_event_queue_delete (&event_queue, event); | |||
| 1247 | ||||
| 1248 | if (e1->deferred.other) | |||
| 1249 | edges_end (e1, sweep_line.current_y, polygon); | |||
| 1250 | ||||
| 1251 | left = e1->prev; | |||
| 1252 | right = e1->next; | |||
| 1253 | ||||
| 1254 | _cairo_bo_sweep_line_delete (&sweep_line, e1); | |||
| 1255 | ||||
| 1256 | if (left != NULL((void*)0) && right != NULL((void*)0)) { | |||
| 1257 | status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, right); | |||
| 1258 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1259 | goto unwind; | |||
| 1260 | } | |||
| 1261 | ||||
| 1262 | break; | |||
| 1263 | ||||
| 1264 | case CAIRO_BO_EVENT_TYPE_INTERSECTION: | |||
| 1265 | e1 = ((cairo_bo_queue_event_t *) event)->e1; | |||
| 1266 | e2 = ((cairo_bo_queue_event_t *) event)->e2; | |||
| 1267 | _cairo_bo_event_queue_delete (&event_queue, event); | |||
| 1268 | ||||
| 1269 | /* skip this intersection if its edges are not adjacent */ | |||
| 1270 | if (e2 != e1->next) | |||
| 1271 | break; | |||
| 1272 | ||||
| 1273 | if (e1->deferred.other) | |||
| 1274 | edges_end (e1, sweep_line.current_y, polygon); | |||
| 1275 | if (e2->deferred.other) | |||
| 1276 | edges_end (e2, sweep_line.current_y, polygon); | |||
| 1277 | ||||
| 1278 | left = e1->prev; | |||
| 1279 | right = e2->next; | |||
| 1280 | ||||
| 1281 | _cairo_bo_sweep_line_swap (&sweep_line, e1, e2); | |||
| 1282 | ||||
| 1283 | /* after the swap e2 is left of e1 */ | |||
| 1284 | ||||
| 1285 | if (left != NULL((void*)0)) { | |||
| 1286 | status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2); | |||
| 1287 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1288 | goto unwind; | |||
| 1289 | } | |||
| 1290 | ||||
| 1291 | if (right != NULL((void*)0)) { | |||
| 1292 | status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right); | |||
| 1293 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1294 | goto unwind; | |||
| 1295 | } | |||
| 1296 | ||||
| 1297 | break; | |||
| 1298 | } | |||
| 1299 | } | |||
| 1300 | ||||
| 1301 | unwind: | |||
| 1302 | _cairo_bo_event_queue_fini (&event_queue); | |||
| 1303 | ||||
| 1304 | return status; | |||
| 1305 | } | |||
| 1306 | ||||
| 1307 | cairo_status_t | |||
| 1308 | _cairo_polygon_intersect (cairo_polygon_t *a, int winding_a, | |||
| 1309 | cairo_polygon_t *b, int winding_b) | |||
| 1310 | { | |||
| 1311 | cairo_status_t status; | |||
| 1312 | cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)((512 * sizeof (int)) / sizeof(cairo_bo_start_event_t))]; | |||
| 1313 | cairo_bo_start_event_t *events; | |||
| 1314 | cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events)((int) (sizeof (stack_events) / sizeof (stack_events[0]))) + 1]; | |||
| 1315 | cairo_bo_event_t **event_ptrs; | |||
| 1316 | int num_events; | |||
| 1317 | int i, j; | |||
| 1318 | ||||
| 1319 | /* XXX lazy */ | |||
| 1320 | if (winding_a != CAIRO_FILL_RULE_WINDING) { | |||
| 1321 | status = _cairo_polygon_reduce (a, winding_a); | |||
| 1322 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1323 | return status; | |||
| 1324 | } | |||
| 1325 | ||||
| 1326 | if (winding_b
| |||
| 1327 | status = _cairo_polygon_reduce (b, winding_b); | |||
| 1328 | if (unlikely (status)(__builtin_expect (!!(status), 0))) | |||
| 1329 | return status; | |||
| 1330 | } | |||
| 1331 | ||||
| 1332 | if (unlikely (0 == a->num_edges)(__builtin_expect (!!(0 == a->num_edges), 0))) | |||
| 1333 | return CAIRO_STATUS_SUCCESS; | |||
| 1334 | ||||
| 1335 | if (unlikely (0 == b->num_edges)(__builtin_expect (!!(0 == b->num_edges), 0))) { | |||
| 1336 | a->num_edges = 0; | |||
| 1337 | return CAIRO_STATUS_SUCCESS; | |||
| 1338 | } | |||
| 1339 | ||||
| 1340 | events = stack_events; | |||
| 1341 | event_ptrs = stack_event_ptrs; | |||
| 1342 | num_events = a->num_edges + b->num_edges; | |||
| 1343 | if (num_events > ARRAY_LENGTH (stack_events)((int) (sizeof (stack_events) / sizeof (stack_events[0])))) { | |||
| 1344 | events = _cairo_malloc_ab_plus_c (num_events, | |||
| 1345 | sizeof (cairo_bo_start_event_t) + | |||
| 1346 | sizeof (cairo_bo_event_t *), | |||
| 1347 | sizeof (cairo_bo_event_t *)); | |||
| 1348 | if (unlikely (events == NULL)(__builtin_expect (!!(events == ((void*)0)), 0))) | |||
| 1349 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); | |||
| 1350 | ||||
| 1351 | event_ptrs = (cairo_bo_event_t **) (events + num_events); | |||
| 1352 | } | |||
| 1353 | ||||
| 1354 | j = 0; | |||
| 1355 | for (i = 0; i < a->num_edges; i++) { | |||
| 1356 | event_ptrs[j] = (cairo_bo_event_t *) &events[j]; | |||
| 1357 | ||||
| 1358 | events[j].type = CAIRO_BO_EVENT_TYPE_START; | |||
| 1359 | events[j].point.y.ordinate = a->edges[i].top; | |||
| 1360 | events[j].point.y.approx = EXACT; | |||
| 1361 | events[j].point.x.ordinate = | |||
| 1362 | _line_compute_intersection_x_for_y (&a->edges[i].line, | |||
| 1363 | events[j].point.y.ordinate); | |||
| 1364 | events[j].point.x.approx = EXACT; | |||
| 1365 | ||||
| 1366 | events[j].edge.a_or_b = 0; | |||
| 1367 | events[j].edge.edge = a->edges[i]; | |||
| 1368 | events[j].edge.deferred.other = NULL((void*)0); | |||
| 1369 | events[j].edge.prev = NULL((void*)0); | |||
| 1370 | events[j].edge.next = NULL((void*)0); | |||
| 1371 | j++; | |||
| 1372 | } | |||
| 1373 | ||||
| 1374 | for (i = 0; i < b->num_edges; i++) { | |||
| 1375 | event_ptrs[j] = (cairo_bo_event_t *) &events[j]; | |||
| 1376 | ||||
| 1377 | events[j].type = CAIRO_BO_EVENT_TYPE_START; | |||
| 1378 | events[j].point.y.ordinate = b->edges[i].top; | |||
| 1379 | events[j].point.y.approx = EXACT; | |||
| 1380 | events[j].point.x.ordinate = | |||
| 1381 | _line_compute_intersection_x_for_y (&b->edges[i].line, | |||
| 1382 | events[j].point.y.ordinate); | |||
| 1383 | events[j].point.x.approx = EXACT; | |||
| 1384 | ||||
| 1385 | events[j].edge.a_or_b = 1; | |||
| 1386 | events[j].edge.edge = b->edges[i]; | |||
| 1387 | events[j].edge.deferred.other = NULL((void*)0); | |||
| 1388 | events[j].edge.prev = NULL((void*)0); | |||
| 1389 | events[j].edge.next = NULL((void*)0); | |||
| 1390 | j++; | |||
| 1391 | } | |||
| 1392 | assert (j == num_events)((void) sizeof ((j == num_events) ? 1 : 0), __extension__ ({ if (j == num_events) ; else __assert_fail ("j == num_events", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-polygon-intersect.c" , 1392, __extension__ __PRETTY_FUNCTION__); })); | |||
| 1393 | ||||
| 1394 | #if 0 | |||
| 1395 | { | |||
| 1396 | FILE *file = fopen ("clip_a.txt", "w"); | |||
| 1397 | _cairo_debug_print_polygon (file, a); | |||
| 1398 | fclose (file); | |||
| 1399 | } | |||
| 1400 | { | |||
| 1401 | FILE *file = fopen ("clip_b.txt", "w"); | |||
| 1402 | _cairo_debug_print_polygon (file, b); | |||
| 1403 | fclose (file); | |||
| 1404 | } | |||
| 1405 | #endif | |||
| 1406 | ||||
| 1407 | a->num_edges = 0; | |||
| 1408 | status = intersection_sweep (event_ptrs, num_events, a); | |||
| 1409 | if (events != stack_events) | |||
| 1410 | free (events); | |||
| 1411 | ||||
| 1412 | #if 0 | |||
| 1413 | { | |||
| 1414 | FILE *file = fopen ("clip_result.txt", "w"); | |||
| 1415 | _cairo_debug_print_polygon (file, a); | |||
| 1416 | fclose (file); | |||
| 1417 | } | |||
| 1418 | #endif | |||
| 1419 | ||||
| 1420 | return status; | |||
| 1421 | } | |||
| 1422 | ||||
| 1423 | cairo_status_t | |||
| 1424 | _cairo_polygon_intersect_with_boxes (cairo_polygon_t *polygon, | |||
| 1425 | cairo_fill_rule_t *winding, | |||
| 1426 | cairo_box_t *boxes, | |||
| 1427 | int num_boxes) | |||
| 1428 | { | |||
| 1429 | cairo_polygon_t b; | |||
| 1430 | cairo_status_t status; | |||
| 1431 | int n; | |||
| 1432 | ||||
| 1433 | if (num_boxes == 0) { | |||
| ||||
| 1434 | polygon->num_edges = 0; | |||
| 1435 | return CAIRO_STATUS_SUCCESS; | |||
| 1436 | } | |||
| 1437 | ||||
| 1438 | for (n = 0; n < num_boxes; n++) { | |||
| 1439 | if (polygon->extents.p1.x >= boxes[n].p1.x && | |||
| 1440 | polygon->extents.p2.x <= boxes[n].p2.x && | |||
| 1441 | polygon->extents.p1.y >= boxes[n].p1.y && | |||
| 1442 | polygon->extents.p2.y <= boxes[n].p2.y) | |||
| 1443 | { | |||
| 1444 | return CAIRO_STATUS_SUCCESS; | |||
| 1445 | } | |||
| 1446 | } | |||
| 1447 | ||||
| 1448 | _cairo_polygon_init (&b, NULL((void*)0), 0); | |||
| 1449 | for (n = 0; n
| |||
| 1450 | if (boxes[n].p2.x > polygon->extents.p1.x && | |||
| 1451 | boxes[n].p1.x < polygon->extents.p2.x && | |||
| 1452 | boxes[n].p2.y > polygon->extents.p1.y && | |||
| 1453 | boxes[n].p1.y < polygon->extents.p2.y) | |||
| 1454 | { | |||
| 1455 | cairo_point_t p1, p2; | |||
| 1456 | ||||
| 1457 | p1.y = boxes[n].p1.y; | |||
| 1458 | p2.y = boxes[n].p2.y; | |||
| 1459 | ||||
| 1460 | p2.x = p1.x = boxes[n].p1.x; | |||
| 1461 | _cairo_polygon_add_external_edge (&b, &p1, &p2); | |||
| 1462 | ||||
| 1463 | p2.x = p1.x = boxes[n].p2.x; | |||
| 1464 | _cairo_polygon_add_external_edge (&b, &p2, &p1); | |||
| 1465 | } | |||
| 1466 | } | |||
| 1467 | ||||
| 1468 | status = _cairo_polygon_intersect (polygon, *winding, | |||
| 1469 | &b, CAIRO_FILL_RULE_WINDING); | |||
| 1470 | _cairo_polygon_fini (&b); | |||
| 1471 | ||||
| 1472 | *winding = CAIRO_FILL_RULE_WINDING; | |||
| 1473 | return status; | |||
| 1474 | } |