File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c |
Warning: | line 2041, column 2 Value stored to 'status' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */ |
2 | /* cairo - a vector graphics library with display and print output |
3 | * |
4 | * Copyright © 2004 David Reveman |
5 | * Copyright © 2005 Red Hat, Inc. |
6 | * |
7 | * Permission to use, copy, modify, distribute, and sell this software |
8 | * and its documentation for any purpose is hereby granted without |
9 | * fee, provided that the above copyright notice appear in all copies |
10 | * and that both that copyright notice and this permission notice |
11 | * appear in supporting documentation, and that the name of David |
12 | * Reveman not be used in advertising or publicity pertaining to |
13 | * distribution of the software without specific, written prior |
14 | * permission. David Reveman makes no representations about the |
15 | * suitability of this software for any purpose. It is provided "as |
16 | * is" without express or implied warranty. |
17 | * |
18 | * DAVID REVEMAN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS |
19 | * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
20 | * FITNESS, IN NO EVENT SHALL DAVID REVEMAN BE LIABLE FOR ANY SPECIAL, |
21 | * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER |
22 | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
23 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR |
24 | * IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
25 | * |
26 | * Authors: David Reveman <davidr@novell.com> |
27 | * Keith Packard <keithp@keithp.com> |
28 | * Carl Worth <cworth@cworth.org> |
29 | */ |
30 | |
31 | #include "cairoint.h" |
32 | |
33 | #include "cairo-array-private.h" |
34 | #include "cairo-error-private.h" |
35 | #include "cairo-freed-pool-private.h" |
36 | #include "cairo-image-surface-private.h" |
37 | #include "cairo-list-inline.h" |
38 | #include "cairo-path-private.h" |
39 | #include "cairo-pattern-private.h" |
40 | #include "cairo-recording-surface-inline.h" |
41 | #include "cairo-surface-snapshot-inline.h" |
42 | |
43 | #include <float.h> |
44 | |
45 | #define PIXMAN_MAX_INT(((((pixman_fixed_t) ((uint32_t) (1) << 16))) >> 1 ) - ((pixman_fixed_t) 1)) ((pixman_fixed_1(((pixman_fixed_t) ((uint32_t) (1) << 16))) >> 1) - pixman_fixed_e((pixman_fixed_t) 1)) /* need to ensure deltas also fit */ |
46 | |
47 | /** |
48 | * SECTION:cairo-pattern |
49 | * @Title: cairo_pattern_t |
50 | * @Short_Description: Sources for drawing |
51 | * @See_Also: #cairo_t, #cairo_surface_t |
52 | * |
53 | * #cairo_pattern_t is the paint with which cairo draws. |
54 | * The primary use of patterns is as the source for all cairo drawing |
55 | * operations, although they can also be used as masks, that is, as the |
56 | * brush too. |
57 | * |
58 | * A cairo pattern is created by using one of the many constructors, |
59 | * of the form |
60 | * <function>cairo_pattern_create_<emphasis>type</emphasis>()</function> |
61 | * or implicitly through |
62 | * <function>cairo_set_source_<emphasis>type</emphasis>()</function> |
63 | * functions. |
64 | **/ |
65 | |
66 | /** |
67 | * CAIRO_HAS_MIME_SURFACE: |
68 | * |
69 | * Unused symbol, always defined. |
70 | * |
71 | * Since: 1.12 |
72 | **/ |
73 | |
74 | static freed_pool_t freed_pattern_pool[5]; |
75 | |
76 | static const cairo_solid_pattern_t _cairo_pattern_nil = { |
77 | { |
78 | CAIRO_REFERENCE_COUNT_INVALID{((cairo_atomic_int_t) -1)}, /* ref_count */ |
79 | CAIRO_STATUS_NO_MEMORY, /* status */ |
80 | { 0, 0, 0, NULL((void*)0) }, /* user_data */ |
81 | { NULL((void*)0), NULL((void*)0) }, /* observers */ |
82 | |
83 | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
84 | CAIRO_FILTER_DEFAULTCAIRO_FILTER_GOOD, /* filter */ |
85 | CAIRO_EXTEND_GRADIENT_DEFAULTCAIRO_EXTEND_PAD, /* extend */ |
86 | FALSE0, /* has component alpha */ |
87 | FALSE0, /* is_foreground_marker */ |
88 | CAIRO_DITHER_DEFAULT, /* dither */ |
89 | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
90 | 1.0 /* opacity */ |
91 | } |
92 | }; |
93 | |
94 | static const cairo_solid_pattern_t _cairo_pattern_nil_null_pointer = { |
95 | { |
96 | CAIRO_REFERENCE_COUNT_INVALID{((cairo_atomic_int_t) -1)}, /* ref_count */ |
97 | CAIRO_STATUS_NULL_POINTER, /* status */ |
98 | { 0, 0, 0, NULL((void*)0) }, /* user_data */ |
99 | { NULL((void*)0), NULL((void*)0) }, /* observers */ |
100 | |
101 | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
102 | CAIRO_FILTER_DEFAULTCAIRO_FILTER_GOOD, /* filter */ |
103 | CAIRO_EXTEND_GRADIENT_DEFAULTCAIRO_EXTEND_PAD, /* extend */ |
104 | FALSE0, /* has component alpha */ |
105 | FALSE0, /* is_foreground_marker */ |
106 | CAIRO_DITHER_DEFAULT, /* dither */ |
107 | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
108 | 1.0 /* opacity */ |
109 | } |
110 | }; |
111 | |
112 | const cairo_solid_pattern_t _cairo_pattern_black = { |
113 | { |
114 | CAIRO_REFERENCE_COUNT_INVALID{((cairo_atomic_int_t) -1)}, /* ref_count */ |
115 | CAIRO_STATUS_SUCCESS, /* status */ |
116 | { 0, 0, 0, NULL((void*)0) }, /* user_data */ |
117 | { NULL((void*)0), NULL((void*)0) }, /* observers */ |
118 | |
119 | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
120 | CAIRO_FILTER_NEAREST, /* filter */ |
121 | CAIRO_EXTEND_REPEAT, /* extend */ |
122 | FALSE0, /* has component alpha */ |
123 | FALSE0, /* is_foreground_marker */ |
124 | CAIRO_DITHER_DEFAULT, /* dither */ |
125 | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
126 | 1.0 /* opacity */ |
127 | }, |
128 | { 0., 0., 0., 1., 0, 0, 0, 0xffff },/* color (double rgba, short rgba) */ |
129 | }; |
130 | |
131 | const cairo_solid_pattern_t _cairo_pattern_clear = { |
132 | { |
133 | CAIRO_REFERENCE_COUNT_INVALID{((cairo_atomic_int_t) -1)}, /* ref_count */ |
134 | CAIRO_STATUS_SUCCESS, /* status */ |
135 | { 0, 0, 0, NULL((void*)0) }, /* user_data */ |
136 | { NULL((void*)0), NULL((void*)0) }, /* observers */ |
137 | |
138 | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
139 | CAIRO_FILTER_NEAREST, /* filter */ |
140 | CAIRO_EXTEND_REPEAT, /* extend */ |
141 | FALSE0, /* has component alpha */ |
142 | FALSE0, /* is_foreground_marker */ |
143 | CAIRO_DITHER_DEFAULT, /* dither */ |
144 | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
145 | 1.0 /* opacity */ |
146 | }, |
147 | { 0., 0., 0., 0., 0, 0, 0, 0 },/* color (double rgba, short rgba) */ |
148 | }; |
149 | |
150 | const cairo_solid_pattern_t _cairo_pattern_white = { |
151 | { |
152 | CAIRO_REFERENCE_COUNT_INVALID{((cairo_atomic_int_t) -1)}, /* ref_count */ |
153 | CAIRO_STATUS_SUCCESS, /* status */ |
154 | { 0, 0, 0, NULL((void*)0) }, /* user_data */ |
155 | { NULL((void*)0), NULL((void*)0) }, /* observers */ |
156 | |
157 | CAIRO_PATTERN_TYPE_SOLID, /* type */ |
158 | CAIRO_FILTER_NEAREST, /* filter */ |
159 | CAIRO_EXTEND_REPEAT, /* extend */ |
160 | FALSE0, /* has component alpha */ |
161 | FALSE0, /* is_foreground_marker */ |
162 | CAIRO_DITHER_DEFAULT, /* dither */ |
163 | { 1., 0., 0., 1., 0., 0., }, /* matrix */ |
164 | 1.0 /* opacity */ |
165 | }, |
166 | { 1., 1., 1., 1., 0xffff, 0xffff, 0xffff, 0xffff },/* color (double rgba, short rgba) */ |
167 | }; |
168 | |
169 | static void |
170 | _cairo_pattern_notify_observers (cairo_pattern_t *pattern, |
171 | unsigned int flags) |
172 | { |
173 | cairo_pattern_observer_t *pos; |
174 | |
175 | cairo_list_foreach_entry (pos, cairo_pattern_observer_t, &pattern->observers, link)for (pos = ({ const __typeof__ (((cairo_pattern_observer_t *) 0)->link) *mptr__ = ((&pattern->observers)->next ); (cairo_pattern_observer_t *) ((char *) mptr__ - __builtin_offsetof (cairo_pattern_observer_t, link)); }); &pos->link != ( &pattern->observers); pos = ({ const __typeof__ (((cairo_pattern_observer_t *) 0)->link) *mptr__ = (pos->link.next); (cairo_pattern_observer_t *) ((char *) mptr__ - __builtin_offsetof(cairo_pattern_observer_t , link)); })) |
176 | pos->notify (pos, pattern, flags); |
177 | } |
178 | |
179 | /** |
180 | * _cairo_pattern_set_error: |
181 | * @pattern: a pattern |
182 | * @status: a status value indicating an error |
183 | * |
184 | * Atomically sets pattern->status to @status and calls _cairo_error; |
185 | * Does nothing if status is %CAIRO_STATUS_SUCCESS. |
186 | * |
187 | * All assignments of an error status to pattern->status should happen |
188 | * through _cairo_pattern_set_error(). Note that due to the nature of |
189 | * the atomic operation, it is not safe to call this function on the nil |
190 | * objects. |
191 | * |
192 | * The purpose of this function is to allow the user to set a |
193 | * breakpoint in _cairo_error() to generate a stack trace for when the |
194 | * user causes cairo to detect an error. |
195 | **/ |
196 | static cairo_status_t |
197 | _cairo_pattern_set_error (cairo_pattern_t *pattern, |
198 | cairo_status_t status) |
199 | { |
200 | if (status == CAIRO_STATUS_SUCCESS) |
201 | return status; |
202 | |
203 | /* Don't overwrite an existing error. This preserves the first |
204 | * error, which is the most significant. */ |
205 | _cairo_status_set_error (&pattern->status, status)do { int ret__; ((void) sizeof ((status < CAIRO_STATUS_LAST_STATUS ) ? 1 : 0), __extension__ ({ if (status < CAIRO_STATUS_LAST_STATUS ) ; else __assert_fail ("status < CAIRO_STATUS_LAST_STATUS" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 205 , __extension__ __PRETTY_FUNCTION__); })); ((void) sizeof ((sizeof (*&pattern->status) == sizeof(cairo_atomic_int_t)) ? 1 : 0), __extension__ ({ if (sizeof(*&pattern->status) == sizeof(cairo_atomic_int_t)) ; else __assert_fail ("sizeof(*&pattern->status) == sizeof(cairo_atomic_int_t)" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 205 , __extension__ __PRETTY_FUNCTION__); })); ret__ = _cairo_atomic_int_cmpxchg_impl ((cairo_atomic_int_t *) &pattern->status, CAIRO_STATUS_SUCCESS , status); (void) ret__; } while (0); |
206 | |
207 | return _cairo_error (status); |
208 | } |
209 | |
210 | void |
211 | _cairo_pattern_init (cairo_pattern_t *pattern, cairo_pattern_type_t type) |
212 | { |
213 | #if HAVE_VALGRIND |
214 | switch (type) { |
215 | case CAIRO_PATTERN_TYPE_SOLID: |
216 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)); |
217 | break; |
218 | case CAIRO_PATTERN_TYPE_SURFACE: |
219 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)); |
220 | break; |
221 | case CAIRO_PATTERN_TYPE_LINEAR: |
222 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)); |
223 | break; |
224 | case CAIRO_PATTERN_TYPE_RADIAL: |
225 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)); |
226 | break; |
227 | case CAIRO_PATTERN_TYPE_MESH: |
228 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t)); |
229 | break; |
230 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
231 | break; |
232 | } |
233 | #endif |
234 | |
235 | pattern->type = type; |
236 | pattern->status = CAIRO_STATUS_SUCCESS; |
237 | |
238 | /* Set the reference count to zero for on-stack patterns. |
239 | * Callers needs to explicitly increment the count for heap allocations. */ |
240 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0)((&pattern->ref_count)->ref_count = (0)); |
241 | |
242 | _cairo_user_data_array_init (&pattern->user_data); |
243 | |
244 | if (type == CAIRO_PATTERN_TYPE_SURFACE || |
245 | type == CAIRO_PATTERN_TYPE_RASTER_SOURCE) |
246 | pattern->extend = CAIRO_EXTEND_SURFACE_DEFAULTCAIRO_EXTEND_NONE; |
247 | else |
248 | pattern->extend = CAIRO_EXTEND_GRADIENT_DEFAULTCAIRO_EXTEND_PAD; |
249 | |
250 | pattern->filter = CAIRO_FILTER_DEFAULTCAIRO_FILTER_GOOD; |
251 | pattern->opacity = 1.0; |
252 | |
253 | pattern->has_component_alpha = FALSE0; |
254 | pattern->is_foreground_marker = FALSE0; |
255 | |
256 | pattern->dither = CAIRO_DITHER_DEFAULT; |
257 | |
258 | cairo_matrix_init_identity_moz_cairo_matrix_init_identity (&pattern->matrix); |
259 | |
260 | cairo_list_init (&pattern->observers); |
261 | } |
262 | |
263 | static cairo_status_t |
264 | _cairo_gradient_pattern_init_copy (cairo_gradient_pattern_t *pattern, |
265 | const cairo_gradient_pattern_t *other) |
266 | { |
267 | if (CAIRO_INJECT_FAULT ()0) |
268 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
269 | |
270 | if (other->base.type == CAIRO_PATTERN_TYPE_LINEAR) |
271 | { |
272 | cairo_linear_pattern_t *dst = (cairo_linear_pattern_t *) pattern; |
273 | cairo_linear_pattern_t *src = (cairo_linear_pattern_t *) other; |
274 | |
275 | *dst = *src; |
276 | } |
277 | else |
278 | { |
279 | cairo_radial_pattern_t *dst = (cairo_radial_pattern_t *) pattern; |
280 | cairo_radial_pattern_t *src = (cairo_radial_pattern_t *) other; |
281 | |
282 | *dst = *src; |
283 | } |
284 | |
285 | if (other->stops == other->stops_embedded) |
286 | pattern->stops = pattern->stops_embedded; |
287 | else if (other->stops) |
288 | { |
289 | pattern->stops = _cairo_malloc_ab (other->stops_size, |
290 | sizeof (cairo_gradient_stop_t)); |
291 | if (unlikely (pattern->stops == NULL)(__builtin_expect (!!(pattern->stops == ((void*)0)), 0))) { |
292 | pattern->stops_size = 0; |
293 | pattern->n_stops = 0; |
294 | return _cairo_pattern_set_error (&pattern->base, CAIRO_STATUS_NO_MEMORY); |
295 | } |
296 | |
297 | memcpy (pattern->stops, other->stops, |
298 | other->n_stops * sizeof (cairo_gradient_stop_t)); |
299 | } |
300 | |
301 | return CAIRO_STATUS_SUCCESS; |
302 | } |
303 | |
304 | static cairo_status_t |
305 | _cairo_mesh_pattern_init_copy (cairo_mesh_pattern_t *pattern, |
306 | const cairo_mesh_pattern_t *other) |
307 | { |
308 | *pattern = *other; |
309 | |
310 | _cairo_array_init (&pattern->patches, sizeof (cairo_mesh_patch_t)); |
311 | return _cairo_array_append_multiple (&pattern->patches, |
312 | _cairo_array_index_const (&other->patches, 0), |
313 | _cairo_array_num_elements (&other->patches)); |
314 | } |
315 | |
316 | cairo_status_t |
317 | _cairo_pattern_init_copy (cairo_pattern_t *pattern, |
318 | const cairo_pattern_t *other) |
319 | { |
320 | cairo_status_t status; |
321 | |
322 | if (other->status) |
323 | return _cairo_pattern_set_error (pattern, other->status); |
324 | |
325 | switch (other->type) { |
326 | case CAIRO_PATTERN_TYPE_SOLID: { |
327 | cairo_solid_pattern_t *dst = (cairo_solid_pattern_t *) pattern; |
328 | cairo_solid_pattern_t *src = (cairo_solid_pattern_t *) other; |
329 | |
330 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t))); |
331 | |
332 | *dst = *src; |
333 | } break; |
334 | case CAIRO_PATTERN_TYPE_SURFACE: { |
335 | cairo_surface_pattern_t *dst = (cairo_surface_pattern_t *) pattern; |
336 | cairo_surface_pattern_t *src = (cairo_surface_pattern_t *) other; |
337 | |
338 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t))); |
339 | |
340 | *dst = *src; |
341 | cairo_surface_reference_moz_cairo_surface_reference (dst->surface); |
342 | } break; |
343 | case CAIRO_PATTERN_TYPE_LINEAR: |
344 | case CAIRO_PATTERN_TYPE_RADIAL: { |
345 | cairo_gradient_pattern_t *dst = (cairo_gradient_pattern_t *) pattern; |
346 | cairo_gradient_pattern_t *src = (cairo_gradient_pattern_t *) other; |
347 | |
348 | if (other->type == CAIRO_PATTERN_TYPE_LINEAR) { |
349 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t))); |
350 | } else { |
351 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t))); |
352 | } |
353 | |
354 | status = _cairo_gradient_pattern_init_copy (dst, src); |
355 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
356 | return status; |
357 | |
358 | } break; |
359 | case CAIRO_PATTERN_TYPE_MESH: { |
360 | cairo_mesh_pattern_t *dst = (cairo_mesh_pattern_t *) pattern; |
361 | cairo_mesh_pattern_t *src = (cairo_mesh_pattern_t *) other; |
362 | |
363 | VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t))); |
364 | |
365 | status = _cairo_mesh_pattern_init_copy (dst, src); |
366 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
367 | return status; |
368 | |
369 | } break; |
370 | |
371 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: { |
372 | status = _cairo_raster_source_pattern_init_copy (pattern, other); |
373 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
374 | return status; |
375 | } break; |
376 | } |
377 | |
378 | /* The reference count and user_data array are unique to the copy. */ |
379 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0)((&pattern->ref_count)->ref_count = (0)); |
380 | _cairo_user_data_array_init (&pattern->user_data); |
381 | cairo_list_init (&pattern->observers); |
382 | |
383 | return CAIRO_STATUS_SUCCESS; |
384 | } |
385 | |
386 | void |
387 | _cairo_pattern_init_static_copy (cairo_pattern_t *pattern, |
388 | const cairo_pattern_t *other) |
389 | { |
390 | int size; |
391 | |
392 | assert (other->status == CAIRO_STATUS_SUCCESS)((void) sizeof ((other->status == CAIRO_STATUS_SUCCESS) ? 1 : 0), __extension__ ({ if (other->status == CAIRO_STATUS_SUCCESS ) ; else __assert_fail ("other->status == CAIRO_STATUS_SUCCESS" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 392 , __extension__ __PRETTY_FUNCTION__); })); |
393 | |
394 | switch (other->type) { |
395 | default: |
396 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 396, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
397 | case CAIRO_PATTERN_TYPE_SOLID: |
398 | size = sizeof (cairo_solid_pattern_t); |
399 | break; |
400 | case CAIRO_PATTERN_TYPE_SURFACE: |
401 | size = sizeof (cairo_surface_pattern_t); |
402 | break; |
403 | case CAIRO_PATTERN_TYPE_LINEAR: |
404 | size = sizeof (cairo_linear_pattern_t); |
405 | break; |
406 | case CAIRO_PATTERN_TYPE_RADIAL: |
407 | size = sizeof (cairo_radial_pattern_t); |
408 | break; |
409 | case CAIRO_PATTERN_TYPE_MESH: |
410 | size = sizeof (cairo_mesh_pattern_t); |
411 | break; |
412 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
413 | size = sizeof (cairo_raster_source_pattern_t); |
414 | break; |
415 | } |
416 | |
417 | memcpy (pattern, other, size); |
418 | |
419 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0)((&pattern->ref_count)->ref_count = (0)); |
420 | _cairo_user_data_array_init (&pattern->user_data); |
421 | cairo_list_init (&pattern->observers); |
422 | } |
423 | |
424 | cairo_status_t |
425 | _cairo_pattern_init_snapshot (cairo_pattern_t *pattern, |
426 | const cairo_pattern_t *other) |
427 | { |
428 | cairo_status_t status; |
429 | |
430 | /* We don't bother doing any fancy copy-on-write implementation |
431 | * for the pattern's data. It's generally quite tiny. */ |
432 | status = _cairo_pattern_init_copy (pattern, other); |
433 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
434 | return status; |
435 | |
436 | /* But we do let the surface snapshot stuff be as fancy as it |
437 | * would like to be. */ |
438 | if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE) { |
439 | cairo_surface_pattern_t *surface_pattern = |
440 | (cairo_surface_pattern_t *) pattern; |
441 | cairo_surface_t *surface = surface_pattern->surface; |
442 | |
443 | surface_pattern->surface = _cairo_surface_snapshot (surface); |
444 | |
445 | cairo_surface_destroy_moz_cairo_surface_destroy (surface); |
446 | |
447 | status = surface_pattern->surface->status; |
448 | } else if (pattern->type == CAIRO_PATTERN_TYPE_RASTER_SOURCE) |
449 | status = _cairo_raster_source_pattern_snapshot (pattern); |
450 | |
451 | return status; |
452 | } |
453 | |
454 | void |
455 | _cairo_pattern_fini (cairo_pattern_t *pattern) |
456 | { |
457 | _cairo_user_data_array_fini (&pattern->user_data); |
458 | |
459 | switch (pattern->type) { |
460 | case CAIRO_PATTERN_TYPE_SOLID: |
461 | break; |
462 | case CAIRO_PATTERN_TYPE_SURFACE: { |
463 | cairo_surface_pattern_t *surface_pattern = |
464 | (cairo_surface_pattern_t *) pattern; |
465 | |
466 | cairo_surface_destroy_moz_cairo_surface_destroy (surface_pattern->surface); |
467 | } break; |
468 | case CAIRO_PATTERN_TYPE_LINEAR: |
469 | case CAIRO_PATTERN_TYPE_RADIAL: { |
470 | cairo_gradient_pattern_t *gradient = |
471 | (cairo_gradient_pattern_t *) pattern; |
472 | |
473 | if (gradient->stops && gradient->stops != gradient->stops_embedded) |
474 | free (gradient->stops); |
475 | } break; |
476 | case CAIRO_PATTERN_TYPE_MESH: { |
477 | cairo_mesh_pattern_t *mesh = |
478 | (cairo_mesh_pattern_t *) pattern; |
479 | |
480 | _cairo_array_fini (&mesh->patches); |
481 | } break; |
482 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
483 | _cairo_raster_source_pattern_finish (pattern); |
484 | break; |
485 | } |
486 | |
487 | #if HAVE_VALGRIND |
488 | switch (pattern->type) { |
489 | case CAIRO_PATTERN_TYPE_SOLID: |
490 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)); |
491 | break; |
492 | case CAIRO_PATTERN_TYPE_SURFACE: |
493 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)); |
494 | break; |
495 | case CAIRO_PATTERN_TYPE_LINEAR: |
496 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)); |
497 | break; |
498 | case CAIRO_PATTERN_TYPE_RADIAL: |
499 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)); |
500 | break; |
501 | case CAIRO_PATTERN_TYPE_MESH: |
502 | VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_mesh_pattern_t)); |
503 | break; |
504 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
505 | break; |
506 | } |
507 | #endif |
508 | } |
509 | |
510 | cairo_status_t |
511 | _cairo_pattern_create_copy (cairo_pattern_t **pattern_out, |
512 | const cairo_pattern_t *other) |
513 | { |
514 | cairo_pattern_t *pattern; |
515 | cairo_status_t status; |
516 | |
517 | if (other->status) |
518 | return other->status; |
519 | |
520 | switch (other->type) { |
521 | case CAIRO_PATTERN_TYPE_SOLID: |
522 | pattern = _cairo_malloc (sizeof (cairo_solid_pattern_t))((sizeof (cairo_solid_pattern_t)) != 0 ? malloc(sizeof (cairo_solid_pattern_t )) : ((void*)0)); |
523 | break; |
524 | case CAIRO_PATTERN_TYPE_SURFACE: |
525 | pattern = _cairo_malloc (sizeof (cairo_surface_pattern_t))((sizeof (cairo_surface_pattern_t)) != 0 ? malloc(sizeof (cairo_surface_pattern_t )) : ((void*)0)); |
526 | break; |
527 | case CAIRO_PATTERN_TYPE_LINEAR: |
528 | pattern = _cairo_malloc (sizeof (cairo_linear_pattern_t))((sizeof (cairo_linear_pattern_t)) != 0 ? malloc(sizeof (cairo_linear_pattern_t )) : ((void*)0)); |
529 | break; |
530 | case CAIRO_PATTERN_TYPE_RADIAL: |
531 | pattern = _cairo_malloc (sizeof (cairo_radial_pattern_t))((sizeof (cairo_radial_pattern_t)) != 0 ? malloc(sizeof (cairo_radial_pattern_t )) : ((void*)0)); |
532 | break; |
533 | case CAIRO_PATTERN_TYPE_MESH: |
534 | pattern = _cairo_malloc (sizeof (cairo_mesh_pattern_t))((sizeof (cairo_mesh_pattern_t)) != 0 ? malloc(sizeof (cairo_mesh_pattern_t )) : ((void*)0)); |
535 | break; |
536 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
537 | pattern = _cairo_malloc (sizeof (cairo_raster_source_pattern_t))((sizeof (cairo_raster_source_pattern_t)) != 0 ? malloc(sizeof (cairo_raster_source_pattern_t)) : ((void*)0)); |
538 | break; |
539 | default: |
540 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 540, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
541 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
542 | } |
543 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) |
544 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
545 | |
546 | status = _cairo_pattern_init_copy (pattern, other); |
547 | if (unlikely (status)(__builtin_expect (!!(status), 0))) { |
548 | free (pattern); |
549 | return status; |
550 | } |
551 | |
552 | CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 1)((&pattern->ref_count)->ref_count = (1)); |
553 | *pattern_out = pattern; |
554 | return CAIRO_STATUS_SUCCESS; |
555 | } |
556 | |
557 | void |
558 | _cairo_pattern_init_solid (cairo_solid_pattern_t *pattern, |
559 | const cairo_color_t *color) |
560 | { |
561 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID); |
562 | pattern->color = *color; |
563 | } |
564 | |
565 | void |
566 | _cairo_pattern_init_for_surface (cairo_surface_pattern_t *pattern, |
567 | cairo_surface_t *surface) |
568 | { |
569 | if (surface->status) { |
570 | /* Force to solid to simplify the pattern_fini process. */ |
571 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID); |
572 | _cairo_pattern_set_error (&pattern->base, surface->status); |
573 | return; |
574 | } |
575 | |
576 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SURFACE); |
577 | |
578 | pattern->surface = cairo_surface_reference_moz_cairo_surface_reference (surface); |
579 | pattern->region_array_id = 0; |
580 | } |
581 | |
582 | static void |
583 | _cairo_pattern_init_gradient (cairo_gradient_pattern_t *pattern, |
584 | cairo_pattern_type_t type) |
585 | { |
586 | _cairo_pattern_init (&pattern->base, type); |
587 | |
588 | pattern->n_stops = 0; |
589 | pattern->stops_size = 0; |
590 | pattern->stops = NULL((void*)0); |
591 | } |
592 | |
593 | static void |
594 | _cairo_pattern_init_linear (cairo_linear_pattern_t *pattern, |
595 | double x0, double y0, double x1, double y1) |
596 | { |
597 | _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_LINEAR); |
598 | |
599 | pattern->pd1.x = x0; |
600 | pattern->pd1.y = y0; |
601 | pattern->pd2.x = x1; |
602 | pattern->pd2.y = y1; |
603 | } |
604 | |
605 | static void |
606 | _cairo_pattern_init_radial (cairo_radial_pattern_t *pattern, |
607 | double cx0, double cy0, double radius0, |
608 | double cx1, double cy1, double radius1) |
609 | { |
610 | _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_RADIAL); |
611 | |
612 | pattern->cd1.center.x = cx0; |
613 | pattern->cd1.center.y = cy0; |
614 | pattern->cd1.radius = fabs (radius0); |
615 | pattern->cd2.center.x = cx1; |
616 | pattern->cd2.center.y = cy1; |
617 | pattern->cd2.radius = fabs (radius1); |
618 | } |
619 | |
620 | cairo_pattern_t * |
621 | _cairo_pattern_create_solid (const cairo_color_t *color) |
622 | { |
623 | cairo_solid_pattern_t *pattern; |
624 | |
625 | pattern = |
626 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SOLID]); |
627 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
628 | /* None cached, need to create a new pattern. */ |
629 | pattern = _cairo_malloc (sizeof (cairo_solid_pattern_t))((sizeof (cairo_solid_pattern_t)) != 0 ? malloc(sizeof (cairo_solid_pattern_t )) : ((void*)0)); |
630 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
631 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY)do { cairo_status_t status__ = _cairo_error (CAIRO_STATUS_NO_MEMORY ); (void) status__; } while (0); |
632 | return (cairo_pattern_t *) &_cairo_pattern_nil; |
633 | } |
634 | } |
635 | |
636 | _cairo_pattern_init_solid (pattern, color); |
637 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1)((&pattern->base.ref_count)->ref_count = (1)); |
638 | |
639 | return &pattern->base; |
640 | } |
641 | |
642 | cairo_pattern_t * |
643 | _cairo_pattern_create_foreground_marker (void) |
644 | { |
645 | cairo_pattern_t *pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK_cairo_stock_color (CAIRO_STOCK_BLACK)); |
646 | pattern->is_foreground_marker = TRUE1; |
647 | return pattern; |
648 | } |
649 | |
650 | cairo_pattern_t * |
651 | _cairo_pattern_create_in_error (cairo_status_t status) |
652 | { |
653 | cairo_pattern_t *pattern; |
654 | |
655 | if (status == CAIRO_STATUS_NO_MEMORY) |
656 | return (cairo_pattern_t *)&_cairo_pattern_nil.base; |
657 | |
658 | CAIRO_MUTEX_INITIALIZE ()do { } while (0); |
659 | |
660 | pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK_cairo_stock_color (CAIRO_STOCK_BLACK)); |
661 | if (pattern->status == CAIRO_STATUS_SUCCESS) |
662 | status = _cairo_pattern_set_error (pattern, status); |
663 | |
664 | return pattern; |
665 | } |
666 | |
667 | /** |
668 | * cairo_pattern_create_rgb: |
669 | * @red: red component of the color |
670 | * @green: green component of the color |
671 | * @blue: blue component of the color |
672 | * |
673 | * Creates a new #cairo_pattern_t corresponding to an opaque color. The |
674 | * color components are floating point numbers in the range 0 to 1. |
675 | * If the values passed in are outside that range, they will be |
676 | * clamped. |
677 | * |
678 | * Return value: the newly created #cairo_pattern_t if successful, or |
679 | * an error pattern in case of no memory. The caller owns the |
680 | * returned object and should call cairo_pattern_destroy() when |
681 | * finished with it. |
682 | * |
683 | * This function will always return a valid pointer, but if an error |
684 | * occurred the pattern status will be set to an error. To inspect |
685 | * the status of a pattern use cairo_pattern_status(). |
686 | * |
687 | * Since: 1.0 |
688 | **/ |
689 | cairo_pattern_t * |
690 | cairo_pattern_create_rgb_moz_cairo_pattern_create_rgb (double red, double green, double blue) |
691 | { |
692 | return cairo_pattern_create_rgba_moz_cairo_pattern_create_rgba (red, green, blue, 1.0); |
693 | } |
694 | |
695 | /** |
696 | * cairo_pattern_create_rgba: |
697 | * @red: red component of the color |
698 | * @green: green component of the color |
699 | * @blue: blue component of the color |
700 | * @alpha: alpha component of the color |
701 | * |
702 | * Creates a new #cairo_pattern_t corresponding to a translucent color. |
703 | * The color components are floating point numbers in the range 0 to |
704 | * 1. If the values passed in are outside that range, they will be |
705 | * clamped. |
706 | * |
707 | * The color is specified in the same way as in cairo_set_source_rgb(). |
708 | * |
709 | * Return value: the newly created #cairo_pattern_t if successful, or |
710 | * an error pattern in case of no memory. The caller owns the |
711 | * returned object and should call cairo_pattern_destroy() when |
712 | * finished with it. |
713 | * |
714 | * This function will always return a valid pointer, but if an error |
715 | * occurred the pattern status will be set to an error. To inspect |
716 | * the status of a pattern use cairo_pattern_status(). |
717 | * |
718 | * Since: 1.0 |
719 | **/ |
720 | cairo_pattern_t * |
721 | cairo_pattern_create_rgba_moz_cairo_pattern_create_rgba (double red, double green, double blue, |
722 | double alpha) |
723 | { |
724 | cairo_color_t color; |
725 | |
726 | red = _cairo_restrict_value (red, 0.0, 1.0); |
727 | green = _cairo_restrict_value (green, 0.0, 1.0); |
728 | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
729 | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
730 | |
731 | _cairo_color_init_rgba (&color, red, green, blue, alpha); |
732 | |
733 | CAIRO_MUTEX_INITIALIZE ()do { } while (0); |
734 | |
735 | return _cairo_pattern_create_solid (&color); |
736 | } |
737 | |
738 | /** |
739 | * cairo_pattern_create_for_surface: |
740 | * @surface: the surface |
741 | * |
742 | * Create a new #cairo_pattern_t for the given surface. |
743 | * |
744 | * Return value: the newly created #cairo_pattern_t if successful, or |
745 | * an error pattern in case of no memory. The caller owns the |
746 | * returned object and should call cairo_pattern_destroy() when |
747 | * finished with it. |
748 | * |
749 | * This function will always return a valid pointer, but if an error |
750 | * occurred the pattern status will be set to an error. To inspect |
751 | * the status of a pattern use cairo_pattern_status(). |
752 | * |
753 | * Since: 1.0 |
754 | **/ |
755 | cairo_pattern_t * |
756 | cairo_pattern_create_for_surface_moz_cairo_pattern_create_for_surface (cairo_surface_t *surface) |
757 | { |
758 | cairo_surface_pattern_t *pattern; |
759 | |
760 | if (surface == NULL((void*)0)) { |
761 | _cairo_error_throw (CAIRO_STATUS_NULL_POINTER)do { cairo_status_t status__ = _cairo_error (CAIRO_STATUS_NULL_POINTER ); (void) status__; } while (0); |
762 | return (cairo_pattern_t*) &_cairo_pattern_nil_null_pointer; |
763 | } |
764 | |
765 | if (surface->status) |
766 | return _cairo_pattern_create_in_error (surface->status); |
767 | |
768 | pattern = |
769 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SURFACE]); |
770 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
771 | pattern = _cairo_malloc (sizeof (cairo_surface_pattern_t))((sizeof (cairo_surface_pattern_t)) != 0 ? malloc(sizeof (cairo_surface_pattern_t )) : ((void*)0)); |
772 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
773 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY)do { cairo_status_t status__ = _cairo_error (CAIRO_STATUS_NO_MEMORY ); (void) status__; } while (0); |
774 | return (cairo_pattern_t *)&_cairo_pattern_nil.base; |
775 | } |
776 | } |
777 | |
778 | CAIRO_MUTEX_INITIALIZE ()do { } while (0); |
779 | |
780 | _cairo_pattern_init_for_surface (pattern, surface); |
781 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1)((&pattern->base.ref_count)->ref_count = (1)); |
782 | |
783 | return &pattern->base; |
784 | } |
785 | |
786 | /** |
787 | * cairo_pattern_create_linear: |
788 | * @x0: x coordinate of the start point |
789 | * @y0: y coordinate of the start point |
790 | * @x1: x coordinate of the end point |
791 | * @y1: y coordinate of the end point |
792 | * |
793 | * Create a new linear gradient #cairo_pattern_t along the line defined |
794 | * by (x0, y0) and (x1, y1). Before using the gradient pattern, a |
795 | * number of color stops should be defined using |
796 | * cairo_pattern_add_color_stop_rgb() or |
797 | * cairo_pattern_add_color_stop_rgba(). |
798 | * |
799 | * Note: The coordinates here are in pattern space. For a new pattern, |
800 | * pattern space is identical to user space, but the relationship |
801 | * between the spaces can be changed with cairo_pattern_set_matrix(). |
802 | * |
803 | * Return value: the newly created #cairo_pattern_t if successful, or |
804 | * an error pattern in case of no memory. The caller owns the |
805 | * returned object and should call cairo_pattern_destroy() when |
806 | * finished with it. |
807 | * |
808 | * This function will always return a valid pointer, but if an error |
809 | * occurred the pattern status will be set to an error. To inspect |
810 | * the status of a pattern use cairo_pattern_status(). |
811 | * |
812 | * Since: 1.0 |
813 | **/ |
814 | cairo_pattern_t * |
815 | cairo_pattern_create_linear_moz_cairo_pattern_create_linear (double x0, double y0, double x1, double y1) |
816 | { |
817 | cairo_linear_pattern_t *pattern; |
818 | |
819 | pattern = |
820 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_LINEAR]); |
821 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
822 | pattern = _cairo_malloc (sizeof (cairo_linear_pattern_t))((sizeof (cairo_linear_pattern_t)) != 0 ? malloc(sizeof (cairo_linear_pattern_t )) : ((void*)0)); |
823 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
824 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY)do { cairo_status_t status__ = _cairo_error (CAIRO_STATUS_NO_MEMORY ); (void) status__; } while (0); |
825 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
826 | } |
827 | } |
828 | |
829 | CAIRO_MUTEX_INITIALIZE ()do { } while (0); |
830 | |
831 | _cairo_pattern_init_linear (pattern, x0, y0, x1, y1); |
832 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1)((&pattern->base.base.ref_count)->ref_count = (1)); |
833 | |
834 | return &pattern->base.base; |
835 | } |
836 | |
837 | /** |
838 | * cairo_pattern_create_radial: |
839 | * @cx0: x coordinate for the center of the start circle |
840 | * @cy0: y coordinate for the center of the start circle |
841 | * @radius0: radius of the start circle |
842 | * @cx1: x coordinate for the center of the end circle |
843 | * @cy1: y coordinate for the center of the end circle |
844 | * @radius1: radius of the end circle |
845 | * |
846 | * Creates a new radial gradient #cairo_pattern_t between the two |
847 | * circles defined by (cx0, cy0, radius0) and (cx1, cy1, radius1). Before using the |
848 | * gradient pattern, a number of color stops should be defined using |
849 | * cairo_pattern_add_color_stop_rgb() or |
850 | * cairo_pattern_add_color_stop_rgba(). |
851 | * |
852 | * Note: The coordinates here are in pattern space. For a new pattern, |
853 | * pattern space is identical to user space, but the relationship |
854 | * between the spaces can be changed with cairo_pattern_set_matrix(). |
855 | * |
856 | * Return value: the newly created #cairo_pattern_t if successful, or |
857 | * an error pattern in case of no memory. The caller owns the |
858 | * returned object and should call cairo_pattern_destroy() when |
859 | * finished with it. |
860 | * |
861 | * This function will always return a valid pointer, but if an error |
862 | * occurred the pattern status will be set to an error. To inspect |
863 | * the status of a pattern use cairo_pattern_status(). |
864 | * |
865 | * Since: 1.0 |
866 | **/ |
867 | cairo_pattern_t * |
868 | cairo_pattern_create_radial_moz_cairo_pattern_create_radial (double cx0, double cy0, double radius0, |
869 | double cx1, double cy1, double radius1) |
870 | { |
871 | cairo_radial_pattern_t *pattern; |
872 | |
873 | pattern = |
874 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_RADIAL]); |
875 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
876 | pattern = _cairo_malloc (sizeof (cairo_radial_pattern_t))((sizeof (cairo_radial_pattern_t)) != 0 ? malloc(sizeof (cairo_radial_pattern_t )) : ((void*)0)); |
877 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
878 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY)do { cairo_status_t status__ = _cairo_error (CAIRO_STATUS_NO_MEMORY ); (void) status__; } while (0); |
879 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
880 | } |
881 | } |
882 | |
883 | CAIRO_MUTEX_INITIALIZE ()do { } while (0); |
884 | |
885 | _cairo_pattern_init_radial (pattern, cx0, cy0, radius0, cx1, cy1, radius1); |
886 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1)((&pattern->base.base.ref_count)->ref_count = (1)); |
887 | |
888 | return &pattern->base.base; |
889 | } |
890 | |
891 | /* This order is specified in the diagram in the documentation for |
892 | * cairo_pattern_create_mesh() */ |
893 | static const int mesh_path_point_i[12] = { 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 2, 1 }; |
894 | static const int mesh_path_point_j[12] = { 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 0, 0 }; |
895 | static const int mesh_control_point_i[4] = { 1, 1, 2, 2 }; |
896 | static const int mesh_control_point_j[4] = { 1, 2, 2, 1 }; |
897 | |
898 | /** |
899 | * cairo_pattern_create_mesh: |
900 | * |
901 | * Create a new mesh pattern. |
902 | * |
903 | * Mesh patterns are tensor-product patch meshes (type 7 shadings in |
904 | * PDF). Mesh patterns may also be used to create other types of |
905 | * shadings that are special cases of tensor-product patch meshes such |
906 | * as Coons patch meshes (type 6 shading in PDF) and Gouraud-shaded |
907 | * triangle meshes (type 4 and 5 shadings in PDF). |
908 | * |
909 | * Mesh patterns consist of one or more tensor-product patches, which |
910 | * should be defined before using the mesh pattern. Using a mesh |
911 | * pattern with a partially defined patch as source or mask will put |
912 | * the context in an error status with a status of |
913 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
914 | * |
915 | * A tensor-product patch is defined by 4 Bézier curves (side 0, 1, 2, |
916 | * 3) and by 4 additional control points (P0, P1, P2, P3) that provide |
917 | * further control over the patch and complete the definition of the |
918 | * tensor-product patch. The corner C0 is the first point of the |
919 | * patch. |
920 | * |
921 | * Degenerate sides are permitted so straight lines may be used. A |
922 | * zero length line on one side may be used to create 3 sided patches. |
923 | * |
924 | * <informalexample><screen> |
925 | * C1 Side 1 C2 |
926 | * +---------------+ |
927 | * | | |
928 | * | P1 P2 | |
929 | * | | |
930 | * Side 0 | | Side 2 |
931 | * | | |
932 | * | | |
933 | * | P0 P3 | |
934 | * | | |
935 | * +---------------+ |
936 | * C0 Side 3 C3 |
937 | * </screen></informalexample> |
938 | * |
939 | * Each patch is constructed by first calling |
940 | * cairo_mesh_pattern_begin_patch(), then cairo_mesh_pattern_move_to() |
941 | * to specify the first point in the patch (C0). Then the sides are |
942 | * specified with calls to cairo_mesh_pattern_curve_to() and |
943 | * cairo_mesh_pattern_line_to(). |
944 | * |
945 | * The four additional control points (P0, P1, P2, P3) in a patch can |
946 | * be specified with cairo_mesh_pattern_set_control_point(). |
947 | * |
948 | * At each corner of the patch (C0, C1, C2, C3) a color may be |
949 | * specified with cairo_mesh_pattern_set_corner_color_rgb() or |
950 | * cairo_mesh_pattern_set_corner_color_rgba(). Any corner whose color |
951 | * is not explicitly specified defaults to transparent black. |
952 | * |
953 | * A Coons patch is a special case of the tensor-product patch where |
954 | * the control points are implicitly defined by the sides of the |
955 | * patch. The default value for any control point not specified is the |
956 | * implicit value for a Coons patch, i.e. if no control points are |
957 | * specified the patch is a Coons patch. |
958 | * |
959 | * A triangle is a special case of the tensor-product patch where the |
960 | * control points are implicitly defined by the sides of the patch, |
961 | * all the sides are lines and one of them has length 0, i.e. if the |
962 | * patch is specified using just 3 lines, it is a triangle. If the |
963 | * corners connected by the 0-length side have the same color, the |
964 | * patch is a Gouraud-shaded triangle. |
965 | * |
966 | * Patches may be oriented differently to the above diagram. For |
967 | * example the first point could be at the top left. The diagram only |
968 | * shows the relationship between the sides, corners and control |
969 | * points. Regardless of where the first point is located, when |
970 | * specifying colors, corner 0 will always be the first point, corner |
971 | * 1 the point between side 0 and side 1 etc. |
972 | * |
973 | * Calling cairo_mesh_pattern_end_patch() completes the current |
974 | * patch. If less than 4 sides have been defined, the first missing |
975 | * side is defined as a line from the current point to the first point |
976 | * of the patch (C0) and the other sides are degenerate lines from C0 |
977 | * to C0. The corners between the added sides will all be coincident |
978 | * with C0 of the patch and their color will be set to be the same as |
979 | * the color of C0. |
980 | * |
981 | * Additional patches may be added with additional calls to |
982 | * cairo_mesh_pattern_begin_patch()/cairo_mesh_pattern_end_patch(). |
983 | * |
984 | * <informalexample><programlisting> |
985 | * cairo_pattern_t *pattern = cairo_pattern_create_mesh (); |
986 | * |
987 | * /* Add a Coons patch */ |
988 | * cairo_mesh_pattern_begin_patch (pattern); |
989 | * cairo_mesh_pattern_move_to (pattern, 0, 0); |
990 | * cairo_mesh_pattern_curve_to (pattern, 30, -30, 60, 30, 100, 0); |
991 | * cairo_mesh_pattern_curve_to (pattern, 60, 30, 130, 60, 100, 100); |
992 | * cairo_mesh_pattern_curve_to (pattern, 60, 70, 30, 130, 0, 100); |
993 | * cairo_mesh_pattern_curve_to (pattern, 30, 70, -30, 30, 0, 0); |
994 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 0, 1, 0, 0); |
995 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 1, 0, 1, 0); |
996 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 2, 0, 0, 1); |
997 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 3, 1, 1, 0); |
998 | * cairo_mesh_pattern_end_patch (pattern); |
999 | * |
1000 | * /* Add a Gouraud-shaded triangle */ |
1001 | * cairo_mesh_pattern_begin_patch (pattern) |
1002 | * cairo_mesh_pattern_move_to (pattern, 100, 100); |
1003 | * cairo_mesh_pattern_line_to (pattern, 130, 130); |
1004 | * cairo_mesh_pattern_line_to (pattern, 130, 70); |
1005 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 0, 1, 0, 0); |
1006 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 1, 0, 1, 0); |
1007 | * cairo_mesh_pattern_set_corner_color_rgb (pattern, 2, 0, 0, 1); |
1008 | * cairo_mesh_pattern_end_patch (pattern) |
1009 | * </programlisting></informalexample> |
1010 | * |
1011 | * When two patches overlap, the last one that has been added is drawn |
1012 | * over the first one. |
1013 | * |
1014 | * When a patch folds over itself, points are sorted depending on |
1015 | * their parameter coordinates inside the patch. The v coordinate |
1016 | * ranges from 0 to 1 when moving from side 3 to side 1; the u |
1017 | * coordinate ranges from 0 to 1 when going from side 0 to side |
1018 | * 2. Points with higher v coordinate hide points with lower v |
1019 | * coordinate. When two points have the same v coordinate, the one |
1020 | * with higher u coordinate is above. This means that points nearer to |
1021 | * side 1 are above points nearer to side 3; when this is not |
1022 | * sufficient to decide which point is above (for example when both |
1023 | * points belong to side 1 or side 3) points nearer to side 2 are |
1024 | * above points nearer to side 0. |
1025 | * |
1026 | * For a complete definition of tensor-product patches, see the PDF |
1027 | * specification (ISO32000), which describes the parametrization in |
1028 | * detail. |
1029 | * |
1030 | * Note: The coordinates are always in pattern space. For a new |
1031 | * pattern, pattern space is identical to user space, but the |
1032 | * relationship between the spaces can be changed with |
1033 | * cairo_pattern_set_matrix(). |
1034 | * |
1035 | * Return value: the newly created #cairo_pattern_t if successful, or |
1036 | * an error pattern in case of no memory. The caller owns the returned |
1037 | * object and should call cairo_pattern_destroy() when finished with |
1038 | * it. |
1039 | * |
1040 | * This function will always return a valid pointer, but if an error |
1041 | * occurred the pattern status will be set to an error. To inspect the |
1042 | * status of a pattern use cairo_pattern_status(). |
1043 | * |
1044 | * Since: 1.12 |
1045 | **/ |
1046 | cairo_pattern_t * |
1047 | cairo_pattern_create_mesh (void) |
1048 | { |
1049 | cairo_mesh_pattern_t *pattern; |
1050 | |
1051 | pattern = |
1052 | _freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_MESH]); |
1053 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
1054 | pattern = _cairo_malloc (sizeof (cairo_mesh_pattern_t))((sizeof (cairo_mesh_pattern_t)) != 0 ? malloc(sizeof (cairo_mesh_pattern_t )) : ((void*)0)); |
1055 | if (unlikely (pattern == NULL)(__builtin_expect (!!(pattern == ((void*)0)), 0))) { |
1056 | _cairo_error_throw (CAIRO_STATUS_NO_MEMORY)do { cairo_status_t status__ = _cairo_error (CAIRO_STATUS_NO_MEMORY ); (void) status__; } while (0); |
1057 | return (cairo_pattern_t *) &_cairo_pattern_nil.base; |
1058 | } |
1059 | } |
1060 | |
1061 | CAIRO_MUTEX_INITIALIZE ()do { } while (0); |
1062 | |
1063 | _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_MESH); |
1064 | _cairo_array_init (&pattern->patches, sizeof (cairo_mesh_patch_t)); |
1065 | pattern->current_patch = NULL((void*)0); |
1066 | CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1)((&pattern->base.ref_count)->ref_count = (1)); |
1067 | |
1068 | return &pattern->base; |
1069 | } |
1070 | |
1071 | /** |
1072 | * cairo_pattern_reference: |
1073 | * @pattern: a #cairo_pattern_t |
1074 | * |
1075 | * Increases the reference count on @pattern by one. This prevents |
1076 | * @pattern from being destroyed until a matching call to |
1077 | * cairo_pattern_destroy() is made. |
1078 | * |
1079 | * Use cairo_pattern_get_reference_count() to get the number of |
1080 | * references to a #cairo_pattern_t. |
1081 | * |
1082 | * Return value: the referenced #cairo_pattern_t. |
1083 | * |
1084 | * Since: 1.0 |
1085 | **/ |
1086 | cairo_pattern_t * |
1087 | cairo_pattern_reference_moz_cairo_pattern_reference (cairo_pattern_t *pattern) |
1088 | { |
1089 | if (pattern == NULL((void*)0) || |
1090 | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)(_cairo_atomic_int_get (&(&pattern->ref_count)-> ref_count) == ((cairo_atomic_int_t) -1))) |
1091 | return pattern; |
1092 | |
1093 | assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count))((void) sizeof (((_cairo_atomic_int_get (&(&pattern-> ref_count)->ref_count) > 0)) ? 1 : 0), __extension__ ({ if ((_cairo_atomic_int_get (&(&pattern->ref_count )->ref_count) > 0)) ; else __assert_fail ("CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count)" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 1093 , __extension__ __PRETTY_FUNCTION__); })); |
1094 | |
1095 | _cairo_reference_count_inc (&pattern->ref_count)((void) __atomic_fetch_add(&(&pattern->ref_count)-> ref_count, 1, 5)); |
1096 | |
1097 | return pattern; |
1098 | } |
1099 | |
1100 | /** |
1101 | * cairo_pattern_get_type: |
1102 | * @pattern: a #cairo_pattern_t |
1103 | * |
1104 | * Get the pattern's type. See #cairo_pattern_type_t for available |
1105 | * types. |
1106 | * |
1107 | * Return value: The type of @pattern. |
1108 | * |
1109 | * Since: 1.2 |
1110 | **/ |
1111 | cairo_pattern_type_t |
1112 | cairo_pattern_get_type_moz_cairo_pattern_get_type (cairo_pattern_t *pattern) |
1113 | { |
1114 | return pattern->type; |
1115 | } |
1116 | |
1117 | /** |
1118 | * cairo_pattern_status: |
1119 | * @pattern: a #cairo_pattern_t |
1120 | * |
1121 | * Checks whether an error has previously occurred for this |
1122 | * pattern. |
1123 | * |
1124 | * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_STATUS_NO_MEMORY, |
1125 | * %CAIRO_STATUS_INVALID_MATRIX, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH, |
1126 | * or %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1127 | * |
1128 | * Since: 1.0 |
1129 | **/ |
1130 | cairo_status_t |
1131 | cairo_pattern_status_moz_cairo_pattern_status (cairo_pattern_t *pattern) |
1132 | { |
1133 | return pattern->status; |
1134 | } |
1135 | |
1136 | /** |
1137 | * cairo_pattern_destroy: |
1138 | * @pattern: a #cairo_pattern_t |
1139 | * |
1140 | * Decreases the reference count on @pattern by one. If the result is |
1141 | * zero, then @pattern and all associated resources are freed. See |
1142 | * cairo_pattern_reference(). |
1143 | * |
1144 | * Since: 1.0 |
1145 | **/ |
1146 | void |
1147 | cairo_pattern_destroy_moz_cairo_pattern_destroy (cairo_pattern_t *pattern) |
1148 | { |
1149 | cairo_pattern_type_t type; |
1150 | |
1151 | if (pattern == NULL((void*)0) || |
1152 | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)(_cairo_atomic_int_get (&(&pattern->ref_count)-> ref_count) == ((cairo_atomic_int_t) -1))) |
1153 | return; |
1154 | |
1155 | assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count))((void) sizeof (((_cairo_atomic_int_get (&(&pattern-> ref_count)->ref_count) > 0)) ? 1 : 0), __extension__ ({ if ((_cairo_atomic_int_get (&(&pattern->ref_count )->ref_count) > 0)) ; else __assert_fail ("CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count)" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 1155 , __extension__ __PRETTY_FUNCTION__); })); |
1156 | |
1157 | if (! _cairo_reference_count_dec_and_test (&pattern->ref_count)(__atomic_fetch_sub(&(&pattern->ref_count)->ref_count , 1, 5) == 1)) |
1158 | return; |
1159 | |
1160 | type = pattern->type; |
1161 | _cairo_pattern_fini (pattern); |
1162 | |
1163 | /* maintain a small cache of freed patterns */ |
1164 | if (type < ARRAY_LENGTH (freed_pattern_pool)((int) (sizeof (freed_pattern_pool) / sizeof (freed_pattern_pool [0])))) |
1165 | _freed_pool_put (&freed_pattern_pool[type], pattern); |
1166 | else |
1167 | free (pattern); |
1168 | } |
1169 | |
1170 | /** |
1171 | * cairo_pattern_get_reference_count: |
1172 | * @pattern: a #cairo_pattern_t |
1173 | * |
1174 | * Returns the current reference count of @pattern. |
1175 | * |
1176 | * Return value: the current reference count of @pattern. If the |
1177 | * object is a nil object, 0 will be returned. |
1178 | * |
1179 | * Since: 1.4 |
1180 | **/ |
1181 | unsigned int |
1182 | cairo_pattern_get_reference_count_moz_cairo_pattern_get_reference_count (cairo_pattern_t *pattern) |
1183 | { |
1184 | if (pattern == NULL((void*)0) || |
1185 | CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)(_cairo_atomic_int_get (&(&pattern->ref_count)-> ref_count) == ((cairo_atomic_int_t) -1))) |
1186 | return 0; |
1187 | |
1188 | return CAIRO_REFERENCE_COUNT_GET_VALUE (&pattern->ref_count)_cairo_atomic_int_get (&(&pattern->ref_count)-> ref_count); |
1189 | } |
1190 | |
1191 | /** |
1192 | * cairo_pattern_get_user_data: |
1193 | * @pattern: a #cairo_pattern_t |
1194 | * @key: the address of the #cairo_user_data_key_t the user data was |
1195 | * attached to |
1196 | * |
1197 | * Return user data previously attached to @pattern using the |
1198 | * specified key. If no user data has been attached with the given |
1199 | * key this function returns %NULL. |
1200 | * |
1201 | * Return value: the user data previously attached or %NULL. |
1202 | * |
1203 | * Since: 1.4 |
1204 | **/ |
1205 | void * |
1206 | cairo_pattern_get_user_data_moz_cairo_pattern_get_user_data (cairo_pattern_t *pattern, |
1207 | const cairo_user_data_key_t *key) |
1208 | { |
1209 | return _cairo_user_data_array_get_data (&pattern->user_data, |
1210 | key); |
1211 | } |
1212 | |
1213 | /** |
1214 | * cairo_pattern_set_user_data: |
1215 | * @pattern: a #cairo_pattern_t |
1216 | * @key: the address of a #cairo_user_data_key_t to attach the user data to |
1217 | * @user_data: the user data to attach to the #cairo_pattern_t |
1218 | * @destroy: a #cairo_destroy_func_t which will be called when the |
1219 | * #cairo_t is destroyed or when new user data is attached using the |
1220 | * same key. |
1221 | * |
1222 | * Attach user data to @pattern. To remove user data from a surface, |
1223 | * call this function with the key that was used to set it and %NULL |
1224 | * for @data. |
1225 | * |
1226 | * Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a |
1227 | * slot could not be allocated for the user data. |
1228 | * |
1229 | * Since: 1.4 |
1230 | **/ |
1231 | cairo_status_t |
1232 | cairo_pattern_set_user_data_moz_cairo_pattern_set_user_data (cairo_pattern_t *pattern, |
1233 | const cairo_user_data_key_t *key, |
1234 | void *user_data, |
1235 | cairo_destroy_func_t destroy) |
1236 | { |
1237 | if (CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count)(_cairo_atomic_int_get (&(&pattern->ref_count)-> ref_count) == ((cairo_atomic_int_t) -1))) |
1238 | return pattern->status; |
1239 | |
1240 | return _cairo_user_data_array_set_data (&pattern->user_data, |
1241 | key, user_data, destroy); |
1242 | } |
1243 | |
1244 | /** |
1245 | * cairo_mesh_pattern_begin_patch: |
1246 | * @pattern: a #cairo_pattern_t |
1247 | * |
1248 | * Begin a patch in a mesh pattern. |
1249 | * |
1250 | * After calling this function, the patch shape should be defined with |
1251 | * cairo_mesh_pattern_move_to(), cairo_mesh_pattern_line_to() and |
1252 | * cairo_mesh_pattern_curve_to(). |
1253 | * |
1254 | * After defining the patch, cairo_mesh_pattern_end_patch() must be |
1255 | * called before using @pattern as a source or mask. |
1256 | * |
1257 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1258 | * into an error status with a status of |
1259 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern already has a |
1260 | * current patch, it will be put into an error status with a status of |
1261 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1262 | * |
1263 | * Since: 1.12 |
1264 | **/ |
1265 | void |
1266 | cairo_mesh_pattern_begin_patch (cairo_pattern_t *pattern) |
1267 | { |
1268 | cairo_mesh_pattern_t *mesh; |
1269 | cairo_status_t status; |
1270 | cairo_mesh_patch_t *current_patch; |
1271 | int i; |
1272 | |
1273 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1274 | return; |
1275 | |
1276 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1277 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1278 | return; |
1279 | } |
1280 | |
1281 | mesh = (cairo_mesh_pattern_t *) pattern; |
1282 | if (unlikely (mesh->current_patch)(__builtin_expect (!!(mesh->current_patch), 0))) { |
1283 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1284 | return; |
1285 | } |
1286 | |
1287 | status = _cairo_array_allocate (&mesh->patches, 1, (void **) ¤t_patch); |
1288 | if (unlikely (status)(__builtin_expect (!!(status), 0))) { |
1289 | _cairo_pattern_set_error (pattern, status); |
1290 | return; |
1291 | } |
1292 | |
1293 | mesh->current_patch = current_patch; |
1294 | mesh->current_side = -2; /* no current point */ |
1295 | |
1296 | for (i = 0; i < 4; i++) |
1297 | mesh->has_control_point[i] = FALSE0; |
1298 | |
1299 | for (i = 0; i < 4; i++) |
1300 | mesh->has_color[i] = FALSE0; |
1301 | } |
1302 | |
1303 | static void |
1304 | _calc_control_point (cairo_mesh_patch_t *patch, int control_point) |
1305 | { |
1306 | /* The Coons patch is a special case of the Tensor Product patch |
1307 | * where the four control points are: |
1308 | * |
1309 | * P11 = S(1/3, 1/3) |
1310 | * P12 = S(1/3, 2/3) |
1311 | * P21 = S(2/3, 1/3) |
1312 | * P22 = S(2/3, 2/3) |
1313 | * |
1314 | * where S is the gradient surface. |
1315 | * |
1316 | * When one or more control points has not been specified |
1317 | * calculated the Coons patch control points are substituted. If |
1318 | * no control points are specified the gradient will be a Coons |
1319 | * patch. |
1320 | * |
1321 | * The equations below are defined in the ISO32000 standard. |
1322 | */ |
1323 | cairo_point_double_t *p[3][3]; |
1324 | int cp_i, cp_j, i, j; |
1325 | |
1326 | cp_i = mesh_control_point_i[control_point]; |
1327 | cp_j = mesh_control_point_j[control_point]; |
1328 | |
1329 | for (i = 0; i < 3; i++) |
1330 | for (j = 0; j < 3; j++) |
1331 | p[i][j] = &patch->points[cp_i ^ i][cp_j ^ j]; |
1332 | |
1333 | p[0][0]->x = (- 4 * p[1][1]->x |
1334 | + 6 * (p[1][0]->x + p[0][1]->x) |
1335 | - 2 * (p[1][2]->x + p[2][1]->x) |
1336 | + 3 * (p[2][0]->x + p[0][2]->x) |
1337 | - 1 * p[2][2]->x) * (1. / 9); |
1338 | |
1339 | p[0][0]->y = (- 4 * p[1][1]->y |
1340 | + 6 * (p[1][0]->y + p[0][1]->y) |
1341 | - 2 * (p[1][2]->y + p[2][1]->y) |
1342 | + 3 * (p[2][0]->y + p[0][2]->y) |
1343 | - 1 * p[2][2]->y) * (1. / 9); |
1344 | } |
1345 | |
1346 | /** |
1347 | * cairo_mesh_pattern_end_patch: |
1348 | * @pattern: a #cairo_pattern_t |
1349 | * |
1350 | * Indicates the end of the current patch in a mesh pattern. |
1351 | * |
1352 | * If the current patch has less than 4 sides, it is closed with a |
1353 | * straight line from the current point to the first point of the |
1354 | * patch as if cairo_mesh_pattern_line_to() was used. |
1355 | * |
1356 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1357 | * into an error status with a status of |
1358 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1359 | * patch or the current patch has no current point, @pattern will be |
1360 | * put into an error status with a status of |
1361 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1362 | * |
1363 | * Since: 1.12 |
1364 | **/ |
1365 | void |
1366 | cairo_mesh_pattern_end_patch (cairo_pattern_t *pattern) |
1367 | { |
1368 | cairo_mesh_pattern_t *mesh; |
1369 | cairo_mesh_patch_t *current_patch; |
1370 | int i; |
1371 | |
1372 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1373 | return; |
1374 | |
1375 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1376 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1377 | return; |
1378 | } |
1379 | |
1380 | mesh = (cairo_mesh_pattern_t *) pattern; |
1381 | current_patch = mesh->current_patch; |
1382 | if (unlikely (!current_patch)(__builtin_expect (!!(!current_patch), 0))) { |
1383 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1384 | return; |
1385 | } |
1386 | |
1387 | if (unlikely (mesh->current_side == -2)(__builtin_expect (!!(mesh->current_side == -2), 0))) { |
1388 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1389 | return; |
1390 | } |
1391 | |
1392 | while (mesh->current_side < 3) { |
1393 | int corner_num; |
1394 | |
1395 | cairo_mesh_pattern_line_to (pattern, |
1396 | current_patch->points[0][0].x, |
1397 | current_patch->points[0][0].y); |
1398 | |
1399 | corner_num = mesh->current_side + 1; |
1400 | if (corner_num < 4 && ! mesh->has_color[corner_num]) { |
1401 | current_patch->colors[corner_num] = current_patch->colors[0]; |
1402 | mesh->has_color[corner_num] = TRUE1; |
1403 | } |
1404 | } |
1405 | |
1406 | for (i = 0; i < 4; i++) { |
1407 | if (! mesh->has_control_point[i]) |
1408 | _calc_control_point (current_patch, i); |
1409 | } |
1410 | |
1411 | for (i = 0; i < 4; i++) { |
1412 | if (! mesh->has_color[i]) |
1413 | current_patch->colors[i] = *CAIRO_COLOR_TRANSPARENT_cairo_stock_color (CAIRO_STOCK_TRANSPARENT); |
1414 | } |
1415 | |
1416 | mesh->current_patch = NULL((void*)0); |
1417 | } |
1418 | |
1419 | /** |
1420 | * cairo_mesh_pattern_curve_to: |
1421 | * @pattern: a #cairo_pattern_t |
1422 | * @x1: the X coordinate of the first control point |
1423 | * @y1: the Y coordinate of the first control point |
1424 | * @x2: the X coordinate of the second control point |
1425 | * @y2: the Y coordinate of the second control point |
1426 | * @x3: the X coordinate of the end of the curve |
1427 | * @y3: the Y coordinate of the end of the curve |
1428 | * |
1429 | * Adds a cubic Bézier spline to the current patch from the current |
1430 | * point to position (@x3, @y3) in pattern-space coordinates, using |
1431 | * (@x1, @y1) and (@x2, @y2) as the control points. |
1432 | * |
1433 | * If the current patch has no current point before the call to |
1434 | * cairo_mesh_pattern_curve_to(), this function will behave as if |
1435 | * preceded by a call to cairo_mesh_pattern_move_to(@pattern, @x1, |
1436 | * @y1). |
1437 | * |
1438 | * After this call the current point will be (@x3, @y3). |
1439 | * |
1440 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1441 | * into an error status with a status of |
1442 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1443 | * patch or the current patch already has 4 sides, @pattern will be |
1444 | * put into an error status with a status of |
1445 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1446 | * |
1447 | * Since: 1.12 |
1448 | **/ |
1449 | void |
1450 | cairo_mesh_pattern_curve_to (cairo_pattern_t *pattern, |
1451 | double x1, double y1, |
1452 | double x2, double y2, |
1453 | double x3, double y3) |
1454 | { |
1455 | cairo_mesh_pattern_t *mesh; |
1456 | int current_point, i, j; |
1457 | |
1458 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1459 | return; |
1460 | |
1461 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1462 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1463 | return; |
1464 | } |
1465 | |
1466 | mesh = (cairo_mesh_pattern_t *) pattern; |
1467 | if (unlikely (!mesh->current_patch)(__builtin_expect (!!(!mesh->current_patch), 0))) { |
1468 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1469 | return; |
1470 | } |
1471 | |
1472 | if (unlikely (mesh->current_side == 3)(__builtin_expect (!!(mesh->current_side == 3), 0))) { |
1473 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1474 | return; |
1475 | } |
1476 | |
1477 | if (mesh->current_side == -2) |
1478 | cairo_mesh_pattern_move_to (pattern, x1, y1); |
1479 | |
1480 | assert (mesh->current_side >= -1)((void) sizeof ((mesh->current_side >= -1) ? 1 : 0), __extension__ ({ if (mesh->current_side >= -1) ; else __assert_fail ( "mesh->current_side >= -1", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 1480, __extension__ __PRETTY_FUNCTION__); })); |
1481 | assert (pattern->status == CAIRO_STATUS_SUCCESS)((void) sizeof ((pattern->status == CAIRO_STATUS_SUCCESS) ? 1 : 0), __extension__ ({ if (pattern->status == CAIRO_STATUS_SUCCESS ) ; else __assert_fail ("pattern->status == CAIRO_STATUS_SUCCESS" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 1481 , __extension__ __PRETTY_FUNCTION__); })); |
1482 | |
1483 | mesh->current_side++; |
1484 | |
1485 | current_point = 3 * mesh->current_side; |
1486 | |
1487 | current_point++; |
1488 | i = mesh_path_point_i[current_point]; |
1489 | j = mesh_path_point_j[current_point]; |
1490 | mesh->current_patch->points[i][j].x = x1; |
1491 | mesh->current_patch->points[i][j].y = y1; |
1492 | |
1493 | current_point++; |
1494 | i = mesh_path_point_i[current_point]; |
1495 | j = mesh_path_point_j[current_point]; |
1496 | mesh->current_patch->points[i][j].x = x2; |
1497 | mesh->current_patch->points[i][j].y = y2; |
1498 | |
1499 | current_point++; |
1500 | if (current_point < 12) { |
1501 | i = mesh_path_point_i[current_point]; |
1502 | j = mesh_path_point_j[current_point]; |
1503 | mesh->current_patch->points[i][j].x = x3; |
1504 | mesh->current_patch->points[i][j].y = y3; |
1505 | } |
1506 | } |
1507 | |
1508 | /** |
1509 | * cairo_mesh_pattern_line_to: |
1510 | * @pattern: a #cairo_pattern_t |
1511 | * @x: the X coordinate of the end of the new line |
1512 | * @y: the Y coordinate of the end of the new line |
1513 | * |
1514 | * Adds a line to the current patch from the current point to position |
1515 | * (@x, @y) in pattern-space coordinates. |
1516 | * |
1517 | * If there is no current point before the call to |
1518 | * cairo_mesh_pattern_line_to() this function will behave as |
1519 | * cairo_mesh_pattern_move_to(@pattern, @x, @y). |
1520 | * |
1521 | * After this call the current point will be (@x, @y). |
1522 | * |
1523 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1524 | * into an error status with a status of |
1525 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1526 | * patch or the current patch already has 4 sides, @pattern will be |
1527 | * put into an error status with a status of |
1528 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1529 | * |
1530 | * Since: 1.12 |
1531 | **/ |
1532 | void |
1533 | cairo_mesh_pattern_line_to (cairo_pattern_t *pattern, |
1534 | double x, double y) |
1535 | { |
1536 | cairo_mesh_pattern_t *mesh; |
1537 | cairo_point_double_t last_point; |
1538 | int last_point_idx, i, j; |
1539 | |
1540 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1541 | return; |
1542 | |
1543 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1544 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1545 | return; |
1546 | } |
1547 | |
1548 | mesh = (cairo_mesh_pattern_t *) pattern; |
1549 | if (unlikely (!mesh->current_patch)(__builtin_expect (!!(!mesh->current_patch), 0))) { |
1550 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1551 | return; |
1552 | } |
1553 | |
1554 | if (unlikely (mesh->current_side == 3)(__builtin_expect (!!(mesh->current_side == 3), 0))) { |
1555 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1556 | return; |
1557 | } |
1558 | |
1559 | if (mesh->current_side == -2) { |
1560 | cairo_mesh_pattern_move_to (pattern, x, y); |
1561 | return; |
1562 | } |
1563 | |
1564 | last_point_idx = 3 * (mesh->current_side + 1); |
1565 | i = mesh_path_point_i[last_point_idx]; |
1566 | j = mesh_path_point_j[last_point_idx]; |
1567 | |
1568 | last_point = mesh->current_patch->points[i][j]; |
1569 | |
1570 | cairo_mesh_pattern_curve_to (pattern, |
1571 | (2 * last_point.x + x) * (1. / 3), |
1572 | (2 * last_point.y + y) * (1. / 3), |
1573 | (last_point.x + 2 * x) * (1. / 3), |
1574 | (last_point.y + 2 * y) * (1. / 3), |
1575 | x, y); |
1576 | } |
1577 | |
1578 | /** |
1579 | * cairo_mesh_pattern_move_to: |
1580 | * @pattern: a #cairo_pattern_t |
1581 | * @x: the X coordinate of the new position |
1582 | * @y: the Y coordinate of the new position |
1583 | * |
1584 | * Define the first point of the current patch in a mesh pattern. |
1585 | * |
1586 | * After this call the current point will be (@x, @y). |
1587 | * |
1588 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1589 | * into an error status with a status of |
1590 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @pattern has no current |
1591 | * patch or the current patch already has at least one side, @pattern |
1592 | * will be put into an error status with a status of |
1593 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1594 | * |
1595 | * Since: 1.12 |
1596 | **/ |
1597 | void |
1598 | cairo_mesh_pattern_move_to (cairo_pattern_t *pattern, |
1599 | double x, double y) |
1600 | { |
1601 | cairo_mesh_pattern_t *mesh; |
1602 | |
1603 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1604 | return; |
1605 | |
1606 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1607 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1608 | return; |
1609 | } |
1610 | |
1611 | mesh = (cairo_mesh_pattern_t *) pattern; |
1612 | if (unlikely (!mesh->current_patch)(__builtin_expect (!!(!mesh->current_patch), 0))) { |
1613 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1614 | return; |
1615 | } |
1616 | |
1617 | if (unlikely (mesh->current_side >= 0)(__builtin_expect (!!(mesh->current_side >= 0), 0))) { |
1618 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1619 | return; |
1620 | } |
1621 | |
1622 | mesh->current_side = -1; |
1623 | mesh->current_patch->points[0][0].x = x; |
1624 | mesh->current_patch->points[0][0].y = y; |
1625 | } |
1626 | |
1627 | /** |
1628 | * cairo_mesh_pattern_set_control_point: |
1629 | * @pattern: a #cairo_pattern_t |
1630 | * @point_num: the control point to set the position for |
1631 | * @x: the X coordinate of the control point |
1632 | * @y: the Y coordinate of the control point |
1633 | * |
1634 | * Set an internal control point of the current patch. |
1635 | * |
1636 | * Valid values for @point_num are from 0 to 3 and identify the |
1637 | * control points as explained in cairo_pattern_create_mesh(). |
1638 | * |
1639 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1640 | * into an error status with a status of |
1641 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @point_num is not valid, |
1642 | * @pattern will be put into an error status with a status of |
1643 | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1644 | * @pattern will be put into an error status with a status of |
1645 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1646 | * |
1647 | * Since: 1.12 |
1648 | **/ |
1649 | void |
1650 | cairo_mesh_pattern_set_control_point (cairo_pattern_t *pattern, |
1651 | unsigned int point_num, |
1652 | double x, |
1653 | double y) |
1654 | { |
1655 | cairo_mesh_pattern_t *mesh; |
1656 | int i, j; |
1657 | |
1658 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1659 | return; |
1660 | |
1661 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1662 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1663 | return; |
1664 | } |
1665 | |
1666 | if (unlikely (point_num > 3)(__builtin_expect (!!(point_num > 3), 0))) { |
1667 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_INDEX); |
1668 | return; |
1669 | } |
1670 | |
1671 | mesh = (cairo_mesh_pattern_t *) pattern; |
1672 | if (unlikely (!mesh->current_patch)(__builtin_expect (!!(!mesh->current_patch), 0))) { |
1673 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1674 | return; |
1675 | } |
1676 | |
1677 | i = mesh_control_point_i[point_num]; |
1678 | j = mesh_control_point_j[point_num]; |
1679 | |
1680 | mesh->current_patch->points[i][j].x = x; |
1681 | mesh->current_patch->points[i][j].y = y; |
1682 | mesh->has_control_point[point_num] = TRUE1; |
1683 | } |
1684 | |
1685 | /* make room for at least one more color stop */ |
1686 | static cairo_status_t |
1687 | _cairo_pattern_gradient_grow (cairo_gradient_pattern_t *pattern) |
1688 | { |
1689 | cairo_gradient_stop_t *new_stops; |
1690 | int old_size = pattern->stops_size; |
1691 | int embedded_size = ARRAY_LENGTH (pattern->stops_embedded)((int) (sizeof (pattern->stops_embedded) / sizeof (pattern ->stops_embedded[0]))); |
1692 | int new_size = 2 * MAX (old_size, 4)((old_size) > (4) ? (old_size) : (4)); |
1693 | |
1694 | /* we have a local buffer at pattern->stops_embedded. try to fulfill the request |
1695 | * from there. */ |
1696 | if (old_size < embedded_size) { |
1697 | pattern->stops = pattern->stops_embedded; |
1698 | pattern->stops_size = embedded_size; |
1699 | return CAIRO_STATUS_SUCCESS; |
1700 | } |
1701 | |
1702 | if (CAIRO_INJECT_FAULT ()0) |
1703 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1704 | |
1705 | assert (pattern->n_stops <= pattern->stops_size)((void) sizeof ((pattern->n_stops <= pattern->stops_size ) ? 1 : 0), __extension__ ({ if (pattern->n_stops <= pattern ->stops_size) ; else __assert_fail ("pattern->n_stops <= pattern->stops_size" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 1705 , __extension__ __PRETTY_FUNCTION__); })); |
1706 | |
1707 | if (pattern->stops == pattern->stops_embedded) { |
1708 | new_stops = _cairo_malloc_ab (new_size, sizeof (cairo_gradient_stop_t)); |
1709 | if (new_stops) |
1710 | memcpy (new_stops, pattern->stops, old_size * sizeof (cairo_gradient_stop_t)); |
1711 | } else { |
1712 | new_stops = _cairo_realloc_ab (pattern->stops, |
1713 | new_size, |
1714 | sizeof (cairo_gradient_stop_t)); |
1715 | } |
1716 | |
1717 | if (unlikely (new_stops == NULL)(__builtin_expect (!!(new_stops == ((void*)0)), 0))) |
1718 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
1719 | |
1720 | pattern->stops = new_stops; |
1721 | pattern->stops_size = new_size; |
1722 | |
1723 | return CAIRO_STATUS_SUCCESS; |
1724 | } |
1725 | |
1726 | static void |
1727 | _cairo_mesh_pattern_set_corner_color (cairo_mesh_pattern_t *mesh, |
1728 | unsigned int corner_num, |
1729 | double red, double green, double blue, |
1730 | double alpha) |
1731 | { |
1732 | cairo_color_t *color; |
1733 | |
1734 | assert (mesh->current_patch)((void) sizeof ((mesh->current_patch) ? 1 : 0), __extension__ ({ if (mesh->current_patch) ; else __assert_fail ("mesh->current_patch" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 1734 , __extension__ __PRETTY_FUNCTION__); })); |
1735 | assert (corner_num <= 3)((void) sizeof ((corner_num <= 3) ? 1 : 0), __extension__ ( { if (corner_num <= 3) ; else __assert_fail ("corner_num <= 3" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 1735 , __extension__ __PRETTY_FUNCTION__); })); |
1736 | |
1737 | color = &mesh->current_patch->colors[corner_num]; |
1738 | color->red = red; |
1739 | color->green = green; |
1740 | color->blue = blue; |
1741 | color->alpha = alpha; |
1742 | |
1743 | color->red_short = _cairo_color_double_to_short (red); |
1744 | color->green_short = _cairo_color_double_to_short (green); |
1745 | color->blue_short = _cairo_color_double_to_short (blue); |
1746 | color->alpha_short = _cairo_color_double_to_short (alpha); |
1747 | |
1748 | mesh->has_color[corner_num] = TRUE1; |
1749 | } |
1750 | |
1751 | /** |
1752 | * cairo_mesh_pattern_set_corner_color_rgb: |
1753 | * @pattern: a #cairo_pattern_t |
1754 | * @corner_num: the corner to set the color for |
1755 | * @red: red component of color |
1756 | * @green: green component of color |
1757 | * @blue: blue component of color |
1758 | * |
1759 | * Sets the color of a corner of the current patch in a mesh pattern. |
1760 | * |
1761 | * The color is specified in the same way as in cairo_set_source_rgb(). |
1762 | * |
1763 | * Valid values for @corner_num are from 0 to 3 and identify the |
1764 | * corners as explained in cairo_pattern_create_mesh(). |
1765 | * |
1766 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1767 | * into an error status with a status of |
1768 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @corner_num is not valid, |
1769 | * @pattern will be put into an error status with a status of |
1770 | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1771 | * @pattern will be put into an error status with a status of |
1772 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1773 | * |
1774 | * Since: 1.12 |
1775 | **/ |
1776 | void |
1777 | cairo_mesh_pattern_set_corner_color_rgb (cairo_pattern_t *pattern, |
1778 | unsigned int corner_num, |
1779 | double red, double green, double blue) |
1780 | { |
1781 | cairo_mesh_pattern_set_corner_color_rgba (pattern, corner_num, red, green, blue, 1.0); |
1782 | } |
1783 | |
1784 | /** |
1785 | * cairo_mesh_pattern_set_corner_color_rgba: |
1786 | * @pattern: a #cairo_pattern_t |
1787 | * @corner_num: the corner to set the color for |
1788 | * @red: red component of color |
1789 | * @green: green component of color |
1790 | * @blue: blue component of color |
1791 | * @alpha: alpha component of color |
1792 | * |
1793 | * Sets the color of a corner of the current patch in a mesh pattern. |
1794 | * |
1795 | * The color is specified in the same way as in cairo_set_source_rgba(). |
1796 | * |
1797 | * Valid values for @corner_num are from 0 to 3 and identify the |
1798 | * corners as explained in cairo_pattern_create_mesh(). |
1799 | * |
1800 | * Note: If @pattern is not a mesh pattern then @pattern will be put |
1801 | * into an error status with a status of |
1802 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. If @corner_num is not valid, |
1803 | * @pattern will be put into an error status with a status of |
1804 | * %CAIRO_STATUS_INVALID_INDEX. If @pattern has no current patch, |
1805 | * @pattern will be put into an error status with a status of |
1806 | * %CAIRO_STATUS_INVALID_MESH_CONSTRUCTION. |
1807 | * |
1808 | * Since: 1.12 |
1809 | **/ |
1810 | void |
1811 | cairo_mesh_pattern_set_corner_color_rgba (cairo_pattern_t *pattern, |
1812 | unsigned int corner_num, |
1813 | double red, double green, double blue, |
1814 | double alpha) |
1815 | { |
1816 | cairo_mesh_pattern_t *mesh; |
1817 | |
1818 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
1819 | return; |
1820 | |
1821 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) { |
1822 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1823 | return; |
1824 | } |
1825 | |
1826 | if (unlikely (corner_num > 3)(__builtin_expect (!!(corner_num > 3), 0))) { |
1827 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_INDEX); |
1828 | return; |
1829 | } |
1830 | |
1831 | mesh = (cairo_mesh_pattern_t *) pattern; |
1832 | if (unlikely (!mesh->current_patch)(__builtin_expect (!!(!mesh->current_patch), 0))) { |
1833 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_INVALID_MESH_CONSTRUCTION); |
1834 | return; |
1835 | } |
1836 | |
1837 | red = _cairo_restrict_value (red, 0.0, 1.0); |
1838 | green = _cairo_restrict_value (green, 0.0, 1.0); |
1839 | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
1840 | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
1841 | |
1842 | _cairo_mesh_pattern_set_corner_color (mesh, corner_num, red, green, blue, alpha); |
1843 | } |
1844 | |
1845 | static void |
1846 | _cairo_pattern_add_color_stop (cairo_gradient_pattern_t *pattern, |
1847 | double offset, |
1848 | double red, |
1849 | double green, |
1850 | double blue, |
1851 | double alpha) |
1852 | { |
1853 | cairo_gradient_stop_t *stops; |
1854 | unsigned int i; |
1855 | |
1856 | if (pattern->n_stops >= pattern->stops_size) { |
1857 | cairo_status_t status = _cairo_pattern_gradient_grow (pattern); |
1858 | if (unlikely (status)(__builtin_expect (!!(status), 0))) { |
1859 | status = _cairo_pattern_set_error (&pattern->base, status); |
1860 | return; |
1861 | } |
1862 | } |
1863 | |
1864 | stops = pattern->stops; |
1865 | |
1866 | for (i = 0; i < pattern->n_stops; i++) |
1867 | { |
1868 | if (offset < stops[i].offset) |
1869 | { |
1870 | memmove (&stops[i + 1], &stops[i], |
1871 | sizeof (cairo_gradient_stop_t) * (pattern->n_stops - i)); |
1872 | |
1873 | break; |
1874 | } |
1875 | } |
1876 | |
1877 | stops[i].offset = offset; |
1878 | |
1879 | stops[i].color.red = red; |
1880 | stops[i].color.green = green; |
1881 | stops[i].color.blue = blue; |
1882 | stops[i].color.alpha = alpha; |
1883 | |
1884 | stops[i].color.red_short = _cairo_color_double_to_short (red); |
1885 | stops[i].color.green_short = _cairo_color_double_to_short (green); |
1886 | stops[i].color.blue_short = _cairo_color_double_to_short (blue); |
1887 | stops[i].color.alpha_short = _cairo_color_double_to_short (alpha); |
1888 | |
1889 | pattern->n_stops++; |
1890 | } |
1891 | |
1892 | /** |
1893 | * cairo_pattern_add_color_stop_rgb: |
1894 | * @pattern: a #cairo_pattern_t |
1895 | * @offset: an offset in the range [0.0 .. 1.0] |
1896 | * @red: red component of color |
1897 | * @green: green component of color |
1898 | * @blue: blue component of color |
1899 | * |
1900 | * Adds an opaque color stop to a gradient pattern. The offset |
1901 | * specifies the location along the gradient's control vector. For |
1902 | * example, a linear gradient's control vector is from (x0,y0) to |
1903 | * (x1,y1) while a radial gradient's control vector is from any point |
1904 | * on the start circle to the corresponding point on the end circle. |
1905 | * |
1906 | * The color is specified in the same way as in cairo_set_source_rgb(). |
1907 | * |
1908 | * If two (or more) stops are specified with identical offset values, |
1909 | * they will be sorted according to the order in which the stops are |
1910 | * added, (stops added earlier will compare less than stops added |
1911 | * later). This can be useful for reliably making sharp color |
1912 | * transitions instead of the typical blend. |
1913 | * |
1914 | * |
1915 | * Note: If the pattern is not a gradient pattern, (eg. a linear or |
1916 | * radial pattern), then the pattern will be put into an error status |
1917 | * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. |
1918 | * |
1919 | * Since: 1.0 |
1920 | **/ |
1921 | void |
1922 | cairo_pattern_add_color_stop_rgb_moz_cairo_pattern_add_color_stop_rgb (cairo_pattern_t *pattern, |
1923 | double offset, |
1924 | double red, |
1925 | double green, |
1926 | double blue) |
1927 | { |
1928 | cairo_pattern_add_color_stop_rgba_moz_cairo_pattern_add_color_stop_rgba (pattern, offset, red, green, blue, 1.0); |
1929 | } |
1930 | |
1931 | /** |
1932 | * cairo_pattern_add_color_stop_rgba: |
1933 | * @pattern: a #cairo_pattern_t |
1934 | * @offset: an offset in the range [0.0 .. 1.0] |
1935 | * @red: red component of color |
1936 | * @green: green component of color |
1937 | * @blue: blue component of color |
1938 | * @alpha: alpha component of color |
1939 | * |
1940 | * Adds a translucent color stop to a gradient pattern. The offset |
1941 | * specifies the location along the gradient's control vector. For |
1942 | * example, a linear gradient's control vector is from (x0,y0) to |
1943 | * (x1,y1) while a radial gradient's control vector is from any point |
1944 | * on the start circle to the corresponding point on the end circle. |
1945 | * |
1946 | * The color is specified in the same way as in cairo_set_source_rgba(). |
1947 | * |
1948 | * If two (or more) stops are specified with identical offset values, |
1949 | * they will be sorted according to the order in which the stops are |
1950 | * added, (stops added earlier will compare less than stops added |
1951 | * later). This can be useful for reliably making sharp color |
1952 | * transitions instead of the typical blend. |
1953 | * |
1954 | * Note: If the pattern is not a gradient pattern, (eg. a linear or |
1955 | * radial pattern), then the pattern will be put into an error status |
1956 | * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH. |
1957 | * |
1958 | * Since: 1.0 |
1959 | **/ |
1960 | void |
1961 | cairo_pattern_add_color_stop_rgba_moz_cairo_pattern_add_color_stop_rgba (cairo_pattern_t *pattern, |
1962 | double offset, |
1963 | double red, |
1964 | double green, |
1965 | double blue, |
1966 | double alpha) |
1967 | { |
1968 | if (pattern->status) |
1969 | return; |
1970 | |
1971 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
1972 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
1973 | { |
1974 | _cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
1975 | return; |
1976 | } |
1977 | |
1978 | offset = _cairo_restrict_value (offset, 0.0, 1.0); |
1979 | red = _cairo_restrict_value (red, 0.0, 1.0); |
1980 | green = _cairo_restrict_value (green, 0.0, 1.0); |
1981 | blue = _cairo_restrict_value (blue, 0.0, 1.0); |
1982 | alpha = _cairo_restrict_value (alpha, 0.0, 1.0); |
1983 | |
1984 | _cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern, |
1985 | offset, red, green, blue, alpha); |
1986 | } |
1987 | |
1988 | /** |
1989 | * cairo_pattern_set_matrix: |
1990 | * @pattern: a #cairo_pattern_t |
1991 | * @matrix: a #cairo_matrix_t |
1992 | * |
1993 | * Sets the pattern's transformation matrix to @matrix. This matrix is |
1994 | * a transformation from user space to pattern space. |
1995 | * |
1996 | * When a pattern is first created it always has the identity matrix |
1997 | * for its transformation matrix, which means that pattern space is |
1998 | * initially identical to user space. |
1999 | * |
2000 | * Important: Please note that the direction of this transformation |
2001 | * matrix is from user space to pattern space. This means that if you |
2002 | * imagine the flow from a pattern to user space (and on to device |
2003 | * space), then coordinates in that flow will be transformed by the |
2004 | * inverse of the pattern matrix. |
2005 | * |
2006 | * For example, if you want to make a pattern appear twice as large as |
2007 | * it does by default the correct code to use is: |
2008 | * |
2009 | * <informalexample><programlisting> |
2010 | * cairo_matrix_init_scale (&matrix, 0.5, 0.5); |
2011 | * cairo_pattern_set_matrix (pattern, &matrix); |
2012 | * </programlisting></informalexample> |
2013 | * |
2014 | * Meanwhile, using values of 2.0 rather than 0.5 in the code above |
2015 | * would cause the pattern to appear at half of its default size. |
2016 | * |
2017 | * Also, please note the discussion of the user-space locking |
2018 | * semantics of cairo_set_source(). |
2019 | * |
2020 | * Since: 1.0 |
2021 | **/ |
2022 | void |
2023 | cairo_pattern_set_matrix_moz_cairo_pattern_set_matrix (cairo_pattern_t *pattern, |
2024 | const cairo_matrix_t *matrix) |
2025 | { |
2026 | cairo_matrix_t inverse; |
2027 | cairo_status_t status; |
2028 | |
2029 | if (pattern->status) |
2030 | return; |
2031 | |
2032 | if (memcmp (&pattern->matrix, matrix, sizeof (cairo_matrix_t)) == 0) |
2033 | return; |
2034 | |
2035 | pattern->matrix = *matrix; |
2036 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_MATRIX); |
2037 | |
2038 | inverse = *matrix; |
2039 | status = cairo_matrix_invert_moz_cairo_matrix_invert (&inverse); |
2040 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
2041 | status = _cairo_pattern_set_error (pattern, status); |
Value stored to 'status' is never read | |
2042 | } |
2043 | |
2044 | /** |
2045 | * cairo_pattern_get_matrix: |
2046 | * @pattern: a #cairo_pattern_t |
2047 | * @matrix: return value for the matrix |
2048 | * |
2049 | * Stores the pattern's transformation matrix into @matrix. |
2050 | * |
2051 | * Since: 1.0 |
2052 | **/ |
2053 | void |
2054 | cairo_pattern_get_matrix_moz_cairo_pattern_get_matrix (cairo_pattern_t *pattern, cairo_matrix_t *matrix) |
2055 | { |
2056 | *matrix = pattern->matrix; |
2057 | } |
2058 | |
2059 | /** |
2060 | * cairo_pattern_set_filter: |
2061 | * @pattern: a #cairo_pattern_t |
2062 | * @filter: a #cairo_filter_t describing the filter to use for resizing |
2063 | * the pattern |
2064 | * |
2065 | * Sets the filter to be used for resizing when using this pattern. |
2066 | * See #cairo_filter_t for details on each filter. |
2067 | * |
2068 | * * Note that you might want to control filtering even when you do not |
2069 | * have an explicit #cairo_pattern_t object, (for example when using |
2070 | * cairo_set_source_surface()). In these cases, it is convenient to |
2071 | * use cairo_get_source() to get access to the pattern that cairo |
2072 | * creates implicitly. For example: |
2073 | * |
2074 | * <informalexample><programlisting> |
2075 | * cairo_set_source_surface (cr, image, x, y); |
2076 | * cairo_pattern_set_filter (cairo_get_source (cr), CAIRO_FILTER_NEAREST); |
2077 | * </programlisting></informalexample> |
2078 | * |
2079 | * Since: 1.0 |
2080 | **/ |
2081 | void |
2082 | cairo_pattern_set_filter_moz_cairo_pattern_set_filter (cairo_pattern_t *pattern, cairo_filter_t filter) |
2083 | { |
2084 | if (pattern->status) |
2085 | return; |
2086 | |
2087 | pattern->filter = filter; |
2088 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_FILTER); |
2089 | } |
2090 | |
2091 | /** |
2092 | * cairo_pattern_get_filter: |
2093 | * @pattern: a #cairo_pattern_t |
2094 | * |
2095 | * Gets the current filter for a pattern. See #cairo_filter_t |
2096 | * for details on each filter. |
2097 | * |
2098 | * Return value: the current filter used for resizing the pattern. |
2099 | * |
2100 | * Since: 1.0 |
2101 | **/ |
2102 | cairo_filter_t |
2103 | cairo_pattern_get_filter_moz_cairo_pattern_get_filter (cairo_pattern_t *pattern) |
2104 | { |
2105 | return pattern->filter; |
2106 | } |
2107 | |
2108 | /** |
2109 | * cairo_pattern_get_dither: |
2110 | * @pattern: a #cairo_pattern_t |
2111 | * |
2112 | * Gets the current dithering mode, as set by |
2113 | * cairo_pattern_set_dither(). |
2114 | * |
2115 | * Return value: the current dithering mode. |
2116 | * |
2117 | * Since: 1.18 |
2118 | **/ |
2119 | cairo_dither_t |
2120 | cairo_pattern_get_dither (cairo_pattern_t *pattern) |
2121 | { |
2122 | return pattern->dither; |
2123 | } |
2124 | |
2125 | /** |
2126 | * cairo_pattern_set_dither: |
2127 | * @pattern: a #cairo_pattern_t |
2128 | * @dither: a #cairo_dither_t describing the new dithering mode |
2129 | * |
2130 | * Set the dithering mode of the rasterizer used for drawing shapes. |
2131 | * This value is a hint, and a particular backend may or may not support |
2132 | * a particular value. At the current time, only pixman is supported. |
2133 | * |
2134 | * Since: 1.18 |
2135 | **/ |
2136 | void |
2137 | cairo_pattern_set_dither (cairo_pattern_t *pattern, cairo_dither_t dither) |
2138 | { |
2139 | if (pattern->status) |
2140 | return; |
2141 | |
2142 | pattern->dither = dither; |
2143 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_DITHER); |
2144 | |
2145 | } |
2146 | |
2147 | /** |
2148 | * cairo_pattern_set_extend: |
2149 | * @pattern: a #cairo_pattern_t |
2150 | * @extend: a #cairo_extend_t describing how the area outside of the |
2151 | * pattern will be drawn |
2152 | * |
2153 | * Sets the mode to be used for drawing outside the area of a pattern. |
2154 | * See #cairo_extend_t for details on the semantics of each extend |
2155 | * strategy. |
2156 | * |
2157 | * The default extend mode is %CAIRO_EXTEND_NONE for surface patterns |
2158 | * and %CAIRO_EXTEND_PAD for gradient patterns. |
2159 | * |
2160 | * Since: 1.0 |
2161 | **/ |
2162 | void |
2163 | cairo_pattern_set_extend_moz_cairo_pattern_set_extend (cairo_pattern_t *pattern, cairo_extend_t extend) |
2164 | { |
2165 | if (pattern->status) |
2166 | return; |
2167 | |
2168 | pattern->extend = extend; |
2169 | _cairo_pattern_notify_observers (pattern, CAIRO_PATTERN_NOTIFY_EXTEND); |
2170 | } |
2171 | |
2172 | /** |
2173 | * cairo_pattern_get_extend: |
2174 | * @pattern: a #cairo_pattern_t |
2175 | * |
2176 | * Gets the current extend mode for a pattern. See #cairo_extend_t |
2177 | * for details on the semantics of each extend strategy. |
2178 | * |
2179 | * Return value: the current extend strategy used for drawing the |
2180 | * pattern. |
2181 | * |
2182 | * Since: 1.0 |
2183 | **/ |
2184 | cairo_extend_t |
2185 | cairo_pattern_get_extend_moz_cairo_pattern_get_extend (cairo_pattern_t *pattern) |
2186 | { |
2187 | return pattern->extend; |
2188 | } |
2189 | |
2190 | void |
2191 | _cairo_pattern_pretransform (cairo_pattern_t *pattern, |
2192 | const cairo_matrix_t *ctm) |
2193 | { |
2194 | if (pattern->status) |
2195 | return; |
2196 | |
2197 | cairo_matrix_multiply_moz_cairo_matrix_multiply (&pattern->matrix, &pattern->matrix, ctm); |
2198 | } |
2199 | |
2200 | void |
2201 | _cairo_pattern_transform (cairo_pattern_t *pattern, |
2202 | const cairo_matrix_t *ctm_inverse) |
2203 | { |
2204 | if (pattern->status) |
2205 | return; |
2206 | |
2207 | cairo_matrix_multiply_moz_cairo_matrix_multiply (&pattern->matrix, ctm_inverse, &pattern->matrix); |
2208 | } |
2209 | |
2210 | static cairo_bool_t |
2211 | _linear_pattern_is_degenerate (const cairo_linear_pattern_t *linear) |
2212 | { |
2213 | return fabs (linear->pd1.x - linear->pd2.x) < DBL_EPSILON2.2204460492503131e-16 && |
2214 | fabs (linear->pd1.y - linear->pd2.y) < DBL_EPSILON2.2204460492503131e-16; |
2215 | } |
2216 | |
2217 | static cairo_bool_t |
2218 | _radial_pattern_is_degenerate (const cairo_radial_pattern_t *radial) |
2219 | { |
2220 | /* A radial pattern is considered degenerate if it can be |
2221 | * represented as a solid or clear pattern. This corresponds to |
2222 | * one of the two cases: |
2223 | * |
2224 | * 1) The radii are both very small: |
2225 | * |dr| < DBL_EPSILON && min (r0, r1) < DBL_EPSILON |
2226 | * |
2227 | * 2) The two circles have about the same radius and are very |
2228 | * close to each other (approximately a cylinder gradient that |
2229 | * doesn't move with the parameter): |
2230 | * |dr| < DBL_EPSILON && max (|dx|, |dy|) < 2 * DBL_EPSILON |
2231 | * |
2232 | * These checks are consistent with the assumptions used in |
2233 | * _cairo_radial_pattern_box_to_parameter (). |
2234 | */ |
2235 | |
2236 | return fabs (radial->cd1.radius - radial->cd2.radius) < DBL_EPSILON2.2204460492503131e-16 && |
2237 | (MIN (radial->cd1.radius, radial->cd2.radius)((radial->cd1.radius) < (radial->cd2.radius) ? (radial ->cd1.radius) : (radial->cd2.radius)) < DBL_EPSILON2.2204460492503131e-16 || |
2238 | MAX (fabs (radial->cd1.center.x - radial->cd2.center.x),((fabs (radial->cd1.center.x - radial->cd2.center.x)) > (fabs (radial->cd1.center.y - radial->cd2.center.y)) ? (fabs (radial->cd1.center.x - radial->cd2.center.x)) : (fabs (radial->cd1.center.y - radial->cd2.center.y))) |
2239 | fabs (radial->cd1.center.y - radial->cd2.center.y))((fabs (radial->cd1.center.x - radial->cd2.center.x)) > (fabs (radial->cd1.center.y - radial->cd2.center.y)) ? (fabs (radial->cd1.center.x - radial->cd2.center.x)) : (fabs (radial->cd1.center.y - radial->cd2.center.y))) < 2 * DBL_EPSILON2.2204460492503131e-16); |
2240 | } |
2241 | |
2242 | static void |
2243 | _cairo_linear_pattern_box_to_parameter (const cairo_linear_pattern_t *linear, |
2244 | double x0, double y0, |
2245 | double x1, double y1, |
2246 | double range[2]) |
2247 | { |
2248 | double t0, tdx, tdy; |
2249 | double p1x, p1y, pdx, pdy, invsqnorm; |
2250 | |
2251 | assert (! _linear_pattern_is_degenerate (linear))((void) sizeof ((! _linear_pattern_is_degenerate (linear)) ? 1 : 0), __extension__ ({ if (! _linear_pattern_is_degenerate ( linear)) ; else __assert_fail ("! _linear_pattern_is_degenerate (linear)" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2251 , __extension__ __PRETTY_FUNCTION__); })); |
2252 | |
2253 | /* |
2254 | * Linear gradients are othrogonal to the line passing through |
2255 | * their extremes. Because of convexity, the parameter range can |
2256 | * be computed as the convex hull (one the real line) of the |
2257 | * parameter values of the 4 corners of the box. |
2258 | * |
2259 | * The parameter value t for a point (x,y) can be computed as: |
2260 | * |
2261 | * t = (p2 - p1) . (x,y) / |p2 - p1|^2 |
2262 | * |
2263 | * t0 is the t value for the top left corner |
2264 | * tdx is the difference between left and right corners |
2265 | * tdy is the difference between top and bottom corners |
2266 | */ |
2267 | |
2268 | p1x = linear->pd1.x; |
2269 | p1y = linear->pd1.y; |
2270 | pdx = linear->pd2.x - p1x; |
2271 | pdy = linear->pd2.y - p1y; |
2272 | invsqnorm = 1.0 / (pdx * pdx + pdy * pdy); |
2273 | pdx *= invsqnorm; |
2274 | pdy *= invsqnorm; |
2275 | |
2276 | t0 = (x0 - p1x) * pdx + (y0 - p1y) * pdy; |
2277 | tdx = (x1 - x0) * pdx; |
2278 | tdy = (y1 - y0) * pdy; |
2279 | |
2280 | /* |
2281 | * Because of the linearity of the t value, tdx can simply be |
2282 | * added the t0 to move along the top edge. After this, range[0] |
2283 | * and range[1] represent the parameter range for the top edge, so |
2284 | * extending it to include the whole box simply requires adding |
2285 | * tdy to the correct extreme. |
2286 | */ |
2287 | |
2288 | range[0] = range[1] = t0; |
2289 | if (tdx < 0) |
2290 | range[0] += tdx; |
2291 | else |
2292 | range[1] += tdx; |
2293 | |
2294 | if (tdy < 0) |
2295 | range[0] += tdy; |
2296 | else |
2297 | range[1] += tdy; |
2298 | } |
2299 | |
2300 | static cairo_bool_t |
2301 | _extend_range (double range[2], double value, cairo_bool_t valid) |
2302 | { |
2303 | if (!valid) |
2304 | range[0] = range[1] = value; |
2305 | else if (value < range[0]) |
2306 | range[0] = value; |
2307 | else if (value > range[1]) |
2308 | range[1] = value; |
2309 | |
2310 | return TRUE1; |
2311 | } |
2312 | |
2313 | /* |
2314 | * _cairo_radial_pattern_focus_is_inside: |
2315 | * |
2316 | * Returns %TRUE if and only if the focus point exists and is |
2317 | * contained in one of the two extreme circles. This condition is |
2318 | * equivalent to one of the two extreme circles being completely |
2319 | * contained in the other one. |
2320 | * |
2321 | * Note: if the focus is on the border of one of the two circles (in |
2322 | * which case the circles are tangent in the focus point), it is not |
2323 | * considered as contained in the circle, hence this function returns |
2324 | * %FALSE. |
2325 | * |
2326 | */ |
2327 | cairo_bool_t |
2328 | _cairo_radial_pattern_focus_is_inside (const cairo_radial_pattern_t *radial) |
2329 | { |
2330 | double cx, cy, cr, dx, dy, dr; |
2331 | |
2332 | cx = radial->cd1.center.x; |
2333 | cy = radial->cd1.center.y; |
2334 | cr = radial->cd1.radius; |
2335 | dx = radial->cd2.center.x - cx; |
2336 | dy = radial->cd2.center.y - cy; |
2337 | dr = radial->cd2.radius - cr; |
2338 | |
2339 | return dx*dx + dy*dy < dr*dr; |
2340 | } |
2341 | |
2342 | static void |
2343 | _cairo_radial_pattern_box_to_parameter (const cairo_radial_pattern_t *radial, |
2344 | double x0, double y0, |
2345 | double x1, double y1, |
2346 | double tolerance, |
2347 | double range[2]) |
2348 | { |
2349 | double cx, cy, cr, dx, dy, dr; |
2350 | double a, x_focus, y_focus; |
2351 | double mindr, minx, miny, maxx, maxy; |
2352 | cairo_bool_t valid; |
2353 | |
2354 | assert (! _radial_pattern_is_degenerate (radial))((void) sizeof ((! _radial_pattern_is_degenerate (radial)) ? 1 : 0), __extension__ ({ if (! _radial_pattern_is_degenerate ( radial)) ; else __assert_fail ("! _radial_pattern_is_degenerate (radial)" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2354 , __extension__ __PRETTY_FUNCTION__); })); |
2355 | assert (x0 < x1)((void) sizeof ((x0 < x1) ? 1 : 0), __extension__ ({ if (x0 < x1) ; else __assert_fail ("x0 < x1", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 2355, __extension__ __PRETTY_FUNCTION__); })); |
2356 | assert (y0 < y1)((void) sizeof ((y0 < y1) ? 1 : 0), __extension__ ({ if (y0 < y1) ; else __assert_fail ("y0 < y1", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 2356, __extension__ __PRETTY_FUNCTION__); })); |
2357 | |
2358 | tolerance = MAX (tolerance, DBL_EPSILON)((tolerance) > (2.2204460492503131e-16) ? (tolerance) : (2.2204460492503131e-16 )); |
2359 | |
2360 | range[0] = range[1] = 0; |
2361 | valid = FALSE0; |
2362 | |
2363 | x_focus = y_focus = 0; /* silence gcc */ |
2364 | |
2365 | cx = radial->cd1.center.x; |
2366 | cy = radial->cd1.center.y; |
2367 | cr = radial->cd1.radius; |
2368 | dx = radial->cd2.center.x - cx; |
2369 | dy = radial->cd2.center.y - cy; |
2370 | dr = radial->cd2.radius - cr; |
2371 | |
2372 | /* translate by -(cx, cy) to simplify computations */ |
2373 | x0 -= cx; |
2374 | y0 -= cy; |
2375 | x1 -= cx; |
2376 | y1 -= cy; |
2377 | |
2378 | /* enlarge boundaries slightly to avoid rounding problems in the |
2379 | * parameter range computation */ |
2380 | x0 -= DBL_EPSILON2.2204460492503131e-16; |
2381 | y0 -= DBL_EPSILON2.2204460492503131e-16; |
2382 | x1 += DBL_EPSILON2.2204460492503131e-16; |
2383 | y1 += DBL_EPSILON2.2204460492503131e-16; |
2384 | |
2385 | /* enlarge boundaries even more to avoid rounding problems when |
2386 | * testing if a point belongs to the box */ |
2387 | minx = x0 - DBL_EPSILON2.2204460492503131e-16; |
2388 | miny = y0 - DBL_EPSILON2.2204460492503131e-16; |
2389 | maxx = x1 + DBL_EPSILON2.2204460492503131e-16; |
2390 | maxy = y1 + DBL_EPSILON2.2204460492503131e-16; |
2391 | |
2392 | /* we don't allow negative radiuses, so we will be checking that |
2393 | * t*dr >= mindr to consider t valid */ |
2394 | mindr = -(cr + DBL_EPSILON2.2204460492503131e-16); |
2395 | |
2396 | /* |
2397 | * After the previous transformations, the start circle is |
2398 | * centered in the origin and has radius cr. A 1-unit change in |
2399 | * the t parameter corresponds to dx,dy,dr changes in the x,y,r of |
2400 | * the circle (center coordinates, radius). |
2401 | * |
2402 | * To compute the minimum range needed to correctly draw the |
2403 | * pattern, we start with an empty range and extend it to include |
2404 | * the circles touching the bounding box or within it. |
2405 | */ |
2406 | |
2407 | /* |
2408 | * Focus, the point where the circle has radius == 0. |
2409 | * |
2410 | * r = cr + t * dr = 0 |
2411 | * t = -cr / dr |
2412 | * |
2413 | * If the radius is constant (dr == 0) there is no focus (the |
2414 | * gradient represents a cylinder instead of a cone). |
2415 | */ |
2416 | if (fabs (dr) >= DBL_EPSILON2.2204460492503131e-16) { |
2417 | double t_focus; |
2418 | |
2419 | t_focus = -cr / dr; |
2420 | x_focus = t_focus * dx; |
2421 | y_focus = t_focus * dy; |
2422 | if (minx <= x_focus && x_focus <= maxx && |
2423 | miny <= y_focus && y_focus <= maxy) |
2424 | { |
2425 | valid = _extend_range (range, t_focus, valid); |
2426 | } |
2427 | } |
2428 | |
2429 | /* |
2430 | * Circles externally tangent to box edges. |
2431 | * |
2432 | * All circles have center in (dx, dy) * t |
2433 | * |
2434 | * If the circle is tangent to the line defined by the edge of the |
2435 | * box, then at least one of the following holds true: |
2436 | * |
2437 | * (dx*t) + (cr + dr*t) == x0 (left edge) |
2438 | * (dx*t) - (cr + dr*t) == x1 (right edge) |
2439 | * (dy*t) + (cr + dr*t) == y0 (top edge) |
2440 | * (dy*t) - (cr + dr*t) == y1 (bottom edge) |
2441 | * |
2442 | * The solution is only valid if the tangent point is actually on |
2443 | * the edge, i.e. if its y coordinate is in [y0,y1] for left/right |
2444 | * edges and if its x coordinate is in [x0,x1] for top/bottom |
2445 | * edges. |
2446 | * |
2447 | * For the first equation: |
2448 | * |
2449 | * (dx + dr) * t = x0 - cr |
2450 | * t = (x0 - cr) / (dx + dr) |
2451 | * y = dy * t |
2452 | * |
2453 | * in the code this becomes: |
2454 | * |
2455 | * t_edge = (num) / (den) |
2456 | * v = (delta) * t_edge |
2457 | * |
2458 | * If the denominator in t is 0, the pattern is tangent to a line |
2459 | * parallel to the edge under examination. The corner-case where |
2460 | * the boundary line is the same as the edge is handled by the |
2461 | * focus point case and/or by the a==0 case. |
2462 | */ |
2463 | #define T_EDGE(num,den,delta,lower,upper) \ |
2464 | if (fabs (den) >= DBL_EPSILON2.2204460492503131e-16) { \ |
2465 | double t_edge, v; \ |
2466 | \ |
2467 | t_edge = (num) / (den); \ |
2468 | v = t_edge * (delta); \ |
2469 | if (t_edge * dr >= mindr && (lower) <= v && v <= (upper)) \ |
2470 | valid = _extend_range (range, t_edge, valid); \ |
2471 | } |
2472 | |
2473 | /* circles tangent (externally) to left/right/top/bottom edge */ |
2474 | T_EDGE (x0 - cr, dx + dr, dy, miny, maxy); |
2475 | T_EDGE (x1 + cr, dx - dr, dy, miny, maxy); |
2476 | T_EDGE (y0 - cr, dy + dr, dx, minx, maxx); |
2477 | T_EDGE (y1 + cr, dy - dr, dx, minx, maxx); |
2478 | |
2479 | #undef T_EDGE |
2480 | |
2481 | /* |
2482 | * Circles passing through a corner. |
2483 | * |
2484 | * A circle passing through the point (x,y) satisfies: |
2485 | * |
2486 | * (x-t*dx)^2 + (y-t*dy)^2 == (cr + t*dr)^2 |
2487 | * |
2488 | * If we set: |
2489 | * a = dx^2 + dy^2 - dr^2 |
2490 | * b = x*dx + y*dy + cr*dr |
2491 | * c = x^2 + y^2 - cr^2 |
2492 | * we have: |
2493 | * a*t^2 - 2*b*t + c == 0 |
2494 | */ |
2495 | a = dx * dx + dy * dy - dr * dr; |
2496 | if (fabs (a) < DBL_EPSILON2.2204460492503131e-16 * DBL_EPSILON2.2204460492503131e-16) { |
2497 | double b, maxd2; |
2498 | |
2499 | /* Ensure that gradients with both a and dr small are |
2500 | * considered degenerate. |
2501 | * The floating point version of the degeneracy test implemented |
2502 | * in _radial_pattern_is_degenerate() is: |
2503 | * |
2504 | * 1) The circles are practically the same size: |
2505 | * |dr| < DBL_EPSILON |
2506 | * AND |
2507 | * 2a) The circles are both very small: |
2508 | * min (r0, r1) < DBL_EPSILON |
2509 | * OR |
2510 | * 2b) The circles are very close to each other: |
2511 | * max (|dx|, |dy|) < 2 * DBL_EPSILON |
2512 | * |
2513 | * Assuming that the gradient is not degenerate, we want to |
2514 | * show that |a| < DBL_EPSILON^2 implies |dr| >= DBL_EPSILON. |
2515 | * |
2516 | * If the gradient is not degenerate yet it has |dr| < |
2517 | * DBL_EPSILON, (2b) is false, thus: |
2518 | * |
2519 | * max (|dx|, |dy|) >= 2*DBL_EPSILON |
2520 | * which implies: |
2521 | * 4*DBL_EPSILON^2 <= max (|dx|, |dy|)^2 <= dx^2 + dy^2 |
2522 | * |
2523 | * From the definition of a, we get: |
2524 | * a = dx^2 + dy^2 - dr^2 < DBL_EPSILON^2 |
2525 | * dx^2 + dy^2 - DBL_EPSILON^2 < dr^2 |
2526 | * 3*DBL_EPSILON^2 < dr^2 |
2527 | * |
2528 | * which is inconsistent with the hypotheses, thus |dr| < |
2529 | * DBL_EPSILON is false or the gradient is degenerate. |
2530 | */ |
2531 | assert (fabs (dr) >= DBL_EPSILON)((void) sizeof ((fabs (dr) >= 2.2204460492503131e-16) ? 1 : 0), __extension__ ({ if (fabs (dr) >= 2.2204460492503131e-16 ) ; else __assert_fail ("fabs (dr) >= DBL_EPSILON", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 2531, __extension__ __PRETTY_FUNCTION__); })); |
2532 | |
2533 | /* |
2534 | * If a == 0, all the circles are tangent to a line in the |
2535 | * focus point. If this line is within the box extents, we |
2536 | * should add the circle with infinite radius, but this would |
2537 | * make the range unbounded, so we add the smallest circle whose |
2538 | * distance to the desired (degenerate) circle within the |
2539 | * bounding box does not exceed tolerance. |
2540 | * |
2541 | * The equation of the line is b==0, i.e.: |
2542 | * x*dx + y*dy + cr*dr == 0 |
2543 | * |
2544 | * We compute the intersection of the line with the box and |
2545 | * keep the intersection with maximum square distance (maxd2) |
2546 | * from the focus point. |
2547 | * |
2548 | * In the code the intersection is represented in another |
2549 | * coordinate system, whose origin is the focus point and |
2550 | * which has a u,v axes, which are respectively orthogonal and |
2551 | * parallel to the edge being intersected. |
2552 | * |
2553 | * The intersection is valid only if it belongs to the box, |
2554 | * otherwise it is ignored. |
2555 | * |
2556 | * For example: |
2557 | * |
2558 | * y = y0 |
2559 | * x*dx + y0*dy + cr*dr == 0 |
2560 | * x = -(y0*dy + cr*dr) / dx |
2561 | * |
2562 | * which in (u,v) is: |
2563 | * u = y0 - y_focus |
2564 | * v = -(y0*dy + cr*dr) / dx - x_focus |
2565 | * |
2566 | * In the code: |
2567 | * u = (edge) - (u_origin) |
2568 | * v = -((edge) * (delta) + cr*dr) / (den) - v_focus |
2569 | */ |
2570 | #define T_EDGE(edge,delta,den,lower,upper,u_origin,v_origin) \ |
2571 | if (fabs (den) >= DBL_EPSILON2.2204460492503131e-16) { \ |
2572 | double v; \ |
2573 | \ |
2574 | v = -((edge) * (delta) + cr * dr) / (den); \ |
2575 | if ((lower) <= v && v <= (upper)) { \ |
2576 | double u, d2; \ |
2577 | \ |
2578 | u = (edge) - (u_origin); \ |
2579 | v -= (v_origin); \ |
2580 | d2 = u*u + v*v; \ |
2581 | if (maxd2 < d2) \ |
2582 | maxd2 = d2; \ |
2583 | } \ |
2584 | } |
2585 | |
2586 | maxd2 = 0; |
2587 | |
2588 | /* degenerate circles (lines) passing through each edge */ |
2589 | T_EDGE (y0, dy, dx, minx, maxx, y_focus, x_focus); |
2590 | T_EDGE (y1, dy, dx, minx, maxx, y_focus, x_focus); |
2591 | T_EDGE (x0, dx, dy, miny, maxy, x_focus, y_focus); |
2592 | T_EDGE (x1, dx, dy, miny, maxy, x_focus, y_focus); |
2593 | |
2594 | #undef T_EDGE |
2595 | |
2596 | /* |
2597 | * The limit circle can be transformed rigidly to the y=0 line |
2598 | * and the circles tangent to it in (0,0) are: |
2599 | * |
2600 | * x^2 + (y-r)^2 = r^2 <=> x^2 + y^2 - 2*y*r = 0 |
2601 | * |
2602 | * y is the distance from the line, in our case tolerance; |
2603 | * x is the distance along the line, i.e. sqrt(maxd2), |
2604 | * so: |
2605 | * |
2606 | * r = cr + dr * t = (maxd2 + tolerance^2) / (2*tolerance) |
2607 | * t = (r - cr) / dr = |
2608 | * (maxd2 + tolerance^2 - 2*tolerance*cr) / (2*tolerance*dr) |
2609 | */ |
2610 | if (maxd2 > 0) { |
2611 | double t_limit = maxd2 + tolerance*tolerance - 2*tolerance*cr; |
2612 | t_limit /= 2 * tolerance * dr; |
2613 | valid = _extend_range (range, t_limit, valid); |
2614 | } |
2615 | |
2616 | /* |
2617 | * Nondegenerate, nonlimit circles passing through the corners. |
2618 | * |
2619 | * a == 0 && a*t^2 - 2*b*t + c == 0 |
2620 | * |
2621 | * t = c / (2*b) |
2622 | * |
2623 | * The b == 0 case has just been handled, so we only have to |
2624 | * compute this if b != 0. |
2625 | */ |
2626 | #define T_CORNER(x,y) \ |
2627 | b = (x) * dx + (y) * dy + cr * dr; \ |
2628 | if (fabs (b) >= DBL_EPSILON2.2204460492503131e-16) { \ |
2629 | double t_corner; \ |
2630 | double x2 = (x) * (x); \ |
2631 | double y2 = (y) * (y); \ |
2632 | double cr2 = (cr) * (cr); \ |
2633 | double c = x2 + y2 - cr2; \ |
2634 | \ |
2635 | t_corner = 0.5 * c / b; \ |
2636 | if (t_corner * dr >= mindr) \ |
2637 | valid = _extend_range (range, t_corner, valid); \ |
2638 | } |
2639 | |
2640 | /* circles touching each corner */ |
2641 | T_CORNER (x0, y0); |
2642 | T_CORNER (x0, y1); |
2643 | T_CORNER (x1, y0); |
2644 | T_CORNER (x1, y1); |
2645 | |
2646 | #undef T_CORNER |
2647 | } else { |
2648 | double inva, b, c, d; |
2649 | |
2650 | inva = 1 / a; |
2651 | |
2652 | /* |
2653 | * Nondegenerate, nonlimit circles passing through the corners. |
2654 | * |
2655 | * a != 0 && a*t^2 - 2*b*t + c == 0 |
2656 | * |
2657 | * t = (b +- sqrt (b*b - a*c)) / a |
2658 | * |
2659 | * If the argument of sqrt() is negative, then no circle |
2660 | * passes through the corner. |
2661 | */ |
2662 | #define T_CORNER(x,y) \ |
2663 | b = (x) * dx + (y) * dy + cr * dr; \ |
2664 | c = (x) * (x) + (y) * (y) - cr * cr; \ |
2665 | d = b * b - a * c; \ |
2666 | if (d >= 0) { \ |
2667 | double t_corner; \ |
2668 | \ |
2669 | d = sqrt (d); \ |
2670 | t_corner = (b + d) * inva; \ |
2671 | if (t_corner * dr >= mindr) \ |
2672 | valid = _extend_range (range, t_corner, valid); \ |
2673 | t_corner = (b - d) * inva; \ |
2674 | if (t_corner * dr >= mindr) \ |
2675 | valid = _extend_range (range, t_corner, valid); \ |
2676 | } |
2677 | |
2678 | /* circles touching each corner */ |
2679 | T_CORNER (x0, y0); |
2680 | T_CORNER (x0, y1); |
2681 | T_CORNER (x1, y0); |
2682 | T_CORNER (x1, y1); |
2683 | |
2684 | #undef T_CORNER |
2685 | } |
2686 | } |
2687 | |
2688 | /** |
2689 | * _cairo_gradient_pattern_box_to_parameter: |
2690 | * |
2691 | * Compute a interpolation range sufficient to draw (within the given |
2692 | * tolerance) the gradient in the given box getting the same result as |
2693 | * using the (-inf, +inf) range. |
2694 | * |
2695 | * Assumes that the pattern is not degenerate. This can be guaranteed |
2696 | * by simplifying it to a solid clear if _cairo_pattern_is_clear or to |
2697 | * a solid color if _cairo_gradient_pattern_is_solid. |
2698 | * |
2699 | * The range isn't guaranteed to be minimal, but it tries to. |
2700 | **/ |
2701 | void |
2702 | _cairo_gradient_pattern_box_to_parameter (const cairo_gradient_pattern_t *gradient, |
2703 | double x0, double y0, |
2704 | double x1, double y1, |
2705 | double tolerance, |
2706 | double out_range[2]) |
2707 | { |
2708 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2709 , __extension__ __PRETTY_FUNCTION__); })) |
2709 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2709 , __extension__ __PRETTY_FUNCTION__); })); |
2710 | |
2711 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2712 | _cairo_linear_pattern_box_to_parameter ((cairo_linear_pattern_t *) gradient, |
2713 | x0, y0, x1, y1, out_range); |
2714 | } else { |
2715 | _cairo_radial_pattern_box_to_parameter ((cairo_radial_pattern_t *) gradient, |
2716 | x0, y0, x1, y1, tolerance, out_range); |
2717 | } |
2718 | } |
2719 | |
2720 | /** |
2721 | * _cairo_gradient_pattern_interpolate: |
2722 | * |
2723 | * Interpolate between the start and end objects of linear or radial |
2724 | * gradients. The interpolated object is stored in out_circle, with |
2725 | * the radius being zero in the linear gradient case. |
2726 | **/ |
2727 | void |
2728 | _cairo_gradient_pattern_interpolate (const cairo_gradient_pattern_t *gradient, |
2729 | double t, |
2730 | cairo_circle_double_t *out_circle) |
2731 | { |
2732 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2733 , __extension__ __PRETTY_FUNCTION__); })) |
2733 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2733 , __extension__ __PRETTY_FUNCTION__); })); |
2734 | |
2735 | #define lerp(a,b) (a)*(1-t) + (b)*t |
2736 | |
2737 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2738 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
2739 | out_circle->center.x = lerp (linear->pd1.x, linear->pd2.x); |
2740 | out_circle->center.y = lerp (linear->pd1.y, linear->pd2.y); |
2741 | out_circle->radius = 0; |
2742 | } else { |
2743 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient; |
2744 | out_circle->center.x = lerp (radial->cd1.center.x, radial->cd2.center.x); |
2745 | out_circle->center.y = lerp (radial->cd1.center.y, radial->cd2.center.y); |
2746 | out_circle->radius = lerp (radial->cd1.radius , radial->cd2.radius); |
2747 | } |
2748 | |
2749 | #undef lerp |
2750 | } |
2751 | |
2752 | /** |
2753 | * _cairo_gradient_pattern_fit_to_range: |
2754 | * |
2755 | * Scale the extremes of a gradient to guarantee that the coordinates |
2756 | * and their deltas are within the range (-max_value, max_value). The |
2757 | * new extremes are stored in out_circle. |
2758 | * |
2759 | * The pattern matrix is scaled to guarantee that the aspect of the |
2760 | * gradient is the same and the result is stored in out_matrix. |
2761 | * |
2762 | **/ |
2763 | void |
2764 | _cairo_gradient_pattern_fit_to_range (const cairo_gradient_pattern_t *gradient, |
2765 | double max_value, |
2766 | cairo_matrix_t *out_matrix, |
2767 | cairo_circle_double_t out_circle[2]) |
2768 | { |
2769 | double dim; |
2770 | |
2771 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2772 , __extension__ __PRETTY_FUNCTION__); })) |
2772 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2772 , __extension__ __PRETTY_FUNCTION__); })); |
2773 | |
2774 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
2775 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
2776 | |
2777 | out_circle[0].center = linear->pd1; |
2778 | out_circle[0].radius = 0; |
2779 | out_circle[1].center = linear->pd2; |
2780 | out_circle[1].radius = 0; |
2781 | |
2782 | dim = fabs (linear->pd1.x); |
2783 | dim = MAX (dim, fabs (linear->pd1.y))((dim) > (fabs (linear->pd1.y)) ? (dim) : (fabs (linear ->pd1.y))); |
2784 | dim = MAX (dim, fabs (linear->pd2.x))((dim) > (fabs (linear->pd2.x)) ? (dim) : (fabs (linear ->pd2.x))); |
2785 | dim = MAX (dim, fabs (linear->pd2.y))((dim) > (fabs (linear->pd2.y)) ? (dim) : (fabs (linear ->pd2.y))); |
2786 | dim = MAX (dim, fabs (linear->pd1.x - linear->pd2.x))((dim) > (fabs (linear->pd1.x - linear->pd2.x)) ? (dim ) : (fabs (linear->pd1.x - linear->pd2.x))); |
2787 | dim = MAX (dim, fabs (linear->pd1.y - linear->pd2.y))((dim) > (fabs (linear->pd1.y - linear->pd2.y)) ? (dim ) : (fabs (linear->pd1.y - linear->pd2.y))); |
2788 | } else { |
2789 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient; |
2790 | |
2791 | out_circle[0] = radial->cd1; |
2792 | out_circle[1] = radial->cd2; |
2793 | |
2794 | dim = fabs (radial->cd1.center.x); |
2795 | dim = MAX (dim, fabs (radial->cd1.center.y))((dim) > (fabs (radial->cd1.center.y)) ? (dim) : (fabs ( radial->cd1.center.y))); |
2796 | dim = MAX (dim, fabs (radial->cd1.radius))((dim) > (fabs (radial->cd1.radius)) ? (dim) : (fabs (radial ->cd1.radius))); |
2797 | dim = MAX (dim, fabs (radial->cd2.center.x))((dim) > (fabs (radial->cd2.center.x)) ? (dim) : (fabs ( radial->cd2.center.x))); |
2798 | dim = MAX (dim, fabs (radial->cd2.center.y))((dim) > (fabs (radial->cd2.center.y)) ? (dim) : (fabs ( radial->cd2.center.y))); |
2799 | dim = MAX (dim, fabs (radial->cd2.radius))((dim) > (fabs (radial->cd2.radius)) ? (dim) : (fabs (radial ->cd2.radius))); |
2800 | dim = MAX (dim, fabs (radial->cd1.center.x - radial->cd2.center.x))((dim) > (fabs (radial->cd1.center.x - radial->cd2.center .x)) ? (dim) : (fabs (radial->cd1.center.x - radial->cd2 .center.x))); |
2801 | dim = MAX (dim, fabs (radial->cd1.center.y - radial->cd2.center.y))((dim) > (fabs (radial->cd1.center.y - radial->cd2.center .y)) ? (dim) : (fabs (radial->cd1.center.y - radial->cd2 .center.y))); |
2802 | dim = MAX (dim, fabs (radial->cd1.radius - radial->cd2.radius))((dim) > (fabs (radial->cd1.radius - radial->cd2.radius )) ? (dim) : (fabs (radial->cd1.radius - radial->cd2.radius ))); |
2803 | } |
2804 | |
2805 | if (unlikely (dim > max_value)(__builtin_expect (!!(dim > max_value), 0))) { |
2806 | cairo_matrix_t scale; |
2807 | |
2808 | dim = max_value / dim; |
2809 | |
2810 | out_circle[0].center.x *= dim; |
2811 | out_circle[0].center.y *= dim; |
2812 | out_circle[0].radius *= dim; |
2813 | out_circle[1].center.x *= dim; |
2814 | out_circle[1].center.y *= dim; |
2815 | out_circle[1].radius *= dim; |
2816 | |
2817 | cairo_matrix_init_scale_moz_cairo_matrix_init_scale (&scale, dim, dim); |
2818 | cairo_matrix_multiply_moz_cairo_matrix_multiply (out_matrix, &gradient->base.matrix, &scale); |
2819 | } else { |
2820 | *out_matrix = gradient->base.matrix; |
2821 | } |
2822 | } |
2823 | |
2824 | static cairo_bool_t |
2825 | _gradient_is_clear (const cairo_gradient_pattern_t *gradient, |
2826 | const cairo_rectangle_int_t *extents) |
2827 | { |
2828 | unsigned int i; |
2829 | |
2830 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2831 , __extension__ __PRETTY_FUNCTION__); })) |
2831 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2831 , __extension__ __PRETTY_FUNCTION__); })); |
2832 | |
2833 | if (gradient->n_stops == 0 || |
2834 | (gradient->base.extend == CAIRO_EXTEND_NONE && |
2835 | gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset)) |
2836 | return TRUE1; |
2837 | |
2838 | if (gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) { |
2839 | /* degenerate radial gradients are clear */ |
2840 | if (_radial_pattern_is_degenerate ((cairo_radial_pattern_t *) gradient)) |
2841 | return TRUE1; |
2842 | } else if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
2843 | /* EXTEND_NONE degenerate linear gradients are clear */ |
2844 | if (_linear_pattern_is_degenerate ((cairo_linear_pattern_t *) gradient)) |
2845 | return TRUE1; |
2846 | } |
2847 | |
2848 | /* Check if the extents intersect the drawn part of the pattern. */ |
2849 | if (extents != NULL((void*)0) && |
2850 | (gradient->base.extend == CAIRO_EXTEND_NONE || |
2851 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)) |
2852 | { |
2853 | double t[2]; |
2854 | |
2855 | _cairo_gradient_pattern_box_to_parameter (gradient, |
2856 | extents->x, |
2857 | extents->y, |
2858 | extents->x + extents->width, |
2859 | extents->y + extents->height, |
2860 | DBL_EPSILON2.2204460492503131e-16, |
2861 | t); |
2862 | |
2863 | if (gradient->base.extend == CAIRO_EXTEND_NONE && |
2864 | (t[0] >= gradient->stops[gradient->n_stops - 1].offset || |
2865 | t[1] <= gradient->stops[0].offset)) |
2866 | { |
2867 | return TRUE1; |
2868 | } |
2869 | |
2870 | if (t[0] == t[1]) |
2871 | return TRUE1; |
2872 | } |
2873 | |
2874 | for (i = 0; i < gradient->n_stops; i++) |
2875 | if (! CAIRO_COLOR_IS_CLEAR (&gradient->stops[i].color)(((&gradient->stops[i].color)->alpha_short) <= 0x00ff )) |
2876 | return FALSE0; |
2877 | |
2878 | return TRUE1; |
2879 | } |
2880 | |
2881 | static void |
2882 | _gradient_color_average (const cairo_gradient_pattern_t *gradient, |
2883 | cairo_color_t *color) |
2884 | { |
2885 | double delta0, delta1; |
2886 | double r, g, b, a; |
2887 | unsigned int i, start = 1, end; |
2888 | |
2889 | assert (gradient->n_stops > 0)((void) sizeof ((gradient->n_stops > 0) ? 1 : 0), __extension__ ({ if (gradient->n_stops > 0) ; else __assert_fail ("gradient->n_stops > 0" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2889 , __extension__ __PRETTY_FUNCTION__); })); |
2890 | assert (gradient->base.extend != CAIRO_EXTEND_NONE)((void) sizeof ((gradient->base.extend != CAIRO_EXTEND_NONE ) ? 1 : 0), __extension__ ({ if (gradient->base.extend != CAIRO_EXTEND_NONE ) ; else __assert_fail ("gradient->base.extend != CAIRO_EXTEND_NONE" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 2890 , __extension__ __PRETTY_FUNCTION__); })); |
2891 | |
2892 | if (gradient->n_stops == 1) { |
2893 | _cairo_color_init_rgba (color, |
2894 | gradient->stops[0].color.red, |
2895 | gradient->stops[0].color.green, |
2896 | gradient->stops[0].color.blue, |
2897 | gradient->stops[0].color.alpha); |
2898 | return; |
2899 | } |
2900 | |
2901 | end = gradient->n_stops - 1; |
2902 | |
2903 | switch (gradient->base.extend) { |
2904 | case CAIRO_EXTEND_REPEAT: |
2905 | /* |
2906 | * Sa, Sb and Sy, Sz are the first two and last two stops respectively. |
2907 | * The weight of the first and last stop can be computed as the area of |
2908 | * the following triangles (taken with height 1, since the whole [0-1] |
2909 | * will have total weight 1 this way): b*h/2 |
2910 | * |
2911 | * + + |
2912 | * / |\ / | \ |
2913 | * / | \ / | \ |
2914 | * / | \ / | \ |
2915 | * ~~~~~+---+---+---+~~~~~~~+-------+---+---+~~~~~ |
2916 | * -1+Sz 0 Sa Sb Sy Sz 1 1+Sa |
2917 | * |
2918 | * For the first stop: (Sb-(-1+Sz)/2 = (1+Sb-Sz)/2 |
2919 | * For the last stop: ((1+Sa)-Sy)/2 = (1+Sa-Sy)/2 |
2920 | * Halving the result is done after summing up all the areas. |
2921 | */ |
2922 | delta0 = 1.0 + gradient->stops[1].offset - gradient->stops[end].offset; |
2923 | delta1 = 1.0 + gradient->stops[0].offset - gradient->stops[end-1].offset; |
2924 | break; |
2925 | |
2926 | case CAIRO_EXTEND_REFLECT: |
2927 | /* |
2928 | * Sa, Sb and Sy, Sz are the first two and last two stops respectively. |
2929 | * The weight of the first and last stop can be computed as the area of |
2930 | * the following trapezoids (taken with height 1, since the whole [0-1] |
2931 | * will have total weight 1 this way): (b+B)*h/2 |
2932 | * |
2933 | * +-------+ +---+ |
2934 | * | |\ / | | |
2935 | * | | \ / | | |
2936 | * | | \ / | | |
2937 | * +-------+---+~~~~~~~+-------+---+ |
2938 | * 0 Sa Sb Sy Sz 1 |
2939 | * |
2940 | * For the first stop: (Sa+Sb)/2 |
2941 | * For the last stop: ((1-Sz) + (1-Sy))/2 = (2-Sy-Sz)/2 |
2942 | * Halving the result is done after summing up all the areas. |
2943 | */ |
2944 | delta0 = gradient->stops[0].offset + gradient->stops[1].offset; |
2945 | delta1 = 2.0 - gradient->stops[end-1].offset - gradient->stops[end].offset; |
2946 | break; |
2947 | |
2948 | case CAIRO_EXTEND_PAD: |
2949 | /* PAD is computed as the average of the first and last stop: |
2950 | * - take both of them with weight 1 (they will be halved |
2951 | * after the whole sum has been computed). |
2952 | * - avoid summing any of the inner stops. |
2953 | */ |
2954 | delta0 = delta1 = 1.0; |
2955 | start = end; |
2956 | break; |
2957 | |
2958 | case CAIRO_EXTEND_NONE: |
2959 | default: |
2960 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 2960, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
2961 | _cairo_color_init_rgba (color, 0, 0, 0, 0); |
2962 | return; |
2963 | } |
2964 | |
2965 | r = delta0 * gradient->stops[0].color.red; |
2966 | g = delta0 * gradient->stops[0].color.green; |
2967 | b = delta0 * gradient->stops[0].color.blue; |
2968 | a = delta0 * gradient->stops[0].color.alpha; |
2969 | |
2970 | for (i = start; i < end; ++i) { |
2971 | /* Inner stops weight is the same as the area of the triangle they influence |
2972 | * (which goes from the stop before to the stop after), again with height 1 |
2973 | * since the whole must sum up to 1: b*h/2 |
2974 | * Halving is done after the whole sum has been computed. |
2975 | */ |
2976 | double delta = gradient->stops[i+1].offset - gradient->stops[i-1].offset; |
2977 | r += delta * gradient->stops[i].color.red; |
2978 | g += delta * gradient->stops[i].color.green; |
2979 | b += delta * gradient->stops[i].color.blue; |
2980 | a += delta * gradient->stops[i].color.alpha; |
2981 | } |
2982 | |
2983 | r += delta1 * gradient->stops[end].color.red; |
2984 | g += delta1 * gradient->stops[end].color.green; |
2985 | b += delta1 * gradient->stops[end].color.blue; |
2986 | a += delta1 * gradient->stops[end].color.alpha; |
2987 | |
2988 | _cairo_color_init_rgba (color, r * .5, g * .5, b * .5, a * .5); |
2989 | } |
2990 | |
2991 | /** |
2992 | * _cairo_pattern_alpha_range: |
2993 | * |
2994 | * Convenience function to determine the minimum and maximum alpha in |
2995 | * the drawn part of a pattern (i.e. ignoring clear parts caused by |
2996 | * extend modes and/or pattern shape). |
2997 | * |
2998 | * If not NULL, out_min and out_max will be set respectively to the |
2999 | * minimum and maximum alpha value of the pattern. |
3000 | **/ |
3001 | void |
3002 | _cairo_pattern_alpha_range (const cairo_pattern_t *pattern, |
3003 | double *out_min, |
3004 | double *out_max) |
3005 | { |
3006 | double alpha_min, alpha_max; |
3007 | |
3008 | switch (pattern->type) { |
3009 | case CAIRO_PATTERN_TYPE_SOLID: { |
3010 | const cairo_solid_pattern_t *solid = (cairo_solid_pattern_t *) pattern; |
3011 | alpha_min = alpha_max = solid->color.alpha; |
3012 | break; |
3013 | } |
3014 | |
3015 | case CAIRO_PATTERN_TYPE_LINEAR: |
3016 | case CAIRO_PATTERN_TYPE_RADIAL: { |
3017 | const cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t *) pattern; |
3018 | unsigned int i; |
3019 | |
3020 | assert (gradient->n_stops >= 1)((void) sizeof ((gradient->n_stops >= 1) ? 1 : 0), __extension__ ({ if (gradient->n_stops >= 1) ; else __assert_fail ("gradient->n_stops >= 1" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 3020 , __extension__ __PRETTY_FUNCTION__); })); |
3021 | |
3022 | alpha_min = alpha_max = gradient->stops[0].color.alpha; |
3023 | for (i = 1; i < gradient->n_stops; i++) { |
3024 | if (alpha_min > gradient->stops[i].color.alpha) |
3025 | alpha_min = gradient->stops[i].color.alpha; |
3026 | else if (alpha_max < gradient->stops[i].color.alpha) |
3027 | alpha_max = gradient->stops[i].color.alpha; |
3028 | } |
3029 | |
3030 | break; |
3031 | } |
3032 | |
3033 | case CAIRO_PATTERN_TYPE_MESH: { |
3034 | const cairo_mesh_pattern_t *mesh = (const cairo_mesh_pattern_t *) pattern; |
3035 | const cairo_mesh_patch_t *patch = _cairo_array_index_const (&mesh->patches, 0); |
3036 | unsigned int i, j, n = _cairo_array_num_elements (&mesh->patches); |
3037 | |
3038 | assert (n >= 1)((void) sizeof ((n >= 1) ? 1 : 0), __extension__ ({ if (n >= 1) ; else __assert_fail ("n >= 1", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3038, __extension__ __PRETTY_FUNCTION__); })); |
3039 | |
3040 | alpha_min = alpha_max = patch[0].colors[0].alpha; |
3041 | for (i = 0; i < n; i++) { |
3042 | for (j = 0; j < 4; j++) { |
3043 | if (patch[i].colors[j].alpha < alpha_min) |
3044 | alpha_min = patch[i].colors[j].alpha; |
3045 | else if (patch[i].colors[j].alpha > alpha_max) |
3046 | alpha_max = patch[i].colors[j].alpha; |
3047 | } |
3048 | } |
3049 | |
3050 | break; |
3051 | } |
3052 | |
3053 | default: |
3054 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3054, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
3055 | /* fall through */ |
3056 | |
3057 | case CAIRO_PATTERN_TYPE_SURFACE: |
3058 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3059 | alpha_min = 0; |
3060 | alpha_max = 1; |
3061 | break; |
3062 | } |
3063 | |
3064 | if (out_min) |
3065 | *out_min = alpha_min; |
3066 | if (out_max) |
3067 | *out_max = alpha_max; |
3068 | } |
3069 | |
3070 | /** |
3071 | * _cairo_mesh_pattern_coord_box: |
3072 | * |
3073 | * Convenience function to determine the range of the coordinates of |
3074 | * the points used to define the patches of the mesh. |
3075 | * |
3076 | * This is guaranteed to contain the pattern extents, but might not be |
3077 | * tight, just like a Bezier curve is always inside the convex hull of |
3078 | * the control points. |
3079 | * |
3080 | * This function cannot be used while the mesh is being constructed. |
3081 | * |
3082 | * The function returns TRUE and sets the output parameters to define |
3083 | * the coordinate range if the mesh pattern contains at least one |
3084 | * patch, otherwise it returns FALSE. |
3085 | **/ |
3086 | cairo_bool_t |
3087 | _cairo_mesh_pattern_coord_box (const cairo_mesh_pattern_t *mesh, |
3088 | double *out_xmin, |
3089 | double *out_ymin, |
3090 | double *out_xmax, |
3091 | double *out_ymax) |
3092 | { |
3093 | const cairo_mesh_patch_t *patch; |
3094 | unsigned int num_patches, i, j, k; |
3095 | double x0, y0, x1, y1; |
3096 | |
3097 | assert (mesh->current_patch == NULL)((void) sizeof ((mesh->current_patch == ((void*)0)) ? 1 : 0 ), __extension__ ({ if (mesh->current_patch == ((void*)0)) ; else __assert_fail ("mesh->current_patch == NULL", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3097, __extension__ __PRETTY_FUNCTION__); })); |
3098 | |
3099 | num_patches = _cairo_array_num_elements (&mesh->patches); |
3100 | |
3101 | if (num_patches == 0) |
3102 | return FALSE0; |
3103 | |
3104 | patch = _cairo_array_index_const (&mesh->patches, 0); |
3105 | x0 = x1 = patch->points[0][0].x; |
3106 | y0 = y1 = patch->points[0][0].y; |
3107 | |
3108 | for (i = 0; i < num_patches; i++) { |
3109 | for (j = 0; j < 4; j++) { |
3110 | for (k = 0; k < 4; k++) { |
3111 | x0 = MIN (x0, patch[i].points[j][k].x)((x0) < (patch[i].points[j][k].x) ? (x0) : (patch[i].points [j][k].x)); |
3112 | y0 = MIN (y0, patch[i].points[j][k].y)((y0) < (patch[i].points[j][k].y) ? (y0) : (patch[i].points [j][k].y)); |
3113 | x1 = MAX (x1, patch[i].points[j][k].x)((x1) > (patch[i].points[j][k].x) ? (x1) : (patch[i].points [j][k].x)); |
3114 | y1 = MAX (y1, patch[i].points[j][k].y)((y1) > (patch[i].points[j][k].y) ? (y1) : (patch[i].points [j][k].y)); |
3115 | } |
3116 | } |
3117 | } |
3118 | |
3119 | *out_xmin = x0; |
3120 | *out_ymin = y0; |
3121 | *out_xmax = x1; |
3122 | *out_ymax = y1; |
3123 | |
3124 | return TRUE1; |
3125 | } |
3126 | |
3127 | /** |
3128 | * _cairo_gradient_pattern_is_solid: |
3129 | * |
3130 | * Convenience function to determine whether a gradient pattern is |
3131 | * a solid color within the given extents. In this case the color |
3132 | * argument is initialized to the color the pattern represents. |
3133 | * This functions doesn't handle completely transparent gradients, |
3134 | * thus it should be called only after _cairo_pattern_is_clear has |
3135 | * returned FALSE. |
3136 | * |
3137 | * Return value: %TRUE if the pattern is a solid color. |
3138 | **/ |
3139 | cairo_bool_t |
3140 | _cairo_gradient_pattern_is_solid (const cairo_gradient_pattern_t *gradient, |
3141 | const cairo_rectangle_int_t *extents, |
3142 | cairo_color_t *color) |
3143 | { |
3144 | unsigned int i; |
3145 | |
3146 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 3147 , __extension__ __PRETTY_FUNCTION__); })) |
3147 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 3147 , __extension__ __PRETTY_FUNCTION__); })); |
3148 | |
3149 | /* TODO: radial */ |
3150 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
3151 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
3152 | if (_linear_pattern_is_degenerate (linear)) { |
3153 | _gradient_color_average (gradient, color); |
3154 | return TRUE1; |
3155 | } |
3156 | |
3157 | if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
3158 | double t[2]; |
3159 | |
3160 | /* We already know that the pattern is not clear, thus if some |
3161 | * part of it is clear, the whole is not solid. |
3162 | */ |
3163 | |
3164 | if (extents == NULL((void*)0)) |
3165 | return FALSE0; |
3166 | |
3167 | _cairo_linear_pattern_box_to_parameter (linear, |
3168 | extents->x, |
3169 | extents->y, |
3170 | extents->x + extents->width, |
3171 | extents->y + extents->height, |
3172 | t); |
3173 | |
3174 | if (t[0] < 0.0 || t[1] > 1.0) |
3175 | return FALSE0; |
3176 | } |
3177 | } else |
3178 | return FALSE0; |
3179 | |
3180 | for (i = 1; i < gradient->n_stops; i++) |
3181 | if (! _cairo_color_stop_equal (&gradient->stops[0].color, |
3182 | &gradient->stops[i].color)) |
3183 | return FALSE0; |
3184 | |
3185 | _cairo_color_init_rgba (color, |
3186 | gradient->stops[0].color.red, |
3187 | gradient->stops[0].color.green, |
3188 | gradient->stops[0].color.blue, |
3189 | gradient->stops[0].color.alpha); |
3190 | |
3191 | return TRUE1; |
3192 | } |
3193 | |
3194 | /** |
3195 | * _cairo_pattern_is_constant_alpha: |
3196 | * |
3197 | * Convenience function to determine whether a pattern has constant |
3198 | * alpha within the given extents. In this case the alpha argument is |
3199 | * initialized to the alpha within the extents. |
3200 | * |
3201 | * Return value: %TRUE if the pattern has constant alpha. |
3202 | **/ |
3203 | cairo_bool_t |
3204 | _cairo_pattern_is_constant_alpha (const cairo_pattern_t *abstract_pattern, |
3205 | const cairo_rectangle_int_t *extents, |
3206 | double *alpha) |
3207 | { |
3208 | const cairo_pattern_union_t *pattern; |
3209 | cairo_color_t color; |
3210 | |
3211 | if (_cairo_pattern_is_clear (abstract_pattern)) { |
3212 | *alpha = 0.0; |
3213 | return TRUE1; |
3214 | } |
3215 | |
3216 | if (_cairo_pattern_is_opaque (abstract_pattern, extents)) { |
3217 | *alpha = 1.0; |
3218 | return TRUE1; |
3219 | } |
3220 | |
3221 | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3222 | switch (pattern->base.type) { |
3223 | case CAIRO_PATTERN_TYPE_SOLID: |
3224 | *alpha = pattern->solid.color.alpha; |
3225 | return TRUE1; |
3226 | |
3227 | case CAIRO_PATTERN_TYPE_LINEAR: |
3228 | case CAIRO_PATTERN_TYPE_RADIAL: |
3229 | if (_cairo_gradient_pattern_is_solid (&pattern->gradient.base, extents, &color)) { |
3230 | *alpha = color.alpha; |
3231 | return TRUE1; |
3232 | } else { |
3233 | return FALSE0; |
3234 | } |
3235 | |
3236 | /* TODO: need to test these as well */ |
3237 | case CAIRO_PATTERN_TYPE_SURFACE: |
3238 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3239 | case CAIRO_PATTERN_TYPE_MESH: |
3240 | return FALSE0; |
3241 | } |
3242 | |
3243 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3243, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
3244 | return FALSE0; |
3245 | } |
3246 | |
3247 | static cairo_bool_t |
3248 | _mesh_is_clear (const cairo_mesh_pattern_t *mesh) |
3249 | { |
3250 | double x1, y1, x2, y2; |
3251 | cairo_bool_t is_valid; |
3252 | |
3253 | is_valid = _cairo_mesh_pattern_coord_box (mesh, &x1, &y1, &x2, &y2); |
3254 | if (!is_valid) |
3255 | return TRUE1; |
3256 | |
3257 | if (x2 - x1 < DBL_EPSILON2.2204460492503131e-16 || y2 - y1 < DBL_EPSILON2.2204460492503131e-16) |
3258 | return TRUE1; |
3259 | |
3260 | return FALSE0; |
3261 | } |
3262 | |
3263 | /** |
3264 | * _cairo_pattern_is_opaque_solid: |
3265 | * |
3266 | * Convenience function to determine whether a pattern is an opaque |
3267 | * (alpha==1.0) solid color pattern. This is done by testing whether |
3268 | * the pattern's alpha value when converted to a byte is 255, so if a |
3269 | * backend actually supported deep alpha channels this function might |
3270 | * not do the right thing. |
3271 | * |
3272 | * Return value: %TRUE if the pattern is an opaque, solid color. |
3273 | **/ |
3274 | cairo_bool_t |
3275 | _cairo_pattern_is_opaque_solid (const cairo_pattern_t *pattern) |
3276 | { |
3277 | cairo_solid_pattern_t *solid; |
3278 | |
3279 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) |
3280 | return FALSE0; |
3281 | |
3282 | solid = (cairo_solid_pattern_t *) pattern; |
3283 | |
3284 | return CAIRO_COLOR_IS_OPAQUE (&solid->color)(((&solid->color)->alpha_short) >= 0xff00); |
3285 | } |
3286 | |
3287 | static cairo_bool_t |
3288 | _surface_is_opaque (const cairo_surface_pattern_t *pattern, |
3289 | const cairo_rectangle_int_t *sample) |
3290 | { |
3291 | cairo_rectangle_int_t extents; |
3292 | |
3293 | if (pattern->surface->content & CAIRO_CONTENT_ALPHA) |
3294 | return FALSE0; |
3295 | |
3296 | if (pattern->base.extend != CAIRO_EXTEND_NONE) |
3297 | return TRUE1; |
3298 | |
3299 | if (! _cairo_surface_get_extents (pattern->surface, &extents)) |
3300 | return TRUE1; |
3301 | |
3302 | if (sample == NULL((void*)0)) |
3303 | return FALSE0; |
3304 | |
3305 | return _cairo_rectangle_contains_rectangle (&extents, sample); |
3306 | } |
3307 | |
3308 | static cairo_bool_t |
3309 | _raster_source_is_opaque (const cairo_raster_source_pattern_t *pattern, |
3310 | const cairo_rectangle_int_t *sample) |
3311 | { |
3312 | if (pattern->content & CAIRO_CONTENT_ALPHA) |
3313 | return FALSE0; |
3314 | |
3315 | if (pattern->base.extend != CAIRO_EXTEND_NONE) |
3316 | return TRUE1; |
3317 | |
3318 | if (sample == NULL((void*)0)) |
3319 | return FALSE0; |
3320 | |
3321 | return _cairo_rectangle_contains_rectangle (&pattern->extents, sample); |
3322 | } |
3323 | |
3324 | static cairo_bool_t |
3325 | _surface_is_clear (const cairo_surface_pattern_t *pattern) |
3326 | { |
3327 | cairo_rectangle_int_t extents; |
3328 | |
3329 | if (_cairo_surface_get_extents (pattern->surface, &extents) && |
3330 | (extents.width == 0 || extents.height == 0)) |
3331 | return TRUE1; |
3332 | |
3333 | return pattern->surface->is_clear && |
3334 | pattern->surface->content & CAIRO_CONTENT_ALPHA; |
3335 | } |
3336 | |
3337 | static cairo_bool_t |
3338 | _raster_source_is_clear (const cairo_raster_source_pattern_t *pattern) |
3339 | { |
3340 | return pattern->extents.width == 0 || pattern->extents.height == 0; |
3341 | } |
3342 | |
3343 | static cairo_bool_t |
3344 | _gradient_is_opaque (const cairo_gradient_pattern_t *gradient, |
3345 | const cairo_rectangle_int_t *sample) |
3346 | { |
3347 | unsigned int i; |
3348 | |
3349 | assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 3350 , __extension__ __PRETTY_FUNCTION__); })) |
3350 | gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL)((void) sizeof ((gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ? 1 : 0), __extension__ ({ if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL) ; else __assert_fail ("gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR || gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c", 3350 , __extension__ __PRETTY_FUNCTION__); })); |
3351 | |
3352 | if (gradient->n_stops == 0 || |
3353 | (gradient->base.extend == CAIRO_EXTEND_NONE && |
3354 | gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset)) |
3355 | return FALSE0; |
3356 | |
3357 | if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) { |
3358 | if (gradient->base.extend == CAIRO_EXTEND_NONE) { |
3359 | double t[2]; |
3360 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient; |
3361 | |
3362 | /* EXTEND_NONE degenerate radial gradients are clear */ |
3363 | if (_linear_pattern_is_degenerate (linear)) |
3364 | return FALSE0; |
3365 | |
3366 | if (sample == NULL((void*)0)) |
3367 | return FALSE0; |
3368 | |
3369 | _cairo_linear_pattern_box_to_parameter (linear, |
3370 | sample->x, |
3371 | sample->y, |
3372 | sample->x + sample->width, |
3373 | sample->y + sample->height, |
3374 | t); |
3375 | |
3376 | if (t[0] < 0.0 || t[1] > 1.0) |
3377 | return FALSE0; |
3378 | } |
3379 | } else |
3380 | return FALSE0; /* TODO: check actual intersection */ |
3381 | |
3382 | for (i = 0; i < gradient->n_stops; i++) |
3383 | if (! CAIRO_COLOR_IS_OPAQUE (&gradient->stops[i].color)(((&gradient->stops[i].color)->alpha_short) >= 0xff00 )) |
3384 | return FALSE0; |
3385 | |
3386 | return TRUE1; |
3387 | } |
3388 | |
3389 | /** |
3390 | * _cairo_pattern_is_opaque: |
3391 | * |
3392 | * Convenience function to determine whether a pattern is an opaque |
3393 | * pattern (of any type). The same caveats that apply to |
3394 | * _cairo_pattern_is_opaque_solid apply here as well. |
3395 | * |
3396 | * Return value: %TRUE if the pattern is a opaque. |
3397 | **/ |
3398 | cairo_bool_t |
3399 | _cairo_pattern_is_opaque (const cairo_pattern_t *abstract_pattern, |
3400 | const cairo_rectangle_int_t *sample) |
3401 | { |
3402 | const cairo_pattern_union_t *pattern; |
3403 | |
3404 | if (abstract_pattern->has_component_alpha) |
3405 | return FALSE0; |
3406 | |
3407 | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3408 | switch (pattern->base.type) { |
3409 | case CAIRO_PATTERN_TYPE_SOLID: |
3410 | return _cairo_pattern_is_opaque_solid (abstract_pattern); |
3411 | case CAIRO_PATTERN_TYPE_SURFACE: |
3412 | return _surface_is_opaque (&pattern->surface, sample); |
3413 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3414 | return _raster_source_is_opaque (&pattern->raster_source, sample); |
3415 | case CAIRO_PATTERN_TYPE_LINEAR: |
3416 | case CAIRO_PATTERN_TYPE_RADIAL: |
3417 | return _gradient_is_opaque (&pattern->gradient.base, sample); |
3418 | case CAIRO_PATTERN_TYPE_MESH: |
3419 | return FALSE0; |
3420 | } |
3421 | |
3422 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3422, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
3423 | return FALSE0; |
3424 | } |
3425 | |
3426 | cairo_bool_t |
3427 | _cairo_pattern_is_clear (const cairo_pattern_t *abstract_pattern) |
3428 | { |
3429 | const cairo_pattern_union_t *pattern; |
3430 | |
3431 | if (abstract_pattern->has_component_alpha) |
3432 | return FALSE0; |
3433 | |
3434 | pattern = (cairo_pattern_union_t *) abstract_pattern; |
3435 | switch (abstract_pattern->type) { |
3436 | case CAIRO_PATTERN_TYPE_SOLID: |
3437 | return CAIRO_COLOR_IS_CLEAR (&pattern->solid.color)(((&pattern->solid.color)->alpha_short) <= 0x00ff ); |
3438 | case CAIRO_PATTERN_TYPE_SURFACE: |
3439 | return _surface_is_clear (&pattern->surface); |
3440 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3441 | return _raster_source_is_clear (&pattern->raster_source); |
3442 | case CAIRO_PATTERN_TYPE_LINEAR: |
3443 | case CAIRO_PATTERN_TYPE_RADIAL: |
3444 | return _gradient_is_clear (&pattern->gradient.base, NULL((void*)0)); |
3445 | case CAIRO_PATTERN_TYPE_MESH: |
3446 | return _mesh_is_clear (&pattern->mesh); |
3447 | } |
3448 | |
3449 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3449, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
3450 | return FALSE0; |
3451 | } |
3452 | |
3453 | /* |
3454 | * Will given row of back-translation matrix work with bilinear scale? |
3455 | * This is true for scales larger than 1. Also it was judged acceptable |
3456 | * for scales larger than .75. And if there is integer translation |
3457 | * then a scale of exactly .5 works. |
3458 | */ |
3459 | static int |
3460 | use_bilinear(double x, double y, double t) |
3461 | { |
3462 | /* This is the inverse matrix! */ |
3463 | double h = x*x + y*y; |
3464 | if (h < 1.0 / (0.75 * 0.75)) |
3465 | return TRUE1; /* scale > .75 */ |
3466 | if ((h > 3.99 && h < 4.01) /* scale is 1/2 */ |
3467 | && !_cairo_fixed_from_double(x*y) /* parallel to an axis */ |
3468 | && _cairo_fixed_is_integer (_cairo_fixed_from_double (t))) |
3469 | return TRUE1; |
3470 | return FALSE0; |
3471 | } |
3472 | |
3473 | /** |
3474 | * _cairo_pattern_analyze_filter: |
3475 | * @pattern: surface pattern |
3476 | * |
3477 | * Possibly optimize the filter to a simpler value depending on transformation |
3478 | * |
3479 | * Returns: the optimized #cairo_filter_t to use with @pattern. |
3480 | **/ |
3481 | cairo_filter_t |
3482 | _cairo_pattern_analyze_filter (const cairo_pattern_t *pattern) |
3483 | { |
3484 | switch (pattern->filter) { |
3485 | case CAIRO_FILTER_GOOD: |
3486 | case CAIRO_FILTER_BEST: |
3487 | case CAIRO_FILTER_BILINEAR: |
3488 | case CAIRO_FILTER_FAST: |
3489 | /* If source pixels map 1:1 onto destination pixels, we do |
3490 | * not need to filter (and do not want to filter, since it |
3491 | * will cause blurriness) |
3492 | */ |
3493 | if (_cairo_matrix_is_pixel_exact (&pattern->matrix)) { |
3494 | return CAIRO_FILTER_NEAREST; |
3495 | } else { |
3496 | /* Use BILINEAR for any scale greater than .75 instead |
3497 | * of GOOD. For scales of 1 and larger this is identical, |
3498 | * for the smaller sizes it was judged that the artifacts |
3499 | * were not worse than the artifacts from a box filer. |
3500 | * BILINEAR can also be used if the scale is exactly .5 |
3501 | * and the translation in that direction is an integer. |
3502 | */ |
3503 | if (pattern->filter == CAIRO_FILTER_GOOD && |
3504 | use_bilinear (pattern->matrix.xx, pattern->matrix.xy, |
3505 | pattern->matrix.x0) && |
3506 | use_bilinear (pattern->matrix.yx, pattern->matrix.yy, |
3507 | pattern->matrix.y0)) |
3508 | return CAIRO_FILTER_BILINEAR; |
3509 | } |
3510 | break; |
3511 | |
3512 | case CAIRO_FILTER_NEAREST: |
3513 | case CAIRO_FILTER_GAUSSIAN: |
3514 | default: |
3515 | break; |
3516 | } |
3517 | |
3518 | return pattern->filter; |
3519 | } |
3520 | |
3521 | /** |
3522 | * _cairo_hypot: |
3523 | * Returns: value similar to hypot(@x,@y) |
3524 | * |
3525 | * May want to replace this with Manhattan distance (abs(x)+abs(y)) if |
3526 | * hypot is too slow, as there is no need for accuracy here. |
3527 | **/ |
3528 | static inline double |
3529 | _cairo_hypot(double x, double y) |
3530 | { |
3531 | return hypot(x, y); |
3532 | } |
3533 | |
3534 | /** |
3535 | * _cairo_pattern_sampled_area: |
3536 | * |
3537 | * Return region of @pattern that will be sampled to fill @extents, |
3538 | * based on the transformation and filter. |
3539 | * |
3540 | * This does not include pixels that are mulitiplied by values very |
3541 | * close to zero by the ends of filters. This is so that transforms |
3542 | * that should be the identity or 90 degree rotations do not expand |
3543 | * the source unexpectedly. |
3544 | * |
3545 | * XXX: We don't actually have any way of querying the backend for |
3546 | * the filter radius, so we just guess base on what we know that |
3547 | * backends do currently (see bug #10508) |
3548 | **/ |
3549 | void |
3550 | _cairo_pattern_sampled_area (const cairo_pattern_t *pattern, |
3551 | const cairo_rectangle_int_t *extents, |
3552 | cairo_rectangle_int_t *sample) |
3553 | { |
3554 | double x1, x2, y1, y2; |
3555 | double padx, pady; |
3556 | |
3557 | /* Assume filters are interpolating, which means identity |
3558 | cannot change the image */ |
3559 | if (_cairo_matrix_is_identity (&pattern->matrix)) { |
3560 | *sample = *extents; |
3561 | return; |
3562 | } |
3563 | |
3564 | /* Transform the centers of the corner pixels */ |
3565 | x1 = extents->x + 0.5; |
3566 | y1 = extents->y + 0.5; |
3567 | x2 = x1 + (extents->width - 1); |
3568 | y2 = y1 + (extents->height - 1); |
3569 | _cairo_matrix_transform_bounding_box (&pattern->matrix, |
3570 | &x1, &y1, &x2, &y2, |
3571 | NULL((void*)0)); |
3572 | |
3573 | /* How far away from center will it actually sample? |
3574 | * This is the distance from a transformed pixel center to the |
3575 | * furthest sample of reasonable size. |
3576 | */ |
3577 | switch (pattern->filter) { |
3578 | case CAIRO_FILTER_NEAREST: |
3579 | case CAIRO_FILTER_FAST: |
3580 | /* Correct value is zero, but when the sample is on an integer |
3581 | * it is unknown if the backend will sample the pixel to the |
3582 | * left or right. This value makes it include both possible pixels. |
3583 | */ |
3584 | padx = pady = 0.004; |
3585 | break; |
3586 | case CAIRO_FILTER_BILINEAR: |
3587 | case CAIRO_FILTER_GAUSSIAN: |
3588 | default: |
3589 | /* Correct value is .5 */ |
3590 | padx = pady = 0.495; |
3591 | break; |
3592 | case CAIRO_FILTER_GOOD: |
3593 | /* Correct value is max(width,1)*.5 */ |
3594 | padx = _cairo_hypot (pattern->matrix.xx, pattern->matrix.xy); |
3595 | if (padx <= 1.0) padx = 0.495; |
3596 | else if (padx >= 16.0) padx = 7.92; |
3597 | else padx *= 0.495; |
3598 | pady = _cairo_hypot (pattern->matrix.yx, pattern->matrix.yy); |
3599 | if (pady <= 1.0) pady = 0.495; |
3600 | else if (pady >= 16.0) pady = 7.92; |
3601 | else pady *= 0.495; |
3602 | break; |
3603 | case CAIRO_FILTER_BEST: |
3604 | /* Correct value is width*2 */ |
3605 | padx = _cairo_hypot (pattern->matrix.xx, pattern->matrix.xy) * 1.98; |
3606 | if (padx > 7.92) padx = 7.92; |
3607 | pady = _cairo_hypot (pattern->matrix.yx, pattern->matrix.yy) * 1.98; |
3608 | if (pady > 7.92) pady = 7.92; |
3609 | break; |
3610 | } |
3611 | |
3612 | /* round furthest samples to edge of pixels */ |
3613 | x1 = floor (x1 - padx); |
3614 | if (x1 < CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8)) x1 = CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8); |
3615 | sample->x = x1; |
3616 | |
3617 | y1 = floor (y1 - pady); |
3618 | if (y1 < CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8)) y1 = CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8); |
3619 | sample->y = y1; |
3620 | |
3621 | x2 = floor (x2 + padx) + 1.0; |
3622 | if (x2 > CAIRO_RECT_INT_MAX(2147483647 >> 8)) x2 = CAIRO_RECT_INT_MAX(2147483647 >> 8); |
3623 | sample->width = x2 - x1; |
3624 | |
3625 | y2 = floor (y2 + pady) + 1.0; |
3626 | if (y2 > CAIRO_RECT_INT_MAX(2147483647 >> 8)) y2 = CAIRO_RECT_INT_MAX(2147483647 >> 8); |
3627 | sample->height = y2 - y1; |
3628 | } |
3629 | |
3630 | /** |
3631 | * _cairo_pattern_get_extents: |
3632 | * |
3633 | * Return the "target-space" extents of @pattern in @extents. |
3634 | * |
3635 | * For unbounded patterns, the @extents will be initialized with |
3636 | * "infinite" extents, (minimum and maximum fixed-point values). |
3637 | * |
3638 | * When is_vector is TRUE, avoid rounding to zero widths or heights that |
3639 | * are less than 1 unit. |
3640 | * |
3641 | * XXX: Currently, bounded gradient patterns will also return |
3642 | * "infinite" extents, though it would be possible to optimize these |
3643 | * with a little more work. |
3644 | **/ |
3645 | void |
3646 | _cairo_pattern_get_extents (const cairo_pattern_t *pattern, |
3647 | cairo_rectangle_int_t *extents, |
3648 | cairo_bool_t is_vector) |
3649 | { |
3650 | double x1, y1, x2, y2; |
3651 | int ix1, ix2, iy1, iy2; |
3652 | cairo_bool_t round_x = FALSE0; |
3653 | cairo_bool_t round_y = FALSE0; |
3654 | |
3655 | switch (pattern->type) { |
3656 | case CAIRO_PATTERN_TYPE_SOLID: |
3657 | goto UNBOUNDED; |
3658 | |
3659 | case CAIRO_PATTERN_TYPE_SURFACE: |
3660 | { |
3661 | cairo_rectangle_int_t surface_extents; |
3662 | const cairo_surface_pattern_t *surface_pattern = |
3663 | (const cairo_surface_pattern_t *) pattern; |
3664 | cairo_surface_t *surface = surface_pattern->surface; |
3665 | |
3666 | if (! _cairo_surface_get_extents (surface, &surface_extents)) |
3667 | goto UNBOUNDED; |
3668 | |
3669 | if (surface_extents.width == 0 || surface_extents.height == 0) |
3670 | goto EMPTY; |
3671 | |
3672 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3673 | goto UNBOUNDED; |
3674 | |
3675 | x1 = surface_extents.x; |
3676 | y1 = surface_extents.y; |
3677 | x2 = surface_extents.x + (int) surface_extents.width; |
3678 | y2 = surface_extents.y + (int) surface_extents.height; |
3679 | |
3680 | goto HANDLE_FILTER; |
3681 | } |
3682 | break; |
3683 | |
3684 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
3685 | { |
3686 | const cairo_raster_source_pattern_t *raster = |
3687 | (const cairo_raster_source_pattern_t *) pattern; |
3688 | |
3689 | if (raster->extents.width == 0 || raster->extents.height == 0) |
3690 | goto EMPTY; |
3691 | |
3692 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3693 | goto UNBOUNDED; |
3694 | |
3695 | x1 = raster->extents.x; |
3696 | y1 = raster->extents.y; |
3697 | x2 = raster->extents.x + (int) raster->extents.width; |
3698 | y2 = raster->extents.y + (int) raster->extents.height; |
3699 | } |
3700 | HANDLE_FILTER: |
3701 | switch (pattern->filter) { |
3702 | case CAIRO_FILTER_NEAREST: |
3703 | case CAIRO_FILTER_FAST: |
3704 | round_x = round_y = TRUE1; |
3705 | /* We don't know which way .5 will go, so fudge it slightly. */ |
3706 | x1 -= 0.004; |
3707 | y1 -= 0.004; |
3708 | x2 += 0.004; |
3709 | y2 += 0.004; |
3710 | break; |
3711 | case CAIRO_FILTER_BEST: |
3712 | /* Assume best filter will produce nice antialiased edges */ |
3713 | break; |
3714 | case CAIRO_FILTER_BILINEAR: |
3715 | case CAIRO_FILTER_GAUSSIAN: |
3716 | case CAIRO_FILTER_GOOD: |
3717 | default: |
3718 | /* These filters can blur the edge out 1/2 pixel when scaling up */ |
3719 | if (_cairo_hypot (pattern->matrix.xx, pattern->matrix.yx) < 1.0) { |
3720 | x1 -= 0.5; |
3721 | x2 += 0.5; |
3722 | round_x = TRUE1; |
3723 | } |
3724 | if (_cairo_hypot (pattern->matrix.xy, pattern->matrix.yy) < 1.0) { |
3725 | y1 -= 0.5; |
3726 | y2 += 0.5; |
3727 | round_y = TRUE1; |
3728 | } |
3729 | break; |
3730 | } |
3731 | break; |
3732 | |
3733 | case CAIRO_PATTERN_TYPE_RADIAL: |
3734 | { |
3735 | const cairo_radial_pattern_t *radial = |
3736 | (const cairo_radial_pattern_t *) pattern; |
3737 | double cx1, cy1; |
3738 | double cx2, cy2; |
3739 | double r1, r2; |
3740 | |
3741 | if (_radial_pattern_is_degenerate (radial)) { |
3742 | /* cairo-gstate should have optimised degenerate |
3743 | * patterns to solid clear patterns, so we can ignore |
3744 | * them here. */ |
3745 | goto EMPTY; |
3746 | } |
3747 | |
3748 | /* TODO: in some cases (focus outside/on the circle) it is |
3749 | * half-bounded. */ |
3750 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3751 | goto UNBOUNDED; |
3752 | |
3753 | cx1 = radial->cd1.center.x; |
3754 | cy1 = radial->cd1.center.y; |
3755 | r1 = radial->cd1.radius; |
3756 | |
3757 | cx2 = radial->cd2.center.x; |
3758 | cy2 = radial->cd2.center.y; |
3759 | r2 = radial->cd2.radius; |
3760 | |
3761 | x1 = MIN (cx1 - r1, cx2 - r2)((cx1 - r1) < (cx2 - r2) ? (cx1 - r1) : (cx2 - r2)); |
3762 | y1 = MIN (cy1 - r1, cy2 - r2)((cy1 - r1) < (cy2 - r2) ? (cy1 - r1) : (cy2 - r2)); |
3763 | x2 = MAX (cx1 + r1, cx2 + r2)((cx1 + r1) > (cx2 + r2) ? (cx1 + r1) : (cx2 + r2)); |
3764 | y2 = MAX (cy1 + r1, cy2 + r2)((cy1 + r1) > (cy2 + r2) ? (cy1 + r1) : (cy2 + r2)); |
3765 | } |
3766 | break; |
3767 | |
3768 | case CAIRO_PATTERN_TYPE_LINEAR: |
3769 | { |
3770 | const cairo_linear_pattern_t *linear = |
3771 | (const cairo_linear_pattern_t *) pattern; |
3772 | |
3773 | if (pattern->extend != CAIRO_EXTEND_NONE) |
3774 | goto UNBOUNDED; |
3775 | |
3776 | if (_linear_pattern_is_degenerate (linear)) { |
3777 | /* cairo-gstate should have optimised degenerate |
3778 | * patterns to solid ones, so we can again ignore |
3779 | * them here. */ |
3780 | goto EMPTY; |
3781 | } |
3782 | |
3783 | /* TODO: to get tight extents, use the matrix to transform |
3784 | * the pattern instead of transforming the extents later. */ |
3785 | if (pattern->matrix.xy != 0. || pattern->matrix.yx != 0.) |
3786 | goto UNBOUNDED; |
3787 | |
3788 | if (linear->pd1.x == linear->pd2.x) { |
3789 | x1 = -HUGE_VAL(__builtin_huge_val ()); |
3790 | x2 = HUGE_VAL(__builtin_huge_val ()); |
3791 | y1 = MIN (linear->pd1.y, linear->pd2.y)((linear->pd1.y) < (linear->pd2.y) ? (linear->pd1 .y) : (linear->pd2.y)); |
3792 | y2 = MAX (linear->pd1.y, linear->pd2.y)((linear->pd1.y) > (linear->pd2.y) ? (linear->pd1 .y) : (linear->pd2.y)); |
3793 | } else if (linear->pd1.y == linear->pd2.y) { |
3794 | x1 = MIN (linear->pd1.x, linear->pd2.x)((linear->pd1.x) < (linear->pd2.x) ? (linear->pd1 .x) : (linear->pd2.x)); |
3795 | x2 = MAX (linear->pd1.x, linear->pd2.x)((linear->pd1.x) > (linear->pd2.x) ? (linear->pd1 .x) : (linear->pd2.x)); |
3796 | y1 = -HUGE_VAL(__builtin_huge_val ()); |
3797 | y2 = HUGE_VAL(__builtin_huge_val ()); |
3798 | } else { |
3799 | goto UNBOUNDED; |
3800 | } |
3801 | |
3802 | /* The current linear renderer just point-samples in the middle |
3803 | of the pixels, similar to the NEAREST filter: */ |
3804 | round_x = round_y = TRUE1; |
3805 | } |
3806 | break; |
3807 | |
3808 | case CAIRO_PATTERN_TYPE_MESH: |
3809 | { |
3810 | const cairo_mesh_pattern_t *mesh = |
3811 | (const cairo_mesh_pattern_t *) pattern; |
3812 | if (! _cairo_mesh_pattern_coord_box (mesh, &x1, &y1, &x2, &y2)) |
3813 | goto EMPTY; |
3814 | } |
3815 | break; |
3816 | |
3817 | default: |
3818 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3818, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
3819 | } |
3820 | |
3821 | if (_cairo_matrix_is_translation (&pattern->matrix)) { |
3822 | x1 -= pattern->matrix.x0; x2 -= pattern->matrix.x0; |
3823 | y1 -= pattern->matrix.y0; y2 -= pattern->matrix.y0; |
3824 | } else { |
3825 | cairo_matrix_t imatrix; |
3826 | cairo_status_t status; |
3827 | |
3828 | imatrix = pattern->matrix; |
3829 | status = cairo_matrix_invert_moz_cairo_matrix_invert (&imatrix); |
3830 | /* cairo_pattern_set_matrix ensures the matrix is invertible */ |
3831 | assert (status == CAIRO_STATUS_SUCCESS)((void) sizeof ((status == CAIRO_STATUS_SUCCESS) ? 1 : 0), __extension__ ({ if (status == CAIRO_STATUS_SUCCESS) ; else __assert_fail ( "status == CAIRO_STATUS_SUCCESS", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3831, __extension__ __PRETTY_FUNCTION__); })); |
3832 | |
3833 | _cairo_matrix_transform_bounding_box (&imatrix, |
3834 | &x1, &y1, &x2, &y2, |
3835 | NULL((void*)0)); |
3836 | } |
3837 | |
3838 | if (!round_x) { |
3839 | x1 -= 0.5; |
3840 | x2 += 0.5; |
3841 | } |
3842 | if (x1 < CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8)) |
3843 | ix1 = CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8); |
3844 | else |
3845 | ix1 = _cairo_lround (x1); |
3846 | if (x2 > CAIRO_RECT_INT_MAX(2147483647 >> 8)) |
3847 | ix2 = CAIRO_RECT_INT_MAX(2147483647 >> 8); |
3848 | else |
3849 | ix2 = _cairo_lround (x2); |
3850 | extents->x = ix1; extents->width = ix2 - ix1; |
3851 | if (is_vector && extents->width == 0 && x1 != x2) |
3852 | extents->width += 1; |
3853 | |
3854 | if (!round_y) { |
3855 | y1 -= 0.5; |
3856 | y2 += 0.5; |
3857 | } |
3858 | if (y1 < CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8)) |
3859 | iy1 = CAIRO_RECT_INT_MIN((-2147483647 -1) >> 8); |
3860 | else |
3861 | iy1 = _cairo_lround (y1); |
3862 | if (y2 > CAIRO_RECT_INT_MAX(2147483647 >> 8)) |
3863 | iy2 = CAIRO_RECT_INT_MAX(2147483647 >> 8); |
3864 | else |
3865 | iy2 = _cairo_lround (y2); |
3866 | extents->y = iy1; extents->height = iy2 - iy1; |
3867 | if (is_vector && extents->height == 0 && y1 != y2) |
3868 | extents->height += 1; |
3869 | |
3870 | return; |
3871 | |
3872 | UNBOUNDED: |
3873 | /* unbounded patterns -> 'infinite' extents */ |
3874 | _cairo_unbounded_rectangle_init (extents); |
3875 | return; |
3876 | |
3877 | EMPTY: |
3878 | extents->x = extents->y = 0; |
3879 | extents->width = extents->height = 0; |
3880 | return; |
3881 | } |
3882 | |
3883 | /** |
3884 | * _cairo_pattern_get_ink_extents: |
3885 | * |
3886 | * Return the "target-space" inked extents of @pattern in @extents. |
3887 | **/ |
3888 | cairo_int_status_t |
3889 | _cairo_pattern_get_ink_extents (const cairo_pattern_t *pattern, |
3890 | cairo_rectangle_int_t *extents) |
3891 | { |
3892 | if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE && |
3893 | pattern->extend == CAIRO_EXTEND_NONE) |
3894 | { |
3895 | const cairo_surface_pattern_t *surface_pattern = |
3896 | (const cairo_surface_pattern_t *) pattern; |
3897 | cairo_surface_t *surface = surface_pattern->surface; |
3898 | |
3899 | surface = _cairo_surface_get_source (surface, NULL((void*)0)); |
3900 | if (_cairo_surface_is_recording (surface)) { |
3901 | cairo_matrix_t imatrix; |
3902 | cairo_box_t box; |
3903 | cairo_status_t status; |
3904 | |
3905 | imatrix = pattern->matrix; |
3906 | status = cairo_matrix_invert_moz_cairo_matrix_invert (&imatrix); |
3907 | /* cairo_pattern_set_matrix ensures the matrix is invertible */ |
3908 | assert (status == CAIRO_STATUS_SUCCESS)((void) sizeof ((status == CAIRO_STATUS_SUCCESS) ? 1 : 0), __extension__ ({ if (status == CAIRO_STATUS_SUCCESS) ; else __assert_fail ( "status == CAIRO_STATUS_SUCCESS", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 3908, __extension__ __PRETTY_FUNCTION__); })); |
3909 | |
3910 | status = _cairo_recording_surface_get_ink_bbox ((cairo_recording_surface_t *)surface, |
3911 | &box, &imatrix); |
3912 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
3913 | return status; |
3914 | |
3915 | _cairo_box_round_to_rectangle (&box, extents); |
3916 | return CAIRO_STATUS_SUCCESS; |
3917 | } |
3918 | } |
3919 | |
3920 | _cairo_pattern_get_extents (pattern, extents, TRUE1); |
3921 | return CAIRO_STATUS_SUCCESS; |
3922 | } |
3923 | |
3924 | static uintptr_t |
3925 | _cairo_solid_pattern_hash (uintptr_t hash, |
3926 | const cairo_solid_pattern_t *solid) |
3927 | { |
3928 | hash = _cairo_hash_bytes (hash, &solid->color, sizeof (solid->color)); |
3929 | |
3930 | return hash; |
3931 | } |
3932 | |
3933 | static uintptr_t |
3934 | _cairo_gradient_color_stops_hash (uintptr_t hash, |
3935 | const cairo_gradient_pattern_t *gradient) |
3936 | { |
3937 | unsigned int n; |
3938 | |
3939 | hash = _cairo_hash_bytes (hash, |
3940 | &gradient->n_stops, |
3941 | sizeof (gradient->n_stops)); |
3942 | |
3943 | for (n = 0; n < gradient->n_stops; n++) { |
3944 | hash = _cairo_hash_bytes (hash, |
3945 | &gradient->stops[n].offset, |
3946 | sizeof (double)); |
3947 | hash = _cairo_hash_bytes (hash, |
3948 | &gradient->stops[n].color, |
3949 | sizeof (cairo_color_stop_t)); |
3950 | } |
3951 | |
3952 | return hash; |
3953 | } |
3954 | |
3955 | uintptr_t |
3956 | _cairo_linear_pattern_hash (uintptr_t hash, |
3957 | const cairo_linear_pattern_t *linear) |
3958 | { |
3959 | hash = _cairo_hash_bytes (hash, &linear->pd1, sizeof (linear->pd1)); |
3960 | hash = _cairo_hash_bytes (hash, &linear->pd2, sizeof (linear->pd2)); |
3961 | |
3962 | return _cairo_gradient_color_stops_hash (hash, &linear->base); |
3963 | } |
3964 | |
3965 | uintptr_t |
3966 | _cairo_radial_pattern_hash (uintptr_t hash, |
3967 | const cairo_radial_pattern_t *radial) |
3968 | { |
3969 | hash = _cairo_hash_bytes (hash, &radial->cd1.center, sizeof (radial->cd1.center)); |
3970 | hash = _cairo_hash_bytes (hash, &radial->cd1.radius, sizeof (radial->cd1.radius)); |
3971 | hash = _cairo_hash_bytes (hash, &radial->cd2.center, sizeof (radial->cd2.center)); |
3972 | hash = _cairo_hash_bytes (hash, &radial->cd2.radius, sizeof (radial->cd2.radius)); |
3973 | |
3974 | return _cairo_gradient_color_stops_hash (hash, &radial->base); |
3975 | } |
3976 | |
3977 | static uintptr_t |
3978 | _cairo_mesh_pattern_hash (uintptr_t hash, const cairo_mesh_pattern_t *mesh) |
3979 | { |
3980 | const cairo_mesh_patch_t *patch = _cairo_array_index_const (&mesh->patches, 0); |
3981 | unsigned int i, n = _cairo_array_num_elements (&mesh->patches); |
3982 | |
3983 | for (i = 0; i < n; i++) |
3984 | hash = _cairo_hash_bytes (hash, patch + i, sizeof (cairo_mesh_patch_t)); |
3985 | |
3986 | return hash; |
3987 | } |
3988 | |
3989 | static uintptr_t |
3990 | _cairo_surface_pattern_hash (uintptr_t hash, |
3991 | const cairo_surface_pattern_t *surface) |
3992 | { |
3993 | hash ^= surface->surface->unique_id; |
3994 | |
3995 | return hash; |
3996 | } |
3997 | |
3998 | static uintptr_t |
3999 | _cairo_raster_source_pattern_hash (uintptr_t hash, |
4000 | const cairo_raster_source_pattern_t *raster) |
4001 | { |
4002 | hash ^= (uintptr_t)raster->user_data; |
4003 | |
4004 | return hash; |
4005 | } |
4006 | |
4007 | uintptr_t |
4008 | _cairo_pattern_hash (const cairo_pattern_t *pattern) |
4009 | { |
4010 | uintptr_t hash = _CAIRO_HASH_INIT_VALUE5381; |
4011 | |
4012 | if (pattern->status) |
4013 | return 0; |
4014 | |
4015 | hash = _cairo_hash_bytes (hash, &pattern->type, sizeof (pattern->type)); |
4016 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) { |
4017 | hash = _cairo_hash_bytes (hash, |
4018 | &pattern->matrix, sizeof (pattern->matrix)); |
4019 | hash = _cairo_hash_bytes (hash, |
4020 | &pattern->filter, sizeof (pattern->filter)); |
4021 | hash = _cairo_hash_bytes (hash, |
4022 | &pattern->extend, sizeof (pattern->extend)); |
4023 | hash = _cairo_hash_bytes (hash, |
4024 | &pattern->has_component_alpha, |
4025 | sizeof (pattern->has_component_alpha)); |
4026 | } |
4027 | |
4028 | switch (pattern->type) { |
4029 | case CAIRO_PATTERN_TYPE_SOLID: |
4030 | return _cairo_solid_pattern_hash (hash, (cairo_solid_pattern_t *) pattern); |
4031 | case CAIRO_PATTERN_TYPE_LINEAR: |
4032 | return _cairo_linear_pattern_hash (hash, (cairo_linear_pattern_t *) pattern); |
4033 | case CAIRO_PATTERN_TYPE_RADIAL: |
4034 | return _cairo_radial_pattern_hash (hash, (cairo_radial_pattern_t *) pattern); |
4035 | case CAIRO_PATTERN_TYPE_MESH: |
4036 | return _cairo_mesh_pattern_hash (hash, (cairo_mesh_pattern_t *) pattern); |
4037 | case CAIRO_PATTERN_TYPE_SURFACE: |
4038 | return _cairo_surface_pattern_hash (hash, (cairo_surface_pattern_t *) pattern); |
4039 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4040 | return _cairo_raster_source_pattern_hash (hash, (cairo_raster_source_pattern_t *) pattern); |
4041 | default: |
4042 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 4042, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
4043 | return FALSE0; |
4044 | } |
4045 | } |
4046 | |
4047 | static cairo_bool_t |
4048 | _cairo_solid_pattern_equal (const cairo_solid_pattern_t *a, |
4049 | const cairo_solid_pattern_t *b) |
4050 | { |
4051 | return _cairo_color_equal (&a->color, &b->color); |
4052 | } |
4053 | |
4054 | static cairo_bool_t |
4055 | _cairo_gradient_color_stops_equal (const cairo_gradient_pattern_t *a, |
4056 | const cairo_gradient_pattern_t *b) |
4057 | { |
4058 | unsigned int n; |
4059 | |
4060 | if (a->n_stops != b->n_stops) |
4061 | return FALSE0; |
4062 | |
4063 | for (n = 0; n < a->n_stops; n++) { |
4064 | if (a->stops[n].offset != b->stops[n].offset) |
4065 | return FALSE0; |
4066 | if (! _cairo_color_stop_equal (&a->stops[n].color, &b->stops[n].color)) |
4067 | return FALSE0; |
4068 | } |
4069 | |
4070 | return TRUE1; |
4071 | } |
4072 | |
4073 | cairo_bool_t |
4074 | _cairo_linear_pattern_equal (const cairo_linear_pattern_t *a, |
4075 | const cairo_linear_pattern_t *b) |
4076 | { |
4077 | if (a->pd1.x != b->pd1.x) |
4078 | return FALSE0; |
4079 | |
4080 | if (a->pd1.y != b->pd1.y) |
4081 | return FALSE0; |
4082 | |
4083 | if (a->pd2.x != b->pd2.x) |
4084 | return FALSE0; |
4085 | |
4086 | if (a->pd2.y != b->pd2.y) |
4087 | return FALSE0; |
4088 | |
4089 | return _cairo_gradient_color_stops_equal (&a->base, &b->base); |
4090 | } |
4091 | |
4092 | cairo_bool_t |
4093 | _cairo_radial_pattern_equal (const cairo_radial_pattern_t *a, |
4094 | const cairo_radial_pattern_t *b) |
4095 | { |
4096 | if (a->cd1.center.x != b->cd1.center.x) |
4097 | return FALSE0; |
4098 | |
4099 | if (a->cd1.center.y != b->cd1.center.y) |
4100 | return FALSE0; |
4101 | |
4102 | if (a->cd1.radius != b->cd1.radius) |
4103 | return FALSE0; |
4104 | |
4105 | if (a->cd2.center.x != b->cd2.center.x) |
4106 | return FALSE0; |
4107 | |
4108 | if (a->cd2.center.y != b->cd2.center.y) |
4109 | return FALSE0; |
4110 | |
4111 | if (a->cd2.radius != b->cd2.radius) |
4112 | return FALSE0; |
4113 | |
4114 | return _cairo_gradient_color_stops_equal (&a->base, &b->base); |
4115 | } |
4116 | |
4117 | static cairo_bool_t |
4118 | _cairo_mesh_pattern_equal (const cairo_mesh_pattern_t *a, |
4119 | const cairo_mesh_pattern_t *b) |
4120 | { |
4121 | const cairo_mesh_patch_t *patch_a, *patch_b; |
4122 | unsigned int i, num_patches_a, num_patches_b; |
4123 | |
4124 | num_patches_a = _cairo_array_num_elements (&a->patches); |
4125 | num_patches_b = _cairo_array_num_elements (&b->patches); |
4126 | |
4127 | if (num_patches_a != num_patches_b) |
4128 | return FALSE0; |
4129 | |
4130 | for (i = 0; i < num_patches_a; i++) { |
4131 | patch_a = _cairo_array_index_const (&a->patches, i); |
4132 | patch_b = _cairo_array_index_const (&b->patches, i); |
4133 | if (memcmp (patch_a, patch_b, sizeof(cairo_mesh_patch_t)) != 0) |
4134 | return FALSE0; |
4135 | } |
4136 | |
4137 | return TRUE1; |
4138 | } |
4139 | |
4140 | static cairo_bool_t |
4141 | _cairo_surface_pattern_equal (const cairo_surface_pattern_t *a, |
4142 | const cairo_surface_pattern_t *b) |
4143 | { |
4144 | return a->surface->unique_id == b->surface->unique_id; |
4145 | } |
4146 | |
4147 | static cairo_bool_t |
4148 | _cairo_raster_source_pattern_equal (const cairo_raster_source_pattern_t *a, |
4149 | const cairo_raster_source_pattern_t *b) |
4150 | { |
4151 | return a->user_data == b->user_data; |
4152 | } |
4153 | |
4154 | cairo_bool_t |
4155 | _cairo_pattern_equal (const cairo_pattern_t *a, const cairo_pattern_t *b) |
4156 | { |
4157 | if (a->status || b->status) |
4158 | return FALSE0; |
4159 | |
4160 | if (a == b) |
4161 | return TRUE1; |
4162 | |
4163 | if (a->type != b->type) |
4164 | return FALSE0; |
4165 | |
4166 | if (a->has_component_alpha != b->has_component_alpha) |
4167 | return FALSE0; |
4168 | |
4169 | if (a->type != CAIRO_PATTERN_TYPE_SOLID) { |
4170 | if (memcmp (&a->matrix, &b->matrix, sizeof (cairo_matrix_t))) |
4171 | return FALSE0; |
4172 | |
4173 | if (a->filter != b->filter) |
4174 | return FALSE0; |
4175 | |
4176 | if (a->extend != b->extend) |
4177 | return FALSE0; |
4178 | } |
4179 | |
4180 | switch (a->type) { |
4181 | case CAIRO_PATTERN_TYPE_SOLID: |
4182 | return _cairo_solid_pattern_equal ((cairo_solid_pattern_t *) a, |
4183 | (cairo_solid_pattern_t *) b); |
4184 | case CAIRO_PATTERN_TYPE_LINEAR: |
4185 | return _cairo_linear_pattern_equal ((cairo_linear_pattern_t *) a, |
4186 | (cairo_linear_pattern_t *) b); |
4187 | case CAIRO_PATTERN_TYPE_RADIAL: |
4188 | return _cairo_radial_pattern_equal ((cairo_radial_pattern_t *) a, |
4189 | (cairo_radial_pattern_t *) b); |
4190 | case CAIRO_PATTERN_TYPE_MESH: |
4191 | return _cairo_mesh_pattern_equal ((cairo_mesh_pattern_t *) a, |
4192 | (cairo_mesh_pattern_t *) b); |
4193 | case CAIRO_PATTERN_TYPE_SURFACE: |
4194 | return _cairo_surface_pattern_equal ((cairo_surface_pattern_t *) a, |
4195 | (cairo_surface_pattern_t *) b); |
4196 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4197 | return _cairo_raster_source_pattern_equal ((cairo_raster_source_pattern_t *) a, |
4198 | (cairo_raster_source_pattern_t *) b); |
4199 | default: |
4200 | ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 4200, __extension__ __PRETTY_FUNCTION__); })); } while (0); |
4201 | return FALSE0; |
4202 | } |
4203 | } |
4204 | |
4205 | /** |
4206 | * cairo_pattern_get_rgba: |
4207 | * @pattern: a #cairo_pattern_t |
4208 | * @red: return value for red component of color, or %NULL |
4209 | * @green: return value for green component of color, or %NULL |
4210 | * @blue: return value for blue component of color, or %NULL |
4211 | * @alpha: return value for alpha component of color, or %NULL |
4212 | * |
4213 | * Gets the solid color for a solid color pattern. |
4214 | * |
4215 | * Note that the color and alpha values are not premultiplied. |
4216 | * |
4217 | * Return value: %CAIRO_STATUS_SUCCESS, or |
4218 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a solid |
4219 | * color pattern. |
4220 | * |
4221 | * Since: 1.4 |
4222 | **/ |
4223 | cairo_status_t |
4224 | cairo_pattern_get_rgba_moz_cairo_pattern_get_rgba (cairo_pattern_t *pattern, |
4225 | double *red, double *green, |
4226 | double *blue, double *alpha) |
4227 | { |
4228 | cairo_solid_pattern_t *solid = (cairo_solid_pattern_t*) pattern; |
4229 | double r0, g0, b0, a0; |
4230 | |
4231 | if (pattern->status) |
4232 | return pattern->status; |
4233 | |
4234 | if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) |
4235 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4236 | |
4237 | _cairo_color_get_rgba (&solid->color, &r0, &g0, &b0, &a0); |
4238 | |
4239 | if (red) |
4240 | *red = r0; |
4241 | if (green) |
4242 | *green = g0; |
4243 | if (blue) |
4244 | *blue = b0; |
4245 | if (alpha) |
4246 | *alpha = a0; |
4247 | |
4248 | return CAIRO_STATUS_SUCCESS; |
4249 | } |
4250 | |
4251 | /** |
4252 | * cairo_pattern_get_surface: |
4253 | * @pattern: a #cairo_pattern_t |
4254 | * @surface: return value for surface of pattern, or %NULL |
4255 | * |
4256 | * Gets the surface of a surface pattern. The reference returned in |
4257 | * @surface is owned by the pattern; the caller should call |
4258 | * cairo_surface_reference() if the surface is to be retained. |
4259 | * |
4260 | * Return value: %CAIRO_STATUS_SUCCESS, or |
4261 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a surface |
4262 | * pattern. |
4263 | * |
4264 | * Since: 1.4 |
4265 | **/ |
4266 | cairo_status_t |
4267 | cairo_pattern_get_surface_moz_cairo_pattern_get_surface (cairo_pattern_t *pattern, |
4268 | cairo_surface_t **surface) |
4269 | { |
4270 | cairo_surface_pattern_t *spat = (cairo_surface_pattern_t*) pattern; |
4271 | |
4272 | if (pattern->status) |
4273 | return pattern->status; |
4274 | |
4275 | if (pattern->type != CAIRO_PATTERN_TYPE_SURFACE) |
4276 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4277 | |
4278 | if (surface) |
4279 | *surface = spat->surface; |
4280 | |
4281 | return CAIRO_STATUS_SUCCESS; |
4282 | } |
4283 | |
4284 | /** |
4285 | * cairo_pattern_get_color_stop_rgba: |
4286 | * @pattern: a #cairo_pattern_t |
4287 | * @index: index of the stop to return data for |
4288 | * @offset: return value for the offset of the stop, or %NULL |
4289 | * @red: return value for red component of color, or %NULL |
4290 | * @green: return value for green component of color, or %NULL |
4291 | * @blue: return value for blue component of color, or %NULL |
4292 | * @alpha: return value for alpha component of color, or %NULL |
4293 | * |
4294 | * Gets the color and offset information at the given @index for a |
4295 | * gradient pattern. Values of @index range from 0 to n-1 |
4296 | * where n is the number returned |
4297 | * by cairo_pattern_get_color_stop_count(). |
4298 | * |
4299 | * Note that the color and alpha values are not premultiplied. |
4300 | * |
4301 | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4302 | * if @index is not valid for the given pattern. If the pattern is |
4303 | * not a gradient pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is |
4304 | * returned. |
4305 | * |
4306 | * Since: 1.4 |
4307 | **/ |
4308 | cairo_status_t |
4309 | cairo_pattern_get_color_stop_rgba_moz_cairo_pattern_get_color_stop_rgba (cairo_pattern_t *pattern, |
4310 | int index, double *offset, |
4311 | double *red, double *green, |
4312 | double *blue, double *alpha) |
4313 | { |
4314 | cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern; |
4315 | |
4316 | if (pattern->status) |
4317 | return pattern->status; |
4318 | |
4319 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
4320 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4321 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4322 | |
4323 | if (index < 0 || (unsigned int) index >= gradient->n_stops) |
4324 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4325 | |
4326 | if (offset) |
4327 | *offset = gradient->stops[index].offset; |
4328 | if (red) |
4329 | *red = gradient->stops[index].color.red; |
4330 | if (green) |
4331 | *green = gradient->stops[index].color.green; |
4332 | if (blue) |
4333 | *blue = gradient->stops[index].color.blue; |
4334 | if (alpha) |
4335 | *alpha = gradient->stops[index].color.alpha; |
4336 | |
4337 | return CAIRO_STATUS_SUCCESS; |
4338 | } |
4339 | |
4340 | /** |
4341 | * cairo_pattern_get_color_stop_count: |
4342 | * @pattern: a #cairo_pattern_t |
4343 | * @count: return value for the number of color stops, or %NULL |
4344 | * |
4345 | * Gets the number of color stops specified in the given gradient |
4346 | * pattern. |
4347 | * |
4348 | * Return value: %CAIRO_STATUS_SUCCESS, or |
4349 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a gradient |
4350 | * pattern. |
4351 | * |
4352 | * Since: 1.4 |
4353 | **/ |
4354 | cairo_status_t |
4355 | cairo_pattern_get_color_stop_count_moz_cairo_pattern_get_color_stop_count (cairo_pattern_t *pattern, |
4356 | int *count) |
4357 | { |
4358 | cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern; |
4359 | |
4360 | if (pattern->status) |
4361 | return pattern->status; |
4362 | |
4363 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR && |
4364 | pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4365 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4366 | |
4367 | if (count) |
4368 | *count = gradient->n_stops; |
4369 | |
4370 | return CAIRO_STATUS_SUCCESS; |
4371 | } |
4372 | |
4373 | /** |
4374 | * cairo_pattern_get_linear_points: |
4375 | * @pattern: a #cairo_pattern_t |
4376 | * @x0: return value for the x coordinate of the first point, or %NULL |
4377 | * @y0: return value for the y coordinate of the first point, or %NULL |
4378 | * @x1: return value for the x coordinate of the second point, or %NULL |
4379 | * @y1: return value for the y coordinate of the second point, or %NULL |
4380 | * |
4381 | * Gets the gradient endpoints for a linear gradient. |
4382 | * |
4383 | * Return value: %CAIRO_STATUS_SUCCESS, or |
4384 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a linear |
4385 | * gradient pattern. |
4386 | * |
4387 | * Since: 1.4 |
4388 | **/ |
4389 | cairo_status_t |
4390 | cairo_pattern_get_linear_points_moz_cairo_pattern_get_linear_points (cairo_pattern_t *pattern, |
4391 | double *x0, double *y0, |
4392 | double *x1, double *y1) |
4393 | { |
4394 | cairo_linear_pattern_t *linear = (cairo_linear_pattern_t*) pattern; |
4395 | |
4396 | if (pattern->status) |
4397 | return pattern->status; |
4398 | |
4399 | if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR) |
4400 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4401 | |
4402 | if (x0) |
4403 | *x0 = linear->pd1.x; |
4404 | if (y0) |
4405 | *y0 = linear->pd1.y; |
4406 | if (x1) |
4407 | *x1 = linear->pd2.x; |
4408 | if (y1) |
4409 | *y1 = linear->pd2.y; |
4410 | |
4411 | return CAIRO_STATUS_SUCCESS; |
4412 | } |
4413 | |
4414 | /** |
4415 | * cairo_pattern_get_radial_circles: |
4416 | * @pattern: a #cairo_pattern_t |
4417 | * @x0: return value for the x coordinate of the center of the first circle, or %NULL |
4418 | * @y0: return value for the y coordinate of the center of the first circle, or %NULL |
4419 | * @r0: return value for the radius of the first circle, or %NULL |
4420 | * @x1: return value for the x coordinate of the center of the second circle, or %NULL |
4421 | * @y1: return value for the y coordinate of the center of the second circle, or %NULL |
4422 | * @r1: return value for the radius of the second circle, or %NULL |
4423 | * |
4424 | * Gets the gradient endpoint circles for a radial gradient, each |
4425 | * specified as a center coordinate and a radius. |
4426 | * |
4427 | * Return value: %CAIRO_STATUS_SUCCESS, or |
4428 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a radial |
4429 | * gradient pattern. |
4430 | * |
4431 | * Since: 1.4 |
4432 | **/ |
4433 | cairo_status_t |
4434 | cairo_pattern_get_radial_circles_moz_cairo_pattern_get_radial_circles (cairo_pattern_t *pattern, |
4435 | double *x0, double *y0, double *r0, |
4436 | double *x1, double *y1, double *r1) |
4437 | { |
4438 | cairo_radial_pattern_t *radial = (cairo_radial_pattern_t*) pattern; |
4439 | |
4440 | if (pattern->status) |
4441 | return pattern->status; |
4442 | |
4443 | if (pattern->type != CAIRO_PATTERN_TYPE_RADIAL) |
4444 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4445 | |
4446 | if (x0) |
4447 | *x0 = radial->cd1.center.x; |
4448 | if (y0) |
4449 | *y0 = radial->cd1.center.y; |
4450 | if (r0) |
4451 | *r0 = radial->cd1.radius; |
4452 | if (x1) |
4453 | *x1 = radial->cd2.center.x; |
4454 | if (y1) |
4455 | *y1 = radial->cd2.center.y; |
4456 | if (r1) |
4457 | *r1 = radial->cd2.radius; |
4458 | |
4459 | return CAIRO_STATUS_SUCCESS; |
4460 | } |
4461 | |
4462 | /** |
4463 | * cairo_mesh_pattern_get_patch_count: |
4464 | * @pattern: a #cairo_pattern_t |
4465 | * @count: return value for the number patches, or %NULL |
4466 | * |
4467 | * Gets the number of patches specified in the given mesh pattern. |
4468 | * |
4469 | * The number only includes patches which have been finished by |
4470 | * calling cairo_mesh_pattern_end_patch(). For example it will be 0 |
4471 | * during the definition of the first patch. |
4472 | * |
4473 | * Return value: %CAIRO_STATUS_SUCCESS, or |
4474 | * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a mesh |
4475 | * pattern. |
4476 | * |
4477 | * Since: 1.12 |
4478 | **/ |
4479 | cairo_status_t |
4480 | cairo_mesh_pattern_get_patch_count (cairo_pattern_t *pattern, |
4481 | unsigned int *count) |
4482 | { |
4483 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4484 | |
4485 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
4486 | return pattern->status; |
4487 | |
4488 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) |
4489 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4490 | |
4491 | if (count) { |
4492 | *count = _cairo_array_num_elements (&mesh->patches); |
4493 | if (mesh->current_patch) |
4494 | *count -= 1; |
4495 | } |
4496 | |
4497 | return CAIRO_STATUS_SUCCESS; |
4498 | } |
4499 | |
4500 | /** |
4501 | * cairo_mesh_pattern_get_path: |
4502 | * @pattern: a #cairo_pattern_t |
4503 | * @patch_num: the patch number to return data for |
4504 | * |
4505 | * Gets path defining the patch @patch_num for a mesh |
4506 | * pattern. |
4507 | * |
4508 | * @patch_num can range from 0 to n-1 where n is the number returned by |
4509 | * cairo_mesh_pattern_get_patch_count(). |
4510 | * |
4511 | * Return value: the path defining the patch, or a path with status |
4512 | * %CAIRO_STATUS_INVALID_INDEX if @patch_num or @point_num is not |
4513 | * valid for @pattern. If @pattern is not a mesh pattern, a path with |
4514 | * status %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is returned. |
4515 | * |
4516 | * Since: 1.12 |
4517 | **/ |
4518 | cairo_path_t * |
4519 | cairo_mesh_pattern_get_path (cairo_pattern_t *pattern, |
4520 | unsigned int patch_num) |
4521 | { |
4522 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4523 | const cairo_mesh_patch_t *patch; |
4524 | cairo_path_t *path; |
4525 | cairo_path_data_t *data; |
4526 | unsigned int patch_count; |
4527 | int l, current_point; |
4528 | |
4529 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
4530 | return _cairo_path_create_in_error (pattern->status); |
4531 | |
4532 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) |
4533 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH)); |
4534 | |
4535 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4536 | if (mesh->current_patch) |
4537 | patch_count--; |
4538 | |
4539 | if (unlikely (patch_num >= patch_count)(__builtin_expect (!!(patch_num >= patch_count), 0))) |
4540 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_INVALID_INDEX)); |
4541 | |
4542 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4543 | |
4544 | path = _cairo_malloc (sizeof (cairo_path_t))((sizeof (cairo_path_t)) != 0 ? malloc(sizeof (cairo_path_t)) : ((void*)0)); |
4545 | if (path == NULL((void*)0)) |
4546 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY)); |
4547 | |
4548 | path->num_data = 18; |
4549 | path->data = _cairo_malloc_ab (path->num_data, |
4550 | sizeof (cairo_path_data_t)); |
4551 | if (path->data == NULL((void*)0)) { |
4552 | free (path); |
4553 | return _cairo_path_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY)); |
4554 | } |
4555 | |
4556 | data = path->data; |
4557 | data[0].header.type = CAIRO_PATH_MOVE_TO; |
4558 | data[0].header.length = 2; |
4559 | data[1].point.x = patch->points[0][0].x; |
4560 | data[1].point.y = patch->points[0][0].y; |
4561 | data += data[0].header.length; |
4562 | |
4563 | current_point = 0; |
4564 | |
4565 | for (l = 0; l < 4; l++) { |
4566 | int i, j, k; |
4567 | |
4568 | data[0].header.type = CAIRO_PATH_CURVE_TO; |
4569 | data[0].header.length = 4; |
4570 | |
4571 | for (k = 1; k < 4; k++) { |
4572 | current_point = (current_point + 1) % 12; |
4573 | i = mesh_path_point_i[current_point]; |
4574 | j = mesh_path_point_j[current_point]; |
4575 | data[k].point.x = patch->points[i][j].x; |
4576 | data[k].point.y = patch->points[i][j].y; |
4577 | } |
4578 | |
4579 | data += data[0].header.length; |
4580 | } |
4581 | |
4582 | path->status = CAIRO_STATUS_SUCCESS; |
4583 | |
4584 | return path; |
4585 | } |
4586 | |
4587 | /** |
4588 | * cairo_mesh_pattern_get_corner_color_rgba: |
4589 | * @pattern: a #cairo_pattern_t |
4590 | * @patch_num: the patch number to return data for |
4591 | * @corner_num: the corner number to return data for |
4592 | * @red: return value for red component of color, or %NULL |
4593 | * @green: return value for green component of color, or %NULL |
4594 | * @blue: return value for blue component of color, or %NULL |
4595 | * @alpha: return value for alpha component of color, or %NULL |
4596 | * |
4597 | * Gets the color information in corner @corner_num of patch |
4598 | * @patch_num for a mesh pattern. |
4599 | * |
4600 | * @patch_num can range from 0 to n-1 where n is the number returned by |
4601 | * cairo_mesh_pattern_get_patch_count(). |
4602 | * |
4603 | * Valid values for @corner_num are from 0 to 3 and identify the |
4604 | * corners as explained in cairo_pattern_create_mesh(). |
4605 | * |
4606 | * Note that the color and alpha values are not premultiplied. |
4607 | * |
4608 | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4609 | * if @patch_num or @corner_num is not valid for @pattern. If |
4610 | * @pattern is not a mesh pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH |
4611 | * is returned. |
4612 | * |
4613 | * Since: 1.12 |
4614 | **/ |
4615 | cairo_status_t |
4616 | cairo_mesh_pattern_get_corner_color_rgba (cairo_pattern_t *pattern, |
4617 | unsigned int patch_num, |
4618 | unsigned int corner_num, |
4619 | double *red, double *green, |
4620 | double *blue, double *alpha) |
4621 | { |
4622 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4623 | unsigned int patch_count; |
4624 | const cairo_mesh_patch_t *patch; |
4625 | |
4626 | if (unlikely (pattern->status)(__builtin_expect (!!(pattern->status), 0))) |
4627 | return pattern->status; |
4628 | |
4629 | if (unlikely (pattern->type != CAIRO_PATTERN_TYPE_MESH)(__builtin_expect (!!(pattern->type != CAIRO_PATTERN_TYPE_MESH ), 0))) |
4630 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4631 | |
4632 | if (unlikely (corner_num > 3)(__builtin_expect (!!(corner_num > 3), 0))) |
4633 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4634 | |
4635 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4636 | if (mesh->current_patch) |
4637 | patch_count--; |
4638 | |
4639 | if (unlikely (patch_num >= patch_count)(__builtin_expect (!!(patch_num >= patch_count), 0))) |
4640 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4641 | |
4642 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4643 | |
4644 | if (red) |
4645 | *red = patch->colors[corner_num].red; |
4646 | if (green) |
4647 | *green = patch->colors[corner_num].green; |
4648 | if (blue) |
4649 | *blue = patch->colors[corner_num].blue; |
4650 | if (alpha) |
4651 | *alpha = patch->colors[corner_num].alpha; |
4652 | |
4653 | return CAIRO_STATUS_SUCCESS; |
4654 | } |
4655 | |
4656 | /** |
4657 | * cairo_mesh_pattern_get_control_point: |
4658 | * @pattern: a #cairo_pattern_t |
4659 | * @patch_num: the patch number to return data for |
4660 | * @point_num: the control point number to return data for |
4661 | * @x: return value for the x coordinate of the control point, or %NULL |
4662 | * @y: return value for the y coordinate of the control point, or %NULL |
4663 | * |
4664 | * Gets the control point @point_num of patch @patch_num for a mesh |
4665 | * pattern. |
4666 | * |
4667 | * @patch_num can range from 0 to n-1 where n is the number returned by |
4668 | * cairo_mesh_pattern_get_patch_count(). |
4669 | * |
4670 | * Valid values for @point_num are from 0 to 3 and identify the |
4671 | * control points as explained in cairo_pattern_create_mesh(). |
4672 | * |
4673 | * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX |
4674 | * if @patch_num or @point_num is not valid for @pattern. If @pattern |
4675 | * is not a mesh pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is |
4676 | * returned. |
4677 | * |
4678 | * Since: 1.12 |
4679 | **/ |
4680 | cairo_status_t |
4681 | cairo_mesh_pattern_get_control_point (cairo_pattern_t *pattern, |
4682 | unsigned int patch_num, |
4683 | unsigned int point_num, |
4684 | double *x, double *y) |
4685 | { |
4686 | cairo_mesh_pattern_t *mesh = (cairo_mesh_pattern_t *) pattern; |
4687 | const cairo_mesh_patch_t *patch; |
4688 | unsigned int patch_count; |
4689 | int i, j; |
4690 | |
4691 | if (pattern->status) |
4692 | return pattern->status; |
4693 | |
4694 | if (pattern->type != CAIRO_PATTERN_TYPE_MESH) |
4695 | return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH); |
4696 | |
4697 | if (point_num > 3) |
4698 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4699 | |
4700 | patch_count = _cairo_array_num_elements (&mesh->patches); |
4701 | if (mesh->current_patch) |
4702 | patch_count--; |
4703 | |
4704 | if (unlikely (patch_num >= patch_count)(__builtin_expect (!!(patch_num >= patch_count), 0))) |
4705 | return _cairo_error (CAIRO_STATUS_INVALID_INDEX); |
4706 | |
4707 | patch = _cairo_array_index_const (&mesh->patches, patch_num); |
4708 | |
4709 | i = mesh_control_point_i[point_num]; |
4710 | j = mesh_control_point_j[point_num]; |
4711 | |
4712 | if (x) |
4713 | *x = patch->points[i][j].x; |
4714 | if (y) |
4715 | *y = patch->points[i][j].y; |
4716 | |
4717 | return CAIRO_STATUS_SUCCESS; |
4718 | } |
4719 | |
4720 | void |
4721 | _cairo_pattern_reset_static_data (void) |
4722 | { |
4723 | int i; |
4724 | |
4725 | for (i = 0; i < ARRAY_LENGTH (freed_pattern_pool)((int) (sizeof (freed_pattern_pool) / sizeof (freed_pattern_pool [0]))); i++) |
4726 | _freed_pool_reset (&freed_pattern_pool[i]); |
4727 | } |
4728 | |
4729 | static void |
4730 | _cairo_debug_print_surface_pattern (FILE *file, |
4731 | const cairo_surface_pattern_t *pattern) |
4732 | { |
4733 | const char *s; |
4734 | switch (pattern->surface->type) { |
4735 | case CAIRO_SURFACE_TYPE_IMAGE: s = "image"; break; |
4736 | case CAIRO_SURFACE_TYPE_PDF: s = "pdf"; break; |
4737 | case CAIRO_SURFACE_TYPE_PS: s = "ps"; break; |
4738 | case CAIRO_SURFACE_TYPE_XLIB: s = "xlib"; break; |
4739 | case CAIRO_SURFACE_TYPE_XCB: s = "xcb"; break; |
4740 | case CAIRO_SURFACE_TYPE_GLITZ: s = "glitz"; break; |
4741 | case CAIRO_SURFACE_TYPE_QUARTZ: s = "quartz"; break; |
4742 | case CAIRO_SURFACE_TYPE_WIN32: s = "win32"; break; |
4743 | case CAIRO_SURFACE_TYPE_BEOS: s = "beos"; break; |
4744 | case CAIRO_SURFACE_TYPE_DIRECTFB: s = "directfb"; break; |
4745 | case CAIRO_SURFACE_TYPE_SVG: s = "svg"; break; |
4746 | case CAIRO_SURFACE_TYPE_OS2: s = "os2"; break; |
4747 | case CAIRO_SURFACE_TYPE_WIN32_PRINTING: s = "win32_printing"; break; |
4748 | case CAIRO_SURFACE_TYPE_QUARTZ_IMAGE: s = "quartz_image"; break; |
4749 | case CAIRO_SURFACE_TYPE_SCRIPT: s = "script"; break; |
4750 | case CAIRO_SURFACE_TYPE_QT: s = "qt"; break; |
4751 | case CAIRO_SURFACE_TYPE_RECORDING: s = "recording"; break; |
4752 | case CAIRO_SURFACE_TYPE_VG: s = "vg"; break; |
4753 | case CAIRO_SURFACE_TYPE_GL: s = "gl"; break; |
4754 | case CAIRO_SURFACE_TYPE_DRM: s = "drm"; break; |
4755 | case CAIRO_SURFACE_TYPE_TEE: s = "tee"; break; |
4756 | case CAIRO_SURFACE_TYPE_XML: s = "xml"; break; |
4757 | case CAIRO_SURFACE_TYPE_SKIA: s = "skia"; break; /* Deprecated */ |
4758 | case CAIRO_SURFACE_TYPE_SUBSURFACE: s = "subsurface"; break; |
4759 | case CAIRO_SURFACE_TYPE_COGL: s = "cogl"; break; |
4760 | default: s = "invalid"; ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 4760, __extension__ __PRETTY_FUNCTION__); })); } while (0); break; |
4761 | } |
4762 | fprintf (file, " surface type: %s\n", s); |
4763 | } |
4764 | |
4765 | static void |
4766 | _cairo_debug_print_raster_source_pattern (FILE *file, |
4767 | const cairo_raster_source_pattern_t *raster) |
4768 | { |
4769 | fprintf (file, " content: %x, size %dx%d\n", raster->content, raster->extents.width, raster->extents.height); |
4770 | } |
4771 | |
4772 | static void |
4773 | _cairo_debug_print_linear_pattern (FILE *file, |
4774 | const cairo_linear_pattern_t *pattern) |
4775 | { |
4776 | } |
4777 | |
4778 | static void |
4779 | _cairo_debug_print_radial_pattern (FILE *file, |
4780 | const cairo_radial_pattern_t *pattern) |
4781 | { |
4782 | } |
4783 | |
4784 | static void |
4785 | _cairo_debug_print_mesh_pattern (FILE *file, |
4786 | const cairo_mesh_pattern_t *pattern) |
4787 | { |
4788 | } |
4789 | |
4790 | void |
4791 | _cairo_debug_print_pattern (FILE *file, const cairo_pattern_t *pattern) |
4792 | { |
4793 | const char *s; |
4794 | switch (pattern->type) { |
4795 | case CAIRO_PATTERN_TYPE_SOLID: s = "solid"; break; |
4796 | case CAIRO_PATTERN_TYPE_SURFACE: s = "surface"; break; |
4797 | case CAIRO_PATTERN_TYPE_LINEAR: s = "linear"; break; |
4798 | case CAIRO_PATTERN_TYPE_RADIAL: s = "radial"; break; |
4799 | case CAIRO_PATTERN_TYPE_MESH: s = "mesh"; break; |
4800 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: s = "raster"; break; |
4801 | default: s = "invalid"; ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 4801, __extension__ __PRETTY_FUNCTION__); })); } while (0); break; |
4802 | } |
4803 | |
4804 | fprintf (file, "pattern: %s\n", s); |
4805 | if (pattern->type == CAIRO_PATTERN_TYPE_SOLID) |
4806 | return; |
4807 | |
4808 | switch (pattern->extend) { |
4809 | case CAIRO_EXTEND_NONE: s = "none"; break; |
4810 | case CAIRO_EXTEND_REPEAT: s = "repeat"; break; |
4811 | case CAIRO_EXTEND_REFLECT: s = "reflect"; break; |
4812 | case CAIRO_EXTEND_PAD: s = "pad"; break; |
4813 | default: s = "invalid"; ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 4813, __extension__ __PRETTY_FUNCTION__); })); } while (0); break; |
4814 | } |
4815 | fprintf (file, " extend: %s\n", s); |
4816 | |
4817 | switch (pattern->filter) { |
4818 | case CAIRO_FILTER_FAST: s = "fast"; break; |
4819 | case CAIRO_FILTER_GOOD: s = "good"; break; |
4820 | case CAIRO_FILTER_BEST: s = "best"; break; |
4821 | case CAIRO_FILTER_NEAREST: s = "nearest"; break; |
4822 | case CAIRO_FILTER_BILINEAR: s = "bilinear"; break; |
4823 | case CAIRO_FILTER_GAUSSIAN: s = "gaussian"; break; |
4824 | default: s = "invalid"; ASSERT_NOT_REACHEDdo { ((void) sizeof ((!"reached") ? 1 : 0), __extension__ ({ if (!"reached") ; else __assert_fail ("!\"reached\"", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-pattern.c" , 4824, __extension__ __PRETTY_FUNCTION__); })); } while (0); break; |
4825 | } |
4826 | fprintf (file, " filter: %s\n", s); |
4827 | fprintf (file, " matrix: [%g %g %g %g %g %g]\n", |
4828 | pattern->matrix.xx, pattern->matrix.yx, |
4829 | pattern->matrix.xy, pattern->matrix.yy, |
4830 | pattern->matrix.x0, pattern->matrix.y0); |
4831 | switch (pattern->type) { |
4832 | default: |
4833 | case CAIRO_PATTERN_TYPE_SOLID: |
4834 | break; |
4835 | case CAIRO_PATTERN_TYPE_RASTER_SOURCE: |
4836 | _cairo_debug_print_raster_source_pattern (file, (cairo_raster_source_pattern_t *)pattern); |
4837 | break; |
4838 | case CAIRO_PATTERN_TYPE_SURFACE: |
4839 | _cairo_debug_print_surface_pattern (file, (cairo_surface_pattern_t *)pattern); |
4840 | break; |
4841 | case CAIRO_PATTERN_TYPE_LINEAR: |
4842 | _cairo_debug_print_linear_pattern (file, (cairo_linear_pattern_t *)pattern); |
4843 | break; |
4844 | case CAIRO_PATTERN_TYPE_RADIAL: |
4845 | _cairo_debug_print_radial_pattern (file, (cairo_radial_pattern_t *)pattern); |
4846 | break; |
4847 | case CAIRO_PATTERN_TYPE_MESH: |
4848 | _cairo_debug_print_mesh_pattern (file, (cairo_mesh_pattern_t *)pattern); |
4849 | break; |
4850 | } |
4851 | } |