File: | root/firefox-clang/gfx/cairo/cairo/src/cairo-bentley-ottmann-rectangular.c |
Warning: | line 639, column 3 Value stored to 'update' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright © 2004 Carl Worth |
3 | * Copyright © 2006 Red Hat, Inc. |
4 | * Copyright © 2009 Chris Wilson |
5 | * |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it either under the terms of the GNU Lesser General Public |
8 | * License version 2.1 as published by the Free Software Foundation |
9 | * (the "LGPL") or, at your option, under the terms of the Mozilla |
10 | * Public License Version 1.1 (the "MPL"). If you do not alter this |
11 | * notice, a recipient may use your version of this file under either |
12 | * the MPL or the LGPL. |
13 | * |
14 | * You should have received a copy of the LGPL along with this library |
15 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software |
16 | * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA |
17 | * You should have received a copy of the MPL along with this library |
18 | * in the file COPYING-MPL-1.1 |
19 | * |
20 | * The contents of this file are subject to the Mozilla Public License |
21 | * Version 1.1 (the "License"); you may not use this file except in |
22 | * compliance with the License. You may obtain a copy of the License at |
23 | * http://www.mozilla.org/MPL/ |
24 | * |
25 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY |
26 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for |
27 | * the specific language governing rights and limitations. |
28 | * |
29 | * The Original Code is the cairo graphics library. |
30 | * |
31 | * The Initial Developer of the Original Code is Carl Worth |
32 | * |
33 | * Contributor(s): |
34 | * Carl D. Worth <cworth@cworth.org> |
35 | * Chris Wilson <chris@chris-wilson.co.uk> |
36 | */ |
37 | |
38 | /* Provide definitions for standalone compilation */ |
39 | #include "cairoint.h" |
40 | |
41 | #include "cairo-boxes-private.h" |
42 | #include "cairo-error-private.h" |
43 | #include "cairo-combsort-inline.h" |
44 | #include "cairo-list-private.h" |
45 | #include "cairo-traps-private.h" |
46 | |
47 | #include <setjmp.h> |
48 | |
49 | typedef struct _rectangle rectangle_t; |
50 | typedef struct _edge edge_t; |
51 | |
52 | struct _edge { |
53 | edge_t *next, *prev; |
54 | edge_t *right; |
55 | cairo_fixed_t x, top; |
56 | int dir; |
57 | }; |
58 | |
59 | struct _rectangle { |
60 | edge_t left, right; |
61 | int32_t top, bottom; |
62 | }; |
63 | |
64 | #define UNROLL3(x)x x x x x x |
65 | |
66 | /* the parent is always given by index/2 */ |
67 | #define PQ_PARENT_INDEX(i)((i) >> 1) ((i) >> 1) |
68 | #define PQ_FIRST_ENTRY1 1 |
69 | |
70 | /* left and right children are index * 2 and (index * 2) +1 respectively */ |
71 | #define PQ_LEFT_CHILD_INDEX(i)((i) << 1) ((i) << 1) |
72 | |
73 | typedef struct _sweep_line { |
74 | rectangle_t **rectangles; |
75 | rectangle_t **stop; |
76 | edge_t head, tail, *insert, *cursor; |
77 | int32_t current_y; |
78 | int32_t last_y; |
79 | int stop_size; |
80 | |
81 | int32_t insert_x; |
82 | cairo_fill_rule_t fill_rule; |
83 | |
84 | cairo_bool_t do_traps; |
85 | void *container; |
86 | |
87 | jmp_buf unwind; |
88 | } sweep_line_t; |
89 | |
90 | #define DEBUG_TRAPS0 0 |
91 | |
92 | #if DEBUG_TRAPS0 |
93 | static void |
94 | dump_traps (cairo_traps_t *traps, const char *filename) |
95 | { |
96 | FILE *file; |
97 | int n; |
98 | |
99 | if (getenv ("CAIRO_DEBUG_TRAPS") == NULL((void*)0)) |
100 | return; |
101 | |
102 | file = fopen (filename, "a"); |
103 | if (file != NULL((void*)0)) { |
104 | for (n = 0; n < traps->num_traps; n++) { |
105 | fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n", |
106 | traps->traps[n].top, |
107 | traps->traps[n].bottom, |
108 | traps->traps[n].left.p1.x, |
109 | traps->traps[n].left.p1.y, |
110 | traps->traps[n].left.p2.x, |
111 | traps->traps[n].left.p2.y, |
112 | traps->traps[n].right.p1.x, |
113 | traps->traps[n].right.p1.y, |
114 | traps->traps[n].right.p2.x, |
115 | traps->traps[n].right.p2.y); |
116 | } |
117 | fprintf (file, "\n"); |
118 | fclose (file); |
119 | } |
120 | } |
121 | #else |
122 | #define dump_traps(traps, filename) |
123 | #endif |
124 | |
125 | static inline int |
126 | rectangle_compare_start (const rectangle_t *a, |
127 | const rectangle_t *b) |
128 | { |
129 | return a->top - b->top; |
130 | } |
131 | |
132 | static inline int |
133 | rectangle_compare_stop (const rectangle_t *a, |
134 | const rectangle_t *b) |
135 | { |
136 | return a->bottom - b->bottom; |
137 | } |
138 | |
139 | static inline void |
140 | pqueue_push (sweep_line_t *sweep, rectangle_t *rectangle) |
141 | { |
142 | rectangle_t **elements; |
143 | int i, parent; |
144 | |
145 | elements = sweep->stop; |
146 | for (i = ++sweep->stop_size; |
147 | i != PQ_FIRST_ENTRY1 && |
148 | rectangle_compare_stop (rectangle, |
149 | elements[parent = PQ_PARENT_INDEX (i)((i) >> 1)]) < 0; |
150 | i = parent) |
151 | { |
152 | elements[i] = elements[parent]; |
153 | } |
154 | |
155 | elements[i] = rectangle; |
156 | } |
157 | |
158 | static inline void |
159 | rectangle_pop_stop (sweep_line_t *sweep) |
160 | { |
161 | rectangle_t **elements = sweep->stop; |
162 | rectangle_t *tail; |
163 | int child, i; |
164 | |
165 | tail = elements[sweep->stop_size--]; |
166 | if (sweep->stop_size == 0) { |
167 | elements[PQ_FIRST_ENTRY1] = NULL((void*)0); |
168 | return; |
169 | } |
170 | |
171 | for (i = PQ_FIRST_ENTRY1; |
172 | (child = PQ_LEFT_CHILD_INDEX (i)((i) << 1)) <= sweep->stop_size; |
173 | i = child) |
174 | { |
175 | if (child != sweep->stop_size && |
176 | rectangle_compare_stop (elements[child+1], |
177 | elements[child]) < 0) |
178 | { |
179 | child++; |
180 | } |
181 | |
182 | if (rectangle_compare_stop (elements[child], tail) >= 0) |
183 | break; |
184 | |
185 | elements[i] = elements[child]; |
186 | } |
187 | elements[i] = tail; |
188 | } |
189 | |
190 | static inline rectangle_t * |
191 | rectangle_pop_start (sweep_line_t *sweep_line) |
192 | { |
193 | return *sweep_line->rectangles++; |
194 | } |
195 | |
196 | static inline rectangle_t * |
197 | rectangle_peek_stop (sweep_line_t *sweep_line) |
198 | { |
199 | return sweep_line->stop[PQ_FIRST_ENTRY1]; |
200 | } |
201 | |
202 | CAIRO_COMBSORT_DECLARE (_rectangle_sort,static void _rectangle_sort (rectangle_t * *base, unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped ; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap; if (rectangle_compare_start (base[i], base[j]) > 0 ) { rectangle_t * tmp; tmp = base[ i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } |
203 | rectangle_t *,static void _rectangle_sort (rectangle_t * *base, unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped ; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap; if (rectangle_compare_start (base[i], base[j]) > 0 ) { rectangle_t * tmp; tmp = base[ i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } |
204 | rectangle_compare_start)static void _rectangle_sort (rectangle_t * *base, unsigned int nmemb) { unsigned int gap = nmemb; unsigned int i, j; int swapped ; do { gap = _cairo_combsort_newgap (gap); swapped = gap > 1; for (i = 0; i < nmemb-gap ; i++) { j = i + gap; if (rectangle_compare_start (base[i], base[j]) > 0 ) { rectangle_t * tmp; tmp = base[ i]; base[i] = base[j]; base[j] = tmp; swapped = 1; } } } while (swapped); } |
205 | |
206 | static void |
207 | sweep_line_init (sweep_line_t *sweep_line, |
208 | rectangle_t **rectangles, |
209 | int num_rectangles, |
210 | cairo_fill_rule_t fill_rule, |
211 | cairo_bool_t do_traps, |
212 | void *container) |
213 | { |
214 | rectangles[-2] = NULL((void*)0); |
215 | rectangles[-1] = NULL((void*)0); |
216 | rectangles[num_rectangles] = NULL((void*)0); |
217 | sweep_line->rectangles = rectangles; |
218 | sweep_line->stop = rectangles - 2; |
219 | sweep_line->stop_size = 0; |
220 | |
221 | sweep_line->insert = NULL((void*)0); |
222 | sweep_line->insert_x = INT_MAX2147483647; |
223 | sweep_line->cursor = &sweep_line->tail; |
224 | |
225 | sweep_line->head.dir = 0; |
226 | sweep_line->head.x = INT32_MIN(-2147483647-1); |
227 | sweep_line->head.right = NULL((void*)0); |
228 | sweep_line->head.prev = NULL((void*)0); |
229 | sweep_line->head.next = &sweep_line->tail; |
230 | sweep_line->tail.prev = &sweep_line->head; |
231 | sweep_line->tail.next = NULL((void*)0); |
232 | sweep_line->tail.right = NULL((void*)0); |
233 | sweep_line->tail.x = INT32_MAX(2147483647); |
234 | sweep_line->tail.dir = 0; |
235 | |
236 | sweep_line->current_y = INT32_MIN(-2147483647-1); |
237 | sweep_line->last_y = INT32_MIN(-2147483647-1); |
238 | |
239 | sweep_line->fill_rule = fill_rule; |
240 | sweep_line->container = container; |
241 | sweep_line->do_traps = do_traps; |
242 | } |
243 | |
244 | static void |
245 | edge_end_box (sweep_line_t *sweep_line, edge_t *left, int32_t bot) |
246 | { |
247 | cairo_status_t status = CAIRO_STATUS_SUCCESS; |
248 | |
249 | /* Only emit (trivial) non-degenerate trapezoids with positive height. */ |
250 | if (likely (left->top < bot)(__builtin_expect (!!(left->top < bot), 1))) { |
251 | if (sweep_line->do_traps) { |
252 | cairo_line_t _left = { |
253 | { left->x, left->top }, |
254 | { left->x, bot }, |
255 | }, _right = { |
256 | { left->right->x, left->top }, |
257 | { left->right->x, bot }, |
258 | }; |
259 | _cairo_traps_add_trap (sweep_line->container, left->top, bot, &_left, &_right); |
260 | status = _cairo_traps_status ((cairo_traps_t *) sweep_line->container)((cairo_traps_t *) sweep_line->container)->status; |
261 | } else { |
262 | cairo_box_t box; |
263 | |
264 | box.p1.x = left->x; |
265 | box.p1.y = left->top; |
266 | box.p2.x = left->right->x; |
267 | box.p2.y = bot; |
268 | |
269 | status = _cairo_boxes_add (sweep_line->container, |
270 | CAIRO_ANTIALIAS_DEFAULT, |
271 | &box); |
272 | } |
273 | } |
274 | if (unlikely (status)(__builtin_expect (!!(status), 0))) |
275 | longjmp (sweep_line->unwind, status); |
276 | |
277 | left->right = NULL((void*)0); |
278 | } |
279 | |
280 | /* Start a new trapezoid at the given top y coordinate, whose edges |
281 | * are `edge' and `edge->next'. If `edge' already has a trapezoid, |
282 | * then either add it to the traps in `traps', if the trapezoid's |
283 | * right edge differs from `edge->next', or do nothing if the new |
284 | * trapezoid would be a continuation of the existing one. */ |
285 | static inline void |
286 | edge_start_or_continue_box (sweep_line_t *sweep_line, |
287 | edge_t *left, |
288 | edge_t *right, |
289 | int top) |
290 | { |
291 | if (left->right == right) |
292 | return; |
293 | |
294 | if (left->right != NULL((void*)0)) { |
295 | if (left->right->x == right->x) { |
296 | /* continuation on right, so just swap edges */ |
297 | left->right = right; |
298 | return; |
299 | } |
300 | |
301 | edge_end_box (sweep_line, left, top); |
302 | } |
303 | |
304 | if (left->x != right->x) { |
305 | left->top = top; |
306 | left->right = right; |
307 | } |
308 | } |
309 | /* |
310 | * Merge two sorted edge lists. |
311 | * Input: |
312 | * - head_a: The head of the first list. |
313 | * - head_b: The head of the second list; head_b cannot be NULL. |
314 | * Output: |
315 | * Returns the head of the merged list. |
316 | * |
317 | * Implementation notes: |
318 | * To make it fast (in particular, to reduce to an insertion sort whenever |
319 | * one of the two input lists only has a single element) we iterate through |
320 | * a list until its head becomes greater than the head of the other list, |
321 | * then we switch their roles. As soon as one of the two lists is empty, we |
322 | * just attach the other one to the current list and exit. |
323 | * Writes to memory are only needed to "switch" lists (as it also requires |
324 | * attaching to the output list the list which we will be iterating next) and |
325 | * to attach the last non-empty list. |
326 | */ |
327 | static edge_t * |
328 | merge_sorted_edges (edge_t *head_a, edge_t *head_b) |
329 | { |
330 | edge_t *head, *prev; |
331 | int32_t x; |
332 | |
333 | prev = head_a->prev; |
334 | if (head_a->x <= head_b->x) { |
335 | head = head_a; |
336 | } else { |
337 | head_b->prev = prev; |
338 | head = head_b; |
339 | goto start_with_b; |
340 | } |
341 | |
342 | do { |
343 | x = head_b->x; |
344 | while (head_a != NULL((void*)0) && head_a->x <= x) { |
345 | prev = head_a; |
346 | head_a = head_a->next; |
347 | } |
348 | |
349 | head_b->prev = prev; |
350 | prev->next = head_b; |
351 | if (head_a == NULL((void*)0)) |
352 | return head; |
353 | |
354 | start_with_b: |
355 | x = head_a->x; |
356 | while (head_b != NULL((void*)0) && head_b->x <= x) { |
357 | prev = head_b; |
358 | head_b = head_b->next; |
359 | } |
360 | |
361 | head_a->prev = prev; |
362 | prev->next = head_a; |
363 | if (head_b == NULL((void*)0)) |
364 | return head; |
365 | } while (1); |
366 | } |
367 | |
368 | /* |
369 | * Sort (part of) a list. |
370 | * Input: |
371 | * - list: The list to be sorted; list cannot be NULL. |
372 | * - limit: Recursion limit. |
373 | * Output: |
374 | * - head_out: The head of the sorted list containing the first 2^(level+1) elements of the |
375 | * input list; if the input list has fewer elements, head_out be a sorted list |
376 | * containing all the elements of the input list. |
377 | * Returns the head of the list of unprocessed elements (NULL if the sorted list contains |
378 | * all the elements of the input list). |
379 | * |
380 | * Implementation notes: |
381 | * Special case single element list, unroll/inline the sorting of the first two elements. |
382 | * Some tail recursion is used since we iterate on the bottom-up solution of the problem |
383 | * (we start with a small sorted list and keep merging other lists of the same size to it). |
384 | */ |
385 | static edge_t * |
386 | sort_edges (edge_t *list, |
387 | unsigned int level, |
388 | edge_t **head_out) |
389 | { |
390 | edge_t *head_other, *remaining; |
391 | unsigned int i; |
392 | |
393 | head_other = list->next; |
394 | |
395 | if (head_other == NULL((void*)0)) { |
396 | *head_out = list; |
397 | return NULL((void*)0); |
398 | } |
399 | |
400 | remaining = head_other->next; |
401 | if (list->x <= head_other->x) { |
402 | *head_out = list; |
403 | head_other->next = NULL((void*)0); |
404 | } else { |
405 | *head_out = head_other; |
406 | head_other->prev = list->prev; |
407 | head_other->next = list; |
408 | list->prev = head_other; |
409 | list->next = NULL((void*)0); |
410 | } |
411 | |
412 | for (i = 0; i < level && remaining; i++) { |
413 | remaining = sort_edges (remaining, i, &head_other); |
414 | *head_out = merge_sorted_edges (*head_out, head_other); |
415 | } |
416 | |
417 | return remaining; |
418 | } |
419 | |
420 | static edge_t * |
421 | merge_unsorted_edges (edge_t *head, edge_t *unsorted) |
422 | { |
423 | sort_edges (unsorted, UINT_MAX(2147483647 *2U +1U), &unsorted); |
424 | return merge_sorted_edges (head, unsorted); |
425 | } |
426 | |
427 | static void |
428 | active_edges_insert (sweep_line_t *sweep) |
429 | { |
430 | edge_t *prev; |
431 | int x; |
432 | |
433 | x = sweep->insert_x; |
434 | prev = sweep->cursor; |
435 | if (prev->x > x) { |
436 | do { |
437 | prev = prev->prev; |
438 | } while (prev->x > x); |
439 | } else { |
440 | while (prev->next->x < x) |
441 | prev = prev->next; |
442 | } |
443 | |
444 | prev->next = merge_unsorted_edges (prev->next, sweep->insert); |
445 | sweep->cursor = sweep->insert; |
446 | sweep->insert = NULL((void*)0); |
447 | sweep->insert_x = INT_MAX2147483647; |
448 | } |
449 | |
450 | static inline void |
451 | active_edges_to_traps (sweep_line_t *sweep) |
452 | { |
453 | int top = sweep->current_y; |
454 | edge_t *pos; |
455 | |
456 | if (sweep->last_y == sweep->current_y) |
457 | return; |
458 | |
459 | if (sweep->insert) |
460 | active_edges_insert (sweep); |
461 | |
462 | pos = sweep->head.next; |
463 | if (pos == &sweep->tail) |
464 | return; |
465 | |
466 | if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING) { |
467 | do { |
468 | edge_t *left, *right; |
469 | int winding; |
470 | |
471 | left = pos; |
472 | winding = left->dir; |
473 | |
474 | right = left->next; |
475 | |
476 | /* Check if there is a co-linear edge with an existing trap */ |
477 | while (right->x == left->x) { |
478 | if (right->right != NULL((void*)0)) { |
479 | assert (left->right == NULL)((void) sizeof ((left->right == ((void*)0)) ? 1 : 0), __extension__ ({ if (left->right == ((void*)0)) ; else __assert_fail ("left->right == NULL" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-bentley-ottmann-rectangular.c" , 479, __extension__ __PRETTY_FUNCTION__); })); |
480 | /* continuation on left */ |
481 | left->top = right->top; |
482 | left->right = right->right; |
483 | right->right = NULL((void*)0); |
484 | } |
485 | winding += right->dir; |
486 | right = right->next; |
487 | } |
488 | |
489 | if (winding == 0) { |
490 | if (left->right != NULL((void*)0)) |
491 | edge_end_box (sweep, left, top); |
492 | pos = right; |
493 | continue; |
494 | } |
495 | |
496 | do { |
497 | /* End all subsumed traps */ |
498 | if (unlikely (right->right != NULL)(__builtin_expect (!!(right->right != ((void*)0)), 0))) |
499 | edge_end_box (sweep, right, top); |
500 | |
501 | /* Greedily search for the closing edge, so that we generate |
502 | * the * maximal span width with the minimal number of |
503 | * boxes. |
504 | */ |
505 | winding += right->dir; |
506 | if (winding == 0 && right->x != right->next->x) |
507 | break; |
508 | |
509 | right = right->next; |
510 | } while (TRUE1); |
511 | |
512 | edge_start_or_continue_box (sweep, left, right, top); |
513 | |
514 | pos = right->next; |
515 | } while (pos != &sweep->tail); |
516 | } else { |
517 | do { |
518 | edge_t *right = pos->next; |
519 | int count = 0; |
520 | |
521 | do { |
522 | /* End all subsumed traps */ |
523 | if (unlikely (right->right != NULL)(__builtin_expect (!!(right->right != ((void*)0)), 0))) |
524 | edge_end_box (sweep, right, top); |
525 | |
526 | /* skip co-linear edges */ |
527 | if (++count & 1 && right->x != right->next->x) |
528 | break; |
529 | |
530 | right = right->next; |
531 | } while (TRUE1); |
532 | |
533 | edge_start_or_continue_box (sweep, pos, right, top); |
534 | |
535 | pos = right->next; |
536 | } while (pos != &sweep->tail); |
537 | } |
538 | |
539 | sweep->last_y = sweep->current_y; |
540 | } |
541 | |
542 | static inline void |
543 | sweep_line_delete_edge (sweep_line_t *sweep, edge_t *edge) |
544 | { |
545 | if (edge->right != NULL((void*)0)) { |
546 | edge_t *next = edge->next; |
547 | if (next->x == edge->x) { |
548 | next->top = edge->top; |
549 | next->right = edge->right; |
550 | } else |
551 | edge_end_box (sweep, edge, sweep->current_y); |
552 | } |
553 | |
554 | if (sweep->cursor == edge) |
555 | sweep->cursor = edge->prev; |
556 | |
557 | edge->prev->next = edge->next; |
558 | edge->next->prev = edge->prev; |
559 | } |
560 | |
561 | static inline cairo_bool_t |
562 | sweep_line_delete (sweep_line_t *sweep, rectangle_t *rectangle) |
563 | { |
564 | cairo_bool_t update; |
565 | |
566 | update = TRUE1; |
567 | if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING && |
568 | rectangle->left.prev->dir == rectangle->left.dir) |
569 | { |
570 | update = rectangle->left.next != &rectangle->right; |
571 | } |
572 | |
573 | sweep_line_delete_edge (sweep, &rectangle->left); |
574 | sweep_line_delete_edge (sweep, &rectangle->right); |
575 | |
576 | rectangle_pop_stop (sweep); |
577 | return update; |
578 | } |
579 | |
580 | static inline void |
581 | sweep_line_insert (sweep_line_t *sweep, rectangle_t *rectangle) |
582 | { |
583 | if (sweep->insert) |
584 | sweep->insert->prev = &rectangle->right; |
585 | rectangle->right.next = sweep->insert; |
586 | rectangle->right.prev = &rectangle->left; |
587 | rectangle->left.next = &rectangle->right; |
588 | rectangle->left.prev = NULL((void*)0); |
589 | sweep->insert = &rectangle->left; |
590 | if (rectangle->left.x < sweep->insert_x) |
591 | sweep->insert_x = rectangle->left.x; |
592 | |
593 | pqueue_push (sweep, rectangle); |
594 | } |
595 | |
596 | static cairo_status_t |
597 | _cairo_bentley_ottmann_tessellate_rectangular (rectangle_t **rectangles, |
598 | int num_rectangles, |
599 | cairo_fill_rule_t fill_rule, |
600 | cairo_bool_t do_traps, |
601 | void *container) |
602 | { |
603 | sweep_line_t sweep_line; |
604 | rectangle_t *rectangle; |
605 | cairo_status_t status; |
606 | cairo_bool_t update; |
607 | |
608 | sweep_line_init (&sweep_line, |
609 | rectangles, num_rectangles, |
610 | fill_rule, |
611 | do_traps, container); |
612 | if ((status = setjmp (sweep_line.unwind)_setjmp (sweep_line.unwind))) |
613 | return status; |
614 | |
615 | update = FALSE0; |
616 | |
617 | rectangle = rectangle_pop_start (&sweep_line); |
618 | do { |
619 | if (rectangle->top != sweep_line.current_y) { |
620 | rectangle_t *stop; |
621 | |
622 | stop = rectangle_peek_stop (&sweep_line); |
623 | while (stop != NULL((void*)0) && stop->bottom < rectangle->top) { |
624 | if (stop->bottom != sweep_line.current_y) { |
625 | if (update) { |
626 | active_edges_to_traps (&sweep_line); |
627 | update = FALSE0; |
628 | } |
629 | |
630 | sweep_line.current_y = stop->bottom; |
631 | } |
632 | |
633 | update |= sweep_line_delete (&sweep_line, stop); |
634 | stop = rectangle_peek_stop (&sweep_line); |
635 | } |
636 | |
637 | if (update) { |
638 | active_edges_to_traps (&sweep_line); |
639 | update = FALSE0; |
Value stored to 'update' is never read | |
640 | } |
641 | |
642 | sweep_line.current_y = rectangle->top; |
643 | } |
644 | |
645 | do { |
646 | sweep_line_insert (&sweep_line, rectangle); |
647 | } while ((rectangle = rectangle_pop_start (&sweep_line)) != NULL((void*)0) && |
648 | sweep_line.current_y == rectangle->top); |
649 | update = TRUE1; |
650 | } while (rectangle); |
651 | |
652 | while ((rectangle = rectangle_peek_stop (&sweep_line)) != NULL((void*)0)) { |
653 | if (rectangle->bottom != sweep_line.current_y) { |
654 | if (update) { |
655 | active_edges_to_traps (&sweep_line); |
656 | update = FALSE0; |
657 | } |
658 | sweep_line.current_y = rectangle->bottom; |
659 | } |
660 | |
661 | update |= sweep_line_delete (&sweep_line, rectangle); |
662 | } |
663 | |
664 | return CAIRO_STATUS_SUCCESS; |
665 | } |
666 | |
667 | cairo_status_t |
668 | _cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps, |
669 | cairo_fill_rule_t fill_rule) |
670 | { |
671 | rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)((512 * sizeof (int)) / sizeof(rectangle_t))]; |
672 | rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles)((int) (sizeof (stack_rectangles) / sizeof (stack_rectangles[ 0]))) + 3]; |
673 | rectangle_t *rectangles, **rectangles_ptrs; |
674 | cairo_status_t status; |
675 | int i; |
676 | |
677 | assert (traps->is_rectangular)((void) sizeof ((traps->is_rectangular) ? 1 : 0), __extension__ ({ if (traps->is_rectangular) ; else __assert_fail ("traps->is_rectangular" , "/root/firefox-clang/gfx/cairo/cairo/src/cairo-bentley-ottmann-rectangular.c" , 677, __extension__ __PRETTY_FUNCTION__); })); |
678 | |
679 | if (unlikely (traps->num_traps <= 1)(__builtin_expect (!!(traps->num_traps <= 1), 0))) { |
680 | if (traps->num_traps == 1) { |
681 | cairo_trapezoid_t *trap = traps->traps; |
682 | if (trap->left.p1.x > trap->right.p1.x) { |
683 | cairo_line_t tmp = trap->left; |
684 | trap->left = trap->right; |
685 | trap->right = tmp; |
686 | } |
687 | } |
688 | return CAIRO_STATUS_SUCCESS; |
689 | } |
690 | |
691 | dump_traps (traps, "bo-rects-traps-in.txt"); |
692 | |
693 | rectangles = stack_rectangles; |
694 | rectangles_ptrs = stack_rectangles_ptrs; |
695 | if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)((int) (sizeof (stack_rectangles) / sizeof (stack_rectangles[ 0])))) { |
696 | rectangles = _cairo_malloc_ab_plus_c (traps->num_traps, |
697 | sizeof (rectangle_t) + |
698 | sizeof (rectangle_t *), |
699 | 3*sizeof (rectangle_t *)); |
700 | if (unlikely (rectangles == NULL)(__builtin_expect (!!(rectangles == ((void*)0)), 0))) |
701 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
702 | |
703 | rectangles_ptrs = (rectangle_t **) (rectangles + traps->num_traps); |
704 | } |
705 | |
706 | for (i = 0; i < traps->num_traps; i++) { |
707 | if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) { |
708 | rectangles[i].left.x = traps->traps[i].left.p1.x; |
709 | rectangles[i].left.dir = 1; |
710 | |
711 | rectangles[i].right.x = traps->traps[i].right.p1.x; |
712 | rectangles[i].right.dir = -1; |
713 | } else { |
714 | rectangles[i].right.x = traps->traps[i].left.p1.x; |
715 | rectangles[i].right.dir = 1; |
716 | |
717 | rectangles[i].left.x = traps->traps[i].right.p1.x; |
718 | rectangles[i].left.dir = -1; |
719 | } |
720 | |
721 | rectangles[i].left.right = NULL((void*)0); |
722 | rectangles[i].right.right = NULL((void*)0); |
723 | |
724 | rectangles[i].top = traps->traps[i].top; |
725 | rectangles[i].bottom = traps->traps[i].bottom; |
726 | |
727 | rectangles_ptrs[i+2] = &rectangles[i]; |
728 | } |
729 | /* XXX incremental sort */ |
730 | _rectangle_sort (rectangles_ptrs+2, i); |
731 | |
732 | _cairo_traps_clear (traps); |
733 | status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, i, |
734 | fill_rule, |
735 | TRUE1, traps); |
736 | traps->is_rectilinear = TRUE1; |
737 | traps->is_rectangular = TRUE1; |
738 | |
739 | if (rectangles != stack_rectangles) |
740 | free (rectangles); |
741 | |
742 | dump_traps (traps, "bo-rects-traps-out.txt"); |
743 | |
744 | return status; |
745 | } |
746 | |
747 | cairo_status_t |
748 | _cairo_bentley_ottmann_tessellate_boxes (const cairo_boxes_t *in, |
749 | cairo_fill_rule_t fill_rule, |
750 | cairo_boxes_t *out) |
751 | { |
752 | rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)((512 * sizeof (int)) / sizeof(rectangle_t))]; |
753 | rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles)((int) (sizeof (stack_rectangles) / sizeof (stack_rectangles[ 0]))) + 3]; |
754 | rectangle_t *rectangles, **rectangles_ptrs; |
755 | rectangle_t *stack_rectangles_chain[CAIRO_STACK_ARRAY_LENGTH (rectangle_t *)((512 * sizeof (int)) / sizeof(rectangle_t *)) ]; |
756 | rectangle_t **rectangles_chain = NULL((void*)0); |
757 | const struct _cairo_boxes_chunk *chunk; |
758 | cairo_status_t status; |
759 | int i, j, y_min, y_max; |
760 | |
761 | if (unlikely (in->num_boxes == 0)(__builtin_expect (!!(in->num_boxes == 0), 0))) { |
762 | _cairo_boxes_clear (out); |
763 | return CAIRO_STATUS_SUCCESS; |
764 | } |
765 | |
766 | if (in->num_boxes == 1) { |
767 | if (in == out) { |
768 | cairo_box_t *box = &in->chunks.base[0]; |
769 | |
770 | if (box->p1.x > box->p2.x) { |
771 | cairo_fixed_t tmp = box->p1.x; |
772 | box->p1.x = box->p2.x; |
773 | box->p2.x = tmp; |
774 | } |
775 | } else { |
776 | cairo_box_t box = in->chunks.base[0]; |
777 | |
778 | if (box.p1.x > box.p2.x) { |
779 | cairo_fixed_t tmp = box.p1.x; |
780 | box.p1.x = box.p2.x; |
781 | box.p2.x = tmp; |
782 | } |
783 | |
784 | _cairo_boxes_clear (out); |
785 | status = _cairo_boxes_add (out, CAIRO_ANTIALIAS_DEFAULT, &box); |
786 | assert (status == CAIRO_STATUS_SUCCESS)((void) sizeof ((status == CAIRO_STATUS_SUCCESS) ? 1 : 0), __extension__ ({ if (status == CAIRO_STATUS_SUCCESS) ; else __assert_fail ( "status == CAIRO_STATUS_SUCCESS", "/root/firefox-clang/gfx/cairo/cairo/src/cairo-bentley-ottmann-rectangular.c" , 786, __extension__ __PRETTY_FUNCTION__); })); |
787 | } |
788 | return CAIRO_STATUS_SUCCESS; |
789 | } |
790 | |
791 | y_min = INT_MAX2147483647; y_max = INT_MIN(-2147483647 -1); |
792 | for (chunk = &in->chunks; chunk != NULL((void*)0); chunk = chunk->next) { |
793 | const cairo_box_t *box = chunk->base; |
794 | for (i = 0; i < chunk->count; i++) { |
795 | if (box[i].p1.y < y_min) |
796 | y_min = box[i].p1.y; |
797 | if (box[i].p1.y > y_max) |
798 | y_max = box[i].p1.y; |
799 | } |
800 | } |
801 | y_min = _cairo_fixed_integer_floor (y_min); |
802 | y_max = _cairo_fixed_integer_floor (y_max) + 1; |
803 | y_max -= y_min; |
804 | |
805 | if (y_max < in->num_boxes) { |
806 | rectangles_chain = stack_rectangles_chain; |
807 | if (y_max > ARRAY_LENGTH (stack_rectangles_chain)((int) (sizeof (stack_rectangles_chain) / sizeof (stack_rectangles_chain [0])))) { |
808 | rectangles_chain = _cairo_malloc_ab (y_max, sizeof (rectangle_t *)); |
809 | if (unlikely (rectangles_chain == NULL)(__builtin_expect (!!(rectangles_chain == ((void*)0)), 0))) |
810 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
811 | } |
812 | memset (rectangles_chain, 0, y_max * sizeof (rectangle_t*)); |
813 | } |
814 | |
815 | rectangles = stack_rectangles; |
816 | rectangles_ptrs = stack_rectangles_ptrs; |
817 | if (in->num_boxes > ARRAY_LENGTH (stack_rectangles)((int) (sizeof (stack_rectangles) / sizeof (stack_rectangles[ 0])))) { |
818 | rectangles = _cairo_malloc_ab_plus_c (in->num_boxes, |
819 | sizeof (rectangle_t) + |
820 | sizeof (rectangle_t *), |
821 | 3*sizeof (rectangle_t *)); |
822 | if (unlikely (rectangles == NULL)(__builtin_expect (!!(rectangles == ((void*)0)), 0))) { |
823 | if (rectangles_chain != stack_rectangles_chain) |
824 | free (rectangles_chain); |
825 | return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
826 | } |
827 | |
828 | rectangles_ptrs = (rectangle_t **) (rectangles + in->num_boxes); |
829 | } |
830 | |
831 | j = 0; |
832 | for (chunk = &in->chunks; chunk != NULL((void*)0); chunk = chunk->next) { |
833 | const cairo_box_t *box = chunk->base; |
834 | for (i = 0; i < chunk->count; i++) { |
835 | int h; |
836 | |
837 | if (box[i].p1.x < box[i].p2.x) { |
838 | rectangles[j].left.x = box[i].p1.x; |
839 | rectangles[j].left.dir = 1; |
840 | |
841 | rectangles[j].right.x = box[i].p2.x; |
842 | rectangles[j].right.dir = -1; |
843 | } else { |
844 | rectangles[j].right.x = box[i].p1.x; |
845 | rectangles[j].right.dir = 1; |
846 | |
847 | rectangles[j].left.x = box[i].p2.x; |
848 | rectangles[j].left.dir = -1; |
849 | } |
850 | |
851 | rectangles[j].left.right = NULL((void*)0); |
852 | rectangles[j].right.right = NULL((void*)0); |
853 | |
854 | rectangles[j].top = box[i].p1.y; |
855 | rectangles[j].bottom = box[i].p2.y; |
856 | |
857 | if (rectangles_chain) { |
858 | h = _cairo_fixed_integer_floor (box[i].p1.y) - y_min; |
859 | rectangles[j].left.next = (edge_t *)rectangles_chain[h]; |
860 | rectangles_chain[h] = &rectangles[j]; |
861 | } else { |
862 | rectangles_ptrs[j+2] = &rectangles[j]; |
863 | } |
864 | j++; |
865 | } |
866 | } |
867 | |
868 | if (rectangles_chain) { |
869 | j = 2; |
870 | for (y_min = 0; y_min < y_max; y_min++) { |
871 | rectangle_t *r; |
872 | int start = j; |
873 | for (r = rectangles_chain[y_min]; r; r = (rectangle_t *)r->left.next) |
874 | rectangles_ptrs[j++] = r; |
875 | if (j > start + 1) |
876 | _rectangle_sort (rectangles_ptrs + start, j - start); |
877 | } |
878 | |
879 | if (rectangles_chain != stack_rectangles_chain) |
880 | free (rectangles_chain); |
881 | |
882 | j -= 2; |
883 | } else { |
884 | _rectangle_sort (rectangles_ptrs + 2, j); |
885 | } |
886 | |
887 | _cairo_boxes_clear (out); |
888 | status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, j, |
889 | fill_rule, |
890 | FALSE0, out); |
891 | if (rectangles != stack_rectangles) |
892 | free (rectangles); |
893 | |
894 | return status; |
895 | } |