Bug Summary

File:root/firefox-clang/third_party/aom/av1/common/av1_common_int.h
Warning:line 764, column 16
Excessive padding in 'struct AV1Common' (39 padding bytes, where 7 is optimal). Optimal fields order: lf_info, error, prev_frame, cur_frame, last_frame_seg_map, rst_tmpbuf, rlbs, seq_params, fc, default_frame_context, buffer_pool, tpl_mvs, above_contexts, ref_frame_map, mi_params, rst_info, rst_frame, cdef_info, quant_params, width, height, render_width, render_height, superres_upscaled_width, superres_upscaled_height, frame_presentation_time, show_frame, showable_frame, show_existing_frame, current_frame_id, tpl_mvs_mem_size, temporal_layer_id, spatial_layer_id, sf_identity, delta_q_info, features, remapped_ref_idx, ref_frame_id, ref_frame_sign_bias, current_frame, lf, ref_scale_factors, buffer_removal_times, seg, global_motion, tiles, film_grain_params, superres_scale_denominator, ref_frame_side, consider reordering the fields or adding explicit padding members

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name pyramid.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -ffp-contract=off -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/root/firefox-clang/obj-x86_64-pc-linux-gnu/media/libaom -fcoverage-compilation-dir=/root/firefox-clang/obj-x86_64-pc-linux-gnu/media/libaom -resource-dir /usr/lib/llvm-21/lib/clang/21 -include /root/firefox-clang/obj-x86_64-pc-linux-gnu/mozilla-config.h -U _FORTIFY_SOURCE -D _FORTIFY_SOURCE=2 -D _GLIBCXX_ASSERTIONS -D DEBUG=1 -D MOZ_HAS_MOZGLUE -I /root/firefox-clang/media/libaom -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/media/libaom -I /root/firefox-clang/media/libaom/config/linux/x64 -I /root/firefox-clang/media/libaom/config -I /root/firefox-clang/third_party/aom -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/include -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/include/nspr -I /root/firefox-clang/obj-x86_64-pc-linux-gnu/dist/include/nss -D MOZILLA_CLIENT -internal-isystem /usr/lib/llvm-21/lib/clang/21/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/14/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-error=tautological-type-limit-compare -Wno-range-loop-analysis -Wno-error=deprecated-declarations -Wno-error=array-bounds -Wno-error=free-nonheap-object -Wno-error=atomic-alignment -Wno-error=deprecated-builtins -Wno-psabi -Wno-error=builtin-macro-redefined -Wno-unknown-warning-option -Wno-sign-compare -Wno-unused-function -Wno-unreachable-code -Wno-unneeded-internal-declaration -ferror-limit 19 -fstrict-flex-arrays=1 -stack-protector 2 -fstack-clash-protection -ftrivial-auto-var-init=pattern -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2025-06-27-100320-3286336-1 -x c /root/firefox-clang/third_party/aom/aom_dsp/pyramid.c
1/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15#include <stdbool.h>
16
17#include "config/aom_config.h"
18#include "config/av1_rtcd.h"
19
20#include "aom/internal/aom_codec_internal.h"
21#include "aom_dsp/flow_estimation/corner_detect.h"
22#include "aom_util/aom_pthread.h"
23#include "av1/common/alloccommon.h"
24#include "av1/common/av1_loopfilter.h"
25#include "av1/common/entropy.h"
26#include "av1/common/entropymode.h"
27#include "av1/common/entropymv.h"
28#include "av1/common/enums.h"
29#include "av1/common/frame_buffers.h"
30#include "av1/common/mv.h"
31#include "av1/common/quant_common.h"
32#include "av1/common/restoration.h"
33#include "av1/common/tile_common.h"
34#include "av1/common/timing.h"
35#include "aom_dsp/grain_params.h"
36#include "aom_dsp/grain_table.h"
37#include "aom_dsp/odintrin.h"
38#ifdef __cplusplus
39extern "C" {
40#endif
41
42#if defined(__clang__1) && defined(__has_warning)0
43#if __has_feature(cxx_attributes)0 && __has_warning("-Wimplicit-fallthrough")1
44#define AOM_FALLTHROUGH_INTENDEDdo { } while (0) [[clang::fallthrough]] // NOLINT
45#endif
46#elif defined(__GNUC__4) && __GNUC__4 >= 7
47#define AOM_FALLTHROUGH_INTENDEDdo { } while (0) __attribute__((fallthrough)) // NOLINT
48#endif
49
50#ifndef AOM_FALLTHROUGH_INTENDEDdo { } while (0)
51#define AOM_FALLTHROUGH_INTENDEDdo { } while (0) \
52 do { \
53 } while (0)
54#endif
55
56#define CDEF_MAX_STRENGTHS16 16
57
58/* Constant values while waiting for the sequence header */
59#define FRAME_ID_LENGTH15 15
60#define DELTA_FRAME_ID_LENGTH14 14
61
62#define FRAME_CONTEXTS((REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) (FRAME_BUFFERS(REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1)
63// Extra frame context which is always kept at default values
64#define FRAME_CONTEXT_DEFAULTS(((REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) - 1) (FRAME_CONTEXTS((REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) - 1)
65#define PRIMARY_REF_BITS3 3
66#define PRIMARY_REF_NONE7 7
67
68#define NUM_PING_PONG_BUFFERS2 2
69
70#define MAX_NUM_TEMPORAL_LAYERS8 8
71#define MAX_NUM_SPATIAL_LAYERS4 4
72/* clang-format off */
73// clang-format seems to think this is a pointer dereference and not a
74// multiplication.
75#define MAX_NUM_OPERATING_POINTS(8 * 4) \
76 (MAX_NUM_TEMPORAL_LAYERS8 * MAX_NUM_SPATIAL_LAYERS4)
77/* clang-format on */
78
79// TODO(jingning): Turning this on to set up transform coefficient
80// processing timer.
81#define TXCOEFF_TIMER0 0
82#define TXCOEFF_COST_TIMER0 0
83
84/*!\cond */
85
86enum {
87 SINGLE_REFERENCE = 0,
88 COMPOUND_REFERENCE = 1,
89 REFERENCE_MODE_SELECT = 2,
90 REFERENCE_MODES = 3,
91} UENUM1BYTE(REFERENCE_MODE); typedef uint8_t REFERENCE_MODE;
92
93enum {
94 /**
95 * Frame context updates are disabled
96 */
97 REFRESH_FRAME_CONTEXT_DISABLED,
98 /**
99 * Update frame context to values resulting from backward probability
100 * updates based on entropy/counts in the decoded frame
101 */
102 REFRESH_FRAME_CONTEXT_BACKWARD,
103} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE); typedef uint8_t REFRESH_FRAME_CONTEXT_MODE;
104
105#define MFMV_STACK_SIZE3 3
106typedef struct {
107 int_mv mfmv0;
108 uint8_t ref_frame_offset;
109} TPL_MV_REF;
110
111typedef struct {
112 int_mv mv;
113 MV_REFERENCE_FRAME ref_frame;
114} MV_REF;
115
116typedef struct RefCntBuffer {
117 // For a RefCntBuffer, the following are reference-holding variables:
118 // - cm->ref_frame_map[]
119 // - cm->cur_frame
120 // - cm->scaled_ref_buf[] (encoder only)
121 // - pbi->output_frame_index[] (decoder only)
122 // With that definition, 'ref_count' is the number of reference-holding
123 // variables that are currently referencing this buffer.
124 // For example:
125 // - suppose this buffer is at index 'k' in the buffer pool, and
126 // - Total 'n' of the variables / array elements above have value 'k' (that
127 // is, they are pointing to buffer at index 'k').
128 // Then, pool->frame_bufs[k].ref_count = n.
129 int ref_count;
130
131 unsigned int order_hint;
132 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
133
134 // These variables are used only in encoder and compare the absolute
135 // display order hint to compute the relative distance and overcome
136 // the limitation of get_relative_dist() which returns incorrect
137 // distance when a very old frame is used as a reference.
138 unsigned int display_order_hint;
139 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
140 // Frame's level within the hierarchical structure.
141 unsigned int pyramid_level;
142 MV_REF *mvs;
143 uint8_t *seg_map;
144 struct segmentation seg;
145 int mi_rows;
146 int mi_cols;
147 // Width and height give the size of the buffer (before any upscaling, unlike
148 // the sizes that can be derived from the buf structure)
149 int width;
150 int height;
151 WarpedMotionParams global_motion[REF_FRAMES];
152 int showable_frame; // frame can be used as show existing frame in future
153 uint8_t film_grain_params_present;
154 aom_film_grain_t film_grain_params;
155 aom_codec_frame_buffer_t raw_frame_buffer;
156 YV12_BUFFER_CONFIG buf;
157 int temporal_id; // Temporal layer ID of the frame
158 int spatial_id; // Spatial layer ID of the frame
159 FRAME_TYPE frame_type;
160
161 // This is only used in the encoder but needs to be indexed per ref frame
162 // so it's extremely convenient to keep it here.
163 int interp_filter_selected[SWITCHABLE];
164
165 // Inter frame reference frame delta for loop filter
166 int8_t ref_deltas[REF_FRAMES];
167
168 // 0 = ZERO_MV, MV
169 int8_t mode_deltas[MAX_MODE_LF_DELTAS2];
170
171 FRAME_CONTEXT frame_context;
172
173 int filter_level[2];
174} RefCntBuffer;
175
176typedef struct BufferPool {
177// Protect BufferPool from being accessed by several FrameWorkers at
178// the same time during frame parallel decode.
179// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
180// TODO(wtc): Remove this. See
181// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
182#if CONFIG_MULTITHREAD1
183 pthread_mutex_t pool_mutex;
184#endif
185
186 // Private data associated with the frame buffer callbacks.
187 void *cb_priv;
188
189 aom_get_frame_buffer_cb_fn_t get_fb_cb;
190 aom_release_frame_buffer_cb_fn_t release_fb_cb;
191
192 RefCntBuffer *frame_bufs;
193 uint8_t num_frame_bufs;
194
195 // Frame buffers allocated internally by the codec.
196 InternalFrameBufferList int_frame_buffers;
197} BufferPool;
198
199/*!\endcond */
200
201/*!\brief Parameters related to CDEF */
202typedef struct {
203 //! CDEF column line buffer
204 uint16_t *colbuf[MAX_MB_PLANE3];
205 //! CDEF top & bottom line buffer
206 uint16_t *linebuf[MAX_MB_PLANE3];
207 //! CDEF intermediate buffer
208 uint16_t *srcbuf;
209 //! CDEF column line buffer sizes
210 size_t allocated_colbuf_size[MAX_MB_PLANE3];
211 //! CDEF top and bottom line buffer sizes
212 size_t allocated_linebuf_size[MAX_MB_PLANE3];
213 //! CDEF intermediate buffer size
214 size_t allocated_srcbuf_size;
215 //! CDEF damping factor
216 int cdef_damping;
217 //! Number of CDEF strength values
218 int nb_cdef_strengths;
219 //! CDEF strength values for luma
220 int cdef_strengths[CDEF_MAX_STRENGTHS16];
221 //! CDEF strength values for chroma
222 int cdef_uv_strengths[CDEF_MAX_STRENGTHS16];
223 //! Number of CDEF strength values in bits
224 int cdef_bits;
225 //! Number of rows in the frame in 4 pixel
226 int allocated_mi_rows;
227 //! Number of CDEF workers
228 int allocated_num_workers;
229} CdefInfo;
230
231/*!\cond */
232
233typedef struct {
234 int delta_q_present_flag;
235 // Resolution of delta quant
236 int delta_q_res;
237 int delta_lf_present_flag;
238 // Resolution of delta lf level
239 int delta_lf_res;
240 // This is a flag for number of deltas of loop filter level
241 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
242 // 1: use separate deltas for each filter level
243 int delta_lf_multi;
244} DeltaQInfo;
245
246typedef struct {
247 int enable_order_hint; // 0 - disable order hint, and related tools
248 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
249 // frame_sign_bias
250 // if 0, enable_dist_wtd_comp and
251 // enable_ref_frame_mvs must be set as 0.
252 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
253 // 1 - enable it
254 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
255 // 1 - enable it
256} OrderHintInfo;
257
258// Sequence header structure.
259// Note: All syntax elements of sequence_header_obu that need to be
260// bit-identical across multiple sequence headers must be part of this struct,
261// so that consistency is checked by are_seq_headers_consistent() function.
262// One exception is the last member 'op_params' that is ignored by
263// are_seq_headers_consistent() function.
264typedef struct SequenceHeader {
265 int num_bits_width;
266 int num_bits_height;
267 int max_frame_width;
268 int max_frame_height;
269 // Whether current and reference frame IDs are signaled in the bitstream.
270 // Frame id numbers are additional information that do not affect the
271 // decoding process, but provide decoders with a way of detecting missing
272 // reference frames so that appropriate action can be taken.
273 uint8_t frame_id_numbers_present_flag;
274 int frame_id_length;
275 int delta_frame_id_length;
276 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
277 int mib_size; // Size of the superblock in units of MI blocks
278 int mib_size_log2; // Log 2 of above.
279
280 OrderHintInfo order_hint_info;
281
282 uint8_t force_screen_content_tools; // 0 - force off
283 // 1 - force on
284 // 2 - adaptive
285 uint8_t still_picture; // Video is a single frame still picture
286 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
287 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
288 // 1 - force to integer
289 // 2 - adaptive
290 uint8_t enable_filter_intra; // enables/disables filterintra
291 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
292 uint8_t enable_interintra_compound; // enables/disables interintra_compound
293 uint8_t enable_masked_compound; // enables/disables masked compound
294 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
295 // 1 - enable vert/horz filter selection
296 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
297 // 1 - enable warp for the sequence
298 uint8_t enable_superres; // 0 - Disable superres for the sequence
299 // and no frame level superres flag
300 // 1 - Enable superres for the sequence
301 // enable per-frame superres flag
302 uint8_t enable_cdef; // To turn on/off CDEF
303 uint8_t enable_restoration; // To turn on/off loop restoration
304 BITSTREAM_PROFILE profile;
305
306 // Color config.
307 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
308 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
309 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
310 uint8_t monochrome; // Monochrome video
311 aom_color_primaries_t color_primaries;
312 aom_transfer_characteristics_t transfer_characteristics;
313 aom_matrix_coefficients_t matrix_coefficients;
314 int color_range;
315 int subsampling_x; // Chroma subsampling for x
316 int subsampling_y; // Chroma subsampling for y
317 aom_chroma_sample_position_t chroma_sample_position;
318 uint8_t separate_uv_delta_q;
319 uint8_t film_grain_params_present;
320
321 // Operating point info.
322 int operating_points_cnt_minus_1;
323 int operating_point_idc[MAX_NUM_OPERATING_POINTS(8 * 4)];
324 // True if operating_point_idc[op] is not equal to 0 for any value of op from
325 // 0 to operating_points_cnt_minus_1.
326 bool_Bool has_nonzero_operating_point_idc;
327 int timing_info_present;
328 aom_timing_info_t timing_info;
329 uint8_t decoder_model_info_present_flag;
330 aom_dec_model_info_t decoder_model_info;
331 uint8_t display_model_info_present_flag;
332 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS(8 * 4)];
333 uint8_t tier[MAX_NUM_OPERATING_POINTS(8 * 4)]; // seq_tier in spec. One bit: 0 or 1.
334
335 // IMPORTANT: the op_params member must be at the end of the struct so that
336 // are_seq_headers_consistent() can be implemented with a memcmp() call.
337 // TODO(urvang): We probably don't need the +1 here.
338 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS(8 * 4) + 1];
339} SequenceHeader;
340
341typedef struct {
342 int skip_mode_allowed;
343 int skip_mode_flag;
344 int ref_frame_idx_0;
345 int ref_frame_idx_1;
346} SkipModeInfo;
347
348typedef struct {
349 FRAME_TYPE frame_type;
350 REFERENCE_MODE reference_mode;
351
352 unsigned int order_hint;
353 unsigned int display_order_hint;
354 // Frame's level within the hierarchical structure.
355 unsigned int pyramid_level;
356 unsigned int frame_number;
357 SkipModeInfo skip_mode_info;
358 int refresh_frame_flags; // Which ref frames are overwritten by this frame
359 int frame_refs_short_signaling;
360} CurrentFrame;
361
362/*!\endcond */
363
364/*!
365 * \brief Frame level features.
366 */
367typedef struct {
368 /*!
369 * If true, CDF update in the symbol encoding/decoding process is disabled.
370 */
371 bool_Bool disable_cdf_update;
372 /*!
373 * If true, motion vectors are specified to eighth pel precision; and
374 * if false, motion vectors are specified to quarter pel precision.
375 */
376 bool_Bool allow_high_precision_mv;
377 /*!
378 * If true, force integer motion vectors; if false, use the default.
379 */
380 bool_Bool cur_frame_force_integer_mv;
381 /*!
382 * If true, palette tool and/or intra block copy tools may be used.
383 */
384 bool_Bool allow_screen_content_tools;
385 bool_Bool allow_intrabc; /*!< If true, intra block copy tool may be used. */
386 bool_Bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
387 /*!
388 * If true, using previous frames' motion vectors for prediction is allowed.
389 */
390 bool_Bool allow_ref_frame_mvs;
391 /*!
392 * If true, frame is fully lossless at coded resolution.
393 * */
394 bool_Bool coded_lossless;
395 /*!
396 * If true, frame is fully lossless at upscaled resolution.
397 */
398 bool_Bool all_lossless;
399 /*!
400 * If true, the frame is restricted to a reduced subset of the full set of
401 * transform types.
402 */
403 bool_Bool reduced_tx_set_used;
404 /*!
405 * If true, error resilient mode is enabled.
406 * Note: Error resilient mode allows the syntax of a frame to be parsed
407 * independently of previously decoded frames.
408 */
409 bool_Bool error_resilient_mode;
410 /*!
411 * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
412 * if true, all MOTION_MODES may be used.
413 */
414 bool_Bool switchable_motion_mode;
415 TX_MODE tx_mode; /*!< Transform mode at frame level. */
416 InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
417 /*!
418 * The reference frame that contains the CDF values and other state that
419 * should be loaded at the start of the frame.
420 */
421 int primary_ref_frame;
422 /*!
423 * Byte alignment of the planes in the reference buffers.
424 */
425 int byte_alignment;
426 /*!
427 * Flag signaling how frame contexts should be updated at the end of
428 * a frame decode.
429 */
430 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
431} FeatureFlags;
432
433/*!
434 * \brief Params related to tiles.
435 */
436typedef struct CommonTileParams {
437 int cols; /*!< number of tile columns that frame is divided into */
438 int rows; /*!< number of tile rows that frame is divided into */
439 int max_width_sb; /*!< maximum tile width in superblock units. */
440 int max_height_sb; /*!< maximum tile height in superblock units. */
441
442 /*!
443 * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
444 */
445 int min_inner_width;
446
447 /*!
448 * If true, tiles are uniformly spaced with power-of-two number of rows and
449 * columns.
450 * If false, tiles have explicitly configured widths and heights.
451 */
452 int uniform_spacing;
453
454 /**
455 * \name Members only valid when uniform_spacing == 1
456 */
457 /**@{*/
458 int log2_cols; /*!< log2 of 'cols'. */
459 int log2_rows; /*!< log2 of 'rows'. */
460 int width; /*!< tile width in MI units */
461 int height; /*!< tile height in MI units */
462 /**@}*/
463
464 /*!
465 * Min num of tile columns possible based on 'max_width_sb' and frame width.
466 */
467 int min_log2_cols;
468 /*!
469 * Min num of tile rows possible based on 'max_height_sb' and frame height.
470 */
471 int min_log2_rows;
472 /*!
473 * Max num of tile columns possible based on frame width.
474 */
475 int max_log2_cols;
476 /*!
477 * Max num of tile rows possible based on frame height.
478 */
479 int max_log2_rows;
480 /*!
481 * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
482 */
483 int min_log2;
484 /*!
485 * col_start_sb[i] is the start position of tile column i in superblock units.
486 * valid for 0 <= i <= cols
487 */
488 int col_start_sb[MAX_TILE_COLS64 + 1];
489 /*!
490 * row_start_sb[i] is the start position of tile row i in superblock units.
491 * valid for 0 <= i <= rows
492 */
493 int row_start_sb[MAX_TILE_ROWS64 + 1];
494 /*!
495 * If true, we are using large scale tile mode.
496 */
497 unsigned int large_scale;
498 /*!
499 * Only relevant when large_scale == 1.
500 * If true, the independent decoding of a single tile or a section of a frame
501 * is allowed.
502 */
503 unsigned int single_tile_decoding;
504} CommonTileParams;
505
506typedef struct CommonModeInfoParams CommonModeInfoParams;
507/*!
508 * \brief Params related to MB_MODE_INFO arrays and related info.
509 */
510struct CommonModeInfoParams {
511 /*!
512 * Number of rows in the frame in 16 pixel units.
513 * This is computed from frame height aligned to a multiple of 8.
514 */
515 int mb_rows;
516 /*!
517 * Number of cols in the frame in 16 pixel units.
518 * This is computed from frame width aligned to a multiple of 8.
519 */
520 int mb_cols;
521
522 /*!
523 * Total MBs = mb_rows * mb_cols.
524 */
525 int MBs;
526
527 /*!
528 * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
529 * This is computed from frame height aligned to a multiple of 8.
530 */
531 int mi_rows;
532 /*!
533 * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
534 * This is computed from frame width aligned to a multiple of 8.
535 */
536 int mi_cols;
537
538 /*!
539 * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
540 * in the frame.
541 * Note: This array should be treated like a scratch memory, and should NOT be
542 * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
543 */
544 MB_MODE_INFO *mi_alloc;
545 /*!
546 * Number of allocated elements in 'mi_alloc'.
547 */
548 int mi_alloc_size;
549 /*!
550 * Stride for 'mi_alloc' array.
551 */
552 int mi_alloc_stride;
553 /*!
554 * The minimum block size that each element in 'mi_alloc' can correspond to.
555 * For decoder, this is always BLOCK_4X4.
556 * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
557 * case. Otherwise, this is BLOCK_4X4.
558 */
559 BLOCK_SIZE mi_alloc_bsize;
560
561 /*!
562 * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
563 * It's possible that:
564 * - Multiple pointers in the grid point to the same element in 'mi_alloc'
565 * (for example, for all 4x4 blocks that belong to the same partition block).
566 * - Some pointers can be NULL (for example, for blocks outside visible area).
567 */
568 MB_MODE_INFO **mi_grid_base;
569 /*!
570 * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
571 */
572 int mi_grid_size;
573 /*!
574 * Stride for 'mi_grid_base' (and 'tx_type_map' also).
575 */
576 int mi_stride;
577
578 /*!
579 * An array of tx types for each 4x4 block in the frame.
580 * Number of allocated elements is same as 'mi_grid_size', and stride is
581 * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
582 * 'mi_grid_base'.
583 */
584 TX_TYPE *tx_type_map;
585
586 /**
587 * \name Function pointers to allow separate logic for encoder and decoder.
588 */
589 /**@{*/
590 /*!
591 * Free the memory allocated to arrays in 'mi_params'.
592 * \param[in,out] mi_params object containing common mode info parameters
593 */
594 void (*free_mi)(struct CommonModeInfoParams *mi_params);
595 /*!
596 * Initialize / reset appropriate arrays in 'mi_params'.
597 * \param[in,out] mi_params object containing common mode info parameters
598 */
599 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
600 /*!
601 * Allocate required memory for arrays in 'mi_params'.
602 * \param[in,out] mi_params object containing common mode info
603 * parameters
604 * \param width frame width
605 * \param height frame height
606 * \param min_partition_size minimum partition size allowed while
607 * encoding
608 */
609 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
610 int height, BLOCK_SIZE min_partition_size);
611 /**@}*/
612};
613
614typedef struct CommonQuantParams CommonQuantParams;
615/*!
616 * \brief Parameters related to quantization at the frame level.
617 */
618struct CommonQuantParams {
619 /*!
620 * Base qindex of the frame in the range 0 to 255.
621 */
622 int base_qindex;
623
624 /*!
625 * Sharpness adjustment in the quantization process.
626 */
627 int sharpness;
628
629 /*!
630 * Delta of qindex (from base_qindex) for Y plane DC coefficient.
631 * Note: y_ac_delta_q is implicitly 0.
632 */
633 int y_dc_delta_q;
634
635 /*!
636 * Delta of qindex (from base_qindex) for U plane DC coefficients.
637 */
638 int u_dc_delta_q;
639 /*!
640 * Delta of qindex (from base_qindex) for U plane AC coefficients.
641 */
642 int v_dc_delta_q;
643
644 /*!
645 * Delta of qindex (from base_qindex) for V plane DC coefficients.
646 * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
647 */
648 int u_ac_delta_q;
649 /*!
650 * Delta of qindex (from base_qindex) for V plane AC coefficients.
651 * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
652 */
653 int v_ac_delta_q;
654
655 /*
656 * Note: The qindex per superblock may have a delta from the qindex obtained
657 * at frame level from parameters above, based on 'cm->delta_q_info'.
658 */
659
660 /**
661 * \name True dequantizers.
662 * The dequantizers below are true dequantizers used only in the
663 * dequantization process. They have the same coefficient
664 * shift/scale as TX.
665 */
666 /**@{*/
667 int16_t y_dequant_QTX[MAX_SEGMENTS8][2]; /*!< Dequant for Y plane */
668 int16_t u_dequant_QTX[MAX_SEGMENTS8][2]; /*!< Dequant for U plane */
669 int16_t v_dequant_QTX[MAX_SEGMENTS8][2]; /*!< Dequant for V plane */
670 /**@}*/
671
672 /**
673 * \name Global quantization matrix tables.
674 */
675 /**@{*/
676 /*!
677 * Global dequantization matrix table.
678 */
679 const qm_val_t *giqmatrix[NUM_QM_LEVELS(1 << 4)][3][TX_SIZES_ALL];
680 /*!
681 * Global quantization matrix table.
682 */
683 const qm_val_t *gqmatrix[NUM_QM_LEVELS(1 << 4)][3][TX_SIZES_ALL];
684 /**@}*/
685
686 /**
687 * \name Local dequantization matrix tables for each frame.
688 */
689 /**@{*/
690 /*!
691 * Local dequant matrix for Y plane.
692 */
693 const qm_val_t *y_iqmatrix[MAX_SEGMENTS8][TX_SIZES_ALL];
694 /*!
695 * Local dequant matrix for U plane.
696 */
697 const qm_val_t *u_iqmatrix[MAX_SEGMENTS8][TX_SIZES_ALL];
698 /*!
699 * Local dequant matrix for V plane.
700 */
701 const qm_val_t *v_iqmatrix[MAX_SEGMENTS8][TX_SIZES_ALL];
702 /**@}*/
703
704 /*!
705 * Flag indicating whether quantization matrices are being used:
706 * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
707 * indices to be used to access appropriate global quant matrix tables.
708 * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
709 */
710 bool_Bool using_qmatrix;
711 /**
712 * \name Valid only when using_qmatrix == true
713 * Indicate the level indices to be used to access appropriate global quant
714 * matrix tables.
715 */
716 /**@{*/
717 int qmatrix_level_y; /*!< Level index for Y plane */
718 int qmatrix_level_u; /*!< Level index for U plane */
719 int qmatrix_level_v; /*!< Level index for V plane */
720 /**@}*/
721};
722
723typedef struct CommonContexts CommonContexts;
724/*!
725 * \brief Contexts used for transmitting various symbols in the bitstream.
726 */
727struct CommonContexts {
728 /*!
729 * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
730 * partition[i][j] is the context for ith tile row, jth mi_col.
731 */
732 PARTITION_CONTEXT **partition;
733
734 /*!
735 * Context used to derive context for multiple symbols:
736 * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
737 * to transmit skip_txfm flag.
738 * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
739 * sign.
740 * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
741 */
742 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE3];
743
744 /*!
745 * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
746 * transmit 'is_split' flag to indicate if this transform block should be
747 * split into smaller sub-blocks.
748 * txfm[i][j] is the context for ith tile row, jth mi_col.
749 */
750 TXFM_CONTEXT **txfm;
751
752 /*!
753 * Dimensions that were used to allocate the arrays above.
754 * If these dimensions change, the arrays may have to be re-allocated.
755 */
756 int num_planes; /*!< Corresponds to av1_num_planes(cm) */
757 int num_tile_rows; /*!< Corresponds to cm->tiles.row */
758 int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */
759};
760
761/*!
762 * \brief Top level common structure used by both encoder and decoder.
763 */
764typedef struct AV1Common {
Excessive padding in 'struct AV1Common' (39 padding bytes, where 7 is optimal). Optimal fields order: lf_info, error, prev_frame, cur_frame, last_frame_seg_map, rst_tmpbuf, rlbs, seq_params, fc, default_frame_context, buffer_pool, tpl_mvs, above_contexts, ref_frame_map, mi_params, rst_info, rst_frame, cdef_info, quant_params, width, height, render_width, render_height, superres_upscaled_width, superres_upscaled_height, frame_presentation_time, show_frame, showable_frame, show_existing_frame, current_frame_id, tpl_mvs_mem_size, temporal_layer_id, spatial_layer_id, sf_identity, delta_q_info, features, remapped_ref_idx, ref_frame_id, ref_frame_sign_bias, current_frame, lf, ref_scale_factors, buffer_removal_times, seg, global_motion, tiles, film_grain_params, superres_scale_denominator, ref_frame_side, consider reordering the fields or adding explicit padding members
765 /*!
766 * Information about the current frame that is being coded.
767 */
768 CurrentFrame current_frame;
769 /*!
770 * Code and details about current error status.
771 */
772 struct aom_internal_error_info *error;
773
774 /*!
775 * AV1 allows two types of frame scaling operations:
776 * 1. Frame super-resolution: that allows coding a frame at lower resolution
777 * and after decoding the frame, normatively scales and restores the frame --
778 * inside the coding loop.
779 * 2. Frame resize: that allows coding frame at lower/higher resolution, and
780 * then non-normatively upscale the frame at the time of rendering -- outside
781 * the coding loop.
782 * Hence, the need for 3 types of dimensions.
783 */
784
785 /**
786 * \name Coded frame dimensions.
787 */
788 /**@{*/
789 int width; /*!< Coded frame width */
790 int height; /*!< Coded frame height */
791 /**@}*/
792
793 /**
794 * \name Rendered frame dimensions.
795 * Dimensions after applying both super-resolution and resize to the coded
796 * frame. Different from coded dimensions if super-resolution and/or resize
797 * are being used for this frame.
798 */
799 /**@{*/
800 int render_width; /*!< Rendered frame width */
801 int render_height; /*!< Rendered frame height */
802 /**@}*/
803
804 /**
805 * \name Super-resolved frame dimensions.
806 * Frame dimensions after applying super-resolution to the coded frame (if
807 * present), but before applying resize.
808 * Larger than the coded dimensions if super-resolution is being used for
809 * this frame.
810 * Different from rendered dimensions if resize is being used for this frame.
811 */
812 /**@{*/
813 int superres_upscaled_width; /*!< Super-resolved frame width */
814 int superres_upscaled_height; /*!< Super-resolved frame height */
815 /**@}*/
816
817 /*!
818 * The denominator of the superres scale used by this frame.
819 * Note: The numerator is fixed to be SCALE_NUMERATOR.
820 */
821 uint8_t superres_scale_denominator;
822
823 /*!
824 * buffer_removal_times[op_num] specifies the frame removal time in units of
825 * DecCT clock ticks counted from the removal time of the last random access
826 * point for operating point op_num.
827 * TODO(urvang): We probably don't need the +1 here.
828 */
829 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS(8 * 4) + 1];
830 /*!
831 * Presentation time of the frame in clock ticks DispCT counted from the
832 * removal time of the last random access point for the operating point that
833 * is being decoded.
834 */
835 uint32_t frame_presentation_time;
836
837 /*!
838 * Buffer where previous frame is stored.
839 */
840 RefCntBuffer *prev_frame;
841
842 /*!
843 * Buffer into which the current frame will be stored and other related info.
844 * TODO(hkuang): Combine this with cur_buf in macroblockd.
845 */
846 RefCntBuffer *cur_frame;
847
848 /*!
849 * For encoder, we have a two-level mapping from reference frame type to the
850 * corresponding buffer in the buffer pool:
851 * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
852 * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
853 * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
854 * the reference counted buffer structure RefCntBuffer, taken from the buffer
855 * pool cm->buffer_pool->frame_bufs.
856 *
857 * LAST_FRAME, ..., EXTREF_FRAME
858 * | |
859 * v v
860 * remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
861 * | |
862 * v v
863 * ref_frame_map[], ..., ref_frame_map[]
864 *
865 * Note: INTRA_FRAME always refers to the current frame, so there's no need to
866 * have a remapped index for the same.
867 */
868 int remapped_ref_idx[REF_FRAMES];
869
870 /*!
871 * Scale of the current frame with respect to itself.
872 * This is currently used for intra block copy, which behaves like an inter
873 * prediction mode, where the reference frame is the current frame itself.
874 */
875 struct scale_factors sf_identity;
876
877 /*!
878 * Scale factors of the reference frame with respect to the current frame.
879 * This is required for generating inter prediction and will be non-identity
880 * for a reference frame, if it has different dimensions than the coded
881 * dimensions of the current frame.
882 */
883 struct scale_factors ref_scale_factors[REF_FRAMES];
884
885 /*!
886 * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
887 * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
888 * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
889 * remapped reference index 'j' (that is, original reference type 'i') to
890 * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
891 */
892 RefCntBuffer *ref_frame_map[REF_FRAMES];
893
894 /*!
895 * If true, this frame is actually shown after decoding.
896 * If false, this frame is coded in the bitstream, but not shown. It is only
897 * used as a reference for other frames coded later.
898 */
899 int show_frame;
900
901 /*!
902 * If true, this frame can be used as a show-existing frame for other frames
903 * coded later.
904 * When 'show_frame' is true, this is always true for all non-keyframes.
905 * When 'show_frame' is false, this value is transmitted in the bitstream.
906 */
907 int showable_frame;
908
909 /*!
910 * If true, show an existing frame coded before, instead of actually coding a
911 * frame. The existing frame comes from one of the existing reference buffers,
912 * as signaled in the bitstream.
913 */
914 int show_existing_frame;
915
916 /*!
917 * Whether some features are allowed or not.
918 */
919 FeatureFlags features;
920
921 /*!
922 * Params related to MB_MODE_INFO arrays and related info.
923 */
924 CommonModeInfoParams mi_params;
925
926#if CONFIG_ENTROPY_STATS0
927 /*!
928 * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
929 */
930 int coef_cdf_category;
931#endif // CONFIG_ENTROPY_STATS
932
933 /*!
934 * Quantization params.
935 */
936 CommonQuantParams quant_params;
937
938 /*!
939 * Segmentation info for current frame.
940 */
941 struct segmentation seg;
942
943 /*!
944 * Segmentation map for previous frame.
945 */
946 uint8_t *last_frame_seg_map;
947
948 /**
949 * \name Deblocking filter parameters.
950 */
951 /**@{*/
952 loop_filter_info_n lf_info; /*!< Loop filter info */
953 struct loopfilter lf; /*!< Loop filter parameters */
954 /**@}*/
955
956 /**
957 * \name Loop Restoration filter parameters.
958 */
959 /**@{*/
960 RestorationInfo rst_info[MAX_MB_PLANE3]; /*!< Loop Restoration filter info */
961 int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
962 RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
963 YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
964 /**@}*/
965
966 /*!
967 * CDEF (Constrained Directional Enhancement Filter) parameters.
968 */
969 CdefInfo cdef_info;
970
971 /*!
972 * Parameters for film grain synthesis.
973 */
974 aom_film_grain_t film_grain_params;
975
976 /*!
977 * Parameters for delta quantization and delta loop filter level.
978 */
979 DeltaQInfo delta_q_info;
980
981 /*!
982 * Global motion parameters for each reference frame.
983 */
984 WarpedMotionParams global_motion[REF_FRAMES];
985
986 /*!
987 * Elements part of the sequence header, that are applicable for all the
988 * frames in the video.
989 */
990 SequenceHeader *seq_params;
991
992 /*!
993 * Current CDFs of all the symbols for the current frame.
994 */
995 FRAME_CONTEXT *fc;
996 /*!
997 * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
998 * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
999 * copied from default CDF tables for each symbol.
1000 */
1001 FRAME_CONTEXT *default_frame_context;
1002
1003 /*!
1004 * Parameters related to tiling.
1005 */
1006 CommonTileParams tiles;
1007
1008 /*!
1009 * External BufferPool passed from outside.
1010 */
1011 BufferPool *buffer_pool;
1012
1013 /*!
1014 * Above context buffers and their sizes.
1015 * Note: above contexts are allocated in this struct, as their size is
1016 * dependent on frame width, while left contexts are declared and allocated in
1017 * MACROBLOCKD struct, as they have a fixed size.
1018 */
1019 CommonContexts above_contexts;
1020
1021 /**
1022 * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
1023 */
1024 /**@{*/
1025 int current_frame_id; /*!< frame ID for the current frame. */
1026 int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
1027 /**@}*/
1028
1029 /*!
1030 * Motion vectors provided by motion field estimation.
1031 * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
1032 * mi_row = 2 * row,
1033 * mi_col = 2 * col, and
1034 * stride = cm->mi_params.mi_stride / 2
1035 */
1036 TPL_MV_REF *tpl_mvs;
1037 /*!
1038 * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
1039 */
1040 int tpl_mvs_mem_size;
1041 /*!
1042 * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
1043 * current frame is positive; and 0 otherwise.
1044 */
1045 int ref_frame_sign_bias[REF_FRAMES];
1046 /*!
1047 * ref_frame_side[k] is 1 if relative distance between reference 'k' and
1048 * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
1049 * TODO(jingning): This can be combined with sign_bias later.
1050 */
1051 int8_t ref_frame_side[REF_FRAMES];
1052
1053 /*!
1054 * Temporal layer ID of this frame
1055 * (in the range 0 ... (number_temporal_layers - 1)).
1056 */
1057 int temporal_layer_id;
1058
1059 /*!
1060 * Spatial layer ID of this frame
1061 * (in the range 0 ... (number_spatial_layers - 1)).
1062 */
1063 int spatial_layer_id;
1064
1065#if TXCOEFF_TIMER0
1066 int64_t cum_txcoeff_timer;
1067 int64_t txcoeff_timer;
1068 int txb_count;
1069#endif // TXCOEFF_TIMER
1070
1071#if TXCOEFF_COST_TIMER0
1072 int64_t cum_txcoeff_cost_timer;
1073 int64_t txcoeff_cost_timer;
1074 int64_t txcoeff_cost_count;
1075#endif // TXCOEFF_COST_TIMER
1076} AV1_COMMON;
1077
1078/*!\cond */
1079
1080// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1081// frame reference count.
1082static void lock_buffer_pool(BufferPool *const pool) {
1083#if CONFIG_MULTITHREAD1
1084 pthread_mutex_lock(&pool->pool_mutex);
1085#else
1086 (void)pool;
1087#endif
1088}
1089
1090static void unlock_buffer_pool(BufferPool *const pool) {
1091#if CONFIG_MULTITHREAD1
1092 pthread_mutex_unlock(&pool->pool_mutex);
1093#else
1094 (void)pool;
1095#endif
1096}
1097
1098static inline YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1099 if (index < 0 || index >= REF_FRAMES) return NULL((void*)0);
1100 if (cm->ref_frame_map[index] == NULL((void*)0)) return NULL((void*)0);
1101 return &cm->ref_frame_map[index]->buf;
1102}
1103
1104static inline int get_free_fb(AV1_COMMON *cm) {
1105 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1106 int i;
1107
1108 lock_buffer_pool(cm->buffer_pool);
1109 const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1110 for (i = 0; i < num_frame_bufs; ++i)
1111 if (frame_bufs[i].ref_count == 0) break;
1112
1113 if (i != num_frame_bufs) {
1114 if (frame_bufs[i].buf.use_external_reference_buffers) {
1115 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1116 // external reference buffers. Restore the buffer pointers to point to the
1117 // internally allocated memory.
1118 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1119 ybf->y_buffer = ybf->store_buf_adr[0];
1120 ybf->u_buffer = ybf->store_buf_adr[1];
1121 ybf->v_buffer = ybf->store_buf_adr[2];
1122 ybf->use_external_reference_buffers = 0;
1123 }
1124
1125 frame_bufs[i].ref_count = 1;
1126 } else {
1127 // We should never run out of free buffers. If this assertion fails, there
1128 // is a reference leak.
1129 assert(0 && "Ran out of free frame buffers. Likely a reference leak.")((void) sizeof ((0 && "Ran out of free frame buffers. Likely a reference leak."
) ? 1 : 0), __extension__ ({ if (0 && "Ran out of free frame buffers. Likely a reference leak."
) ; else __assert_fail ("0 && \"Ran out of free frame buffers. Likely a reference leak.\""
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1129, __extension__ __PRETTY_FUNCTION__); }))
;
1130 // Reset i to be INVALID_IDX to indicate no free buffer found.
1131 i = INVALID_IDX-1;
1132 }
1133
1134 unlock_buffer_pool(cm->buffer_pool);
1135 return i;
1136}
1137
1138static inline RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1139 // Release the previously-used frame-buffer
1140 if (cm->cur_frame != NULL((void*)0)) {
1141 --cm->cur_frame->ref_count;
1142 cm->cur_frame = NULL((void*)0);
1143 }
1144
1145 // Assign a new framebuffer
1146 const int new_fb_idx = get_free_fb(cm);
1147 if (new_fb_idx == INVALID_IDX-1) return NULL((void*)0);
1148
1149 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1150#if CONFIG_AV1_ENCODER1 && !CONFIG_REALTIME_ONLY0
1151 aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1152 av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1153#endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1154 av1_zero(cm->cur_frame->interp_filter_selected)memset(&(cm->cur_frame->interp_filter_selected), 0,
sizeof(cm->cur_frame->interp_filter_selected))
;
1155 return cm->cur_frame;
1156}
1157
1158// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1159// counts accordingly.
1160static inline void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1161 RefCntBuffer *rhs_ptr) {
1162 RefCntBuffer *const old_ptr = *lhs_ptr;
1163 if (old_ptr != NULL((void*)0)) {
1164 assert(old_ptr->ref_count > 0)((void) sizeof ((old_ptr->ref_count > 0) ? 1 : 0), __extension__
({ if (old_ptr->ref_count > 0) ; else __assert_fail ("old_ptr->ref_count > 0"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1164, __extension__ __PRETTY_FUNCTION__); }))
;
1165 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1166 --old_ptr->ref_count;
1167 }
1168
1169 *lhs_ptr = rhs_ptr;
1170 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1171 ++rhs_ptr->ref_count;
1172}
1173
1174static inline int frame_is_intra_only(const AV1_COMMON *const cm) {
1175 return cm->current_frame.frame_type == KEY_FRAME ||
1176 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1177}
1178
1179static inline int frame_is_sframe(const AV1_COMMON *cm) {
1180 return cm->current_frame.frame_type == S_FRAME;
1181}
1182
1183// These functions take a reference frame label between LAST_FRAME and
1184// EXTREF_FRAME inclusive. Note that this is different to the indexing
1185// previously used by the frame_refs[] array.
1186static inline int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1187 const MV_REFERENCE_FRAME ref_frame) {
1188 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1189 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1190 : INVALID_IDX-1;
1191}
1192
1193static inline RefCntBuffer *get_ref_frame_buf(
1194 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1195 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1196 return (map_idx != INVALID_IDX-1) ? cm->ref_frame_map[map_idx] : NULL((void*)0);
1197}
1198
1199// Both const and non-const versions of this function are provided so that it
1200// can be used with a const AV1_COMMON if needed.
1201static inline const struct scale_factors *get_ref_scale_factors_const(
1202 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1203 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1204 return (map_idx != INVALID_IDX-1) ? &cm->ref_scale_factors[map_idx] : NULL((void*)0);
1205}
1206
1207static inline struct scale_factors *get_ref_scale_factors(
1208 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1209 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1210 return (map_idx != INVALID_IDX-1) ? &cm->ref_scale_factors[map_idx] : NULL((void*)0);
1211}
1212
1213static inline RefCntBuffer *get_primary_ref_frame_buf(
1214 const AV1_COMMON *const cm) {
1215 const int primary_ref_frame = cm->features.primary_ref_frame;
1216 if (primary_ref_frame == PRIMARY_REF_NONE7) return NULL((void*)0);
1217 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1218 return (map_idx != INVALID_IDX-1) ? cm->ref_frame_map[map_idx] : NULL((void*)0);
1219}
1220
1221// Returns 1 if this frame might allow mvs from some reference frame.
1222static inline int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1223 return !cm->features.error_resilient_mode &&
1224 cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1225 cm->seq_params->order_hint_info.enable_order_hint &&
1226 !frame_is_intra_only(cm);
1227}
1228
1229// Returns 1 if this frame might use warped_motion
1230static inline int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1231 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1232 cm->seq_params->enable_warped_motion;
1233}
1234
1235static inline void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1236 const int buf_rows = buf->mi_rows;
1237 const int buf_cols = buf->mi_cols;
1238 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1239
1240 if (buf->mvs == NULL((void*)0) || buf_rows != mi_params->mi_rows ||
1241 buf_cols != mi_params->mi_cols) {
1242 aom_free(buf->mvs);
1243 buf->mi_rows = mi_params->mi_rows;
1244 buf->mi_cols = mi_params->mi_cols;
1245 CHECK_MEM_ERROR(cm, buf->mvs,do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows
+ 1) >> 1) * ((mi_params->mi_cols + 1) >> 1),
sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error
((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs"
); } while (0)
1246 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows
+ 1) >> 1) * ((mi_params->mi_cols + 1) >> 1),
sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error
((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs"
); } while (0)
1247 ((mi_params->mi_cols + 1) >> 1),do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows
+ 1) >> 1) * ((mi_params->mi_cols + 1) >> 1),
sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error
((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs"
); } while (0)
1248 sizeof(*buf->mvs)))do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows
+ 1) >> 1) * ((mi_params->mi_cols + 1) >> 1),
sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error
((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs"
); } while (0)
;
1249 aom_free(buf->seg_map);
1250 CHECK_MEM_ERROR(do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows
* mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf
->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR
, "Failed to allocate " "buf->seg_map"); } while (0)
1251 cm, buf->seg_map,do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows
* mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf
->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR
, "Failed to allocate " "buf->seg_map"); } while (0)
1252 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows
* mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf
->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR
, "Failed to allocate " "buf->seg_map"); } while (0)
1253 sizeof(*buf->seg_map)))do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows
* mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf
->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR
, "Failed to allocate " "buf->seg_map"); } while (0)
;
1254 }
1255
1256 const int mem_size =
1257 ((mi_params->mi_rows + MAX_MIB_SIZE(1 << (7 - 2))) >> 1) * (mi_params->mi_stride >> 1);
1258
1259 if (cm->tpl_mvs == NULL((void*)0) || cm->tpl_mvs_mem_size < mem_size) {
1260 aom_free(cm->tpl_mvs);
1261 CHECK_MEM_ERROR(cm, cm->tpl_mvs,do { cm->tpl_mvs = ((TPL_MV_REF *)aom_calloc(mem_size, sizeof
(*cm->tpl_mvs))); if (!cm->tpl_mvs) aom_internal_error(
(cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "cm->tpl_mvs"
); } while (0)
1262 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)))do { cm->tpl_mvs = ((TPL_MV_REF *)aom_calloc(mem_size, sizeof
(*cm->tpl_mvs))); if (!cm->tpl_mvs) aom_internal_error(
(cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "cm->tpl_mvs"
); } while (0)
;
1263 cm->tpl_mvs_mem_size = mem_size;
1264 }
1265}
1266
1267#if !CONFIG_REALTIME_ONLY0 || CONFIG_AV1_DECODER1
1268void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1269#endif
1270
1271static inline int av1_num_planes(const AV1_COMMON *cm) {
1272 return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE3;
1273}
1274
1275static inline void av1_init_above_context(CommonContexts *above_contexts,
1276 int num_planes, int tile_row,
1277 MACROBLOCKD *xd) {
1278 for (int i = 0; i < num_planes; ++i) {
1279 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1280 }
1281 xd->above_partition_context = above_contexts->partition[tile_row];
1282 xd->above_txfm_context = above_contexts->txfm[tile_row];
1283}
1284
1285static inline void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1286 const int num_planes = av1_num_planes(cm);
1287 const CommonQuantParams *const quant_params = &cm->quant_params;
1288
1289 for (int i = 0; i < num_planes; ++i) {
1290 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1291 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1292 sizeof(quant_params->y_dequant_QTX));
1293 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1294 sizeof(quant_params->y_iqmatrix));
1295
1296 } else {
1297 if (i == AOM_PLANE_U1) {
1298 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1299 sizeof(quant_params->u_dequant_QTX));
1300 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1301 sizeof(quant_params->u_iqmatrix));
1302 } else {
1303 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1304 sizeof(quant_params->v_dequant_QTX));
1305 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1306 sizeof(quant_params->v_iqmatrix));
1307 }
1308 }
1309 }
1310 xd->mi_stride = cm->mi_params.mi_stride;
1311 xd->error_info = cm->error;
1312#if !CONFIG_REALTIME_ONLY0 || CONFIG_AV1_DECODER1
1313 cfl_init(&xd->cfl, cm->seq_params);
1314#endif
1315}
1316
1317static inline void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1318 const int num_planes) {
1319 int i;
1320 int row_offset = mi_row;
1321 int col_offset = mi_col;
1322 for (i = 0; i < num_planes; ++i) {
1323 struct macroblockd_plane *const pd = &xd->plane[i];
1324 // Offset the buffer pointer
1325 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1326 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1327 row_offset = mi_row - 1;
1328 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1329 col_offset = mi_col - 1;
1330 int above_idx = col_offset;
1331 int left_idx = row_offset & MAX_MIB_MASK((1 << (7 - 2)) - 1);
1332 pd->above_entropy_context =
1333 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1334 pd->left_entropy_context =
1335 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1336 }
1337}
1338
1339static inline int calc_mi_size(int len) {
1340 // len is in mi units. Align to a multiple of SBs.
1341 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2)(((len) + ((1 << ((7 - 2))) - 1)) & ~((1 << (
(7 - 2))) - 1))
;
1342}
1343
1344static inline void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1345 const int num_planes) {
1346 int i;
1347 for (i = 0; i < num_planes; i++) {
1348 xd->plane[i].width = (bw * MI_SIZE(1 << 2)) >> xd->plane[i].subsampling_x;
1349 xd->plane[i].height = (bh * MI_SIZE(1 << 2)) >> xd->plane[i].subsampling_y;
1350
1351 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4)(((xd->plane[i].width) > (4)) ? (xd->plane[i].width)
: (4))
;
1352 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4)(((xd->plane[i].height) > (4)) ? (xd->plane[i].height
) : (4))
;
1353 }
1354}
1355
1356static inline void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1357 int mi_row, int bh, int mi_col, int bw,
1358 int mi_rows, int mi_cols) {
1359 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE)((mi_row * (1 << 2))*8);
1360 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE)(((mi_rows - bh - mi_row) * (1 << 2))*8);
1361 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE))(((mi_col * (1 << 2)))*8);
1362 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE)(((mi_cols - bw - mi_col) * (1 << 2))*8);
1363
1364 xd->mi_row = mi_row;
1365 xd->mi_col = mi_col;
1366
1367 // Are edges available for intra prediction?
1368 xd->up_available = (mi_row > tile->mi_row_start);
1369
1370 const int ss_x = xd->plane[1].subsampling_x;
1371 const int ss_y = xd->plane[1].subsampling_y;
1372
1373 xd->left_available = (mi_col > tile->mi_col_start);
1374 xd->chroma_up_available = xd->up_available;
1375 xd->chroma_left_available = xd->left_available;
1376 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1377 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1378 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1379 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1380 if (xd->up_available) {
1381 xd->above_mbmi = xd->mi[-xd->mi_stride];
1382 } else {
1383 xd->above_mbmi = NULL((void*)0);
1384 }
1385
1386 if (xd->left_available) {
1387 xd->left_mbmi = xd->mi[-1];
1388 } else {
1389 xd->left_mbmi = NULL((void*)0);
1390 }
1391
1392 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1393 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1394 xd->is_chroma_ref = chroma_ref;
1395 if (chroma_ref) {
1396 // To help calculate the "above" and "left" chroma blocks, note that the
1397 // current block may cover multiple luma blocks (e.g., if partitioned into
1398 // 4x4 luma blocks).
1399 // First, find the top-left-most luma block covered by this chroma block
1400 MB_MODE_INFO **base_mi =
1401 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1402
1403 // Then, we consider the luma region covered by the left or above 4x4 chroma
1404 // prediction. We want to point to the chroma reference block in that
1405 // region, which is the bottom-right-most mi unit.
1406 // This leads to the following offsets:
1407 MB_MODE_INFO *chroma_above_mi =
1408 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL((void*)0);
1409 xd->chroma_above_mbmi = chroma_above_mi;
1410
1411 MB_MODE_INFO *chroma_left_mi =
1412 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL((void*)0);
1413 xd->chroma_left_mbmi = chroma_left_mi;
1414 }
1415
1416 xd->height = bh;
1417 xd->width = bw;
1418
1419 xd->is_last_vertical_rect = 0;
1420 if (xd->width < xd->height) {
1421 if (!((mi_col + xd->width) & (xd->height - 1))) {
1422 xd->is_last_vertical_rect = 1;
1423 }
1424 }
1425
1426 xd->is_first_horizontal_rect = 0;
1427 if (xd->width > xd->height)
1428 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1429}
1430
1431static inline aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1432 const MB_MODE_INFO *above_mi,
1433 const MB_MODE_INFO *left_mi) {
1434 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1435 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1436 const int above_ctx = intra_mode_context[above];
1437 const int left_ctx = intra_mode_context[left];
1438 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1439}
1440
1441static inline void update_partition_context(MACROBLOCKD *xd, int mi_row,
1442 int mi_col, BLOCK_SIZE subsize,
1443 BLOCK_SIZE bsize) {
1444 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1445 PARTITION_CONTEXT *const left_ctx =
1446 xd->left_partition_context + (mi_row & MAX_MIB_MASK((1 << (7 - 2)) - 1));
1447
1448 const int bw = mi_size_wide[bsize];
1449 const int bh = mi_size_high[bsize];
1450 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1451 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1452}
1453
1454static inline int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1455 int subsampling_x, int subsampling_y) {
1456 assert(bsize < BLOCK_SIZES_ALL)((void) sizeof ((bsize < BLOCK_SIZES_ALL) ? 1 : 0), __extension__
({ if (bsize < BLOCK_SIZES_ALL) ; else __assert_fail ("bsize < BLOCK_SIZES_ALL"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1456, __extension__ __PRETTY_FUNCTION__); }))
;
1457 const int bw = mi_size_wide[bsize];
1458 const int bh = mi_size_high[bsize];
1459 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1460 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1461 return ref_pos;
1462}
1463
1464static inline aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1465 size_t element) {
1466 assert(cdf != NULL)((void) sizeof ((cdf != ((void*)0)) ? 1 : 0), __extension__ (
{ if (cdf != ((void*)0)) ; else __assert_fail ("cdf != NULL",
"/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1466, __extension__ __PRETTY_FUNCTION__); }))
;
1467 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP(1 << 15)) - cdf[element];
1468}
1469
1470static inline void partition_gather_horz_alike(aom_cdf_prob *out,
1471 const aom_cdf_prob *const in,
1472 BLOCK_SIZE bsize) {
1473 (void)bsize;
1474 out[0] = CDF_PROB_TOP(1 << 15);
1475 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1476 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1477 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1478 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1479 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1480 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1481 out[0] = AOM_ICDF(out[0])((1 << 15) - (out[0]));
1482 out[1] = AOM_ICDF(CDF_PROB_TOP)((1 << 15) - ((1 << 15)));
1483}
1484
1485static inline void partition_gather_vert_alike(aom_cdf_prob *out,
1486 const aom_cdf_prob *const in,
1487 BLOCK_SIZE bsize) {
1488 (void)bsize;
1489 out[0] = CDF_PROB_TOP(1 << 15);
1490 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1491 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1492 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1493 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1494 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1495 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1496 out[0] = AOM_ICDF(out[0])((1 << 15) - (out[0]));
1497 out[1] = AOM_ICDF(CDF_PROB_TOP)((1 << 15) - ((1 << 15)));
1498}
1499
1500static inline void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1501 int mi_col, BLOCK_SIZE subsize,
1502 BLOCK_SIZE bsize,
1503 PARTITION_TYPE partition) {
1504 if (bsize >= BLOCK_8X8) {
1505 const int hbs = mi_size_wide[bsize] / 2;
1506 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1507 switch (partition) {
1508 case PARTITION_SPLIT:
1509 if (bsize != BLOCK_8X8) break;
1510 AOM_FALLTHROUGH_INTENDEDdo { } while (0);
1511 case PARTITION_NONE:
1512 case PARTITION_HORZ:
1513 case PARTITION_VERT:
1514 case PARTITION_HORZ_4:
1515 case PARTITION_VERT_4:
1516 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1517 break;
1518 case PARTITION_HORZ_A:
1519 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1520 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1521 break;
1522 case PARTITION_HORZ_B:
1523 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1524 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1525 break;
1526 case PARTITION_VERT_A:
1527 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1528 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1529 break;
1530 case PARTITION_VERT_B:
1531 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1532 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1533 break;
1534 default: assert(0 && "Invalid partition type")((void) sizeof ((0 && "Invalid partition type") ? 1 :
0), __extension__ ({ if (0 && "Invalid partition type"
) ; else __assert_fail ("0 && \"Invalid partition type\""
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1534, __extension__ __PRETTY_FUNCTION__); }))
;
1535 }
1536 }
1537}
1538
1539static inline int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1540 int mi_col, BLOCK_SIZE bsize) {
1541 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1542 const PARTITION_CONTEXT *left_ctx =
1543 xd->left_partition_context + (mi_row & MAX_MIB_MASK((1 << (7 - 2)) - 1));
1544 // Minimum partition point is 8x8. Offset the bsl accordingly.
1545 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1546 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1547
1548 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize])((void) sizeof ((mi_size_wide_log2[bsize] == mi_size_high_log2
[bsize]) ? 1 : 0), __extension__ ({ if (mi_size_wide_log2[bsize
] == mi_size_high_log2[bsize]) ; else __assert_fail ("mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1548, __extension__ __PRETTY_FUNCTION__); }))
;
1549 assert(bsl >= 0)((void) sizeof ((bsl >= 0) ? 1 : 0), __extension__ ({ if (
bsl >= 0) ; else __assert_fail ("bsl >= 0", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1549, __extension__ __PRETTY_FUNCTION__); }))
;
1550
1551 return (left * 2 + above) + bsl * PARTITION_PLOFFSET4;
1552}
1553
1554// Return the number of elements in the partition CDF when
1555// partitioning the (square) block with luma block size of bsize.
1556static inline int partition_cdf_length(BLOCK_SIZE bsize) {
1557 if (bsize <= BLOCK_8X8)
1558 return PARTITION_TYPES;
1559 else if (bsize == BLOCK_128X128)
1560 return EXT_PARTITION_TYPES - 2;
1561 else
1562 return EXT_PARTITION_TYPES;
1563}
1564
1565static inline int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1566 int plane) {
1567 assert(bsize < BLOCK_SIZES_ALL)((void) sizeof ((bsize < BLOCK_SIZES_ALL) ? 1 : 0), __extension__
({ if (bsize < BLOCK_SIZES_ALL) ; else __assert_fail ("bsize < BLOCK_SIZES_ALL"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1567, __extension__ __PRETTY_FUNCTION__); }))
;
1568 int max_blocks_wide = block_size_wide[bsize];
1569
1570 if (xd->mb_to_right_edge < 0) {
1571 const struct macroblockd_plane *const pd = &xd->plane[plane];
1572 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1573 }
1574
1575 // Scale the width in the transform block unit.
1576 return max_blocks_wide >> MI_SIZE_LOG22;
1577}
1578
1579static inline int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1580 int plane) {
1581 int max_blocks_high = block_size_high[bsize];
1582
1583 if (xd->mb_to_bottom_edge < 0) {
1584 const struct macroblockd_plane *const pd = &xd->plane[plane];
1585 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1586 }
1587
1588 // Scale the height in the transform block unit.
1589 return max_blocks_high >> MI_SIZE_LOG22;
1590}
1591
1592static inline void av1_zero_above_context(AV1_COMMON *const cm,
1593 const MACROBLOCKD *xd,
1594 int mi_col_start, int mi_col_end,
1595 const int tile_row) {
1596 const SequenceHeader *const seq_params = cm->seq_params;
1597 const int num_planes = av1_num_planes(cm);
1598 const int width = mi_col_end - mi_col_start;
1599 const int aligned_width =
1600 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2)(((width) + ((1 << (seq_params->mib_size_log2)) - 1)
) & ~((1 << (seq_params->mib_size_log2)) - 1))
;
1601 const int offset_y = mi_col_start;
1602 const int width_y = aligned_width;
1603 const int offset_uv = offset_y >> seq_params->subsampling_x;
1604 const int width_uv = width_y >> seq_params->subsampling_x;
1605 CommonContexts *const above_contexts = &cm->above_contexts;
1606
1607 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y)memset(above_contexts->entropy[0][tile_row] + offset_y, 0,
width_y * sizeof(*(above_contexts->entropy[0][tile_row] +
offset_y)))
;
1608 if (num_planes > 1) {
1609 if (above_contexts->entropy[1][tile_row] &&
1610 above_contexts->entropy[2][tile_row]) {
1611 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,memset(above_contexts->entropy[1][tile_row] + offset_uv, 0
, width_uv * sizeof(*(above_contexts->entropy[1][tile_row]
+ offset_uv)))
1612 width_uv)memset(above_contexts->entropy[1][tile_row] + offset_uv, 0
, width_uv * sizeof(*(above_contexts->entropy[1][tile_row]
+ offset_uv)))
;
1613 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,memset(above_contexts->entropy[2][tile_row] + offset_uv, 0
, width_uv * sizeof(*(above_contexts->entropy[2][tile_row]
+ offset_uv)))
1614 width_uv)memset(above_contexts->entropy[2][tile_row] + offset_uv, 0
, width_uv * sizeof(*(above_contexts->entropy[2][tile_row]
+ offset_uv)))
;
1615 } else {
1616 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1617 "Invalid value of planes");
1618 }
1619 }
1620
1621 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,memset(above_contexts->partition[tile_row] + mi_col_start,
0, aligned_width * sizeof(*(above_contexts->partition[tile_row
] + mi_col_start)))
1622 aligned_width)memset(above_contexts->partition[tile_row] + mi_col_start,
0, aligned_width * sizeof(*(above_contexts->partition[tile_row
] + mi_col_start)))
;
1623
1624 memset(above_contexts->txfm[tile_row] + mi_col_start,
1625 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1626}
1627
1628static inline void av1_zero_left_context(MACROBLOCKD *const xd) {
1629 av1_zero(xd->left_entropy_context)memset(&(xd->left_entropy_context), 0, sizeof(xd->left_entropy_context
))
;
1630 av1_zero(xd->left_partition_context)memset(&(xd->left_partition_context), 0, sizeof(xd->
left_partition_context))
;
1631
1632 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1633 sizeof(xd->left_txfm_context_buffer));
1634}
1635
1636static inline void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1637 int i;
1638 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1639}
1640
1641static inline void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1642 const MACROBLOCKD *xd) {
1643 uint8_t bw = tx_size_wide[tx_size];
1644 uint8_t bh = tx_size_high[tx_size];
1645
1646 if (skip) {
1647 bw = n4_w * MI_SIZE(1 << 2);
1648 bh = n4_h * MI_SIZE(1 << 2);
1649 }
1650
1651 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1652 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1653}
1654
1655static inline int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1656 int mi_row, int mi_col) {
1657 return mi_row * mi_params->mi_stride + mi_col;
1658}
1659
1660static inline int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1661 int mi_row, int mi_col) {
1662 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1663 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1664 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1665
1666 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1667}
1668
1669// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1670static inline void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1671 MACROBLOCKD *const xd, int mi_row,
1672 int mi_col) {
1673 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1674 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1675 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1676 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1677 // 'xd->mi' should point to an offset in 'mi_grid_base';
1678 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1679 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1680 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1681 xd->tx_type_map_stride = mi_params->mi_stride;
1682}
1683
1684static inline void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1685 TXFM_CONTEXT *left_ctx,
1686 TX_SIZE tx_size, TX_SIZE txb_size) {
1687 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1688 int bh = mi_size_high[bsize];
1689 int bw = mi_size_wide[bsize];
1690 uint8_t txw = tx_size_wide[tx_size];
1691 uint8_t txh = tx_size_high[tx_size];
1692 int i;
1693 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1694 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1695}
1696
1697static inline TX_SIZE get_sqr_tx_size(int tx_dim) {
1698 switch (tx_dim) {
1699 case 128:
1700 case 64: return TX_64X64; break;
1701 case 32: return TX_32X32; break;
1702 case 16: return TX_16X16; break;
1703 case 8: return TX_8X8; break;
1704 default: return TX_4X4;
1705 }
1706}
1707
1708static inline TX_SIZE get_tx_size(int width, int height) {
1709 if (width == height) {
1710 return get_sqr_tx_size(width);
1711 }
1712 if (width < height) {
1713 if (width + width == height) {
1714 switch (width) {
1715 case 4: return TX_4X8; break;
1716 case 8: return TX_8X16; break;
1717 case 16: return TX_16X32; break;
1718 case 32: return TX_32X64; break;
1719 }
1720 } else {
1721 switch (width) {
1722 case 4: return TX_4X16; break;
1723 case 8: return TX_8X32; break;
1724 case 16: return TX_16X64; break;
1725 }
1726 }
1727 } else {
1728 if (height + height == width) {
1729 switch (height) {
1730 case 4: return TX_8X4; break;
1731 case 8: return TX_16X8; break;
1732 case 16: return TX_32X16; break;
1733 case 32: return TX_64X32; break;
1734 }
1735 } else {
1736 switch (height) {
1737 case 4: return TX_16X4; break;
1738 case 8: return TX_32X8; break;
1739 case 16: return TX_64X16; break;
1740 }
1741 }
1742 }
1743 assert(0)((void) sizeof ((0) ? 1 : 0), __extension__ ({ if (0) ; else __assert_fail
("0", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1743, __extension__ __PRETTY_FUNCTION__); }))
;
1744 return TX_4X4;
1745}
1746
1747static inline int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1748 const TXFM_CONTEXT *const left_ctx,
1749 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1750 const uint8_t txw = tx_size_wide[tx_size];
1751 const uint8_t txh = tx_size_high[tx_size];
1752 const int above = *above_ctx < txw;
1753 const int left = *left_ctx < txh;
1754 int category = TXFM_PARTITION_CONTEXTS((TX_SIZES - TX_8X8) * 6 - 3);
1755
1756 // dummy return, not used by others.
1757 if (tx_size <= TX_4X4) return 0;
1758
1759 TX_SIZE max_tx_size =
1760 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])(((block_size_wide[bsize]) > (block_size_high[bsize])) ? (
block_size_wide[bsize]) : (block_size_high[bsize]))
);
1761
1762 if (max_tx_size >= TX_8X8) {
1763 category =
1764 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1765 (TX_SIZES - 1 - max_tx_size) * 2;
1766 }
1767 assert(category != TXFM_PARTITION_CONTEXTS)((void) sizeof ((category != ((TX_SIZES - TX_8X8) * 6 - 3)) ?
1 : 0), __extension__ ({ if (category != ((TX_SIZES - TX_8X8
) * 6 - 3)) ; else __assert_fail ("category != TXFM_PARTITION_CONTEXTS"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1767, __extension__ __PRETTY_FUNCTION__); }))
;
1768 return category * 3 + above + left;
1769}
1770
1771// Compute the next partition in the direction of the sb_type stored in the mi
1772// array, starting with bsize.
1773static inline PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1774 int mi_row, int mi_col,
1775 BLOCK_SIZE bsize) {
1776 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1777 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1778 return PARTITION_INVALID;
1779
1780 const int offset = mi_row * mi_params->mi_stride + mi_col;
1781 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1782 const BLOCK_SIZE subsize = mi[0]->bsize;
1783
1784 assert(bsize < BLOCK_SIZES_ALL)((void) sizeof ((bsize < BLOCK_SIZES_ALL) ? 1 : 0), __extension__
({ if (bsize < BLOCK_SIZES_ALL) ; else __assert_fail ("bsize < BLOCK_SIZES_ALL"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1784, __extension__ __PRETTY_FUNCTION__); }))
;
1785
1786 if (subsize == bsize) return PARTITION_NONE;
1787
1788 const int bhigh = mi_size_high[bsize];
1789 const int bwide = mi_size_wide[bsize];
1790 const int sshigh = mi_size_high[subsize];
1791 const int sswide = mi_size_wide[subsize];
1792
1793 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1794 mi_col + bhigh / 2 < mi_params->mi_cols) {
1795 // In this case, the block might be using an extended partition
1796 // type.
1797 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1798 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1799
1800 if (sswide == bwide) {
1801 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1802 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1803 // half was split.
1804 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1805 assert(sshigh * 2 == bhigh)((void) sizeof ((sshigh * 2 == bhigh) ? 1 : 0), __extension__
({ if (sshigh * 2 == bhigh) ; else __assert_fail ("sshigh * 2 == bhigh"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1805, __extension__ __PRETTY_FUNCTION__); }))
;
1806
1807 if (mbmi_below->bsize == subsize)
1808 return PARTITION_HORZ;
1809 else
1810 return PARTITION_HORZ_B;
1811 } else if (sshigh == bhigh) {
1812 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1813 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1814 // half was split.
1815 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1816 assert(sswide * 2 == bwide)((void) sizeof ((sswide * 2 == bwide) ? 1 : 0), __extension__
({ if (sswide * 2 == bwide) ; else __assert_fail ("sswide * 2 == bwide"
, "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1816, __extension__ __PRETTY_FUNCTION__); }))
;
1817
1818 if (mbmi_right->bsize == subsize)
1819 return PARTITION_VERT;
1820 else
1821 return PARTITION_VERT_B;
1822 } else {
1823 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1824 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1825 // dimensions, we immediately know this is a split (which will recurse to
1826 // get to subsize). Otherwise look down and to the right. With
1827 // PARTITION_VERT_A, the right block will have height bhigh; with
1828 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1829 // it's PARTITION_SPLIT.
1830 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1831
1832 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1833 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1834
1835 return PARTITION_SPLIT;
1836 }
1837 }
1838 const int vert_split = sswide < bwide;
1839 const int horz_split = sshigh < bhigh;
1840 const int split_idx = (vert_split << 1) | horz_split;
1841 assert(split_idx != 0)((void) sizeof ((split_idx != 0) ? 1 : 0), __extension__ ({ if
(split_idx != 0) ; else __assert_fail ("split_idx != 0", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h"
, 1841, __extension__ __PRETTY_FUNCTION__); }))
;
1842
1843 static const PARTITION_TYPE base_partitions[4] = {
1844 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1845 };
1846
1847 return base_partitions[split_idx];
1848}
1849
1850static inline void set_sb_size(SequenceHeader *const seq_params,
1851 BLOCK_SIZE sb_size) {
1852 seq_params->sb_size = sb_size;
1853 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1854 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1855}
1856
1857// Returns true if the frame is fully lossless at the coded resolution.
1858// Note: If super-resolution is used, such a frame will still NOT be lossless at
1859// the upscaled resolution.
1860static inline int is_coded_lossless(const AV1_COMMON *cm,
1861 const MACROBLOCKD *xd) {
1862 int coded_lossless = 1;
1863 if (cm->seg.enabled) {
1864 for (int i = 0; i < MAX_SEGMENTS8; ++i) {
1865 if (!xd->lossless[i]) {
1866 coded_lossless = 0;
1867 break;
1868 }
1869 }
1870 } else {
1871 coded_lossless = xd->lossless[0];
1872 }
1873 return coded_lossless;
1874}
1875
1876static inline int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1877 return seq_level_idx == SEQ_LEVEL_MAX ||
1878 (seq_level_idx < SEQ_LEVELS &&
1879 // The following levels are currently undefined.
1880 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1881 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1882 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1883#if !CONFIG_CWG_C0130
1884 && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1885 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1886 seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1887 seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1888#endif
1889 );
1890}
1891
1892/*!\endcond */
1893
1894#ifdef __cplusplus
1895} // extern "C"
1896#endif
1897
1898#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_