File: | root/firefox-clang/third_party/aom/av1/common/av1_common_int.h |
Warning: | line 764, column 16 Excessive padding in 'struct AV1Common' (39 padding bytes, where 7 is optimal). Optimal fields order: lf_info, error, prev_frame, cur_frame, last_frame_seg_map, rst_tmpbuf, rlbs, seq_params, fc, default_frame_context, buffer_pool, tpl_mvs, above_contexts, ref_frame_map, mi_params, rst_info, rst_frame, cdef_info, quant_params, width, height, render_width, render_height, superres_upscaled_width, superres_upscaled_height, frame_presentation_time, show_frame, showable_frame, show_existing_frame, current_frame_id, tpl_mvs_mem_size, temporal_layer_id, spatial_layer_id, sf_identity, delta_q_info, features, remapped_ref_idx, ref_frame_id, ref_frame_sign_bias, current_frame, lf, ref_scale_factors, buffer_removal_times, seg, global_motion, tiles, film_grain_params, superres_scale_denominator, ref_frame_side, consider reordering the fields or adding explicit padding members |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
3 | * |
4 | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | * was not distributed with this source code in the LICENSE file, you can |
7 | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | * Media Patent License 1.0 was not distributed with this source code in the |
9 | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | */ |
11 | |
12 | #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_ |
13 | #define AOM_AV1_COMMON_AV1_COMMON_INT_H_ |
14 | |
15 | #include <stdbool.h> |
16 | |
17 | #include "config/aom_config.h" |
18 | #include "config/av1_rtcd.h" |
19 | |
20 | #include "aom/internal/aom_codec_internal.h" |
21 | #include "aom_dsp/flow_estimation/corner_detect.h" |
22 | #include "aom_util/aom_pthread.h" |
23 | #include "av1/common/alloccommon.h" |
24 | #include "av1/common/av1_loopfilter.h" |
25 | #include "av1/common/entropy.h" |
26 | #include "av1/common/entropymode.h" |
27 | #include "av1/common/entropymv.h" |
28 | #include "av1/common/enums.h" |
29 | #include "av1/common/frame_buffers.h" |
30 | #include "av1/common/mv.h" |
31 | #include "av1/common/quant_common.h" |
32 | #include "av1/common/restoration.h" |
33 | #include "av1/common/tile_common.h" |
34 | #include "av1/common/timing.h" |
35 | #include "aom_dsp/grain_params.h" |
36 | #include "aom_dsp/grain_table.h" |
37 | #include "aom_dsp/odintrin.h" |
38 | #ifdef __cplusplus |
39 | extern "C" { |
40 | #endif |
41 | |
42 | #if defined(__clang__1) && defined(__has_warning)0 |
43 | #if __has_feature(cxx_attributes)0 && __has_warning("-Wimplicit-fallthrough")1 |
44 | #define AOM_FALLTHROUGH_INTENDEDdo { } while (0) [[clang::fallthrough]] // NOLINT |
45 | #endif |
46 | #elif defined(__GNUC__4) && __GNUC__4 >= 7 |
47 | #define AOM_FALLTHROUGH_INTENDEDdo { } while (0) __attribute__((fallthrough)) // NOLINT |
48 | #endif |
49 | |
50 | #ifndef AOM_FALLTHROUGH_INTENDEDdo { } while (0) |
51 | #define AOM_FALLTHROUGH_INTENDEDdo { } while (0) \ |
52 | do { \ |
53 | } while (0) |
54 | #endif |
55 | |
56 | #define CDEF_MAX_STRENGTHS16 16 |
57 | |
58 | /* Constant values while waiting for the sequence header */ |
59 | #define FRAME_ID_LENGTH15 15 |
60 | #define DELTA_FRAME_ID_LENGTH14 14 |
61 | |
62 | #define FRAME_CONTEXTS((REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) (FRAME_BUFFERS(REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) |
63 | // Extra frame context which is always kept at default values |
64 | #define FRAME_CONTEXT_DEFAULTS(((REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) - 1) (FRAME_CONTEXTS((REF_FRAMES + 1 + INTER_REFS_PER_FRAME) + 1) - 1) |
65 | #define PRIMARY_REF_BITS3 3 |
66 | #define PRIMARY_REF_NONE7 7 |
67 | |
68 | #define NUM_PING_PONG_BUFFERS2 2 |
69 | |
70 | #define MAX_NUM_TEMPORAL_LAYERS8 8 |
71 | #define MAX_NUM_SPATIAL_LAYERS4 4 |
72 | /* clang-format off */ |
73 | // clang-format seems to think this is a pointer dereference and not a |
74 | // multiplication. |
75 | #define MAX_NUM_OPERATING_POINTS(8 * 4) \ |
76 | (MAX_NUM_TEMPORAL_LAYERS8 * MAX_NUM_SPATIAL_LAYERS4) |
77 | /* clang-format on */ |
78 | |
79 | // TODO(jingning): Turning this on to set up transform coefficient |
80 | // processing timer. |
81 | #define TXCOEFF_TIMER0 0 |
82 | #define TXCOEFF_COST_TIMER0 0 |
83 | |
84 | /*!\cond */ |
85 | |
86 | enum { |
87 | SINGLE_REFERENCE = 0, |
88 | COMPOUND_REFERENCE = 1, |
89 | REFERENCE_MODE_SELECT = 2, |
90 | REFERENCE_MODES = 3, |
91 | } UENUM1BYTE(REFERENCE_MODE); typedef uint8_t REFERENCE_MODE; |
92 | |
93 | enum { |
94 | /** |
95 | * Frame context updates are disabled |
96 | */ |
97 | REFRESH_FRAME_CONTEXT_DISABLED, |
98 | /** |
99 | * Update frame context to values resulting from backward probability |
100 | * updates based on entropy/counts in the decoded frame |
101 | */ |
102 | REFRESH_FRAME_CONTEXT_BACKWARD, |
103 | } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE); typedef uint8_t REFRESH_FRAME_CONTEXT_MODE; |
104 | |
105 | #define MFMV_STACK_SIZE3 3 |
106 | typedef struct { |
107 | int_mv mfmv0; |
108 | uint8_t ref_frame_offset; |
109 | } TPL_MV_REF; |
110 | |
111 | typedef struct { |
112 | int_mv mv; |
113 | MV_REFERENCE_FRAME ref_frame; |
114 | } MV_REF; |
115 | |
116 | typedef struct RefCntBuffer { |
117 | // For a RefCntBuffer, the following are reference-holding variables: |
118 | // - cm->ref_frame_map[] |
119 | // - cm->cur_frame |
120 | // - cm->scaled_ref_buf[] (encoder only) |
121 | // - pbi->output_frame_index[] (decoder only) |
122 | // With that definition, 'ref_count' is the number of reference-holding |
123 | // variables that are currently referencing this buffer. |
124 | // For example: |
125 | // - suppose this buffer is at index 'k' in the buffer pool, and |
126 | // - Total 'n' of the variables / array elements above have value 'k' (that |
127 | // is, they are pointing to buffer at index 'k'). |
128 | // Then, pool->frame_bufs[k].ref_count = n. |
129 | int ref_count; |
130 | |
131 | unsigned int order_hint; |
132 | unsigned int ref_order_hints[INTER_REFS_PER_FRAME]; |
133 | |
134 | // These variables are used only in encoder and compare the absolute |
135 | // display order hint to compute the relative distance and overcome |
136 | // the limitation of get_relative_dist() which returns incorrect |
137 | // distance when a very old frame is used as a reference. |
138 | unsigned int display_order_hint; |
139 | unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME]; |
140 | // Frame's level within the hierarchical structure. |
141 | unsigned int pyramid_level; |
142 | MV_REF *mvs; |
143 | uint8_t *seg_map; |
144 | struct segmentation seg; |
145 | int mi_rows; |
146 | int mi_cols; |
147 | // Width and height give the size of the buffer (before any upscaling, unlike |
148 | // the sizes that can be derived from the buf structure) |
149 | int width; |
150 | int height; |
151 | WarpedMotionParams global_motion[REF_FRAMES]; |
152 | int showable_frame; // frame can be used as show existing frame in future |
153 | uint8_t film_grain_params_present; |
154 | aom_film_grain_t film_grain_params; |
155 | aom_codec_frame_buffer_t raw_frame_buffer; |
156 | YV12_BUFFER_CONFIG buf; |
157 | int temporal_id; // Temporal layer ID of the frame |
158 | int spatial_id; // Spatial layer ID of the frame |
159 | FRAME_TYPE frame_type; |
160 | |
161 | // This is only used in the encoder but needs to be indexed per ref frame |
162 | // so it's extremely convenient to keep it here. |
163 | int interp_filter_selected[SWITCHABLE]; |
164 | |
165 | // Inter frame reference frame delta for loop filter |
166 | int8_t ref_deltas[REF_FRAMES]; |
167 | |
168 | // 0 = ZERO_MV, MV |
169 | int8_t mode_deltas[MAX_MODE_LF_DELTAS2]; |
170 | |
171 | FRAME_CONTEXT frame_context; |
172 | |
173 | int filter_level[2]; |
174 | } RefCntBuffer; |
175 | |
176 | typedef struct BufferPool { |
177 | // Protect BufferPool from being accessed by several FrameWorkers at |
178 | // the same time during frame parallel decode. |
179 | // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. |
180 | // TODO(wtc): Remove this. See |
181 | // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630. |
182 | #if CONFIG_MULTITHREAD1 |
183 | pthread_mutex_t pool_mutex; |
184 | #endif |
185 | |
186 | // Private data associated with the frame buffer callbacks. |
187 | void *cb_priv; |
188 | |
189 | aom_get_frame_buffer_cb_fn_t get_fb_cb; |
190 | aom_release_frame_buffer_cb_fn_t release_fb_cb; |
191 | |
192 | RefCntBuffer *frame_bufs; |
193 | uint8_t num_frame_bufs; |
194 | |
195 | // Frame buffers allocated internally by the codec. |
196 | InternalFrameBufferList int_frame_buffers; |
197 | } BufferPool; |
198 | |
199 | /*!\endcond */ |
200 | |
201 | /*!\brief Parameters related to CDEF */ |
202 | typedef struct { |
203 | //! CDEF column line buffer |
204 | uint16_t *colbuf[MAX_MB_PLANE3]; |
205 | //! CDEF top & bottom line buffer |
206 | uint16_t *linebuf[MAX_MB_PLANE3]; |
207 | //! CDEF intermediate buffer |
208 | uint16_t *srcbuf; |
209 | //! CDEF column line buffer sizes |
210 | size_t allocated_colbuf_size[MAX_MB_PLANE3]; |
211 | //! CDEF top and bottom line buffer sizes |
212 | size_t allocated_linebuf_size[MAX_MB_PLANE3]; |
213 | //! CDEF intermediate buffer size |
214 | size_t allocated_srcbuf_size; |
215 | //! CDEF damping factor |
216 | int cdef_damping; |
217 | //! Number of CDEF strength values |
218 | int nb_cdef_strengths; |
219 | //! CDEF strength values for luma |
220 | int cdef_strengths[CDEF_MAX_STRENGTHS16]; |
221 | //! CDEF strength values for chroma |
222 | int cdef_uv_strengths[CDEF_MAX_STRENGTHS16]; |
223 | //! Number of CDEF strength values in bits |
224 | int cdef_bits; |
225 | //! Number of rows in the frame in 4 pixel |
226 | int allocated_mi_rows; |
227 | //! Number of CDEF workers |
228 | int allocated_num_workers; |
229 | } CdefInfo; |
230 | |
231 | /*!\cond */ |
232 | |
233 | typedef struct { |
234 | int delta_q_present_flag; |
235 | // Resolution of delta quant |
236 | int delta_q_res; |
237 | int delta_lf_present_flag; |
238 | // Resolution of delta lf level |
239 | int delta_lf_res; |
240 | // This is a flag for number of deltas of loop filter level |
241 | // 0: use 1 delta, for y_vertical, y_horizontal, u, and v |
242 | // 1: use separate deltas for each filter level |
243 | int delta_lf_multi; |
244 | } DeltaQInfo; |
245 | |
246 | typedef struct { |
247 | int enable_order_hint; // 0 - disable order hint, and related tools |
248 | int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs, |
249 | // frame_sign_bias |
250 | // if 0, enable_dist_wtd_comp and |
251 | // enable_ref_frame_mvs must be set as 0. |
252 | int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes |
253 | // 1 - enable it |
254 | int enable_ref_frame_mvs; // 0 - disable ref frame mvs |
255 | // 1 - enable it |
256 | } OrderHintInfo; |
257 | |
258 | // Sequence header structure. |
259 | // Note: All syntax elements of sequence_header_obu that need to be |
260 | // bit-identical across multiple sequence headers must be part of this struct, |
261 | // so that consistency is checked by are_seq_headers_consistent() function. |
262 | // One exception is the last member 'op_params' that is ignored by |
263 | // are_seq_headers_consistent() function. |
264 | typedef struct SequenceHeader { |
265 | int num_bits_width; |
266 | int num_bits_height; |
267 | int max_frame_width; |
268 | int max_frame_height; |
269 | // Whether current and reference frame IDs are signaled in the bitstream. |
270 | // Frame id numbers are additional information that do not affect the |
271 | // decoding process, but provide decoders with a way of detecting missing |
272 | // reference frames so that appropriate action can be taken. |
273 | uint8_t frame_id_numbers_present_flag; |
274 | int frame_id_length; |
275 | int delta_frame_id_length; |
276 | BLOCK_SIZE sb_size; // Size of the superblock used for this frame |
277 | int mib_size; // Size of the superblock in units of MI blocks |
278 | int mib_size_log2; // Log 2 of above. |
279 | |
280 | OrderHintInfo order_hint_info; |
281 | |
282 | uint8_t force_screen_content_tools; // 0 - force off |
283 | // 1 - force on |
284 | // 2 - adaptive |
285 | uint8_t still_picture; // Video is a single frame still picture |
286 | uint8_t reduced_still_picture_hdr; // Use reduced header for still picture |
287 | uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel |
288 | // 1 - force to integer |
289 | // 2 - adaptive |
290 | uint8_t enable_filter_intra; // enables/disables filterintra |
291 | uint8_t enable_intra_edge_filter; // enables/disables edge upsampling |
292 | uint8_t enable_interintra_compound; // enables/disables interintra_compound |
293 | uint8_t enable_masked_compound; // enables/disables masked compound |
294 | uint8_t enable_dual_filter; // 0 - disable dual interpolation filter |
295 | // 1 - enable vert/horz filter selection |
296 | uint8_t enable_warped_motion; // 0 - disable warp for the sequence |
297 | // 1 - enable warp for the sequence |
298 | uint8_t enable_superres; // 0 - Disable superres for the sequence |
299 | // and no frame level superres flag |
300 | // 1 - Enable superres for the sequence |
301 | // enable per-frame superres flag |
302 | uint8_t enable_cdef; // To turn on/off CDEF |
303 | uint8_t enable_restoration; // To turn on/off loop restoration |
304 | BITSTREAM_PROFILE profile; |
305 | |
306 | // Color config. |
307 | aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1, |
308 | // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. |
309 | uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers. |
310 | uint8_t monochrome; // Monochrome video |
311 | aom_color_primaries_t color_primaries; |
312 | aom_transfer_characteristics_t transfer_characteristics; |
313 | aom_matrix_coefficients_t matrix_coefficients; |
314 | int color_range; |
315 | int subsampling_x; // Chroma subsampling for x |
316 | int subsampling_y; // Chroma subsampling for y |
317 | aom_chroma_sample_position_t chroma_sample_position; |
318 | uint8_t separate_uv_delta_q; |
319 | uint8_t film_grain_params_present; |
320 | |
321 | // Operating point info. |
322 | int operating_points_cnt_minus_1; |
323 | int operating_point_idc[MAX_NUM_OPERATING_POINTS(8 * 4)]; |
324 | // True if operating_point_idc[op] is not equal to 0 for any value of op from |
325 | // 0 to operating_points_cnt_minus_1. |
326 | bool_Bool has_nonzero_operating_point_idc; |
327 | int timing_info_present; |
328 | aom_timing_info_t timing_info; |
329 | uint8_t decoder_model_info_present_flag; |
330 | aom_dec_model_info_t decoder_model_info; |
331 | uint8_t display_model_info_present_flag; |
332 | AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS(8 * 4)]; |
333 | uint8_t tier[MAX_NUM_OPERATING_POINTS(8 * 4)]; // seq_tier in spec. One bit: 0 or 1. |
334 | |
335 | // IMPORTANT: the op_params member must be at the end of the struct so that |
336 | // are_seq_headers_consistent() can be implemented with a memcmp() call. |
337 | // TODO(urvang): We probably don't need the +1 here. |
338 | aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS(8 * 4) + 1]; |
339 | } SequenceHeader; |
340 | |
341 | typedef struct { |
342 | int skip_mode_allowed; |
343 | int skip_mode_flag; |
344 | int ref_frame_idx_0; |
345 | int ref_frame_idx_1; |
346 | } SkipModeInfo; |
347 | |
348 | typedef struct { |
349 | FRAME_TYPE frame_type; |
350 | REFERENCE_MODE reference_mode; |
351 | |
352 | unsigned int order_hint; |
353 | unsigned int display_order_hint; |
354 | // Frame's level within the hierarchical structure. |
355 | unsigned int pyramid_level; |
356 | unsigned int frame_number; |
357 | SkipModeInfo skip_mode_info; |
358 | int refresh_frame_flags; // Which ref frames are overwritten by this frame |
359 | int frame_refs_short_signaling; |
360 | } CurrentFrame; |
361 | |
362 | /*!\endcond */ |
363 | |
364 | /*! |
365 | * \brief Frame level features. |
366 | */ |
367 | typedef struct { |
368 | /*! |
369 | * If true, CDF update in the symbol encoding/decoding process is disabled. |
370 | */ |
371 | bool_Bool disable_cdf_update; |
372 | /*! |
373 | * If true, motion vectors are specified to eighth pel precision; and |
374 | * if false, motion vectors are specified to quarter pel precision. |
375 | */ |
376 | bool_Bool allow_high_precision_mv; |
377 | /*! |
378 | * If true, force integer motion vectors; if false, use the default. |
379 | */ |
380 | bool_Bool cur_frame_force_integer_mv; |
381 | /*! |
382 | * If true, palette tool and/or intra block copy tools may be used. |
383 | */ |
384 | bool_Bool allow_screen_content_tools; |
385 | bool_Bool allow_intrabc; /*!< If true, intra block copy tool may be used. */ |
386 | bool_Bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */ |
387 | /*! |
388 | * If true, using previous frames' motion vectors for prediction is allowed. |
389 | */ |
390 | bool_Bool allow_ref_frame_mvs; |
391 | /*! |
392 | * If true, frame is fully lossless at coded resolution. |
393 | * */ |
394 | bool_Bool coded_lossless; |
395 | /*! |
396 | * If true, frame is fully lossless at upscaled resolution. |
397 | */ |
398 | bool_Bool all_lossless; |
399 | /*! |
400 | * If true, the frame is restricted to a reduced subset of the full set of |
401 | * transform types. |
402 | */ |
403 | bool_Bool reduced_tx_set_used; |
404 | /*! |
405 | * If true, error resilient mode is enabled. |
406 | * Note: Error resilient mode allows the syntax of a frame to be parsed |
407 | * independently of previously decoded frames. |
408 | */ |
409 | bool_Bool error_resilient_mode; |
410 | /*! |
411 | * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION; |
412 | * if true, all MOTION_MODES may be used. |
413 | */ |
414 | bool_Bool switchable_motion_mode; |
415 | TX_MODE tx_mode; /*!< Transform mode at frame level. */ |
416 | InterpFilter interp_filter; /*!< Interpolation filter at frame level. */ |
417 | /*! |
418 | * The reference frame that contains the CDF values and other state that |
419 | * should be loaded at the start of the frame. |
420 | */ |
421 | int primary_ref_frame; |
422 | /*! |
423 | * Byte alignment of the planes in the reference buffers. |
424 | */ |
425 | int byte_alignment; |
426 | /*! |
427 | * Flag signaling how frame contexts should be updated at the end of |
428 | * a frame decode. |
429 | */ |
430 | REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; |
431 | } FeatureFlags; |
432 | |
433 | /*! |
434 | * \brief Params related to tiles. |
435 | */ |
436 | typedef struct CommonTileParams { |
437 | int cols; /*!< number of tile columns that frame is divided into */ |
438 | int rows; /*!< number of tile rows that frame is divided into */ |
439 | int max_width_sb; /*!< maximum tile width in superblock units. */ |
440 | int max_height_sb; /*!< maximum tile height in superblock units. */ |
441 | |
442 | /*! |
443 | * Min width of non-rightmost tile in MI units. Only valid if cols > 1. |
444 | */ |
445 | int min_inner_width; |
446 | |
447 | /*! |
448 | * If true, tiles are uniformly spaced with power-of-two number of rows and |
449 | * columns. |
450 | * If false, tiles have explicitly configured widths and heights. |
451 | */ |
452 | int uniform_spacing; |
453 | |
454 | /** |
455 | * \name Members only valid when uniform_spacing == 1 |
456 | */ |
457 | /**@{*/ |
458 | int log2_cols; /*!< log2 of 'cols'. */ |
459 | int log2_rows; /*!< log2 of 'rows'. */ |
460 | int width; /*!< tile width in MI units */ |
461 | int height; /*!< tile height in MI units */ |
462 | /**@}*/ |
463 | |
464 | /*! |
465 | * Min num of tile columns possible based on 'max_width_sb' and frame width. |
466 | */ |
467 | int min_log2_cols; |
468 | /*! |
469 | * Min num of tile rows possible based on 'max_height_sb' and frame height. |
470 | */ |
471 | int min_log2_rows; |
472 | /*! |
473 | * Max num of tile columns possible based on frame width. |
474 | */ |
475 | int max_log2_cols; |
476 | /*! |
477 | * Max num of tile rows possible based on frame height. |
478 | */ |
479 | int max_log2_rows; |
480 | /*! |
481 | * log2 of min number of tiles (same as min_log2_cols + min_log2_rows). |
482 | */ |
483 | int min_log2; |
484 | /*! |
485 | * col_start_sb[i] is the start position of tile column i in superblock units. |
486 | * valid for 0 <= i <= cols |
487 | */ |
488 | int col_start_sb[MAX_TILE_COLS64 + 1]; |
489 | /*! |
490 | * row_start_sb[i] is the start position of tile row i in superblock units. |
491 | * valid for 0 <= i <= rows |
492 | */ |
493 | int row_start_sb[MAX_TILE_ROWS64 + 1]; |
494 | /*! |
495 | * If true, we are using large scale tile mode. |
496 | */ |
497 | unsigned int large_scale; |
498 | /*! |
499 | * Only relevant when large_scale == 1. |
500 | * If true, the independent decoding of a single tile or a section of a frame |
501 | * is allowed. |
502 | */ |
503 | unsigned int single_tile_decoding; |
504 | } CommonTileParams; |
505 | |
506 | typedef struct CommonModeInfoParams CommonModeInfoParams; |
507 | /*! |
508 | * \brief Params related to MB_MODE_INFO arrays and related info. |
509 | */ |
510 | struct CommonModeInfoParams { |
511 | /*! |
512 | * Number of rows in the frame in 16 pixel units. |
513 | * This is computed from frame height aligned to a multiple of 8. |
514 | */ |
515 | int mb_rows; |
516 | /*! |
517 | * Number of cols in the frame in 16 pixel units. |
518 | * This is computed from frame width aligned to a multiple of 8. |
519 | */ |
520 | int mb_cols; |
521 | |
522 | /*! |
523 | * Total MBs = mb_rows * mb_cols. |
524 | */ |
525 | int MBs; |
526 | |
527 | /*! |
528 | * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units. |
529 | * This is computed from frame height aligned to a multiple of 8. |
530 | */ |
531 | int mi_rows; |
532 | /*! |
533 | * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units. |
534 | * This is computed from frame width aligned to a multiple of 8. |
535 | */ |
536 | int mi_cols; |
537 | |
538 | /*! |
539 | * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block |
540 | * in the frame. |
541 | * Note: This array should be treated like a scratch memory, and should NOT be |
542 | * accessed directly, in most cases. Please use 'mi_grid_base' array instead. |
543 | */ |
544 | MB_MODE_INFO *mi_alloc; |
545 | /*! |
546 | * Number of allocated elements in 'mi_alloc'. |
547 | */ |
548 | int mi_alloc_size; |
549 | /*! |
550 | * Stride for 'mi_alloc' array. |
551 | */ |
552 | int mi_alloc_stride; |
553 | /*! |
554 | * The minimum block size that each element in 'mi_alloc' can correspond to. |
555 | * For decoder, this is always BLOCK_4X4. |
556 | * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode |
557 | * case. Otherwise, this is BLOCK_4X4. |
558 | */ |
559 | BLOCK_SIZE mi_alloc_bsize; |
560 | |
561 | /*! |
562 | * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'. |
563 | * It's possible that: |
564 | * - Multiple pointers in the grid point to the same element in 'mi_alloc' |
565 | * (for example, for all 4x4 blocks that belong to the same partition block). |
566 | * - Some pointers can be NULL (for example, for blocks outside visible area). |
567 | */ |
568 | MB_MODE_INFO **mi_grid_base; |
569 | /*! |
570 | * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also). |
571 | */ |
572 | int mi_grid_size; |
573 | /*! |
574 | * Stride for 'mi_grid_base' (and 'tx_type_map' also). |
575 | */ |
576 | int mi_stride; |
577 | |
578 | /*! |
579 | * An array of tx types for each 4x4 block in the frame. |
580 | * Number of allocated elements is same as 'mi_grid_size', and stride is |
581 | * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of |
582 | * 'mi_grid_base'. |
583 | */ |
584 | TX_TYPE *tx_type_map; |
585 | |
586 | /** |
587 | * \name Function pointers to allow separate logic for encoder and decoder. |
588 | */ |
589 | /**@{*/ |
590 | /*! |
591 | * Free the memory allocated to arrays in 'mi_params'. |
592 | * \param[in,out] mi_params object containing common mode info parameters |
593 | */ |
594 | void (*free_mi)(struct CommonModeInfoParams *mi_params); |
595 | /*! |
596 | * Initialize / reset appropriate arrays in 'mi_params'. |
597 | * \param[in,out] mi_params object containing common mode info parameters |
598 | */ |
599 | void (*setup_mi)(struct CommonModeInfoParams *mi_params); |
600 | /*! |
601 | * Allocate required memory for arrays in 'mi_params'. |
602 | * \param[in,out] mi_params object containing common mode info |
603 | * parameters |
604 | * \param width frame width |
605 | * \param height frame height |
606 | * \param min_partition_size minimum partition size allowed while |
607 | * encoding |
608 | */ |
609 | void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, |
610 | int height, BLOCK_SIZE min_partition_size); |
611 | /**@}*/ |
612 | }; |
613 | |
614 | typedef struct CommonQuantParams CommonQuantParams; |
615 | /*! |
616 | * \brief Parameters related to quantization at the frame level. |
617 | */ |
618 | struct CommonQuantParams { |
619 | /*! |
620 | * Base qindex of the frame in the range 0 to 255. |
621 | */ |
622 | int base_qindex; |
623 | |
624 | /*! |
625 | * Sharpness adjustment in the quantization process. |
626 | */ |
627 | int sharpness; |
628 | |
629 | /*! |
630 | * Delta of qindex (from base_qindex) for Y plane DC coefficient. |
631 | * Note: y_ac_delta_q is implicitly 0. |
632 | */ |
633 | int y_dc_delta_q; |
634 | |
635 | /*! |
636 | * Delta of qindex (from base_qindex) for U plane DC coefficients. |
637 | */ |
638 | int u_dc_delta_q; |
639 | /*! |
640 | * Delta of qindex (from base_qindex) for U plane AC coefficients. |
641 | */ |
642 | int v_dc_delta_q; |
643 | |
644 | /*! |
645 | * Delta of qindex (from base_qindex) for V plane DC coefficients. |
646 | * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0. |
647 | */ |
648 | int u_ac_delta_q; |
649 | /*! |
650 | * Delta of qindex (from base_qindex) for V plane AC coefficients. |
651 | * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0. |
652 | */ |
653 | int v_ac_delta_q; |
654 | |
655 | /* |
656 | * Note: The qindex per superblock may have a delta from the qindex obtained |
657 | * at frame level from parameters above, based on 'cm->delta_q_info'. |
658 | */ |
659 | |
660 | /** |
661 | * \name True dequantizers. |
662 | * The dequantizers below are true dequantizers used only in the |
663 | * dequantization process. They have the same coefficient |
664 | * shift/scale as TX. |
665 | */ |
666 | /**@{*/ |
667 | int16_t y_dequant_QTX[MAX_SEGMENTS8][2]; /*!< Dequant for Y plane */ |
668 | int16_t u_dequant_QTX[MAX_SEGMENTS8][2]; /*!< Dequant for U plane */ |
669 | int16_t v_dequant_QTX[MAX_SEGMENTS8][2]; /*!< Dequant for V plane */ |
670 | /**@}*/ |
671 | |
672 | /** |
673 | * \name Global quantization matrix tables. |
674 | */ |
675 | /**@{*/ |
676 | /*! |
677 | * Global dequantization matrix table. |
678 | */ |
679 | const qm_val_t *giqmatrix[NUM_QM_LEVELS(1 << 4)][3][TX_SIZES_ALL]; |
680 | /*! |
681 | * Global quantization matrix table. |
682 | */ |
683 | const qm_val_t *gqmatrix[NUM_QM_LEVELS(1 << 4)][3][TX_SIZES_ALL]; |
684 | /**@}*/ |
685 | |
686 | /** |
687 | * \name Local dequantization matrix tables for each frame. |
688 | */ |
689 | /**@{*/ |
690 | /*! |
691 | * Local dequant matrix for Y plane. |
692 | */ |
693 | const qm_val_t *y_iqmatrix[MAX_SEGMENTS8][TX_SIZES_ALL]; |
694 | /*! |
695 | * Local dequant matrix for U plane. |
696 | */ |
697 | const qm_val_t *u_iqmatrix[MAX_SEGMENTS8][TX_SIZES_ALL]; |
698 | /*! |
699 | * Local dequant matrix for V plane. |
700 | */ |
701 | const qm_val_t *v_iqmatrix[MAX_SEGMENTS8][TX_SIZES_ALL]; |
702 | /**@}*/ |
703 | |
704 | /*! |
705 | * Flag indicating whether quantization matrices are being used: |
706 | * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level |
707 | * indices to be used to access appropriate global quant matrix tables. |
708 | * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'. |
709 | */ |
710 | bool_Bool using_qmatrix; |
711 | /** |
712 | * \name Valid only when using_qmatrix == true |
713 | * Indicate the level indices to be used to access appropriate global quant |
714 | * matrix tables. |
715 | */ |
716 | /**@{*/ |
717 | int qmatrix_level_y; /*!< Level index for Y plane */ |
718 | int qmatrix_level_u; /*!< Level index for U plane */ |
719 | int qmatrix_level_v; /*!< Level index for V plane */ |
720 | /**@}*/ |
721 | }; |
722 | |
723 | typedef struct CommonContexts CommonContexts; |
724 | /*! |
725 | * \brief Contexts used for transmitting various symbols in the bitstream. |
726 | */ |
727 | struct CommonContexts { |
728 | /*! |
729 | * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type. |
730 | * partition[i][j] is the context for ith tile row, jth mi_col. |
731 | */ |
732 | PARTITION_CONTEXT **partition; |
733 | |
734 | /*! |
735 | * Context used to derive context for multiple symbols: |
736 | * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit |
737 | * to transmit skip_txfm flag. |
738 | * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit |
739 | * sign. |
740 | * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col. |
741 | */ |
742 | ENTROPY_CONTEXT **entropy[MAX_MB_PLANE3]; |
743 | |
744 | /*! |
745 | * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to |
746 | * transmit 'is_split' flag to indicate if this transform block should be |
747 | * split into smaller sub-blocks. |
748 | * txfm[i][j] is the context for ith tile row, jth mi_col. |
749 | */ |
750 | TXFM_CONTEXT **txfm; |
751 | |
752 | /*! |
753 | * Dimensions that were used to allocate the arrays above. |
754 | * If these dimensions change, the arrays may have to be re-allocated. |
755 | */ |
756 | int num_planes; /*!< Corresponds to av1_num_planes(cm) */ |
757 | int num_tile_rows; /*!< Corresponds to cm->tiles.row */ |
758 | int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */ |
759 | }; |
760 | |
761 | /*! |
762 | * \brief Top level common structure used by both encoder and decoder. |
763 | */ |
764 | typedef struct AV1Common { |
Excessive padding in 'struct AV1Common' (39 padding bytes, where 7 is optimal). Optimal fields order: lf_info, error, prev_frame, cur_frame, last_frame_seg_map, rst_tmpbuf, rlbs, seq_params, fc, default_frame_context, buffer_pool, tpl_mvs, above_contexts, ref_frame_map, mi_params, rst_info, rst_frame, cdef_info, quant_params, width, height, render_width, render_height, superres_upscaled_width, superres_upscaled_height, frame_presentation_time, show_frame, showable_frame, show_existing_frame, current_frame_id, tpl_mvs_mem_size, temporal_layer_id, spatial_layer_id, sf_identity, delta_q_info, features, remapped_ref_idx, ref_frame_id, ref_frame_sign_bias, current_frame, lf, ref_scale_factors, buffer_removal_times, seg, global_motion, tiles, film_grain_params, superres_scale_denominator, ref_frame_side, consider reordering the fields or adding explicit padding members | |
765 | /*! |
766 | * Information about the current frame that is being coded. |
767 | */ |
768 | CurrentFrame current_frame; |
769 | /*! |
770 | * Code and details about current error status. |
771 | */ |
772 | struct aom_internal_error_info *error; |
773 | |
774 | /*! |
775 | * AV1 allows two types of frame scaling operations: |
776 | * 1. Frame super-resolution: that allows coding a frame at lower resolution |
777 | * and after decoding the frame, normatively scales and restores the frame -- |
778 | * inside the coding loop. |
779 | * 2. Frame resize: that allows coding frame at lower/higher resolution, and |
780 | * then non-normatively upscale the frame at the time of rendering -- outside |
781 | * the coding loop. |
782 | * Hence, the need for 3 types of dimensions. |
783 | */ |
784 | |
785 | /** |
786 | * \name Coded frame dimensions. |
787 | */ |
788 | /**@{*/ |
789 | int width; /*!< Coded frame width */ |
790 | int height; /*!< Coded frame height */ |
791 | /**@}*/ |
792 | |
793 | /** |
794 | * \name Rendered frame dimensions. |
795 | * Dimensions after applying both super-resolution and resize to the coded |
796 | * frame. Different from coded dimensions if super-resolution and/or resize |
797 | * are being used for this frame. |
798 | */ |
799 | /**@{*/ |
800 | int render_width; /*!< Rendered frame width */ |
801 | int render_height; /*!< Rendered frame height */ |
802 | /**@}*/ |
803 | |
804 | /** |
805 | * \name Super-resolved frame dimensions. |
806 | * Frame dimensions after applying super-resolution to the coded frame (if |
807 | * present), but before applying resize. |
808 | * Larger than the coded dimensions if super-resolution is being used for |
809 | * this frame. |
810 | * Different from rendered dimensions if resize is being used for this frame. |
811 | */ |
812 | /**@{*/ |
813 | int superres_upscaled_width; /*!< Super-resolved frame width */ |
814 | int superres_upscaled_height; /*!< Super-resolved frame height */ |
815 | /**@}*/ |
816 | |
817 | /*! |
818 | * The denominator of the superres scale used by this frame. |
819 | * Note: The numerator is fixed to be SCALE_NUMERATOR. |
820 | */ |
821 | uint8_t superres_scale_denominator; |
822 | |
823 | /*! |
824 | * buffer_removal_times[op_num] specifies the frame removal time in units of |
825 | * DecCT clock ticks counted from the removal time of the last random access |
826 | * point for operating point op_num. |
827 | * TODO(urvang): We probably don't need the +1 here. |
828 | */ |
829 | uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS(8 * 4) + 1]; |
830 | /*! |
831 | * Presentation time of the frame in clock ticks DispCT counted from the |
832 | * removal time of the last random access point for the operating point that |
833 | * is being decoded. |
834 | */ |
835 | uint32_t frame_presentation_time; |
836 | |
837 | /*! |
838 | * Buffer where previous frame is stored. |
839 | */ |
840 | RefCntBuffer *prev_frame; |
841 | |
842 | /*! |
843 | * Buffer into which the current frame will be stored and other related info. |
844 | * TODO(hkuang): Combine this with cur_buf in macroblockd. |
845 | */ |
846 | RefCntBuffer *cur_frame; |
847 | |
848 | /*! |
849 | * For encoder, we have a two-level mapping from reference frame type to the |
850 | * corresponding buffer in the buffer pool: |
851 | * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ... |
852 | * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1) |
853 | * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to |
854 | * the reference counted buffer structure RefCntBuffer, taken from the buffer |
855 | * pool cm->buffer_pool->frame_bufs. |
856 | * |
857 | * LAST_FRAME, ..., EXTREF_FRAME |
858 | * | | |
859 | * v v |
860 | * remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1] |
861 | * | | |
862 | * v v |
863 | * ref_frame_map[], ..., ref_frame_map[] |
864 | * |
865 | * Note: INTRA_FRAME always refers to the current frame, so there's no need to |
866 | * have a remapped index for the same. |
867 | */ |
868 | int remapped_ref_idx[REF_FRAMES]; |
869 | |
870 | /*! |
871 | * Scale of the current frame with respect to itself. |
872 | * This is currently used for intra block copy, which behaves like an inter |
873 | * prediction mode, where the reference frame is the current frame itself. |
874 | */ |
875 | struct scale_factors sf_identity; |
876 | |
877 | /*! |
878 | * Scale factors of the reference frame with respect to the current frame. |
879 | * This is required for generating inter prediction and will be non-identity |
880 | * for a reference frame, if it has different dimensions than the coded |
881 | * dimensions of the current frame. |
882 | */ |
883 | struct scale_factors ref_scale_factors[REF_FRAMES]; |
884 | |
885 | /*! |
886 | * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to |
887 | * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. |
888 | * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps |
889 | * remapped reference index 'j' (that is, original reference type 'i') to |
890 | * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. |
891 | */ |
892 | RefCntBuffer *ref_frame_map[REF_FRAMES]; |
893 | |
894 | /*! |
895 | * If true, this frame is actually shown after decoding. |
896 | * If false, this frame is coded in the bitstream, but not shown. It is only |
897 | * used as a reference for other frames coded later. |
898 | */ |
899 | int show_frame; |
900 | |
901 | /*! |
902 | * If true, this frame can be used as a show-existing frame for other frames |
903 | * coded later. |
904 | * When 'show_frame' is true, this is always true for all non-keyframes. |
905 | * When 'show_frame' is false, this value is transmitted in the bitstream. |
906 | */ |
907 | int showable_frame; |
908 | |
909 | /*! |
910 | * If true, show an existing frame coded before, instead of actually coding a |
911 | * frame. The existing frame comes from one of the existing reference buffers, |
912 | * as signaled in the bitstream. |
913 | */ |
914 | int show_existing_frame; |
915 | |
916 | /*! |
917 | * Whether some features are allowed or not. |
918 | */ |
919 | FeatureFlags features; |
920 | |
921 | /*! |
922 | * Params related to MB_MODE_INFO arrays and related info. |
923 | */ |
924 | CommonModeInfoParams mi_params; |
925 | |
926 | #if CONFIG_ENTROPY_STATS0 |
927 | /*! |
928 | * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1). |
929 | */ |
930 | int coef_cdf_category; |
931 | #endif // CONFIG_ENTROPY_STATS |
932 | |
933 | /*! |
934 | * Quantization params. |
935 | */ |
936 | CommonQuantParams quant_params; |
937 | |
938 | /*! |
939 | * Segmentation info for current frame. |
940 | */ |
941 | struct segmentation seg; |
942 | |
943 | /*! |
944 | * Segmentation map for previous frame. |
945 | */ |
946 | uint8_t *last_frame_seg_map; |
947 | |
948 | /** |
949 | * \name Deblocking filter parameters. |
950 | */ |
951 | /**@{*/ |
952 | loop_filter_info_n lf_info; /*!< Loop filter info */ |
953 | struct loopfilter lf; /*!< Loop filter parameters */ |
954 | /**@}*/ |
955 | |
956 | /** |
957 | * \name Loop Restoration filter parameters. |
958 | */ |
959 | /**@{*/ |
960 | RestorationInfo rst_info[MAX_MB_PLANE3]; /*!< Loop Restoration filter info */ |
961 | int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */ |
962 | RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */ |
963 | YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */ |
964 | /**@}*/ |
965 | |
966 | /*! |
967 | * CDEF (Constrained Directional Enhancement Filter) parameters. |
968 | */ |
969 | CdefInfo cdef_info; |
970 | |
971 | /*! |
972 | * Parameters for film grain synthesis. |
973 | */ |
974 | aom_film_grain_t film_grain_params; |
975 | |
976 | /*! |
977 | * Parameters for delta quantization and delta loop filter level. |
978 | */ |
979 | DeltaQInfo delta_q_info; |
980 | |
981 | /*! |
982 | * Global motion parameters for each reference frame. |
983 | */ |
984 | WarpedMotionParams global_motion[REF_FRAMES]; |
985 | |
986 | /*! |
987 | * Elements part of the sequence header, that are applicable for all the |
988 | * frames in the video. |
989 | */ |
990 | SequenceHeader *seq_params; |
991 | |
992 | /*! |
993 | * Current CDFs of all the symbols for the current frame. |
994 | */ |
995 | FRAME_CONTEXT *fc; |
996 | /*! |
997 | * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE |
998 | * (e.g. for a keyframe). These default CDFs are defined by the bitstream and |
999 | * copied from default CDF tables for each symbol. |
1000 | */ |
1001 | FRAME_CONTEXT *default_frame_context; |
1002 | |
1003 | /*! |
1004 | * Parameters related to tiling. |
1005 | */ |
1006 | CommonTileParams tiles; |
1007 | |
1008 | /*! |
1009 | * External BufferPool passed from outside. |
1010 | */ |
1011 | BufferPool *buffer_pool; |
1012 | |
1013 | /*! |
1014 | * Above context buffers and their sizes. |
1015 | * Note: above contexts are allocated in this struct, as their size is |
1016 | * dependent on frame width, while left contexts are declared and allocated in |
1017 | * MACROBLOCKD struct, as they have a fixed size. |
1018 | */ |
1019 | CommonContexts above_contexts; |
1020 | |
1021 | /** |
1022 | * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1 |
1023 | */ |
1024 | /**@{*/ |
1025 | int current_frame_id; /*!< frame ID for the current frame. */ |
1026 | int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */ |
1027 | /**@}*/ |
1028 | |
1029 | /*! |
1030 | * Motion vectors provided by motion field estimation. |
1031 | * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where: |
1032 | * mi_row = 2 * row, |
1033 | * mi_col = 2 * col, and |
1034 | * stride = cm->mi_params.mi_stride / 2 |
1035 | */ |
1036 | TPL_MV_REF *tpl_mvs; |
1037 | /*! |
1038 | * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function. |
1039 | */ |
1040 | int tpl_mvs_mem_size; |
1041 | /*! |
1042 | * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and |
1043 | * current frame is positive; and 0 otherwise. |
1044 | */ |
1045 | int ref_frame_sign_bias[REF_FRAMES]; |
1046 | /*! |
1047 | * ref_frame_side[k] is 1 if relative distance between reference 'k' and |
1048 | * current frame is positive, -1 if relative distance is 0; and 0 otherwise. |
1049 | * TODO(jingning): This can be combined with sign_bias later. |
1050 | */ |
1051 | int8_t ref_frame_side[REF_FRAMES]; |
1052 | |
1053 | /*! |
1054 | * Temporal layer ID of this frame |
1055 | * (in the range 0 ... (number_temporal_layers - 1)). |
1056 | */ |
1057 | int temporal_layer_id; |
1058 | |
1059 | /*! |
1060 | * Spatial layer ID of this frame |
1061 | * (in the range 0 ... (number_spatial_layers - 1)). |
1062 | */ |
1063 | int spatial_layer_id; |
1064 | |
1065 | #if TXCOEFF_TIMER0 |
1066 | int64_t cum_txcoeff_timer; |
1067 | int64_t txcoeff_timer; |
1068 | int txb_count; |
1069 | #endif // TXCOEFF_TIMER |
1070 | |
1071 | #if TXCOEFF_COST_TIMER0 |
1072 | int64_t cum_txcoeff_cost_timer; |
1073 | int64_t txcoeff_cost_timer; |
1074 | int64_t txcoeff_cost_count; |
1075 | #endif // TXCOEFF_COST_TIMER |
1076 | } AV1_COMMON; |
1077 | |
1078 | /*!\cond */ |
1079 | |
1080 | // TODO(hkuang): Don't need to lock the whole pool after implementing atomic |
1081 | // frame reference count. |
1082 | static void lock_buffer_pool(BufferPool *const pool) { |
1083 | #if CONFIG_MULTITHREAD1 |
1084 | pthread_mutex_lock(&pool->pool_mutex); |
1085 | #else |
1086 | (void)pool; |
1087 | #endif |
1088 | } |
1089 | |
1090 | static void unlock_buffer_pool(BufferPool *const pool) { |
1091 | #if CONFIG_MULTITHREAD1 |
1092 | pthread_mutex_unlock(&pool->pool_mutex); |
1093 | #else |
1094 | (void)pool; |
1095 | #endif |
1096 | } |
1097 | |
1098 | static inline YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { |
1099 | if (index < 0 || index >= REF_FRAMES) return NULL((void*)0); |
1100 | if (cm->ref_frame_map[index] == NULL((void*)0)) return NULL((void*)0); |
1101 | return &cm->ref_frame_map[index]->buf; |
1102 | } |
1103 | |
1104 | static inline int get_free_fb(AV1_COMMON *cm) { |
1105 | RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
1106 | int i; |
1107 | |
1108 | lock_buffer_pool(cm->buffer_pool); |
1109 | const int num_frame_bufs = cm->buffer_pool->num_frame_bufs; |
1110 | for (i = 0; i < num_frame_bufs; ++i) |
1111 | if (frame_bufs[i].ref_count == 0) break; |
1112 | |
1113 | if (i != num_frame_bufs) { |
1114 | if (frame_bufs[i].buf.use_external_reference_buffers) { |
1115 | // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the |
1116 | // external reference buffers. Restore the buffer pointers to point to the |
1117 | // internally allocated memory. |
1118 | YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; |
1119 | ybf->y_buffer = ybf->store_buf_adr[0]; |
1120 | ybf->u_buffer = ybf->store_buf_adr[1]; |
1121 | ybf->v_buffer = ybf->store_buf_adr[2]; |
1122 | ybf->use_external_reference_buffers = 0; |
1123 | } |
1124 | |
1125 | frame_bufs[i].ref_count = 1; |
1126 | } else { |
1127 | // We should never run out of free buffers. If this assertion fails, there |
1128 | // is a reference leak. |
1129 | assert(0 && "Ran out of free frame buffers. Likely a reference leak.")((void) sizeof ((0 && "Ran out of free frame buffers. Likely a reference leak." ) ? 1 : 0), __extension__ ({ if (0 && "Ran out of free frame buffers. Likely a reference leak." ) ; else __assert_fail ("0 && \"Ran out of free frame buffers. Likely a reference leak.\"" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1129, __extension__ __PRETTY_FUNCTION__); })); |
1130 | // Reset i to be INVALID_IDX to indicate no free buffer found. |
1131 | i = INVALID_IDX-1; |
1132 | } |
1133 | |
1134 | unlock_buffer_pool(cm->buffer_pool); |
1135 | return i; |
1136 | } |
1137 | |
1138 | static inline RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) { |
1139 | // Release the previously-used frame-buffer |
1140 | if (cm->cur_frame != NULL((void*)0)) { |
1141 | --cm->cur_frame->ref_count; |
1142 | cm->cur_frame = NULL((void*)0); |
1143 | } |
1144 | |
1145 | // Assign a new framebuffer |
1146 | const int new_fb_idx = get_free_fb(cm); |
1147 | if (new_fb_idx == INVALID_IDX-1) return NULL((void*)0); |
1148 | |
1149 | cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx]; |
1150 | #if CONFIG_AV1_ENCODER1 && !CONFIG_REALTIME_ONLY0 |
1151 | aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid); |
1152 | av1_invalidate_corner_list(cm->cur_frame->buf.corners); |
1153 | #endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY |
1154 | av1_zero(cm->cur_frame->interp_filter_selected)memset(&(cm->cur_frame->interp_filter_selected), 0, sizeof(cm->cur_frame->interp_filter_selected)); |
1155 | return cm->cur_frame; |
1156 | } |
1157 | |
1158 | // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref |
1159 | // counts accordingly. |
1160 | static inline void assign_frame_buffer_p(RefCntBuffer **lhs_ptr, |
1161 | RefCntBuffer *rhs_ptr) { |
1162 | RefCntBuffer *const old_ptr = *lhs_ptr; |
1163 | if (old_ptr != NULL((void*)0)) { |
1164 | assert(old_ptr->ref_count > 0)((void) sizeof ((old_ptr->ref_count > 0) ? 1 : 0), __extension__ ({ if (old_ptr->ref_count > 0) ; else __assert_fail ("old_ptr->ref_count > 0" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1164, __extension__ __PRETTY_FUNCTION__); })); |
1165 | // One less reference to the buffer at 'old_ptr', so decrease ref count. |
1166 | --old_ptr->ref_count; |
1167 | } |
1168 | |
1169 | *lhs_ptr = rhs_ptr; |
1170 | // One more reference to the buffer at 'rhs_ptr', so increase ref count. |
1171 | ++rhs_ptr->ref_count; |
1172 | } |
1173 | |
1174 | static inline int frame_is_intra_only(const AV1_COMMON *const cm) { |
1175 | return cm->current_frame.frame_type == KEY_FRAME || |
1176 | cm->current_frame.frame_type == INTRA_ONLY_FRAME; |
1177 | } |
1178 | |
1179 | static inline int frame_is_sframe(const AV1_COMMON *cm) { |
1180 | return cm->current_frame.frame_type == S_FRAME; |
1181 | } |
1182 | |
1183 | // These functions take a reference frame label between LAST_FRAME and |
1184 | // EXTREF_FRAME inclusive. Note that this is different to the indexing |
1185 | // previously used by the frame_refs[] array. |
1186 | static inline int get_ref_frame_map_idx(const AV1_COMMON *const cm, |
1187 | const MV_REFERENCE_FRAME ref_frame) { |
1188 | return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME) |
1189 | ? cm->remapped_ref_idx[ref_frame - LAST_FRAME] |
1190 | : INVALID_IDX-1; |
1191 | } |
1192 | |
1193 | static inline RefCntBuffer *get_ref_frame_buf( |
1194 | const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { |
1195 | const int map_idx = get_ref_frame_map_idx(cm, ref_frame); |
1196 | return (map_idx != INVALID_IDX-1) ? cm->ref_frame_map[map_idx] : NULL((void*)0); |
1197 | } |
1198 | |
1199 | // Both const and non-const versions of this function are provided so that it |
1200 | // can be used with a const AV1_COMMON if needed. |
1201 | static inline const struct scale_factors *get_ref_scale_factors_const( |
1202 | const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { |
1203 | const int map_idx = get_ref_frame_map_idx(cm, ref_frame); |
1204 | return (map_idx != INVALID_IDX-1) ? &cm->ref_scale_factors[map_idx] : NULL((void*)0); |
1205 | } |
1206 | |
1207 | static inline struct scale_factors *get_ref_scale_factors( |
1208 | AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { |
1209 | const int map_idx = get_ref_frame_map_idx(cm, ref_frame); |
1210 | return (map_idx != INVALID_IDX-1) ? &cm->ref_scale_factors[map_idx] : NULL((void*)0); |
1211 | } |
1212 | |
1213 | static inline RefCntBuffer *get_primary_ref_frame_buf( |
1214 | const AV1_COMMON *const cm) { |
1215 | const int primary_ref_frame = cm->features.primary_ref_frame; |
1216 | if (primary_ref_frame == PRIMARY_REF_NONE7) return NULL((void*)0); |
1217 | const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1); |
1218 | return (map_idx != INVALID_IDX-1) ? cm->ref_frame_map[map_idx] : NULL((void*)0); |
1219 | } |
1220 | |
1221 | // Returns 1 if this frame might allow mvs from some reference frame. |
1222 | static inline int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { |
1223 | return !cm->features.error_resilient_mode && |
1224 | cm->seq_params->order_hint_info.enable_ref_frame_mvs && |
1225 | cm->seq_params->order_hint_info.enable_order_hint && |
1226 | !frame_is_intra_only(cm); |
1227 | } |
1228 | |
1229 | // Returns 1 if this frame might use warped_motion |
1230 | static inline int frame_might_allow_warped_motion(const AV1_COMMON *cm) { |
1231 | return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) && |
1232 | cm->seq_params->enable_warped_motion; |
1233 | } |
1234 | |
1235 | static inline void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { |
1236 | const int buf_rows = buf->mi_rows; |
1237 | const int buf_cols = buf->mi_cols; |
1238 | const CommonModeInfoParams *const mi_params = &cm->mi_params; |
1239 | |
1240 | if (buf->mvs == NULL((void*)0) || buf_rows != mi_params->mi_rows || |
1241 | buf_cols != mi_params->mi_cols) { |
1242 | aom_free(buf->mvs); |
1243 | buf->mi_rows = mi_params->mi_rows; |
1244 | buf->mi_cols = mi_params->mi_cols; |
1245 | CHECK_MEM_ERROR(cm, buf->mvs,do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * ((mi_params->mi_cols + 1) >> 1), sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error ((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs" ); } while (0) |
1246 | (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * ((mi_params->mi_cols + 1) >> 1), sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error ((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs" ); } while (0) |
1247 | ((mi_params->mi_cols + 1) >> 1),do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * ((mi_params->mi_cols + 1) >> 1), sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error ((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs" ); } while (0) |
1248 | sizeof(*buf->mvs)))do { buf->mvs = ((MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * ((mi_params->mi_cols + 1) >> 1), sizeof(*buf->mvs))); if (!buf->mvs) aom_internal_error ((cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "buf->mvs" ); } while (0); |
1249 | aom_free(buf->seg_map); |
1250 | CHECK_MEM_ERROR(do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf ->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR , "Failed to allocate " "buf->seg_map"); } while (0) |
1251 | cm, buf->seg_map,do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf ->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR , "Failed to allocate " "buf->seg_map"); } while (0) |
1252 | (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf ->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR , "Failed to allocate " "buf->seg_map"); } while (0) |
1253 | sizeof(*buf->seg_map)))do { buf->seg_map = ((uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, sizeof(*buf->seg_map))); if (!buf ->seg_map) aom_internal_error((cm)->error, AOM_CODEC_MEM_ERROR , "Failed to allocate " "buf->seg_map"); } while (0); |
1254 | } |
1255 | |
1256 | const int mem_size = |
1257 | ((mi_params->mi_rows + MAX_MIB_SIZE(1 << (7 - 2))) >> 1) * (mi_params->mi_stride >> 1); |
1258 | |
1259 | if (cm->tpl_mvs == NULL((void*)0) || cm->tpl_mvs_mem_size < mem_size) { |
1260 | aom_free(cm->tpl_mvs); |
1261 | CHECK_MEM_ERROR(cm, cm->tpl_mvs,do { cm->tpl_mvs = ((TPL_MV_REF *)aom_calloc(mem_size, sizeof (*cm->tpl_mvs))); if (!cm->tpl_mvs) aom_internal_error( (cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "cm->tpl_mvs" ); } while (0) |
1262 | (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)))do { cm->tpl_mvs = ((TPL_MV_REF *)aom_calloc(mem_size, sizeof (*cm->tpl_mvs))); if (!cm->tpl_mvs) aom_internal_error( (cm)->error, AOM_CODEC_MEM_ERROR, "Failed to allocate " "cm->tpl_mvs" ); } while (0); |
1263 | cm->tpl_mvs_mem_size = mem_size; |
1264 | } |
1265 | } |
1266 | |
1267 | #if !CONFIG_REALTIME_ONLY0 || CONFIG_AV1_DECODER1 |
1268 | void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params); |
1269 | #endif |
1270 | |
1271 | static inline int av1_num_planes(const AV1_COMMON *cm) { |
1272 | return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE3; |
1273 | } |
1274 | |
1275 | static inline void av1_init_above_context(CommonContexts *above_contexts, |
1276 | int num_planes, int tile_row, |
1277 | MACROBLOCKD *xd) { |
1278 | for (int i = 0; i < num_planes; ++i) { |
1279 | xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row]; |
1280 | } |
1281 | xd->above_partition_context = above_contexts->partition[tile_row]; |
1282 | xd->above_txfm_context = above_contexts->txfm[tile_row]; |
1283 | } |
1284 | |
1285 | static inline void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) { |
1286 | const int num_planes = av1_num_planes(cm); |
1287 | const CommonQuantParams *const quant_params = &cm->quant_params; |
1288 | |
1289 | for (int i = 0; i < num_planes; ++i) { |
1290 | if (xd->plane[i].plane_type == PLANE_TYPE_Y) { |
1291 | memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX, |
1292 | sizeof(quant_params->y_dequant_QTX)); |
1293 | memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix, |
1294 | sizeof(quant_params->y_iqmatrix)); |
1295 | |
1296 | } else { |
1297 | if (i == AOM_PLANE_U1) { |
1298 | memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX, |
1299 | sizeof(quant_params->u_dequant_QTX)); |
1300 | memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix, |
1301 | sizeof(quant_params->u_iqmatrix)); |
1302 | } else { |
1303 | memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX, |
1304 | sizeof(quant_params->v_dequant_QTX)); |
1305 | memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix, |
1306 | sizeof(quant_params->v_iqmatrix)); |
1307 | } |
1308 | } |
1309 | } |
1310 | xd->mi_stride = cm->mi_params.mi_stride; |
1311 | xd->error_info = cm->error; |
1312 | #if !CONFIG_REALTIME_ONLY0 || CONFIG_AV1_DECODER1 |
1313 | cfl_init(&xd->cfl, cm->seq_params); |
1314 | #endif |
1315 | } |
1316 | |
1317 | static inline void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col, |
1318 | const int num_planes) { |
1319 | int i; |
1320 | int row_offset = mi_row; |
1321 | int col_offset = mi_col; |
1322 | for (i = 0; i < num_planes; ++i) { |
1323 | struct macroblockd_plane *const pd = &xd->plane[i]; |
1324 | // Offset the buffer pointer |
1325 | const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
1326 | if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) |
1327 | row_offset = mi_row - 1; |
1328 | if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) |
1329 | col_offset = mi_col - 1; |
1330 | int above_idx = col_offset; |
1331 | int left_idx = row_offset & MAX_MIB_MASK((1 << (7 - 2)) - 1); |
1332 | pd->above_entropy_context = |
1333 | &xd->above_entropy_context[i][above_idx >> pd->subsampling_x]; |
1334 | pd->left_entropy_context = |
1335 | &xd->left_entropy_context[i][left_idx >> pd->subsampling_y]; |
1336 | } |
1337 | } |
1338 | |
1339 | static inline int calc_mi_size(int len) { |
1340 | // len is in mi units. Align to a multiple of SBs. |
1341 | return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2)(((len) + ((1 << ((7 - 2))) - 1)) & ~((1 << ( (7 - 2))) - 1)); |
1342 | } |
1343 | |
1344 | static inline void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, |
1345 | const int num_planes) { |
1346 | int i; |
1347 | for (i = 0; i < num_planes; i++) { |
1348 | xd->plane[i].width = (bw * MI_SIZE(1 << 2)) >> xd->plane[i].subsampling_x; |
1349 | xd->plane[i].height = (bh * MI_SIZE(1 << 2)) >> xd->plane[i].subsampling_y; |
1350 | |
1351 | xd->plane[i].width = AOMMAX(xd->plane[i].width, 4)(((xd->plane[i].width) > (4)) ? (xd->plane[i].width) : (4)); |
1352 | xd->plane[i].height = AOMMAX(xd->plane[i].height, 4)(((xd->plane[i].height) > (4)) ? (xd->plane[i].height ) : (4)); |
1353 | } |
1354 | } |
1355 | |
1356 | static inline void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, |
1357 | int mi_row, int bh, int mi_col, int bw, |
1358 | int mi_rows, int mi_cols) { |
1359 | xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE)((mi_row * (1 << 2))*8); |
1360 | xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE)(((mi_rows - bh - mi_row) * (1 << 2))*8); |
1361 | xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE))(((mi_col * (1 << 2)))*8); |
1362 | xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE)(((mi_cols - bw - mi_col) * (1 << 2))*8); |
1363 | |
1364 | xd->mi_row = mi_row; |
1365 | xd->mi_col = mi_col; |
1366 | |
1367 | // Are edges available for intra prediction? |
1368 | xd->up_available = (mi_row > tile->mi_row_start); |
1369 | |
1370 | const int ss_x = xd->plane[1].subsampling_x; |
1371 | const int ss_y = xd->plane[1].subsampling_y; |
1372 | |
1373 | xd->left_available = (mi_col > tile->mi_col_start); |
1374 | xd->chroma_up_available = xd->up_available; |
1375 | xd->chroma_left_available = xd->left_available; |
1376 | if (ss_x && bw < mi_size_wide[BLOCK_8X8]) |
1377 | xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; |
1378 | if (ss_y && bh < mi_size_high[BLOCK_8X8]) |
1379 | xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; |
1380 | if (xd->up_available) { |
1381 | xd->above_mbmi = xd->mi[-xd->mi_stride]; |
1382 | } else { |
1383 | xd->above_mbmi = NULL((void*)0); |
1384 | } |
1385 | |
1386 | if (xd->left_available) { |
1387 | xd->left_mbmi = xd->mi[-1]; |
1388 | } else { |
1389 | xd->left_mbmi = NULL((void*)0); |
1390 | } |
1391 | |
1392 | const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) && |
1393 | ((mi_col & 0x01) || !(bw & 0x01) || !ss_x); |
1394 | xd->is_chroma_ref = chroma_ref; |
1395 | if (chroma_ref) { |
1396 | // To help calculate the "above" and "left" chroma blocks, note that the |
1397 | // current block may cover multiple luma blocks (e.g., if partitioned into |
1398 | // 4x4 luma blocks). |
1399 | // First, find the top-left-most luma block covered by this chroma block |
1400 | MB_MODE_INFO **base_mi = |
1401 | &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)]; |
1402 | |
1403 | // Then, we consider the luma region covered by the left or above 4x4 chroma |
1404 | // prediction. We want to point to the chroma reference block in that |
1405 | // region, which is the bottom-right-most mi unit. |
1406 | // This leads to the following offsets: |
1407 | MB_MODE_INFO *chroma_above_mi = |
1408 | xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL((void*)0); |
1409 | xd->chroma_above_mbmi = chroma_above_mi; |
1410 | |
1411 | MB_MODE_INFO *chroma_left_mi = |
1412 | xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL((void*)0); |
1413 | xd->chroma_left_mbmi = chroma_left_mi; |
1414 | } |
1415 | |
1416 | xd->height = bh; |
1417 | xd->width = bw; |
1418 | |
1419 | xd->is_last_vertical_rect = 0; |
1420 | if (xd->width < xd->height) { |
1421 | if (!((mi_col + xd->width) & (xd->height - 1))) { |
1422 | xd->is_last_vertical_rect = 1; |
1423 | } |
1424 | } |
1425 | |
1426 | xd->is_first_horizontal_rect = 0; |
1427 | if (xd->width > xd->height) |
1428 | if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1; |
1429 | } |
1430 | |
1431 | static inline aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, |
1432 | const MB_MODE_INFO *above_mi, |
1433 | const MB_MODE_INFO *left_mi) { |
1434 | const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
1435 | const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
1436 | const int above_ctx = intra_mode_context[above]; |
1437 | const int left_ctx = intra_mode_context[left]; |
1438 | return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; |
1439 | } |
1440 | |
1441 | static inline void update_partition_context(MACROBLOCKD *xd, int mi_row, |
1442 | int mi_col, BLOCK_SIZE subsize, |
1443 | BLOCK_SIZE bsize) { |
1444 | PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col; |
1445 | PARTITION_CONTEXT *const left_ctx = |
1446 | xd->left_partition_context + (mi_row & MAX_MIB_MASK((1 << (7 - 2)) - 1)); |
1447 | |
1448 | const int bw = mi_size_wide[bsize]; |
1449 | const int bh = mi_size_high[bsize]; |
1450 | memset(above_ctx, partition_context_lookup[subsize].above, bw); |
1451 | memset(left_ctx, partition_context_lookup[subsize].left, bh); |
1452 | } |
1453 | |
1454 | static inline int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, |
1455 | int subsampling_x, int subsampling_y) { |
1456 | assert(bsize < BLOCK_SIZES_ALL)((void) sizeof ((bsize < BLOCK_SIZES_ALL) ? 1 : 0), __extension__ ({ if (bsize < BLOCK_SIZES_ALL) ; else __assert_fail ("bsize < BLOCK_SIZES_ALL" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1456, __extension__ __PRETTY_FUNCTION__); })); |
1457 | const int bw = mi_size_wide[bsize]; |
1458 | const int bh = mi_size_high[bsize]; |
1459 | int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && |
1460 | ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); |
1461 | return ref_pos; |
1462 | } |
1463 | |
1464 | static inline aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, |
1465 | size_t element) { |
1466 | assert(cdf != NULL)((void) sizeof ((cdf != ((void*)0)) ? 1 : 0), __extension__ ( { if (cdf != ((void*)0)) ; else __assert_fail ("cdf != NULL", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1466, __extension__ __PRETTY_FUNCTION__); })); |
1467 | return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP(1 << 15)) - cdf[element]; |
1468 | } |
1469 | |
1470 | static inline void partition_gather_horz_alike(aom_cdf_prob *out, |
1471 | const aom_cdf_prob *const in, |
1472 | BLOCK_SIZE bsize) { |
1473 | (void)bsize; |
1474 | out[0] = CDF_PROB_TOP(1 << 15); |
1475 | out[0] -= cdf_element_prob(in, PARTITION_HORZ); |
1476 | out[0] -= cdf_element_prob(in, PARTITION_SPLIT); |
1477 | out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); |
1478 | out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); |
1479 | out[0] -= cdf_element_prob(in, PARTITION_VERT_A); |
1480 | if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); |
1481 | out[0] = AOM_ICDF(out[0])((1 << 15) - (out[0])); |
1482 | out[1] = AOM_ICDF(CDF_PROB_TOP)((1 << 15) - ((1 << 15))); |
1483 | } |
1484 | |
1485 | static inline void partition_gather_vert_alike(aom_cdf_prob *out, |
1486 | const aom_cdf_prob *const in, |
1487 | BLOCK_SIZE bsize) { |
1488 | (void)bsize; |
1489 | out[0] = CDF_PROB_TOP(1 << 15); |
1490 | out[0] -= cdf_element_prob(in, PARTITION_VERT); |
1491 | out[0] -= cdf_element_prob(in, PARTITION_SPLIT); |
1492 | out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); |
1493 | out[0] -= cdf_element_prob(in, PARTITION_VERT_A); |
1494 | out[0] -= cdf_element_prob(in, PARTITION_VERT_B); |
1495 | if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); |
1496 | out[0] = AOM_ICDF(out[0])((1 << 15) - (out[0])); |
1497 | out[1] = AOM_ICDF(CDF_PROB_TOP)((1 << 15) - ((1 << 15))); |
1498 | } |
1499 | |
1500 | static inline void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, |
1501 | int mi_col, BLOCK_SIZE subsize, |
1502 | BLOCK_SIZE bsize, |
1503 | PARTITION_TYPE partition) { |
1504 | if (bsize >= BLOCK_8X8) { |
1505 | const int hbs = mi_size_wide[bsize] / 2; |
1506 | BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
1507 | switch (partition) { |
1508 | case PARTITION_SPLIT: |
1509 | if (bsize != BLOCK_8X8) break; |
1510 | AOM_FALLTHROUGH_INTENDEDdo { } while (0); |
1511 | case PARTITION_NONE: |
1512 | case PARTITION_HORZ: |
1513 | case PARTITION_VERT: |
1514 | case PARTITION_HORZ_4: |
1515 | case PARTITION_VERT_4: |
1516 | update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
1517 | break; |
1518 | case PARTITION_HORZ_A: |
1519 | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
1520 | update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); |
1521 | break; |
1522 | case PARTITION_HORZ_B: |
1523 | update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
1524 | update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); |
1525 | break; |
1526 | case PARTITION_VERT_A: |
1527 | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
1528 | update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); |
1529 | break; |
1530 | case PARTITION_VERT_B: |
1531 | update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
1532 | update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); |
1533 | break; |
1534 | default: assert(0 && "Invalid partition type")((void) sizeof ((0 && "Invalid partition type") ? 1 : 0), __extension__ ({ if (0 && "Invalid partition type" ) ; else __assert_fail ("0 && \"Invalid partition type\"" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1534, __extension__ __PRETTY_FUNCTION__); })); |
1535 | } |
1536 | } |
1537 | } |
1538 | |
1539 | static inline int partition_plane_context(const MACROBLOCKD *xd, int mi_row, |
1540 | int mi_col, BLOCK_SIZE bsize) { |
1541 | const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col; |
1542 | const PARTITION_CONTEXT *left_ctx = |
1543 | xd->left_partition_context + (mi_row & MAX_MIB_MASK((1 << (7 - 2)) - 1)); |
1544 | // Minimum partition point is 8x8. Offset the bsl accordingly. |
1545 | const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; |
1546 | int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; |
1547 | |
1548 | assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize])((void) sizeof ((mi_size_wide_log2[bsize] == mi_size_high_log2 [bsize]) ? 1 : 0), __extension__ ({ if (mi_size_wide_log2[bsize ] == mi_size_high_log2[bsize]) ; else __assert_fail ("mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1548, __extension__ __PRETTY_FUNCTION__); })); |
1549 | assert(bsl >= 0)((void) sizeof ((bsl >= 0) ? 1 : 0), __extension__ ({ if ( bsl >= 0) ; else __assert_fail ("bsl >= 0", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1549, __extension__ __PRETTY_FUNCTION__); })); |
1550 | |
1551 | return (left * 2 + above) + bsl * PARTITION_PLOFFSET4; |
1552 | } |
1553 | |
1554 | // Return the number of elements in the partition CDF when |
1555 | // partitioning the (square) block with luma block size of bsize. |
1556 | static inline int partition_cdf_length(BLOCK_SIZE bsize) { |
1557 | if (bsize <= BLOCK_8X8) |
1558 | return PARTITION_TYPES; |
1559 | else if (bsize == BLOCK_128X128) |
1560 | return EXT_PARTITION_TYPES - 2; |
1561 | else |
1562 | return EXT_PARTITION_TYPES; |
1563 | } |
1564 | |
1565 | static inline int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
1566 | int plane) { |
1567 | assert(bsize < BLOCK_SIZES_ALL)((void) sizeof ((bsize < BLOCK_SIZES_ALL) ? 1 : 0), __extension__ ({ if (bsize < BLOCK_SIZES_ALL) ; else __assert_fail ("bsize < BLOCK_SIZES_ALL" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1567, __extension__ __PRETTY_FUNCTION__); })); |
1568 | int max_blocks_wide = block_size_wide[bsize]; |
1569 | |
1570 | if (xd->mb_to_right_edge < 0) { |
1571 | const struct macroblockd_plane *const pd = &xd->plane[plane]; |
1572 | max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); |
1573 | } |
1574 | |
1575 | // Scale the width in the transform block unit. |
1576 | return max_blocks_wide >> MI_SIZE_LOG22; |
1577 | } |
1578 | |
1579 | static inline int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
1580 | int plane) { |
1581 | int max_blocks_high = block_size_high[bsize]; |
1582 | |
1583 | if (xd->mb_to_bottom_edge < 0) { |
1584 | const struct macroblockd_plane *const pd = &xd->plane[plane]; |
1585 | max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); |
1586 | } |
1587 | |
1588 | // Scale the height in the transform block unit. |
1589 | return max_blocks_high >> MI_SIZE_LOG22; |
1590 | } |
1591 | |
1592 | static inline void av1_zero_above_context(AV1_COMMON *const cm, |
1593 | const MACROBLOCKD *xd, |
1594 | int mi_col_start, int mi_col_end, |
1595 | const int tile_row) { |
1596 | const SequenceHeader *const seq_params = cm->seq_params; |
1597 | const int num_planes = av1_num_planes(cm); |
1598 | const int width = mi_col_end - mi_col_start; |
1599 | const int aligned_width = |
1600 | ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2)(((width) + ((1 << (seq_params->mib_size_log2)) - 1) ) & ~((1 << (seq_params->mib_size_log2)) - 1)); |
1601 | const int offset_y = mi_col_start; |
1602 | const int width_y = aligned_width; |
1603 | const int offset_uv = offset_y >> seq_params->subsampling_x; |
1604 | const int width_uv = width_y >> seq_params->subsampling_x; |
1605 | CommonContexts *const above_contexts = &cm->above_contexts; |
1606 | |
1607 | av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y)memset(above_contexts->entropy[0][tile_row] + offset_y, 0, width_y * sizeof(*(above_contexts->entropy[0][tile_row] + offset_y))); |
1608 | if (num_planes > 1) { |
1609 | if (above_contexts->entropy[1][tile_row] && |
1610 | above_contexts->entropy[2][tile_row]) { |
1611 | av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,memset(above_contexts->entropy[1][tile_row] + offset_uv, 0 , width_uv * sizeof(*(above_contexts->entropy[1][tile_row] + offset_uv))) |
1612 | width_uv)memset(above_contexts->entropy[1][tile_row] + offset_uv, 0 , width_uv * sizeof(*(above_contexts->entropy[1][tile_row] + offset_uv))); |
1613 | av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,memset(above_contexts->entropy[2][tile_row] + offset_uv, 0 , width_uv * sizeof(*(above_contexts->entropy[2][tile_row] + offset_uv))) |
1614 | width_uv)memset(above_contexts->entropy[2][tile_row] + offset_uv, 0 , width_uv * sizeof(*(above_contexts->entropy[2][tile_row] + offset_uv))); |
1615 | } else { |
1616 | aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
1617 | "Invalid value of planes"); |
1618 | } |
1619 | } |
1620 | |
1621 | av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,memset(above_contexts->partition[tile_row] + mi_col_start, 0, aligned_width * sizeof(*(above_contexts->partition[tile_row ] + mi_col_start))) |
1622 | aligned_width)memset(above_contexts->partition[tile_row] + mi_col_start, 0, aligned_width * sizeof(*(above_contexts->partition[tile_row ] + mi_col_start))); |
1623 | |
1624 | memset(above_contexts->txfm[tile_row] + mi_col_start, |
1625 | tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT)); |
1626 | } |
1627 | |
1628 | static inline void av1_zero_left_context(MACROBLOCKD *const xd) { |
1629 | av1_zero(xd->left_entropy_context)memset(&(xd->left_entropy_context), 0, sizeof(xd->left_entropy_context )); |
1630 | av1_zero(xd->left_partition_context)memset(&(xd->left_partition_context), 0, sizeof(xd-> left_partition_context)); |
1631 | |
1632 | memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], |
1633 | sizeof(xd->left_txfm_context_buffer)); |
1634 | } |
1635 | |
1636 | static inline void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { |
1637 | int i; |
1638 | for (i = 0; i < len; ++i) txfm_ctx[i] = txs; |
1639 | } |
1640 | |
1641 | static inline void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip, |
1642 | const MACROBLOCKD *xd) { |
1643 | uint8_t bw = tx_size_wide[tx_size]; |
1644 | uint8_t bh = tx_size_high[tx_size]; |
1645 | |
1646 | if (skip) { |
1647 | bw = n4_w * MI_SIZE(1 << 2); |
1648 | bh = n4_h * MI_SIZE(1 << 2); |
1649 | } |
1650 | |
1651 | set_txfm_ctx(xd->above_txfm_context, bw, n4_w); |
1652 | set_txfm_ctx(xd->left_txfm_context, bh, n4_h); |
1653 | } |
1654 | |
1655 | static inline int get_mi_grid_idx(const CommonModeInfoParams *const mi_params, |
1656 | int mi_row, int mi_col) { |
1657 | return mi_row * mi_params->mi_stride + mi_col; |
1658 | } |
1659 | |
1660 | static inline int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params, |
1661 | int mi_row, int mi_col) { |
1662 | const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; |
1663 | const int mi_alloc_row = mi_row / mi_alloc_size_1d; |
1664 | const int mi_alloc_col = mi_col / mi_alloc_size_1d; |
1665 | |
1666 | return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col; |
1667 | } |
1668 | |
1669 | // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi. |
1670 | static inline void set_mi_offsets(const CommonModeInfoParams *const mi_params, |
1671 | MACROBLOCKD *const xd, int mi_row, |
1672 | int mi_col) { |
1673 | // 'mi_grid_base' should point to appropriate memory in 'mi'. |
1674 | const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); |
1675 | const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col); |
1676 | mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx]; |
1677 | // 'xd->mi' should point to an offset in 'mi_grid_base'; |
1678 | xd->mi = mi_params->mi_grid_base + mi_grid_idx; |
1679 | // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'. |
1680 | xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx; |
1681 | xd->tx_type_map_stride = mi_params->mi_stride; |
1682 | } |
1683 | |
1684 | static inline void txfm_partition_update(TXFM_CONTEXT *above_ctx, |
1685 | TXFM_CONTEXT *left_ctx, |
1686 | TX_SIZE tx_size, TX_SIZE txb_size) { |
1687 | BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; |
1688 | int bh = mi_size_high[bsize]; |
1689 | int bw = mi_size_wide[bsize]; |
1690 | uint8_t txw = tx_size_wide[tx_size]; |
1691 | uint8_t txh = tx_size_high[tx_size]; |
1692 | int i; |
1693 | for (i = 0; i < bh; ++i) left_ctx[i] = txh; |
1694 | for (i = 0; i < bw; ++i) above_ctx[i] = txw; |
1695 | } |
1696 | |
1697 | static inline TX_SIZE get_sqr_tx_size(int tx_dim) { |
1698 | switch (tx_dim) { |
1699 | case 128: |
1700 | case 64: return TX_64X64; break; |
1701 | case 32: return TX_32X32; break; |
1702 | case 16: return TX_16X16; break; |
1703 | case 8: return TX_8X8; break; |
1704 | default: return TX_4X4; |
1705 | } |
1706 | } |
1707 | |
1708 | static inline TX_SIZE get_tx_size(int width, int height) { |
1709 | if (width == height) { |
1710 | return get_sqr_tx_size(width); |
1711 | } |
1712 | if (width < height) { |
1713 | if (width + width == height) { |
1714 | switch (width) { |
1715 | case 4: return TX_4X8; break; |
1716 | case 8: return TX_8X16; break; |
1717 | case 16: return TX_16X32; break; |
1718 | case 32: return TX_32X64; break; |
1719 | } |
1720 | } else { |
1721 | switch (width) { |
1722 | case 4: return TX_4X16; break; |
1723 | case 8: return TX_8X32; break; |
1724 | case 16: return TX_16X64; break; |
1725 | } |
1726 | } |
1727 | } else { |
1728 | if (height + height == width) { |
1729 | switch (height) { |
1730 | case 4: return TX_8X4; break; |
1731 | case 8: return TX_16X8; break; |
1732 | case 16: return TX_32X16; break; |
1733 | case 32: return TX_64X32; break; |
1734 | } |
1735 | } else { |
1736 | switch (height) { |
1737 | case 4: return TX_16X4; break; |
1738 | case 8: return TX_32X8; break; |
1739 | case 16: return TX_64X16; break; |
1740 | } |
1741 | } |
1742 | } |
1743 | assert(0)((void) sizeof ((0) ? 1 : 0), __extension__ ({ if (0) ; else __assert_fail ("0", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1743, __extension__ __PRETTY_FUNCTION__); })); |
1744 | return TX_4X4; |
1745 | } |
1746 | |
1747 | static inline int txfm_partition_context(const TXFM_CONTEXT *const above_ctx, |
1748 | const TXFM_CONTEXT *const left_ctx, |
1749 | BLOCK_SIZE bsize, TX_SIZE tx_size) { |
1750 | const uint8_t txw = tx_size_wide[tx_size]; |
1751 | const uint8_t txh = tx_size_high[tx_size]; |
1752 | const int above = *above_ctx < txw; |
1753 | const int left = *left_ctx < txh; |
1754 | int category = TXFM_PARTITION_CONTEXTS((TX_SIZES - TX_8X8) * 6 - 3); |
1755 | |
1756 | // dummy return, not used by others. |
1757 | if (tx_size <= TX_4X4) return 0; |
1758 | |
1759 | TX_SIZE max_tx_size = |
1760 | get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])(((block_size_wide[bsize]) > (block_size_high[bsize])) ? ( block_size_wide[bsize]) : (block_size_high[bsize]))); |
1761 | |
1762 | if (max_tx_size >= TX_8X8) { |
1763 | category = |
1764 | (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + |
1765 | (TX_SIZES - 1 - max_tx_size) * 2; |
1766 | } |
1767 | assert(category != TXFM_PARTITION_CONTEXTS)((void) sizeof ((category != ((TX_SIZES - TX_8X8) * 6 - 3)) ? 1 : 0), __extension__ ({ if (category != ((TX_SIZES - TX_8X8 ) * 6 - 3)) ; else __assert_fail ("category != TXFM_PARTITION_CONTEXTS" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1767, __extension__ __PRETTY_FUNCTION__); })); |
1768 | return category * 3 + above + left; |
1769 | } |
1770 | |
1771 | // Compute the next partition in the direction of the sb_type stored in the mi |
1772 | // array, starting with bsize. |
1773 | static inline PARTITION_TYPE get_partition(const AV1_COMMON *const cm, |
1774 | int mi_row, int mi_col, |
1775 | BLOCK_SIZE bsize) { |
1776 | const CommonModeInfoParams *const mi_params = &cm->mi_params; |
1777 | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) |
1778 | return PARTITION_INVALID; |
1779 | |
1780 | const int offset = mi_row * mi_params->mi_stride + mi_col; |
1781 | MB_MODE_INFO **mi = mi_params->mi_grid_base + offset; |
1782 | const BLOCK_SIZE subsize = mi[0]->bsize; |
1783 | |
1784 | assert(bsize < BLOCK_SIZES_ALL)((void) sizeof ((bsize < BLOCK_SIZES_ALL) ? 1 : 0), __extension__ ({ if (bsize < BLOCK_SIZES_ALL) ; else __assert_fail ("bsize < BLOCK_SIZES_ALL" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1784, __extension__ __PRETTY_FUNCTION__); })); |
1785 | |
1786 | if (subsize == bsize) return PARTITION_NONE; |
1787 | |
1788 | const int bhigh = mi_size_high[bsize]; |
1789 | const int bwide = mi_size_wide[bsize]; |
1790 | const int sshigh = mi_size_high[subsize]; |
1791 | const int sswide = mi_size_wide[subsize]; |
1792 | |
1793 | if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows && |
1794 | mi_col + bhigh / 2 < mi_params->mi_cols) { |
1795 | // In this case, the block might be using an extended partition |
1796 | // type. |
1797 | const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; |
1798 | const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride]; |
1799 | |
1800 | if (sswide == bwide) { |
1801 | // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or |
1802 | // PARTITION_HORZ_B. To distinguish the latter two, check if the lower |
1803 | // half was split. |
1804 | if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; |
1805 | assert(sshigh * 2 == bhigh)((void) sizeof ((sshigh * 2 == bhigh) ? 1 : 0), __extension__ ({ if (sshigh * 2 == bhigh) ; else __assert_fail ("sshigh * 2 == bhigh" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1805, __extension__ __PRETTY_FUNCTION__); })); |
1806 | |
1807 | if (mbmi_below->bsize == subsize) |
1808 | return PARTITION_HORZ; |
1809 | else |
1810 | return PARTITION_HORZ_B; |
1811 | } else if (sshigh == bhigh) { |
1812 | // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or |
1813 | // PARTITION_VERT_B. To distinguish the latter two, check if the right |
1814 | // half was split. |
1815 | if (sswide * 4 == bwide) return PARTITION_VERT_4; |
1816 | assert(sswide * 2 == bwide)((void) sizeof ((sswide * 2 == bwide) ? 1 : 0), __extension__ ({ if (sswide * 2 == bwide) ; else __assert_fail ("sswide * 2 == bwide" , "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1816, __extension__ __PRETTY_FUNCTION__); })); |
1817 | |
1818 | if (mbmi_right->bsize == subsize) |
1819 | return PARTITION_VERT; |
1820 | else |
1821 | return PARTITION_VERT_B; |
1822 | } else { |
1823 | // Smaller width and smaller height. Might be PARTITION_SPLIT or could be |
1824 | // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both |
1825 | // dimensions, we immediately know this is a split (which will recurse to |
1826 | // get to subsize). Otherwise look down and to the right. With |
1827 | // PARTITION_VERT_A, the right block will have height bhigh; with |
1828 | // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise |
1829 | // it's PARTITION_SPLIT. |
1830 | if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; |
1831 | |
1832 | if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A; |
1833 | if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A; |
1834 | |
1835 | return PARTITION_SPLIT; |
1836 | } |
1837 | } |
1838 | const int vert_split = sswide < bwide; |
1839 | const int horz_split = sshigh < bhigh; |
1840 | const int split_idx = (vert_split << 1) | horz_split; |
1841 | assert(split_idx != 0)((void) sizeof ((split_idx != 0) ? 1 : 0), __extension__ ({ if (split_idx != 0) ; else __assert_fail ("split_idx != 0", "/root/firefox-clang/third_party/aom/av1/common/av1_common_int.h" , 1841, __extension__ __PRETTY_FUNCTION__); })); |
1842 | |
1843 | static const PARTITION_TYPE base_partitions[4] = { |
1844 | PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT |
1845 | }; |
1846 | |
1847 | return base_partitions[split_idx]; |
1848 | } |
1849 | |
1850 | static inline void set_sb_size(SequenceHeader *const seq_params, |
1851 | BLOCK_SIZE sb_size) { |
1852 | seq_params->sb_size = sb_size; |
1853 | seq_params->mib_size = mi_size_wide[seq_params->sb_size]; |
1854 | seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size]; |
1855 | } |
1856 | |
1857 | // Returns true if the frame is fully lossless at the coded resolution. |
1858 | // Note: If super-resolution is used, such a frame will still NOT be lossless at |
1859 | // the upscaled resolution. |
1860 | static inline int is_coded_lossless(const AV1_COMMON *cm, |
1861 | const MACROBLOCKD *xd) { |
1862 | int coded_lossless = 1; |
1863 | if (cm->seg.enabled) { |
1864 | for (int i = 0; i < MAX_SEGMENTS8; ++i) { |
1865 | if (!xd->lossless[i]) { |
1866 | coded_lossless = 0; |
1867 | break; |
1868 | } |
1869 | } |
1870 | } else { |
1871 | coded_lossless = xd->lossless[0]; |
1872 | } |
1873 | return coded_lossless; |
1874 | } |
1875 | |
1876 | static inline int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) { |
1877 | return seq_level_idx == SEQ_LEVEL_MAX || |
1878 | (seq_level_idx < SEQ_LEVELS && |
1879 | // The following levels are currently undefined. |
1880 | seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 && |
1881 | seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 && |
1882 | seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 |
1883 | #if !CONFIG_CWG_C0130 |
1884 | && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 && |
1885 | seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 && |
1886 | seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 && |
1887 | seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3 |
1888 | #endif |
1889 | ); |
1890 | } |
1891 | |
1892 | /*!\endcond */ |
1893 | |
1894 | #ifdef __cplusplus |
1895 | } // extern "C" |
1896 | #endif |
1897 | |
1898 | #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_ |