File: | root/firefox-clang/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/ast_to_hir.cpp |
Warning: | line 8797, column 37 Assigned value is uninitialized |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright © 2010 Intel Corporation | |||
3 | * | |||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | |||
5 | * copy of this software and associated documentation files (the "Software"), | |||
6 | * to deal in the Software without restriction, including without limitation | |||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | |||
8 | * and/or sell copies of the Software, and to permit persons to whom the | |||
9 | * Software is furnished to do so, subject to the following conditions: | |||
10 | * | |||
11 | * The above copyright notice and this permission notice (including the next | |||
12 | * paragraph) shall be included in all copies or substantial portions of the | |||
13 | * Software. | |||
14 | * | |||
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |||
18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |||
20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |||
21 | * DEALINGS IN THE SOFTWARE. | |||
22 | */ | |||
23 | ||||
24 | /** | |||
25 | * \file ast_to_hir.c | |||
26 | * Convert abstract syntax to to high-level intermediate reprensentation (HIR). | |||
27 | * | |||
28 | * During the conversion to HIR, the majority of the symantic checking is | |||
29 | * preformed on the program. This includes: | |||
30 | * | |||
31 | * * Symbol table management | |||
32 | * * Type checking | |||
33 | * * Function binding | |||
34 | * | |||
35 | * The majority of this work could be done during parsing, and the parser could | |||
36 | * probably generate HIR directly. However, this results in frequent changes | |||
37 | * to the parser code. Since we do not assume that every system this complier | |||
38 | * is built on will have Flex and Bison installed, we have to store the code | |||
39 | * generated by these tools in our version control system. In other parts of | |||
40 | * the system we've seen problems where a parser was changed but the generated | |||
41 | * code was not committed, merge conflicts where created because two developers | |||
42 | * had slightly different versions of Bison installed, etc. | |||
43 | * | |||
44 | * I have also noticed that running Bison generated parsers in GDB is very | |||
45 | * irritating. When you get a segfault on '$$ = $1->foo', you can't very | |||
46 | * well 'print $1' in GDB. | |||
47 | * | |||
48 | * As a result, my preference is to put as little C code as possible in the | |||
49 | * parser (and lexer) sources. | |||
50 | */ | |||
51 | ||||
52 | #include "glsl_symbol_table.h" | |||
53 | #include "glsl_parser_extras.h" | |||
54 | #include "ast.h" | |||
55 | #include "compiler/glsl_types.h" | |||
56 | #include "util/hash_table.h" | |||
57 | #include "main/mtypes.h" | |||
58 | #include "main/macros.h" | |||
59 | #include "main/shaderobj.h" | |||
60 | #include "ir.h" | |||
61 | #include "ir_builder.h" | |||
62 | #include "builtin_functions.h" | |||
63 | ||||
64 | using namespace ir_builder; | |||
65 | ||||
66 | static void | |||
67 | detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, | |||
68 | exec_list *instructions); | |||
69 | static void | |||
70 | verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); | |||
71 | ||||
72 | static void | |||
73 | remove_per_vertex_blocks(exec_list *instructions, | |||
74 | _mesa_glsl_parse_state *state, ir_variable_mode mode); | |||
75 | ||||
76 | /** | |||
77 | * Visitor class that finds the first instance of any write-only variable that | |||
78 | * is ever read, if any | |||
79 | */ | |||
80 | class read_from_write_only_variable_visitor : public ir_hierarchical_visitor | |||
81 | { | |||
82 | public: | |||
83 | read_from_write_only_variable_visitor() : found(NULL__null) | |||
84 | { | |||
85 | } | |||
86 | ||||
87 | virtual ir_visitor_status visit(ir_dereference_variable *ir) | |||
88 | { | |||
89 | if (this->in_assignee) | |||
90 | return visit_continue; | |||
91 | ||||
92 | ir_variable *var = ir->variable_referenced(); | |||
93 | /* We can have memory_write_only set on both images and buffer variables, | |||
94 | * but in the former there is a distinction between reads from | |||
95 | * the variable itself (write_only) and from the memory they point to | |||
96 | * (memory_write_only), while in the case of buffer variables there is | |||
97 | * no such distinction, that is why this check here is limited to | |||
98 | * buffer variables alone. | |||
99 | */ | |||
100 | if (!var || var->data.mode != ir_var_shader_storage) | |||
101 | return visit_continue; | |||
102 | ||||
103 | if (var->data.memory_write_only) { | |||
104 | found = var; | |||
105 | return visit_stop; | |||
106 | } | |||
107 | ||||
108 | return visit_continue; | |||
109 | } | |||
110 | ||||
111 | ir_variable *get_variable() { | |||
112 | return found; | |||
113 | } | |||
114 | ||||
115 | virtual ir_visitor_status visit_enter(ir_expression *ir) | |||
116 | { | |||
117 | /* .length() doesn't actually read anything */ | |||
118 | if (ir->operation == ir_unop_ssbo_unsized_array_length) | |||
119 | return visit_continue_with_parent; | |||
120 | ||||
121 | return visit_continue; | |||
122 | } | |||
123 | ||||
124 | private: | |||
125 | ir_variable *found; | |||
126 | }; | |||
127 | ||||
128 | void | |||
129 | _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) | |||
130 | { | |||
131 | _mesa_glsl_initialize_variables(instructions, state); | |||
132 | ||||
133 | state->symbols->separate_function_namespace = state->language_version == 110; | |||
134 | ||||
135 | state->current_function = NULL__null; | |||
136 | ||||
137 | state->toplevel_ir = instructions; | |||
138 | ||||
139 | state->gs_input_prim_type_specified = false; | |||
140 | state->tcs_output_vertices_specified = false; | |||
141 | state->cs_input_local_size_specified = false; | |||
142 | ||||
143 | /* Section 4.2 of the GLSL 1.20 specification states: | |||
144 | * "The built-in functions are scoped in a scope outside the global scope | |||
145 | * users declare global variables in. That is, a shader's global scope, | |||
146 | * available for user-defined functions and global variables, is nested | |||
147 | * inside the scope containing the built-in functions." | |||
148 | * | |||
149 | * Since built-in functions like ftransform() access built-in variables, | |||
150 | * it follows that those must be in the outer scope as well. | |||
151 | * | |||
152 | * We push scope here to create this nesting effect...but don't pop. | |||
153 | * This way, a shader's globals are still in the symbol table for use | |||
154 | * by the linker. | |||
155 | */ | |||
156 | state->symbols->push_scope(); | |||
157 | ||||
158 | foreach_list_typed (ast_node, ast, link, & state->translation_unit)for (ast_node * ast = (!exec_node_is_tail_sentinel((& state ->translation_unit)->head_sentinel.next) ? ((ast_node * ) (((uintptr_t) (& state->translation_unit)->head_sentinel .next) - (((char *) &((ast_node *) (& state->translation_unit )->head_sentinel.next)->link) - ((char *) (& state-> translation_unit)->head_sentinel.next)))) : __null); (ast) != __null; (ast) = (!exec_node_is_tail_sentinel((ast)->link .next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - ( ((char *) &((ast_node *) (ast)->link.next)->link) - ((char *) (ast)->link.next)))) : __null)) | |||
159 | ast->hir(instructions, state); | |||
160 | ||||
161 | verify_subroutine_associated_funcs(state); | |||
162 | detect_recursion_unlinked(state, instructions); | |||
163 | detect_conflicting_assignments(state, instructions); | |||
164 | ||||
165 | state->toplevel_ir = NULL__null; | |||
166 | ||||
167 | /* Move all of the variable declarations to the front of the IR list, and | |||
168 | * reverse the order. This has the (intended!) side effect that vertex | |||
169 | * shader inputs and fragment shader outputs will appear in the IR in the | |||
170 | * same order that they appeared in the shader code. This results in the | |||
171 | * locations being assigned in the declared order. Many (arguably buggy) | |||
172 | * applications depend on this behavior, and it matches what nearly all | |||
173 | * other drivers do. | |||
174 | * However, do not push the declarations before struct decls or precision | |||
175 | * statements. | |||
176 | */ | |||
177 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); | |||
178 | ir_instruction* after_node = NULL__null; | |||
179 | while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl)) | |||
180 | { | |||
181 | after_node = before_node; | |||
182 | before_node = (ir_instruction*)before_node->next; | |||
183 | } | |||
184 | ||||
185 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { | |||
186 | ir_variable *const var = node->as_variable(); | |||
187 | ||||
188 | if (var == NULL__null) | |||
189 | continue; | |||
190 | ||||
191 | var->remove(); | |||
192 | if (after_node) | |||
193 | after_node->insert_after(var); | |||
194 | else | |||
195 | instructions->push_head(var); | |||
196 | } | |||
197 | ||||
198 | /* Figure out if gl_FragCoord is actually used in fragment shader */ | |||
199 | ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); | |||
200 | if (var != NULL__null) | |||
201 | state->fs_uses_gl_fragcoord = var->data.used; | |||
202 | ||||
203 | /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: | |||
204 | * | |||
205 | * If multiple shaders using members of a built-in block belonging to | |||
206 | * the same interface are linked together in the same program, they | |||
207 | * must all redeclare the built-in block in the same way, as described | |||
208 | * in section 4.3.7 "Interface Blocks" for interface block matching, or | |||
209 | * a link error will result. | |||
210 | * | |||
211 | * The phrase "using members of a built-in block" implies that if two | |||
212 | * shaders are linked together and one of them *does not use* any members | |||
213 | * of the built-in block, then that shader does not need to have a matching | |||
214 | * redeclaration of the built-in block. | |||
215 | * | |||
216 | * This appears to be a clarification to the behaviour established for | |||
217 | * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL | |||
218 | * version. | |||
219 | * | |||
220 | * The definition of "interface" in section 4.3.7 that applies here is as | |||
221 | * follows: | |||
222 | * | |||
223 | * The boundary between adjacent programmable pipeline stages: This | |||
224 | * spans all the outputs in all compilation units of the first stage | |||
225 | * and all the inputs in all compilation units of the second stage. | |||
226 | * | |||
227 | * Therefore this rule applies to both inter- and intra-stage linking. | |||
228 | * | |||
229 | * The easiest way to implement this is to check whether the shader uses | |||
230 | * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply | |||
231 | * remove all the relevant variable declaration from the IR, so that the | |||
232 | * linker won't see them and complain about mismatches. | |||
233 | */ | |||
234 | remove_per_vertex_blocks(instructions, state, ir_var_shader_in); | |||
235 | remove_per_vertex_blocks(instructions, state, ir_var_shader_out); | |||
236 | ||||
237 | /* Check that we don't have reads from write-only variables */ | |||
238 | read_from_write_only_variable_visitor v; | |||
239 | v.run(instructions); | |||
240 | ir_variable *error_var = v.get_variable(); | |||
241 | if (error_var) { | |||
242 | /* It would be nice to have proper location information, but for that | |||
243 | * we would need to check this as we process each kind of AST node | |||
244 | */ | |||
245 | YYLTYPE loc; | |||
246 | memset(&loc, 0, sizeof(loc)); | |||
247 | _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", | |||
248 | error_var->name); | |||
249 | } | |||
250 | } | |||
251 | ||||
252 | ||||
253 | static ir_expression_operation | |||
254 | get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, | |||
255 | struct _mesa_glsl_parse_state *state) | |||
256 | { | |||
257 | switch (to->base_type) { | |||
258 | case GLSL_TYPE_FLOAT: | |||
259 | switch (from->base_type) { | |||
260 | case GLSL_TYPE_INT: return ir_unop_i2f; | |||
261 | case GLSL_TYPE_UINT: return ir_unop_u2f; | |||
262 | default: return (ir_expression_operation)0; | |||
263 | } | |||
264 | ||||
265 | case GLSL_TYPE_UINT: | |||
266 | if (!state->has_implicit_uint_to_int_conversion()) | |||
267 | return (ir_expression_operation)0; | |||
268 | switch (from->base_type) { | |||
269 | case GLSL_TYPE_INT: return ir_unop_i2u; | |||
270 | default: return (ir_expression_operation)0; | |||
271 | } | |||
272 | ||||
273 | case GLSL_TYPE_DOUBLE: | |||
274 | if (!state->has_double()) | |||
275 | return (ir_expression_operation)0; | |||
276 | switch (from->base_type) { | |||
277 | case GLSL_TYPE_INT: return ir_unop_i2d; | |||
278 | case GLSL_TYPE_UINT: return ir_unop_u2d; | |||
279 | case GLSL_TYPE_FLOAT: return ir_unop_f2d; | |||
280 | case GLSL_TYPE_INT64: return ir_unop_i642d; | |||
281 | case GLSL_TYPE_UINT64: return ir_unop_u642d; | |||
282 | default: return (ir_expression_operation)0; | |||
283 | } | |||
284 | ||||
285 | case GLSL_TYPE_UINT64: | |||
286 | if (!state->has_int64()) | |||
287 | return (ir_expression_operation)0; | |||
288 | switch (from->base_type) { | |||
289 | case GLSL_TYPE_INT: return ir_unop_i2u64; | |||
290 | case GLSL_TYPE_UINT: return ir_unop_u2u64; | |||
291 | case GLSL_TYPE_INT64: return ir_unop_i642u64; | |||
292 | default: return (ir_expression_operation)0; | |||
293 | } | |||
294 | ||||
295 | case GLSL_TYPE_INT64: | |||
296 | if (!state->has_int64()) | |||
297 | return (ir_expression_operation)0; | |||
298 | switch (from->base_type) { | |||
299 | case GLSL_TYPE_INT: return ir_unop_i2i64; | |||
300 | default: return (ir_expression_operation)0; | |||
301 | } | |||
302 | ||||
303 | default: return (ir_expression_operation)0; | |||
304 | } | |||
305 | } | |||
306 | ||||
307 | ||||
308 | /** | |||
309 | * If a conversion is available, convert one operand to a different type | |||
310 | * | |||
311 | * The \c from \c ir_rvalue is converted "in place". | |||
312 | * | |||
313 | * \param to Type that the operand it to be converted to | |||
314 | * \param from Operand that is being converted | |||
315 | * \param state GLSL compiler state | |||
316 | * | |||
317 | * \return | |||
318 | * If a conversion is possible (or unnecessary), \c true is returned. | |||
319 | * Otherwise \c false is returned. | |||
320 | */ | |||
321 | static bool | |||
322 | apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, | |||
323 | struct _mesa_glsl_parse_state *state) | |||
324 | { | |||
325 | void *ctx = state; | |||
326 | if (to->base_type == from->type->base_type) | |||
327 | return true; | |||
328 | ||||
329 | /* Prior to GLSL 1.20, there are no implicit conversions */ | |||
330 | if (!state->has_implicit_conversions()) | |||
331 | return false; | |||
332 | ||||
333 | /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: | |||
334 | * | |||
335 | * "There are no implicit array or structure conversions. For | |||
336 | * example, an array of int cannot be implicitly converted to an | |||
337 | * array of float. | |||
338 | */ | |||
339 | if (!to->is_numeric() || !from->type->is_numeric()) | |||
340 | return false; | |||
341 | ||||
342 | /* We don't actually want the specific type `to`, we want a type | |||
343 | * with the same base type as `to`, but the same vector width as | |||
344 | * `from`. | |||
345 | */ | |||
346 | to = glsl_type::get_instance(to->base_type, from->type->vector_elements, | |||
347 | from->type->matrix_columns); | |||
348 | ||||
349 | ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); | |||
350 | if (op) { | |||
351 | from = new(ctx) ir_expression(op, to, from, NULL__null); | |||
352 | return true; | |||
353 | } else { | |||
354 | return false; | |||
355 | } | |||
356 | } | |||
357 | ||||
358 | ||||
359 | static const struct glsl_type * | |||
360 | arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
361 | bool multiply, | |||
362 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
363 | { | |||
364 | const glsl_type *type_a = value_a->type; | |||
365 | const glsl_type *type_b = value_b->type; | |||
366 | ||||
367 | /* From GLSL 1.50 spec, page 56: | |||
368 | * | |||
369 | * "The arithmetic binary operators add (+), subtract (-), | |||
370 | * multiply (*), and divide (/) operate on integer and | |||
371 | * floating-point scalars, vectors, and matrices." | |||
372 | */ | |||
373 | if (!type_a->is_numeric() || !type_b->is_numeric()) { | |||
374 | _mesa_glsl_error(loc, state, | |||
375 | "operands to arithmetic operators must be numeric"); | |||
376 | return glsl_type::error_type; | |||
377 | } | |||
378 | ||||
379 | ||||
380 | /* "If one operand is floating-point based and the other is | |||
381 | * not, then the conversions from Section 4.1.10 "Implicit | |||
382 | * Conversions" are applied to the non-floating-point-based operand." | |||
383 | */ | |||
384 | if (!apply_implicit_conversion(type_a, value_b, state) | |||
385 | && !apply_implicit_conversion(type_b, value_a, state)) { | |||
386 | _mesa_glsl_error(loc, state, | |||
387 | "could not implicitly convert operands to " | |||
388 | "arithmetic operator"); | |||
389 | return glsl_type::error_type; | |||
390 | } | |||
391 | type_a = value_a->type; | |||
392 | type_b = value_b->type; | |||
393 | ||||
394 | /* "If the operands are integer types, they must both be signed or | |||
395 | * both be unsigned." | |||
396 | * | |||
397 | * From this rule and the preceeding conversion it can be inferred that | |||
398 | * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. | |||
399 | * The is_numeric check above already filtered out the case where either | |||
400 | * type is not one of these, so now the base types need only be tested for | |||
401 | * equality. | |||
402 | */ | |||
403 | if (type_a->base_type != type_b->base_type) { | |||
404 | _mesa_glsl_error(loc, state, | |||
405 | "base type mismatch for arithmetic operator"); | |||
406 | return glsl_type::error_type; | |||
407 | } | |||
408 | ||||
409 | /* "All arithmetic binary operators result in the same fundamental type | |||
410 | * (signed integer, unsigned integer, or floating-point) as the | |||
411 | * operands they operate on, after operand type conversion. After | |||
412 | * conversion, the following cases are valid | |||
413 | * | |||
414 | * * The two operands are scalars. In this case the operation is | |||
415 | * applied, resulting in a scalar." | |||
416 | */ | |||
417 | if (type_a->is_scalar() && type_b->is_scalar()) | |||
418 | return type_a; | |||
419 | ||||
420 | /* "* One operand is a scalar, and the other is a vector or matrix. | |||
421 | * In this case, the scalar operation is applied independently to each | |||
422 | * component of the vector or matrix, resulting in the same size | |||
423 | * vector or matrix." | |||
424 | */ | |||
425 | if (type_a->is_scalar()) { | |||
426 | if (!type_b->is_scalar()) | |||
427 | return type_b; | |||
428 | } else if (type_b->is_scalar()) { | |||
429 | return type_a; | |||
430 | } | |||
431 | ||||
432 | /* All of the combinations of <scalar, scalar>, <vector, scalar>, | |||
433 | * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been | |||
434 | * handled. | |||
435 | */ | |||
436 | assert(!type_a->is_scalar())(static_cast <bool> (!type_a->is_scalar()) ? void (0 ) : __assert_fail ("!type_a->is_scalar()", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
437 | assert(!type_b->is_scalar())(static_cast <bool> (!type_b->is_scalar()) ? void (0 ) : __assert_fail ("!type_b->is_scalar()", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
438 | ||||
439 | /* "* The two operands are vectors of the same size. In this case, the | |||
440 | * operation is done component-wise resulting in the same size | |||
441 | * vector." | |||
442 | */ | |||
443 | if (type_a->is_vector() && type_b->is_vector()) { | |||
444 | if (type_a == type_b) { | |||
445 | return type_a; | |||
446 | } else { | |||
447 | _mesa_glsl_error(loc, state, | |||
448 | "vector size mismatch for arithmetic operator"); | |||
449 | return glsl_type::error_type; | |||
450 | } | |||
451 | } | |||
452 | ||||
453 | /* All of the combinations of <scalar, scalar>, <vector, scalar>, | |||
454 | * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and | |||
455 | * <vector, vector> have been handled. At least one of the operands must | |||
456 | * be matrix. Further, since there are no integer matrix types, the base | |||
457 | * type of both operands must be float. | |||
458 | */ | |||
459 | assert(type_a->is_matrix() || type_b->is_matrix())(static_cast <bool> (type_a->is_matrix() || type_b-> is_matrix()) ? void (0) : __assert_fail ("type_a->is_matrix() || type_b->is_matrix()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
460 | assert(type_a->is_float() || type_a->is_double())(static_cast <bool> (type_a->is_float() || type_a-> is_double()) ? void (0) : __assert_fail ("type_a->is_float() || type_a->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
461 | assert(type_b->is_float() || type_b->is_double())(static_cast <bool> (type_b->is_float() || type_b-> is_double()) ? void (0) : __assert_fail ("type_b->is_float() || type_b->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
462 | ||||
463 | /* "* The operator is add (+), subtract (-), or divide (/), and the | |||
464 | * operands are matrices with the same number of rows and the same | |||
465 | * number of columns. In this case, the operation is done component- | |||
466 | * wise resulting in the same size matrix." | |||
467 | * * The operator is multiply (*), where both operands are matrices or | |||
468 | * one operand is a vector and the other a matrix. A right vector | |||
469 | * operand is treated as a column vector and a left vector operand as a | |||
470 | * row vector. In all these cases, it is required that the number of | |||
471 | * columns of the left operand is equal to the number of rows of the | |||
472 | * right operand. Then, the multiply (*) operation does a linear | |||
473 | * algebraic multiply, yielding an object that has the same number of | |||
474 | * rows as the left operand and the same number of columns as the right | |||
475 | * operand. Section 5.10 "Vector and Matrix Operations" explains in | |||
476 | * more detail how vectors and matrices are operated on." | |||
477 | */ | |||
478 | if (! multiply) { | |||
479 | if (type_a == type_b) | |||
480 | return type_a; | |||
481 | } else { | |||
482 | const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); | |||
483 | ||||
484 | if (type == glsl_type::error_type) { | |||
485 | _mesa_glsl_error(loc, state, | |||
486 | "size mismatch for matrix multiplication"); | |||
487 | } | |||
488 | ||||
489 | return type; | |||
490 | } | |||
491 | ||||
492 | ||||
493 | /* "All other cases are illegal." | |||
494 | */ | |||
495 | _mesa_glsl_error(loc, state, "type mismatch"); | |||
496 | return glsl_type::error_type; | |||
497 | } | |||
498 | ||||
499 | ||||
500 | static const struct glsl_type * | |||
501 | unary_arithmetic_result_type(const struct glsl_type *type, | |||
502 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
503 | { | |||
504 | /* From GLSL 1.50 spec, page 57: | |||
505 | * | |||
506 | * "The arithmetic unary operators negate (-), post- and pre-increment | |||
507 | * and decrement (-- and ++) operate on integer or floating-point | |||
508 | * values (including vectors and matrices). All unary operators work | |||
509 | * component-wise on their operands. These result with the same type | |||
510 | * they operated on." | |||
511 | */ | |||
512 | if (!type->is_numeric()) { | |||
513 | _mesa_glsl_error(loc, state, | |||
514 | "operands to arithmetic operators must be numeric"); | |||
515 | return glsl_type::error_type; | |||
516 | } | |||
517 | ||||
518 | return type; | |||
519 | } | |||
520 | ||||
521 | /** | |||
522 | * \brief Return the result type of a bit-logic operation. | |||
523 | * | |||
524 | * If the given types to the bit-logic operator are invalid, return | |||
525 | * glsl_type::error_type. | |||
526 | * | |||
527 | * \param value_a LHS of bit-logic op | |||
528 | * \param value_b RHS of bit-logic op | |||
529 | */ | |||
530 | static const struct glsl_type * | |||
531 | bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
532 | ast_operators op, | |||
533 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
534 | { | |||
535 | const glsl_type *type_a = value_a->type; | |||
536 | const glsl_type *type_b = value_b->type; | |||
537 | ||||
538 | if (!state->check_bitwise_operations_allowed(loc)) { | |||
539 | return glsl_type::error_type; | |||
540 | } | |||
541 | ||||
542 | /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: | |||
543 | * | |||
544 | * "The bitwise operators and (&), exclusive-or (^), and inclusive-or | |||
545 | * (|). The operands must be of type signed or unsigned integers or | |||
546 | * integer vectors." | |||
547 | */ | |||
548 | if (!type_a->is_integer_32_64()) { | |||
549 | _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", | |||
550 | ast_expression::operator_string(op)); | |||
551 | return glsl_type::error_type; | |||
552 | } | |||
553 | if (!type_b->is_integer_32_64()) { | |||
554 | _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", | |||
555 | ast_expression::operator_string(op)); | |||
556 | return glsl_type::error_type; | |||
557 | } | |||
558 | ||||
559 | /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't | |||
560 | * make sense for bitwise operations, as they don't operate on floats. | |||
561 | * | |||
562 | * GLSL 4.0 added implicit int -> uint conversions, which are relevant | |||
563 | * here. It wasn't clear whether or not we should apply them to bitwise | |||
564 | * operations. However, Khronos has decided that they should in future | |||
565 | * language revisions. Applications also rely on this behavior. We opt | |||
566 | * to apply them in general, but issue a portability warning. | |||
567 | * | |||
568 | * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 | |||
569 | */ | |||
570 | if (type_a->base_type != type_b->base_type) { | |||
571 | if (!apply_implicit_conversion(type_a, value_b, state) | |||
572 | && !apply_implicit_conversion(type_b, value_a, state)) { | |||
573 | _mesa_glsl_error(loc, state, | |||
574 | "could not implicitly convert operands to " | |||
575 | "`%s` operator", | |||
576 | ast_expression::operator_string(op)); | |||
577 | return glsl_type::error_type; | |||
578 | } else { | |||
579 | _mesa_glsl_warning(loc, state, | |||
580 | "some implementations may not support implicit " | |||
581 | "int -> uint conversions for `%s' operators; " | |||
582 | "consider casting explicitly for portability", | |||
583 | ast_expression::operator_string(op)); | |||
584 | } | |||
585 | type_a = value_a->type; | |||
586 | type_b = value_b->type; | |||
587 | } | |||
588 | ||||
589 | /* "The fundamental types of the operands (signed or unsigned) must | |||
590 | * match," | |||
591 | */ | |||
592 | if (type_a->base_type != type_b->base_type) { | |||
593 | _mesa_glsl_error(loc, state, "operands of `%s' must have the same " | |||
594 | "base type", ast_expression::operator_string(op)); | |||
595 | return glsl_type::error_type; | |||
596 | } | |||
597 | ||||
598 | /* "The operands cannot be vectors of differing size." */ | |||
599 | if (type_a->is_vector() && | |||
600 | type_b->is_vector() && | |||
601 | type_a->vector_elements != type_b->vector_elements) { | |||
602 | _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " | |||
603 | "different sizes", ast_expression::operator_string(op)); | |||
604 | return glsl_type::error_type; | |||
605 | } | |||
606 | ||||
607 | /* "If one operand is a scalar and the other a vector, the scalar is | |||
608 | * applied component-wise to the vector, resulting in the same type as | |||
609 | * the vector. The fundamental types of the operands [...] will be the | |||
610 | * resulting fundamental type." | |||
611 | */ | |||
612 | if (type_a->is_scalar()) | |||
613 | return type_b; | |||
614 | else | |||
615 | return type_a; | |||
616 | } | |||
617 | ||||
618 | static const struct glsl_type * | |||
619 | modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
620 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
621 | { | |||
622 | const glsl_type *type_a = value_a->type; | |||
623 | const glsl_type *type_b = value_b->type; | |||
624 | ||||
625 | if (!state->EXT_gpu_shader4_enable && | |||
626 | !state->check_version(130, 300, loc, "operator '%%' is reserved")) { | |||
627 | return glsl_type::error_type; | |||
628 | } | |||
629 | ||||
630 | /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: | |||
631 | * | |||
632 | * "The operator modulus (%) operates on signed or unsigned integers or | |||
633 | * integer vectors." | |||
634 | */ | |||
635 | if (!type_a->is_integer_32_64()) { | |||
636 | _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); | |||
637 | return glsl_type::error_type; | |||
638 | } | |||
639 | if (!type_b->is_integer_32_64()) { | |||
640 | _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); | |||
641 | return glsl_type::error_type; | |||
642 | } | |||
643 | ||||
644 | /* "If the fundamental types in the operands do not match, then the | |||
645 | * conversions from section 4.1.10 "Implicit Conversions" are applied | |||
646 | * to create matching types." | |||
647 | * | |||
648 | * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit | |||
649 | * int -> uint conversion rules. Prior to that, there were no implicit | |||
650 | * conversions. So it's harmless to apply them universally - no implicit | |||
651 | * conversions will exist. If the types don't match, we'll receive false, | |||
652 | * and raise an error, satisfying the GLSL 1.50 spec, page 56: | |||
653 | * | |||
654 | * "The operand types must both be signed or unsigned." | |||
655 | */ | |||
656 | if (!apply_implicit_conversion(type_a, value_b, state) && | |||
657 | !apply_implicit_conversion(type_b, value_a, state)) { | |||
658 | _mesa_glsl_error(loc, state, | |||
659 | "could not implicitly convert operands to " | |||
660 | "modulus (%%) operator"); | |||
661 | return glsl_type::error_type; | |||
662 | } | |||
663 | type_a = value_a->type; | |||
664 | type_b = value_b->type; | |||
665 | ||||
666 | /* "The operands cannot be vectors of differing size. If one operand is | |||
667 | * a scalar and the other vector, then the scalar is applied component- | |||
668 | * wise to the vector, resulting in the same type as the vector. If both | |||
669 | * are vectors of the same size, the result is computed component-wise." | |||
670 | */ | |||
671 | if (type_a->is_vector()) { | |||
672 | if (!type_b->is_vector() | |||
673 | || (type_a->vector_elements == type_b->vector_elements)) | |||
674 | return type_a; | |||
675 | } else | |||
676 | return type_b; | |||
677 | ||||
678 | /* "The operator modulus (%) is not defined for any other data types | |||
679 | * (non-integer types)." | |||
680 | */ | |||
681 | _mesa_glsl_error(loc, state, "type mismatch"); | |||
682 | return glsl_type::error_type; | |||
683 | } | |||
684 | ||||
685 | ||||
686 | static const struct glsl_type * | |||
687 | relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
688 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
689 | { | |||
690 | const glsl_type *type_a = value_a->type; | |||
691 | const glsl_type *type_b = value_b->type; | |||
692 | ||||
693 | /* From GLSL 1.50 spec, page 56: | |||
694 | * "The relational operators greater than (>), less than (<), greater | |||
695 | * than or equal (>=), and less than or equal (<=) operate only on | |||
696 | * scalar integer and scalar floating-point expressions." | |||
697 | */ | |||
698 | if (!type_a->is_numeric() | |||
699 | || !type_b->is_numeric() | |||
700 | || !type_a->is_scalar() | |||
701 | || !type_b->is_scalar()) { | |||
702 | _mesa_glsl_error(loc, state, | |||
703 | "operands to relational operators must be scalar and " | |||
704 | "numeric"); | |||
705 | return glsl_type::error_type; | |||
706 | } | |||
707 | ||||
708 | /* "Either the operands' types must match, or the conversions from | |||
709 | * Section 4.1.10 "Implicit Conversions" will be applied to the integer | |||
710 | * operand, after which the types must match." | |||
711 | */ | |||
712 | if (!apply_implicit_conversion(type_a, value_b, state) | |||
713 | && !apply_implicit_conversion(type_b, value_a, state)) { | |||
714 | _mesa_glsl_error(loc, state, | |||
715 | "could not implicitly convert operands to " | |||
716 | "relational operator"); | |||
717 | return glsl_type::error_type; | |||
718 | } | |||
719 | type_a = value_a->type; | |||
720 | type_b = value_b->type; | |||
721 | ||||
722 | if (type_a->base_type != type_b->base_type) { | |||
723 | _mesa_glsl_error(loc, state, "base type mismatch"); | |||
724 | return glsl_type::error_type; | |||
725 | } | |||
726 | ||||
727 | /* "The result is scalar Boolean." | |||
728 | */ | |||
729 | return glsl_type::bool_type; | |||
730 | } | |||
731 | ||||
732 | /** | |||
733 | * \brief Return the result type of a bit-shift operation. | |||
734 | * | |||
735 | * If the given types to the bit-shift operator are invalid, return | |||
736 | * glsl_type::error_type. | |||
737 | * | |||
738 | * \param type_a Type of LHS of bit-shift op | |||
739 | * \param type_b Type of RHS of bit-shift op | |||
740 | */ | |||
741 | static const struct glsl_type * | |||
742 | shift_result_type(const struct glsl_type *type_a, | |||
743 | const struct glsl_type *type_b, | |||
744 | ast_operators op, | |||
745 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
746 | { | |||
747 | if (!state->check_bitwise_operations_allowed(loc)) { | |||
748 | return glsl_type::error_type; | |||
749 | } | |||
750 | ||||
751 | /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: | |||
752 | * | |||
753 | * "The shift operators (<<) and (>>). For both operators, the operands | |||
754 | * must be signed or unsigned integers or integer vectors. One operand | |||
755 | * can be signed while the other is unsigned." | |||
756 | */ | |||
757 | if (!type_a->is_integer_32_64()) { | |||
758 | _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " | |||
759 | "integer vector", ast_expression::operator_string(op)); | |||
760 | return glsl_type::error_type; | |||
761 | ||||
762 | } | |||
763 | if (!type_b->is_integer_32()) { | |||
764 | _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " | |||
765 | "integer vector", ast_expression::operator_string(op)); | |||
766 | return glsl_type::error_type; | |||
767 | } | |||
768 | ||||
769 | /* "If the first operand is a scalar, the second operand has to be | |||
770 | * a scalar as well." | |||
771 | */ | |||
772 | if (type_a->is_scalar() && !type_b->is_scalar()) { | |||
773 | _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " | |||
774 | "second must be scalar as well", | |||
775 | ast_expression::operator_string(op)); | |||
776 | return glsl_type::error_type; | |||
777 | } | |||
778 | ||||
779 | /* If both operands are vectors, check that they have same number of | |||
780 | * elements. | |||
781 | */ | |||
782 | if (type_a->is_vector() && | |||
783 | type_b->is_vector() && | |||
784 | type_a->vector_elements != type_b->vector_elements) { | |||
785 | _mesa_glsl_error(loc, state, "vector operands to operator %s must " | |||
786 | "have same number of elements", | |||
787 | ast_expression::operator_string(op)); | |||
788 | return glsl_type::error_type; | |||
789 | } | |||
790 | ||||
791 | /* "In all cases, the resulting type will be the same type as the left | |||
792 | * operand." | |||
793 | */ | |||
794 | return type_a; | |||
795 | } | |||
796 | ||||
797 | /** | |||
798 | * Returns the innermost array index expression in an rvalue tree. | |||
799 | * This is the largest indexing level -- if an array of blocks, then | |||
800 | * it is the block index rather than an indexing expression for an | |||
801 | * array-typed member of an array of blocks. | |||
802 | */ | |||
803 | static ir_rvalue * | |||
804 | find_innermost_array_index(ir_rvalue *rv) | |||
805 | { | |||
806 | ir_dereference_array *last = NULL__null; | |||
807 | while (rv) { | |||
808 | if (rv->as_dereference_array()) { | |||
809 | last = rv->as_dereference_array(); | |||
810 | rv = last->array; | |||
811 | } else if (rv->as_dereference_record()) | |||
812 | rv = rv->as_dereference_record()->record; | |||
813 | else if (rv->as_swizzle()) | |||
814 | rv = rv->as_swizzle()->val; | |||
815 | else | |||
816 | rv = NULL__null; | |||
817 | } | |||
818 | ||||
819 | if (last) | |||
820 | return last->array_index; | |||
821 | ||||
822 | return NULL__null; | |||
823 | } | |||
824 | ||||
825 | /** | |||
826 | * Validates that a value can be assigned to a location with a specified type | |||
827 | * | |||
828 | * Validates that \c rhs can be assigned to some location. If the types are | |||
829 | * not an exact match but an automatic conversion is possible, \c rhs will be | |||
830 | * converted. | |||
831 | * | |||
832 | * \return | |||
833 | * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. | |||
834 | * Otherwise the actual RHS to be assigned will be returned. This may be | |||
835 | * \c rhs, or it may be \c rhs after some type conversion. | |||
836 | * | |||
837 | * \note | |||
838 | * In addition to being used for assignments, this function is used to | |||
839 | * type-check return values. | |||
840 | */ | |||
841 | static ir_rvalue * | |||
842 | validate_assignment(struct _mesa_glsl_parse_state *state, | |||
843 | YYLTYPE loc, ir_rvalue *lhs, | |||
844 | ir_rvalue *rhs, bool is_initializer) | |||
845 | { | |||
846 | /* If there is already some error in the RHS, just return it. Anything | |||
847 | * else will lead to an avalanche of error message back to the user. | |||
848 | */ | |||
849 | if (rhs->type->is_error()) | |||
850 | return rhs; | |||
851 | ||||
852 | /* In the Tessellation Control Shader: | |||
853 | * If a per-vertex output variable is used as an l-value, it is an error | |||
854 | * if the expression indicating the vertex number is not the identifier | |||
855 | * `gl_InvocationID`. | |||
856 | */ | |||
857 | if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { | |||
858 | ir_variable *var = lhs->variable_referenced(); | |||
859 | if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { | |||
860 | ir_rvalue *index = find_innermost_array_index(lhs); | |||
861 | ir_variable *index_var = index ? index->variable_referenced() : NULL__null; | |||
862 | if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { | |||
863 | _mesa_glsl_error(&loc, state, | |||
864 | "Tessellation control shader outputs can only " | |||
865 | "be indexed by gl_InvocationID"); | |||
866 | return NULL__null; | |||
867 | } | |||
868 | } | |||
869 | } | |||
870 | ||||
871 | /* If the types are identical, the assignment can trivially proceed. | |||
872 | */ | |||
873 | if (rhs->type == lhs->type) | |||
874 | return rhs; | |||
875 | ||||
876 | /* If the array element types are the same and the LHS is unsized, | |||
877 | * the assignment is okay for initializers embedded in variable | |||
878 | * declarations. | |||
879 | * | |||
880 | * Note: Whole-array assignments are not permitted in GLSL 1.10, but this | |||
881 | * is handled by ir_dereference::is_lvalue. | |||
882 | */ | |||
883 | const glsl_type *lhs_t = lhs->type; | |||
884 | const glsl_type *rhs_t = rhs->type; | |||
885 | bool unsized_array = false; | |||
886 | while(lhs_t->is_array()) { | |||
887 | if (rhs_t == lhs_t) | |||
888 | break; /* the rest of the inner arrays match so break out early */ | |||
889 | if (!rhs_t->is_array()) { | |||
890 | unsized_array = false; | |||
891 | break; /* number of dimensions mismatch */ | |||
892 | } | |||
893 | if (lhs_t->length == rhs_t->length) { | |||
894 | lhs_t = lhs_t->fields.array; | |||
895 | rhs_t = rhs_t->fields.array; | |||
896 | continue; | |||
897 | } else if (lhs_t->is_unsized_array()) { | |||
898 | unsized_array = true; | |||
899 | } else { | |||
900 | unsized_array = false; | |||
901 | break; /* sized array mismatch */ | |||
902 | } | |||
903 | lhs_t = lhs_t->fields.array; | |||
904 | rhs_t = rhs_t->fields.array; | |||
905 | } | |||
906 | if (unsized_array) { | |||
907 | if (is_initializer) { | |||
908 | if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) | |||
909 | return rhs; | |||
910 | } else { | |||
911 | _mesa_glsl_error(&loc, state, | |||
912 | "implicitly sized arrays cannot be assigned"); | |||
913 | return NULL__null; | |||
914 | } | |||
915 | } | |||
916 | ||||
917 | /* Check for implicit conversion in GLSL 1.20 */ | |||
918 | if (apply_implicit_conversion(lhs->type, rhs, state)) { | |||
919 | if (rhs->type == lhs->type) | |||
920 | return rhs; | |||
921 | } | |||
922 | ||||
923 | _mesa_glsl_error(&loc, state, | |||
924 | "%s of type %s cannot be assigned to " | |||
925 | "variable of type %s", | |||
926 | is_initializer ? "initializer" : "value", | |||
927 | rhs->type->name, lhs->type->name); | |||
928 | ||||
929 | return NULL__null; | |||
930 | } | |||
931 | ||||
932 | static void | |||
933 | mark_whole_array_access(ir_rvalue *access) | |||
934 | { | |||
935 | ir_dereference_variable *deref = access->as_dereference_variable(); | |||
936 | ||||
937 | if (deref && deref->var) { | |||
938 | deref->var->data.max_array_access = deref->type->length - 1; | |||
939 | } | |||
940 | } | |||
941 | ||||
942 | static bool | |||
943 | do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, | |||
944 | const char *non_lvalue_description, | |||
945 | ir_rvalue *lhs, ir_rvalue *rhs, | |||
946 | ir_rvalue **out_rvalue, bool needs_rvalue, | |||
947 | bool is_initializer, | |||
948 | YYLTYPE lhs_loc) | |||
949 | { | |||
950 | void *ctx = state; | |||
951 | bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); | |||
952 | ||||
953 | ir_variable *lhs_var = lhs->variable_referenced(); | |||
954 | if (lhs_var) | |||
955 | lhs_var->data.assigned = true; | |||
956 | ||||
957 | if (!error_emitted) { | |||
958 | if (non_lvalue_description != NULL__null) { | |||
959 | _mesa_glsl_error(&lhs_loc, state, | |||
960 | "assignment to %s", | |||
961 | non_lvalue_description); | |||
962 | error_emitted = true; | |||
963 | } else if (lhs_var != NULL__null && (lhs_var->data.read_only || | |||
964 | (lhs_var->data.mode == ir_var_shader_storage && | |||
965 | lhs_var->data.memory_read_only))) { | |||
966 | /* We can have memory_read_only set on both images and buffer variables, | |||
967 | * but in the former there is a distinction between assignments to | |||
968 | * the variable itself (read_only) and to the memory they point to | |||
969 | * (memory_read_only), while in the case of buffer variables there is | |||
970 | * no such distinction, that is why this check here is limited to | |||
971 | * buffer variables alone. | |||
972 | */ | |||
973 | _mesa_glsl_error(&lhs_loc, state, | |||
974 | "assignment to read-only variable '%s'", | |||
975 | lhs_var->name); | |||
976 | error_emitted = true; | |||
977 | } else if (lhs->type->is_array() && | |||
978 | !state->check_version(120, 300, &lhs_loc, | |||
979 | "whole array assignment forbidden")) { | |||
980 | /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: | |||
981 | * | |||
982 | * "Other binary or unary expressions, non-dereferenced | |||
983 | * arrays, function names, swizzles with repeated fields, | |||
984 | * and constants cannot be l-values." | |||
985 | * | |||
986 | * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. | |||
987 | */ | |||
988 | error_emitted = true; | |||
989 | } else if (!lhs->is_lvalue(state)) { | |||
990 | _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); | |||
991 | error_emitted = true; | |||
992 | } | |||
993 | } | |||
994 | ||||
995 | ir_rvalue *new_rhs = | |||
996 | validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); | |||
997 | if (new_rhs != NULL__null) { | |||
998 | rhs = new_rhs; | |||
999 | ||||
1000 | /* If the LHS array was not declared with a size, it takes it size from | |||
1001 | * the RHS. If the LHS is an l-value and a whole array, it must be a | |||
1002 | * dereference of a variable. Any other case would require that the LHS | |||
1003 | * is either not an l-value or not a whole array. | |||
1004 | */ | |||
1005 | if (lhs->type->is_unsized_array()) { | |||
1006 | ir_dereference *const d = lhs->as_dereference(); | |||
1007 | ||||
1008 | assert(d != NULL)(static_cast <bool> (d != __null) ? void (0) : __assert_fail ("d != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
1009 | ||||
1010 | ir_variable *const var = d->variable_referenced(); | |||
1011 | ||||
1012 | assert(var != NULL)(static_cast <bool> (var != __null) ? void (0) : __assert_fail ("var != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
1013 | ||||
1014 | if (var->data.max_array_access >= rhs->type->array_size()) { | |||
1015 | /* FINISHME: This should actually log the location of the RHS. */ | |||
1016 | _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " | |||
1017 | "previous access", | |||
1018 | var->data.max_array_access); | |||
1019 | } | |||
1020 | ||||
1021 | var->type = glsl_type::get_array_instance(lhs->type->fields.array, | |||
1022 | rhs->type->array_size()); | |||
1023 | d->type = var->type; | |||
1024 | } | |||
1025 | if (lhs->type->is_array()) { | |||
1026 | mark_whole_array_access(rhs); | |||
1027 | mark_whole_array_access(lhs); | |||
1028 | } | |||
1029 | } else { | |||
1030 | error_emitted = true; | |||
1031 | } | |||
1032 | ||||
1033 | /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, | |||
1034 | * but not post_inc) need the converted assigned value as an rvalue | |||
1035 | * to handle things like: | |||
1036 | * | |||
1037 | * i = j += 1; | |||
1038 | */ | |||
1039 | if (needs_rvalue) { | |||
1040 | ir_rvalue *rvalue; | |||
1041 | if (!error_emitted) { | |||
1042 | ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", | |||
1043 | ir_var_temporary); | |||
1044 | instructions->push_tail(var); | |||
1045 | instructions->push_tail(assign(var, rhs)); | |||
1046 | ||||
1047 | ir_dereference_variable *deref_var = | |||
1048 | new(ctx) ir_dereference_variable(var); | |||
1049 | instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); | |||
1050 | rvalue = new(ctx) ir_dereference_variable(var); | |||
1051 | } else { | |||
1052 | rvalue = ir_rvalue::error_value(ctx); | |||
1053 | } | |||
1054 | *out_rvalue = rvalue; | |||
1055 | } else { | |||
1056 | if (!error_emitted) | |||
1057 | instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); | |||
1058 | *out_rvalue = NULL__null; | |||
1059 | } | |||
1060 | ||||
1061 | return error_emitted; | |||
1062 | } | |||
1063 | ||||
1064 | static ir_rvalue * | |||
1065 | get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) | |||
1066 | { | |||
1067 | void *ctx = ralloc_parent(lvalue); | |||
1068 | ir_variable *var; | |||
1069 | ||||
1070 | var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", | |||
1071 | ir_var_temporary); | |||
1072 | instructions->push_tail(var); | |||
1073 | ||||
1074 | instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), | |||
1075 | lvalue)); | |||
1076 | ||||
1077 | return new(ctx) ir_dereference_variable(var); | |||
1078 | } | |||
1079 | ||||
1080 | ||||
1081 | ir_rvalue * | |||
1082 | ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) | |||
1083 | { | |||
1084 | (void) instructions; | |||
1085 | (void) state; | |||
1086 | ||||
1087 | return NULL__null; | |||
1088 | } | |||
1089 | ||||
1090 | bool | |||
1091 | ast_node::has_sequence_subexpression() const | |||
1092 | { | |||
1093 | return false; | |||
1094 | } | |||
1095 | ||||
1096 | void | |||
1097 | ast_node::set_is_lhs(bool /* new_value */) | |||
1098 | { | |||
1099 | } | |||
1100 | ||||
1101 | void | |||
1102 | ast_function_expression::hir_no_rvalue(exec_list *instructions, | |||
1103 | struct _mesa_glsl_parse_state *state) | |||
1104 | { | |||
1105 | (void)hir(instructions, state); | |||
1106 | } | |||
1107 | ||||
1108 | void | |||
1109 | ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, | |||
1110 | struct _mesa_glsl_parse_state *state) | |||
1111 | { | |||
1112 | (void)hir(instructions, state); | |||
1113 | } | |||
1114 | ||||
1115 | static ir_rvalue * | |||
1116 | do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) | |||
1117 | { | |||
1118 | int join_op; | |||
1119 | ir_rvalue *cmp = NULL__null; | |||
1120 | ||||
1121 | if (operation == ir_binop_all_equal) | |||
1122 | join_op = ir_binop_logic_and; | |||
1123 | else | |||
1124 | join_op = ir_binop_logic_or; | |||
1125 | ||||
1126 | switch (op0->type->base_type) { | |||
1127 | case GLSL_TYPE_FLOAT: | |||
1128 | case GLSL_TYPE_FLOAT16: | |||
1129 | case GLSL_TYPE_UINT: | |||
1130 | case GLSL_TYPE_INT: | |||
1131 | case GLSL_TYPE_BOOL: | |||
1132 | case GLSL_TYPE_DOUBLE: | |||
1133 | case GLSL_TYPE_UINT64: | |||
1134 | case GLSL_TYPE_INT64: | |||
1135 | case GLSL_TYPE_UINT16: | |||
1136 | case GLSL_TYPE_INT16: | |||
1137 | case GLSL_TYPE_UINT8: | |||
1138 | case GLSL_TYPE_INT8: | |||
1139 | return new(mem_ctx) ir_expression(operation, op0, op1); | |||
1140 | ||||
1141 | case GLSL_TYPE_ARRAY: { | |||
1142 | for (unsigned int i = 0; i < op0->type->length; i++) { | |||
1143 | ir_rvalue *e0, *e1, *result; | |||
1144 | ||||
1145 | e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL__null), | |||
1146 | new(mem_ctx) ir_constant(i)); | |||
1147 | e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL__null), | |||
1148 | new(mem_ctx) ir_constant(i)); | |||
1149 | result = do_comparison(mem_ctx, operation, e0, e1); | |||
1150 | ||||
1151 | if (cmp) { | |||
1152 | cmp = new(mem_ctx) ir_expression(join_op, cmp, result); | |||
1153 | } else { | |||
1154 | cmp = result; | |||
1155 | } | |||
1156 | } | |||
1157 | ||||
1158 | mark_whole_array_access(op0); | |||
1159 | mark_whole_array_access(op1); | |||
1160 | break; | |||
1161 | } | |||
1162 | ||||
1163 | case GLSL_TYPE_STRUCT: { | |||
1164 | for (unsigned int i = 0; i < op0->type->length; i++) { | |||
1165 | ir_rvalue *e0, *e1, *result; | |||
1166 | const char *field_name = op0->type->fields.structure[i].name; | |||
1167 | ||||
1168 | e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL__null), | |||
1169 | field_name); | |||
1170 | e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL__null), | |||
1171 | field_name); | |||
1172 | result = do_comparison(mem_ctx, operation, e0, e1); | |||
1173 | ||||
1174 | if (cmp) { | |||
1175 | cmp = new(mem_ctx) ir_expression(join_op, cmp, result); | |||
1176 | } else { | |||
1177 | cmp = result; | |||
1178 | } | |||
1179 | } | |||
1180 | break; | |||
1181 | } | |||
1182 | ||||
1183 | case GLSL_TYPE_ERROR: | |||
1184 | case GLSL_TYPE_VOID: | |||
1185 | case GLSL_TYPE_SAMPLER: | |||
1186 | case GLSL_TYPE_IMAGE: | |||
1187 | case GLSL_TYPE_INTERFACE: | |||
1188 | case GLSL_TYPE_ATOMIC_UINT: | |||
1189 | case GLSL_TYPE_SUBROUTINE: | |||
1190 | case GLSL_TYPE_FUNCTION: | |||
1191 | /* I assume a comparison of a struct containing a sampler just | |||
1192 | * ignores the sampler present in the type. | |||
1193 | */ | |||
1194 | break; | |||
1195 | } | |||
1196 | ||||
1197 | if (cmp == NULL__null) | |||
1198 | cmp = new(mem_ctx) ir_constant(true); | |||
1199 | ||||
1200 | return cmp; | |||
1201 | } | |||
1202 | ||||
1203 | /* For logical operations, we want to ensure that the operands are | |||
1204 | * scalar booleans. If it isn't, emit an error and return a constant | |||
1205 | * boolean to avoid triggering cascading error messages. | |||
1206 | */ | |||
1207 | static ir_rvalue * | |||
1208 | get_scalar_boolean_operand(exec_list *instructions, | |||
1209 | struct _mesa_glsl_parse_state *state, | |||
1210 | ast_expression *parent_expr, | |||
1211 | int operand, | |||
1212 | const char *operand_name, | |||
1213 | bool *error_emitted) | |||
1214 | { | |||
1215 | ast_expression *expr = parent_expr->subexpressions[operand]; | |||
1216 | void *ctx = state; | |||
1217 | ir_rvalue *val = expr->hir(instructions, state); | |||
1218 | ||||
1219 | if (val->type->is_boolean() && val->type->is_scalar()) | |||
1220 | return val; | |||
1221 | ||||
1222 | if (!*error_emitted) { | |||
1223 | YYLTYPE loc = expr->get_location(); | |||
1224 | _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", | |||
1225 | operand_name, | |||
1226 | parent_expr->operator_string(parent_expr->oper)); | |||
1227 | *error_emitted = true; | |||
1228 | } | |||
1229 | ||||
1230 | return new(ctx) ir_constant(true); | |||
1231 | } | |||
1232 | ||||
1233 | /** | |||
1234 | * If name refers to a builtin array whose maximum allowed size is less than | |||
1235 | * size, report an error and return true. Otherwise return false. | |||
1236 | */ | |||
1237 | void | |||
1238 | check_builtin_array_max_size(const char *name, unsigned size, | |||
1239 | YYLTYPE loc, struct _mesa_glsl_parse_state *state) | |||
1240 | { | |||
1241 | if ((strcmp("gl_TexCoord", name) == 0) | |||
1242 | && (size > state->Const.MaxTextureCoords)) { | |||
1243 | /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: | |||
1244 | * | |||
1245 | * "The size [of gl_TexCoord] can be at most | |||
1246 | * gl_MaxTextureCoords." | |||
1247 | */ | |||
1248 | _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " | |||
1249 | "be larger than gl_MaxTextureCoords (%u)", | |||
1250 | state->Const.MaxTextureCoords); | |||
1251 | } else if (strcmp("gl_ClipDistance", name) == 0) { | |||
1252 | state->clip_dist_size = size; | |||
1253 | if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { | |||
1254 | /* From section 7.1 (Vertex Shader Special Variables) of the | |||
1255 | * GLSL 1.30 spec: | |||
1256 | * | |||
1257 | * "The gl_ClipDistance array is predeclared as unsized and | |||
1258 | * must be sized by the shader either redeclaring it with a | |||
1259 | * size or indexing it only with integral constant | |||
1260 | * expressions. ... The size can be at most | |||
1261 | * gl_MaxClipDistances." | |||
1262 | */ | |||
1263 | _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " | |||
1264 | "be larger than gl_MaxClipDistances (%u)", | |||
1265 | state->Const.MaxClipPlanes); | |||
1266 | } | |||
1267 | } else if (strcmp("gl_CullDistance", name) == 0) { | |||
1268 | state->cull_dist_size = size; | |||
1269 | if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { | |||
1270 | /* From the ARB_cull_distance spec: | |||
1271 | * | |||
1272 | * "The gl_CullDistance array is predeclared as unsized and | |||
1273 | * must be sized by the shader either redeclaring it with | |||
1274 | * a size or indexing it only with integral constant | |||
1275 | * expressions. The size determines the number and set of | |||
1276 | * enabled cull distances and can be at most | |||
1277 | * gl_MaxCullDistances." | |||
1278 | */ | |||
1279 | _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " | |||
1280 | "be larger than gl_MaxCullDistances (%u)", | |||
1281 | state->Const.MaxClipPlanes); | |||
1282 | } | |||
1283 | } | |||
1284 | } | |||
1285 | ||||
1286 | /** | |||
1287 | * Create the constant 1, of a which is appropriate for incrementing and | |||
1288 | * decrementing values of the given GLSL type. For example, if type is vec4, | |||
1289 | * this creates a constant value of 1.0 having type float. | |||
1290 | * | |||
1291 | * If the given type is invalid for increment and decrement operators, return | |||
1292 | * a floating point 1--the error will be detected later. | |||
1293 | */ | |||
1294 | static ir_rvalue * | |||
1295 | constant_one_for_inc_dec(void *ctx, const glsl_type *type) | |||
1296 | { | |||
1297 | switch (type->base_type) { | |||
1298 | case GLSL_TYPE_UINT: | |||
1299 | return new(ctx) ir_constant((unsigned) 1); | |||
1300 | case GLSL_TYPE_INT: | |||
1301 | return new(ctx) ir_constant(1); | |||
1302 | case GLSL_TYPE_UINT64: | |||
1303 | return new(ctx) ir_constant((uint64_t) 1); | |||
1304 | case GLSL_TYPE_INT64: | |||
1305 | return new(ctx) ir_constant((int64_t) 1); | |||
1306 | default: | |||
1307 | case GLSL_TYPE_FLOAT: | |||
1308 | return new(ctx) ir_constant(1.0f); | |||
1309 | } | |||
1310 | } | |||
1311 | ||||
1312 | ir_rvalue * | |||
1313 | ast_expression::hir(exec_list *instructions, | |||
1314 | struct _mesa_glsl_parse_state *state) | |||
1315 | { | |||
1316 | return do_hir(instructions, state, true); | |||
1317 | } | |||
1318 | ||||
1319 | void | |||
1320 | ast_expression::hir_no_rvalue(exec_list *instructions, | |||
1321 | struct _mesa_glsl_parse_state *state) | |||
1322 | { | |||
1323 | do_hir(instructions, state, false); | |||
1324 | } | |||
1325 | ||||
1326 | void | |||
1327 | ast_expression::set_is_lhs(bool new_value) | |||
1328 | { | |||
1329 | /* is_lhs is tracked only to print "variable used uninitialized" warnings, | |||
1330 | * if we lack an identifier we can just skip it. | |||
1331 | */ | |||
1332 | if (this->primary_expression.identifier == NULL__null) | |||
1333 | return; | |||
1334 | ||||
1335 | this->is_lhs = new_value; | |||
1336 | ||||
1337 | /* We need to go through the subexpressions tree to cover cases like | |||
1338 | * ast_field_selection | |||
1339 | */ | |||
1340 | if (this->subexpressions[0] != NULL__null) | |||
1341 | this->subexpressions[0]->set_is_lhs(new_value); | |||
1342 | } | |||
1343 | ||||
1344 | ir_rvalue * | |||
1345 | ast_expression::do_hir(exec_list *instructions, | |||
1346 | struct _mesa_glsl_parse_state *state, | |||
1347 | bool needs_rvalue) | |||
1348 | { | |||
1349 | void *ctx = state; | |||
1350 | static const int operations[AST_NUM_OPERATORS(ast_aggregate + 1)] = { | |||
1351 | -1, /* ast_assign doesn't convert to ir_expression. */ | |||
1352 | -1, /* ast_plus doesn't convert to ir_expression. */ | |||
1353 | ir_unop_neg, | |||
1354 | ir_binop_add, | |||
1355 | ir_binop_sub, | |||
1356 | ir_binop_mul, | |||
1357 | ir_binop_div, | |||
1358 | ir_binop_mod, | |||
1359 | ir_binop_lshift, | |||
1360 | ir_binop_rshift, | |||
1361 | ir_binop_less, | |||
1362 | ir_binop_less, /* This is correct. See the ast_greater case below. */ | |||
1363 | ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ | |||
1364 | ir_binop_gequal, | |||
1365 | ir_binop_all_equal, | |||
1366 | ir_binop_any_nequal, | |||
1367 | ir_binop_bit_and, | |||
1368 | ir_binop_bit_xor, | |||
1369 | ir_binop_bit_or, | |||
1370 | ir_unop_bit_not, | |||
1371 | ir_binop_logic_and, | |||
1372 | ir_binop_logic_xor, | |||
1373 | ir_binop_logic_or, | |||
1374 | ir_unop_logic_not, | |||
1375 | ||||
1376 | /* Note: The following block of expression types actually convert | |||
1377 | * to multiple IR instructions. | |||
1378 | */ | |||
1379 | ir_binop_mul, /* ast_mul_assign */ | |||
1380 | ir_binop_div, /* ast_div_assign */ | |||
1381 | ir_binop_mod, /* ast_mod_assign */ | |||
1382 | ir_binop_add, /* ast_add_assign */ | |||
1383 | ir_binop_sub, /* ast_sub_assign */ | |||
1384 | ir_binop_lshift, /* ast_ls_assign */ | |||
1385 | ir_binop_rshift, /* ast_rs_assign */ | |||
1386 | ir_binop_bit_and, /* ast_and_assign */ | |||
1387 | ir_binop_bit_xor, /* ast_xor_assign */ | |||
1388 | ir_binop_bit_or, /* ast_or_assign */ | |||
1389 | ||||
1390 | -1, /* ast_conditional doesn't convert to ir_expression. */ | |||
1391 | ir_binop_add, /* ast_pre_inc. */ | |||
1392 | ir_binop_sub, /* ast_pre_dec. */ | |||
1393 | ir_binop_add, /* ast_post_inc. */ | |||
1394 | ir_binop_sub, /* ast_post_dec. */ | |||
1395 | -1, /* ast_field_selection doesn't conv to ir_expression. */ | |||
1396 | -1, /* ast_array_index doesn't convert to ir_expression. */ | |||
1397 | -1, /* ast_function_call doesn't conv to ir_expression. */ | |||
1398 | -1, /* ast_identifier doesn't convert to ir_expression. */ | |||
1399 | -1, /* ast_int_constant doesn't convert to ir_expression. */ | |||
1400 | -1, /* ast_uint_constant doesn't conv to ir_expression. */ | |||
1401 | -1, /* ast_float_constant doesn't conv to ir_expression. */ | |||
1402 | -1, /* ast_bool_constant doesn't conv to ir_expression. */ | |||
1403 | -1, /* ast_sequence doesn't convert to ir_expression. */ | |||
1404 | -1, /* ast_aggregate shouldn't ever even get here. */ | |||
1405 | }; | |||
1406 | ir_rvalue *result = NULL__null; | |||
1407 | ir_rvalue *op[3]; | |||
1408 | const struct glsl_type *type, *orig_type; | |||
1409 | bool error_emitted = false; | |||
1410 | YYLTYPE loc; | |||
1411 | ||||
1412 | loc = this->get_location(); | |||
1413 | ||||
1414 | switch (this->oper) { | |||
1415 | case ast_aggregate: | |||
1416 | unreachable("ast_aggregate: Should never get here.")do { (static_cast <bool> (!"ast_aggregate: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_aggregate: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
1417 | ||||
1418 | case ast_assign: { | |||
1419 | this->subexpressions[0]->set_is_lhs(true); | |||
1420 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1421 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1422 | ||||
1423 | error_emitted = | |||
1424 | do_assignment(instructions, state, | |||
1425 | this->subexpressions[0]->non_lvalue_description, | |||
1426 | op[0], op[1], &result, needs_rvalue, false, | |||
1427 | this->subexpressions[0]->get_location()); | |||
1428 | break; | |||
1429 | } | |||
1430 | ||||
1431 | case ast_plus: | |||
1432 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1433 | ||||
1434 | type = unary_arithmetic_result_type(op[0]->type, state, & loc); | |||
1435 | ||||
1436 | error_emitted = type->is_error(); | |||
1437 | ||||
1438 | result = op[0]; | |||
1439 | break; | |||
1440 | ||||
1441 | case ast_neg: | |||
1442 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1443 | ||||
1444 | type = unary_arithmetic_result_type(op[0]->type, state, & loc); | |||
1445 | ||||
1446 | error_emitted = type->is_error(); | |||
1447 | ||||
1448 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
1449 | op[0], NULL__null); | |||
1450 | break; | |||
1451 | ||||
1452 | case ast_add: | |||
1453 | case ast_sub: | |||
1454 | case ast_mul: | |||
1455 | case ast_div: | |||
1456 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1457 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1458 | ||||
1459 | type = arithmetic_result_type(op[0], op[1], | |||
1460 | (this->oper == ast_mul), | |||
1461 | state, & loc); | |||
1462 | error_emitted = type->is_error(); | |||
1463 | ||||
1464 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
1465 | op[0], op[1]); | |||
1466 | break; | |||
1467 | ||||
1468 | case ast_mod: | |||
1469 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1470 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1471 | ||||
1472 | type = modulus_result_type(op[0], op[1], state, &loc); | |||
1473 | ||||
1474 | assert(operations[this->oper] == ir_binop_mod)(static_cast <bool> (operations[this->oper] == ir_binop_mod ) ? void (0) : __assert_fail ("operations[this->oper] == ir_binop_mod" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
1475 | ||||
1476 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
1477 | op[0], op[1]); | |||
1478 | error_emitted = type->is_error(); | |||
1479 | break; | |||
1480 | ||||
1481 | case ast_lshift: | |||
1482 | case ast_rshift: | |||
1483 | if (!state->check_bitwise_operations_allowed(&loc)) { | |||
1484 | error_emitted = true; | |||
1485 | } | |||
1486 | ||||
1487 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1488 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1489 | type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, | |||
1490 | &loc); | |||
1491 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
1492 | op[0], op[1]); | |||
1493 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); | |||
1494 | break; | |||
1495 | ||||
1496 | case ast_less: | |||
1497 | case ast_greater: | |||
1498 | case ast_lequal: | |||
1499 | case ast_gequal: | |||
1500 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1501 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1502 | ||||
1503 | type = relational_result_type(op[0], op[1], state, & loc); | |||
1504 | ||||
1505 | /* The relational operators must either generate an error or result | |||
1506 | * in a scalar boolean. See page 57 of the GLSL 1.50 spec. | |||
1507 | */ | |||
1508 | assert(type->is_error()(static_cast <bool> (type->is_error() || (type->is_boolean () && type->is_scalar())) ? void (0) : __assert_fail ("type->is_error() || (type->is_boolean() && type->is_scalar())" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) | |||
1509 | || (type->is_boolean() && type->is_scalar()))(static_cast <bool> (type->is_error() || (type->is_boolean () && type->is_scalar())) ? void (0) : __assert_fail ("type->is_error() || (type->is_boolean() && type->is_scalar())" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
1510 | ||||
1511 | /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap | |||
1512 | * the arguments and use < or >=. | |||
1513 | */ | |||
1514 | if (this->oper == ast_greater || this->oper == ast_lequal) { | |||
1515 | ir_rvalue *const tmp = op[0]; | |||
1516 | op[0] = op[1]; | |||
1517 | op[1] = tmp; | |||
1518 | } | |||
1519 | ||||
1520 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
1521 | op[0], op[1]); | |||
1522 | error_emitted = type->is_error(); | |||
1523 | break; | |||
1524 | ||||
1525 | case ast_nequal: | |||
1526 | case ast_equal: | |||
1527 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1528 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1529 | ||||
1530 | /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: | |||
1531 | * | |||
1532 | * "The equality operators equal (==), and not equal (!=) | |||
1533 | * operate on all types. They result in a scalar Boolean. If | |||
1534 | * the operand types do not match, then there must be a | |||
1535 | * conversion from Section 4.1.10 "Implicit Conversions" | |||
1536 | * applied to one operand that can make them match, in which | |||
1537 | * case this conversion is done." | |||
1538 | */ | |||
1539 | ||||
1540 | if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { | |||
1541 | _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " | |||
1542 | "no operation `%1$s' exists that takes a left-hand " | |||
1543 | "operand of type 'void' or a right operand of type " | |||
1544 | "'void'", (this->oper == ast_equal) ? "==" : "!="); | |||
1545 | error_emitted = true; | |||
1546 | } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) | |||
1547 | && !apply_implicit_conversion(op[1]->type, op[0], state)) | |||
1548 | || (op[0]->type != op[1]->type)) { | |||
1549 | _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " | |||
1550 | "type", (this->oper == ast_equal) ? "==" : "!="); | |||
1551 | error_emitted = true; | |||
1552 | } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && | |||
1553 | !state->check_version(120, 300, &loc, | |||
1554 | "array comparisons forbidden")) { | |||
1555 | error_emitted = true; | |||
1556 | } else if ((op[0]->type->contains_subroutine() || | |||
1557 | op[1]->type->contains_subroutine())) { | |||
1558 | _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); | |||
1559 | error_emitted = true; | |||
1560 | } else if ((op[0]->type->contains_opaque() || | |||
1561 | op[1]->type->contains_opaque())) { | |||
1562 | _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); | |||
1563 | error_emitted = true; | |||
1564 | } | |||
1565 | ||||
1566 | if (error_emitted) { | |||
1567 | result = new(ctx) ir_constant(false); | |||
1568 | } else { | |||
1569 | result = do_comparison(ctx, operations[this->oper], op[0], op[1]); | |||
1570 | assert(result->type == glsl_type::bool_type)(static_cast <bool> (result->type == glsl_type::bool_type ) ? void (0) : __assert_fail ("result->type == glsl_type::bool_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
1571 | } | |||
1572 | break; | |||
1573 | ||||
1574 | case ast_bit_and: | |||
1575 | case ast_bit_xor: | |||
1576 | case ast_bit_or: | |||
1577 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1578 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1579 | type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); | |||
1580 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
1581 | op[0], op[1]); | |||
1582 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); | |||
1583 | break; | |||
1584 | ||||
1585 | case ast_bit_not: | |||
1586 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1587 | ||||
1588 | if (!state->check_bitwise_operations_allowed(&loc)) { | |||
1589 | error_emitted = true; | |||
1590 | } | |||
1591 | ||||
1592 | if (!op[0]->type->is_integer_32_64()) { | |||
1593 | _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); | |||
1594 | error_emitted = true; | |||
1595 | } | |||
1596 | ||||
1597 | type = error_emitted ? glsl_type::error_type : op[0]->type; | |||
1598 | result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL__null); | |||
1599 | break; | |||
1600 | ||||
1601 | case ast_logic_and: { | |||
1602 | exec_list rhs_instructions; | |||
1603 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
1604 | "LHS", &error_emitted); | |||
1605 | op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, | |||
1606 | "RHS", &error_emitted); | |||
1607 | ||||
1608 | if (rhs_instructions.is_empty()) { | |||
1609 | result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); | |||
1610 | } else { | |||
1611 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, | |||
1612 | "and_tmp", | |||
1613 | ir_var_temporary); | |||
1614 | instructions->push_tail(tmp); | |||
1615 | ||||
1616 | ir_if *const stmt = new(ctx) ir_if(op[0]); | |||
1617 | instructions->push_tail(stmt); | |||
1618 | ||||
1619 | stmt->then_instructions.append_list(&rhs_instructions); | |||
1620 | ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); | |||
1621 | ir_assignment *const then_assign = | |||
1622 | new(ctx) ir_assignment(then_deref, op[1]); | |||
1623 | stmt->then_instructions.push_tail(then_assign); | |||
1624 | ||||
1625 | ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); | |||
1626 | ir_assignment *const else_assign = | |||
1627 | new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); | |||
1628 | stmt->else_instructions.push_tail(else_assign); | |||
1629 | ||||
1630 | result = new(ctx) ir_dereference_variable(tmp); | |||
1631 | } | |||
1632 | break; | |||
1633 | } | |||
1634 | ||||
1635 | case ast_logic_or: { | |||
1636 | exec_list rhs_instructions; | |||
1637 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
1638 | "LHS", &error_emitted); | |||
1639 | op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, | |||
1640 | "RHS", &error_emitted); | |||
1641 | ||||
1642 | if (rhs_instructions.is_empty()) { | |||
1643 | result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); | |||
1644 | } else { | |||
1645 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, | |||
1646 | "or_tmp", | |||
1647 | ir_var_temporary); | |||
1648 | instructions->push_tail(tmp); | |||
1649 | ||||
1650 | ir_if *const stmt = new(ctx) ir_if(op[0]); | |||
1651 | instructions->push_tail(stmt); | |||
1652 | ||||
1653 | ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); | |||
1654 | ir_assignment *const then_assign = | |||
1655 | new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); | |||
1656 | stmt->then_instructions.push_tail(then_assign); | |||
1657 | ||||
1658 | stmt->else_instructions.append_list(&rhs_instructions); | |||
1659 | ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); | |||
1660 | ir_assignment *const else_assign = | |||
1661 | new(ctx) ir_assignment(else_deref, op[1]); | |||
1662 | stmt->else_instructions.push_tail(else_assign); | |||
1663 | ||||
1664 | result = new(ctx) ir_dereference_variable(tmp); | |||
1665 | } | |||
1666 | break; | |||
1667 | } | |||
1668 | ||||
1669 | case ast_logic_xor: | |||
1670 | /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: | |||
1671 | * | |||
1672 | * "The logical binary operators and (&&), or ( | | ), and | |||
1673 | * exclusive or (^^). They operate only on two Boolean | |||
1674 | * expressions and result in a Boolean expression." | |||
1675 | */ | |||
1676 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", | |||
1677 | &error_emitted); | |||
1678 | op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", | |||
1679 | &error_emitted); | |||
1680 | ||||
1681 | result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, | |||
1682 | op[0], op[1]); | |||
1683 | break; | |||
1684 | ||||
1685 | case ast_logic_not: | |||
1686 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
1687 | "operand", &error_emitted); | |||
1688 | ||||
1689 | result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, | |||
1690 | op[0], NULL__null); | |||
1691 | break; | |||
1692 | ||||
1693 | case ast_mul_assign: | |||
1694 | case ast_div_assign: | |||
1695 | case ast_add_assign: | |||
1696 | case ast_sub_assign: { | |||
1697 | this->subexpressions[0]->set_is_lhs(true); | |||
1698 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1699 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1700 | ||||
1701 | orig_type = op[0]->type; | |||
1702 | ||||
1703 | /* Break out if operand types were not parsed successfully. */ | |||
1704 | if ((op[0]->type == glsl_type::error_type || | |||
1705 | op[1]->type == glsl_type::error_type)) { | |||
1706 | error_emitted = true; | |||
1707 | break; | |||
1708 | } | |||
1709 | ||||
1710 | type = arithmetic_result_type(op[0], op[1], | |||
1711 | (this->oper == ast_mul_assign), | |||
1712 | state, & loc); | |||
1713 | ||||
1714 | if (type != orig_type) { | |||
1715 | _mesa_glsl_error(& loc, state, | |||
1716 | "could not implicitly convert " | |||
1717 | "%s to %s", type->name, orig_type->name); | |||
1718 | type = glsl_type::error_type; | |||
1719 | } | |||
1720 | ||||
1721 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
1722 | op[0], op[1]); | |||
1723 | ||||
1724 | error_emitted = | |||
1725 | do_assignment(instructions, state, | |||
1726 | this->subexpressions[0]->non_lvalue_description, | |||
1727 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
1728 | &result, needs_rvalue, false, | |||
1729 | this->subexpressions[0]->get_location()); | |||
1730 | ||||
1731 | /* GLSL 1.10 does not allow array assignment. However, we don't have to | |||
1732 | * explicitly test for this because none of the binary expression | |||
1733 | * operators allow array operands either. | |||
1734 | */ | |||
1735 | ||||
1736 | break; | |||
1737 | } | |||
1738 | ||||
1739 | case ast_mod_assign: { | |||
1740 | this->subexpressions[0]->set_is_lhs(true); | |||
1741 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1742 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1743 | ||||
1744 | orig_type = op[0]->type; | |||
1745 | type = modulus_result_type(op[0], op[1], state, &loc); | |||
1746 | ||||
1747 | if (type != orig_type) { | |||
1748 | _mesa_glsl_error(& loc, state, | |||
1749 | "could not implicitly convert " | |||
1750 | "%s to %s", type->name, orig_type->name); | |||
1751 | type = glsl_type::error_type; | |||
1752 | } | |||
1753 | ||||
1754 | assert(operations[this->oper] == ir_binop_mod)(static_cast <bool> (operations[this->oper] == ir_binop_mod ) ? void (0) : __assert_fail ("operations[this->oper] == ir_binop_mod" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
1755 | ||||
1756 | ir_rvalue *temp_rhs; | |||
1757 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
1758 | op[0], op[1]); | |||
1759 | ||||
1760 | error_emitted = | |||
1761 | do_assignment(instructions, state, | |||
1762 | this->subexpressions[0]->non_lvalue_description, | |||
1763 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
1764 | &result, needs_rvalue, false, | |||
1765 | this->subexpressions[0]->get_location()); | |||
1766 | break; | |||
1767 | } | |||
1768 | ||||
1769 | case ast_ls_assign: | |||
1770 | case ast_rs_assign: { | |||
1771 | this->subexpressions[0]->set_is_lhs(true); | |||
1772 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1773 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1774 | type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, | |||
1775 | &loc); | |||
1776 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], | |||
1777 | type, op[0], op[1]); | |||
1778 | error_emitted = | |||
1779 | do_assignment(instructions, state, | |||
1780 | this->subexpressions[0]->non_lvalue_description, | |||
1781 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
1782 | &result, needs_rvalue, false, | |||
1783 | this->subexpressions[0]->get_location()); | |||
1784 | break; | |||
1785 | } | |||
1786 | ||||
1787 | case ast_and_assign: | |||
1788 | case ast_xor_assign: | |||
1789 | case ast_or_assign: { | |||
1790 | this->subexpressions[0]->set_is_lhs(true); | |||
1791 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1792 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
1793 | ||||
1794 | orig_type = op[0]->type; | |||
1795 | type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); | |||
1796 | ||||
1797 | if (type != orig_type) { | |||
1798 | _mesa_glsl_error(& loc, state, | |||
1799 | "could not implicitly convert " | |||
1800 | "%s to %s", type->name, orig_type->name); | |||
1801 | type = glsl_type::error_type; | |||
1802 | } | |||
1803 | ||||
1804 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], | |||
1805 | type, op[0], op[1]); | |||
1806 | error_emitted = | |||
1807 | do_assignment(instructions, state, | |||
1808 | this->subexpressions[0]->non_lvalue_description, | |||
1809 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
1810 | &result, needs_rvalue, false, | |||
1811 | this->subexpressions[0]->get_location()); | |||
1812 | break; | |||
1813 | } | |||
1814 | ||||
1815 | case ast_conditional: { | |||
1816 | /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: | |||
1817 | * | |||
1818 | * "The ternary selection operator (?:). It operates on three | |||
1819 | * expressions (exp1 ? exp2 : exp3). This operator evaluates the | |||
1820 | * first expression, which must result in a scalar Boolean." | |||
1821 | */ | |||
1822 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
1823 | "condition", &error_emitted); | |||
1824 | ||||
1825 | /* The :? operator is implemented by generating an anonymous temporary | |||
1826 | * followed by an if-statement. The last instruction in each branch of | |||
1827 | * the if-statement assigns a value to the anonymous temporary. This | |||
1828 | * temporary is the r-value of the expression. | |||
1829 | */ | |||
1830 | exec_list then_instructions; | |||
1831 | exec_list else_instructions; | |||
1832 | ||||
1833 | op[1] = this->subexpressions[1]->hir(&then_instructions, state); | |||
1834 | op[2] = this->subexpressions[2]->hir(&else_instructions, state); | |||
1835 | ||||
1836 | /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: | |||
1837 | * | |||
1838 | * "The second and third expressions can be any type, as | |||
1839 | * long their types match, or there is a conversion in | |||
1840 | * Section 4.1.10 "Implicit Conversions" that can be applied | |||
1841 | * to one of the expressions to make their types match. This | |||
1842 | * resulting matching type is the type of the entire | |||
1843 | * expression." | |||
1844 | */ | |||
1845 | if ((!apply_implicit_conversion(op[1]->type, op[2], state) | |||
1846 | && !apply_implicit_conversion(op[2]->type, op[1], state)) | |||
1847 | || (op[1]->type != op[2]->type)) { | |||
1848 | YYLTYPE loc = this->subexpressions[1]->get_location(); | |||
1849 | ||||
1850 | _mesa_glsl_error(& loc, state, "second and third operands of ?: " | |||
1851 | "operator must have matching types"); | |||
1852 | error_emitted = true; | |||
1853 | type = glsl_type::error_type; | |||
1854 | } else { | |||
1855 | type = op[1]->type; | |||
1856 | } | |||
1857 | ||||
1858 | /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: | |||
1859 | * | |||
1860 | * "The second and third expressions must be the same type, but can | |||
1861 | * be of any type other than an array." | |||
1862 | */ | |||
1863 | if (type->is_array() && | |||
1864 | !state->check_version(120, 300, &loc, | |||
1865 | "second and third operands of ?: operator " | |||
1866 | "cannot be arrays")) { | |||
1867 | error_emitted = true; | |||
1868 | } | |||
1869 | ||||
1870 | /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): | |||
1871 | * | |||
1872 | * "Except for array indexing, structure member selection, and | |||
1873 | * parentheses, opaque variables are not allowed to be operands in | |||
1874 | * expressions; such use results in a compile-time error." | |||
1875 | */ | |||
1876 | if (type->contains_opaque()) { | |||
1877 | if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { | |||
1878 | _mesa_glsl_error(&loc, state, "variables of type %s cannot be " | |||
1879 | "operands of the ?: operator", type->name); | |||
1880 | error_emitted = true; | |||
1881 | } | |||
1882 | } | |||
1883 | ||||
1884 | ir_constant *cond_val = op[0]->constant_expression_value(ctx); | |||
1885 | ||||
1886 | if (then_instructions.is_empty() | |||
1887 | && else_instructions.is_empty() | |||
1888 | && cond_val != NULL__null) { | |||
1889 | result = cond_val->value.b[0] ? op[1] : op[2]; | |||
1890 | } else { | |||
1891 | /* The copy to conditional_tmp reads the whole array. */ | |||
1892 | if (type->is_array()) { | |||
1893 | mark_whole_array_access(op[1]); | |||
1894 | mark_whole_array_access(op[2]); | |||
1895 | } | |||
1896 | ||||
1897 | ir_variable *const tmp = | |||
1898 | new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); | |||
1899 | instructions->push_tail(tmp); | |||
1900 | ||||
1901 | ir_if *const stmt = new(ctx) ir_if(op[0]); | |||
1902 | instructions->push_tail(stmt); | |||
1903 | ||||
1904 | then_instructions.move_nodes_to(& stmt->then_instructions); | |||
1905 | ir_dereference *const then_deref = | |||
1906 | new(ctx) ir_dereference_variable(tmp); | |||
1907 | ir_assignment *const then_assign = | |||
1908 | new(ctx) ir_assignment(then_deref, op[1]); | |||
1909 | stmt->then_instructions.push_tail(then_assign); | |||
1910 | ||||
1911 | else_instructions.move_nodes_to(& stmt->else_instructions); | |||
1912 | ir_dereference *const else_deref = | |||
1913 | new(ctx) ir_dereference_variable(tmp); | |||
1914 | ir_assignment *const else_assign = | |||
1915 | new(ctx) ir_assignment(else_deref, op[2]); | |||
1916 | stmt->else_instructions.push_tail(else_assign); | |||
1917 | ||||
1918 | result = new(ctx) ir_dereference_variable(tmp); | |||
1919 | } | |||
1920 | break; | |||
1921 | } | |||
1922 | ||||
1923 | case ast_pre_inc: | |||
1924 | case ast_pre_dec: { | |||
1925 | this->non_lvalue_description = (this->oper == ast_pre_inc) | |||
1926 | ? "pre-increment operation" : "pre-decrement operation"; | |||
1927 | ||||
1928 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1929 | op[1] = constant_one_for_inc_dec(ctx, op[0]->type); | |||
1930 | ||||
1931 | type = arithmetic_result_type(op[0], op[1], false, state, & loc); | |||
1932 | ||||
1933 | ir_rvalue *temp_rhs; | |||
1934 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
1935 | op[0], op[1]); | |||
1936 | ||||
1937 | error_emitted = | |||
1938 | do_assignment(instructions, state, | |||
1939 | this->subexpressions[0]->non_lvalue_description, | |||
1940 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
1941 | &result, needs_rvalue, false, | |||
1942 | this->subexpressions[0]->get_location()); | |||
1943 | break; | |||
1944 | } | |||
1945 | ||||
1946 | case ast_post_inc: | |||
1947 | case ast_post_dec: { | |||
1948 | this->non_lvalue_description = (this->oper == ast_post_inc) | |||
1949 | ? "post-increment operation" : "post-decrement operation"; | |||
1950 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
1951 | op[1] = constant_one_for_inc_dec(ctx, op[0]->type); | |||
1952 | ||||
1953 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); | |||
1954 | ||||
1955 | if (error_emitted) { | |||
1956 | result = ir_rvalue::error_value(ctx); | |||
1957 | break; | |||
1958 | } | |||
1959 | ||||
1960 | type = arithmetic_result_type(op[0], op[1], false, state, & loc); | |||
1961 | ||||
1962 | ir_rvalue *temp_rhs; | |||
1963 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
1964 | op[0], op[1]); | |||
1965 | ||||
1966 | /* Get a temporary of a copy of the lvalue before it's modified. | |||
1967 | * This may get thrown away later. | |||
1968 | */ | |||
1969 | result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL__null)); | |||
1970 | ||||
1971 | ir_rvalue *junk_rvalue; | |||
1972 | error_emitted = | |||
1973 | do_assignment(instructions, state, | |||
1974 | this->subexpressions[0]->non_lvalue_description, | |||
1975 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
1976 | &junk_rvalue, false, false, | |||
1977 | this->subexpressions[0]->get_location()); | |||
1978 | ||||
1979 | break; | |||
1980 | } | |||
1981 | ||||
1982 | case ast_field_selection: | |||
1983 | result = _mesa_ast_field_selection_to_hir(this, instructions, state); | |||
1984 | break; | |||
1985 | ||||
1986 | case ast_array_index: { | |||
1987 | YYLTYPE index_loc = subexpressions[1]->get_location(); | |||
1988 | ||||
1989 | /* Getting if an array is being used uninitialized is beyond what we get | |||
1990 | * from ir_value.data.assigned. Setting is_lhs as true would force to | |||
1991 | * not raise a uninitialized warning when using an array | |||
1992 | */ | |||
1993 | subexpressions[0]->set_is_lhs(true); | |||
1994 | op[0] = subexpressions[0]->hir(instructions, state); | |||
1995 | op[1] = subexpressions[1]->hir(instructions, state); | |||
1996 | ||||
1997 | result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], | |||
1998 | loc, index_loc); | |||
1999 | ||||
2000 | if (result->type->is_error()) | |||
2001 | error_emitted = true; | |||
2002 | ||||
2003 | break; | |||
2004 | } | |||
2005 | ||||
2006 | case ast_unsized_array_dim: | |||
2007 | unreachable("ast_unsized_array_dim: Should never get here.")do { (static_cast <bool> (!"ast_unsized_array_dim: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_unsized_array_dim: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2008 | ||||
2009 | case ast_function_call: | |||
2010 | /* Should *NEVER* get here. ast_function_call should always be handled | |||
2011 | * by ast_function_expression::hir. | |||
2012 | */ | |||
2013 | unreachable("ast_function_call: handled elsewhere ")do { (static_cast <bool> (!"ast_function_call: handled elsewhere " ) ? void (0) : __assert_fail ("!\"ast_function_call: handled elsewhere \"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2014 | ||||
2015 | case ast_identifier: { | |||
2016 | /* ast_identifier can appear several places in a full abstract syntax | |||
2017 | * tree. This particular use must be at location specified in the grammar | |||
2018 | * as 'variable_identifier'. | |||
2019 | */ | |||
2020 | ir_variable *var = | |||
2021 | state->symbols->get_variable(this->primary_expression.identifier); | |||
2022 | ||||
2023 | if (var == NULL__null) { | |||
2024 | /* the identifier might be a subroutine name */ | |||
2025 | char *sub_name; | |||
2026 | sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); | |||
2027 | var = state->symbols->get_variable(sub_name); | |||
2028 | ralloc_free(sub_name); | |||
2029 | } | |||
2030 | ||||
2031 | if (var != NULL__null) { | |||
2032 | var->data.used = true; | |||
2033 | result = new(ctx) ir_dereference_variable(var); | |||
2034 | ||||
2035 | if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) | |||
2036 | && !this->is_lhs | |||
2037 | && result->variable_referenced()->data.assigned != true | |||
2038 | && !is_gl_identifier(var->name)) { | |||
2039 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", | |||
2040 | this->primary_expression.identifier); | |||
2041 | } | |||
2042 | ||||
2043 | /* From the EXT_shader_framebuffer_fetch spec: | |||
2044 | * | |||
2045 | * "Unless the GL_EXT_shader_framebuffer_fetch extension has been | |||
2046 | * enabled in addition, it's an error to use gl_LastFragData if it | |||
2047 | * hasn't been explicitly redeclared with layout(noncoherent)." | |||
2048 | */ | |||
2049 | if (var->data.fb_fetch_output && var->data.memory_coherent && | |||
2050 | !state->EXT_shader_framebuffer_fetch_enable) { | |||
2051 | _mesa_glsl_error(&loc, state, | |||
2052 | "invalid use of framebuffer fetch output not " | |||
2053 | "qualified with layout(noncoherent)"); | |||
2054 | } | |||
2055 | ||||
2056 | } else { | |||
2057 | _mesa_glsl_error(& loc, state, "`%s' undeclared", | |||
2058 | this->primary_expression.identifier); | |||
2059 | ||||
2060 | result = ir_rvalue::error_value(ctx); | |||
2061 | error_emitted = true; | |||
2062 | } | |||
2063 | break; | |||
2064 | } | |||
2065 | ||||
2066 | case ast_int_constant: | |||
2067 | result = new(ctx) ir_constant(this->primary_expression.int_constant); | |||
2068 | break; | |||
2069 | ||||
2070 | case ast_uint_constant: | |||
2071 | result = new(ctx) ir_constant(this->primary_expression.uint_constant); | |||
2072 | break; | |||
2073 | ||||
2074 | case ast_float_constant: | |||
2075 | result = new(ctx) ir_constant(this->primary_expression.float_constant); | |||
2076 | break; | |||
2077 | ||||
2078 | case ast_bool_constant: | |||
2079 | result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); | |||
2080 | break; | |||
2081 | ||||
2082 | case ast_double_constant: | |||
2083 | result = new(ctx) ir_constant(this->primary_expression.double_constant); | |||
2084 | break; | |||
2085 | ||||
2086 | case ast_uint64_constant: | |||
2087 | result = new(ctx) ir_constant(this->primary_expression.uint64_constant); | |||
2088 | break; | |||
2089 | ||||
2090 | case ast_int64_constant: | |||
2091 | result = new(ctx) ir_constant(this->primary_expression.int64_constant); | |||
2092 | break; | |||
2093 | ||||
2094 | case ast_sequence: { | |||
2095 | /* It should not be possible to generate a sequence in the AST without | |||
2096 | * any expressions in it. | |||
2097 | */ | |||
2098 | assert(!this->expressions.is_empty())(static_cast <bool> (!this->expressions.is_empty()) ? void (0) : __assert_fail ("!this->expressions.is_empty()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
2099 | ||||
2100 | /* The r-value of a sequence is the last expression in the sequence. If | |||
2101 | * the other expressions in the sequence do not have side-effects (and | |||
2102 | * therefore add instructions to the instruction list), they get dropped | |||
2103 | * on the floor. | |||
2104 | */ | |||
2105 | exec_node *previous_tail = NULL__null; | |||
2106 | YYLTYPE previous_operand_loc = loc; | |||
2107 | ||||
2108 | foreach_list_typed (ast_node, ast, link, &this->expressions)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->expressions)->head_sentinel.next) ? ((ast_node *) ((( uintptr_t) (&this->expressions)->head_sentinel.next ) - (((char *) &((ast_node *) (&this->expressions) ->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - (((char * ) &((ast_node *) (ast)->link.next)->link) - ((char * ) (ast)->link.next)))) : __null)) { | |||
2109 | /* If one of the operands of comma operator does not generate any | |||
2110 | * code, we want to emit a warning. At each pass through the loop | |||
2111 | * previous_tail will point to the last instruction in the stream | |||
2112 | * *before* processing the previous operand. Naturally, | |||
2113 | * instructions->get_tail_raw() will point to the last instruction in | |||
2114 | * the stream *after* processing the previous operand. If the two | |||
2115 | * pointers match, then the previous operand had no effect. | |||
2116 | * | |||
2117 | * The warning behavior here differs slightly from GCC. GCC will | |||
2118 | * only emit a warning if none of the left-hand operands have an | |||
2119 | * effect. However, it will emit a warning for each. I believe that | |||
2120 | * there are some cases in C (especially with GCC extensions) where | |||
2121 | * it is useful to have an intermediate step in a sequence have no | |||
2122 | * effect, but I don't think these cases exist in GLSL. Either way, | |||
2123 | * it would be a giant hassle to replicate that behavior. | |||
2124 | */ | |||
2125 | if (previous_tail == instructions->get_tail_raw()) { | |||
2126 | _mesa_glsl_warning(&previous_operand_loc, state, | |||
2127 | "left-hand operand of comma expression has " | |||
2128 | "no effect"); | |||
2129 | } | |||
2130 | ||||
2131 | /* The tail is directly accessed instead of using the get_tail() | |||
2132 | * method for performance reasons. get_tail() has extra code to | |||
2133 | * return NULL when the list is empty. We don't care about that | |||
2134 | * here, so using get_tail_raw() is fine. | |||
2135 | */ | |||
2136 | previous_tail = instructions->get_tail_raw(); | |||
2137 | previous_operand_loc = ast->get_location(); | |||
2138 | ||||
2139 | result = ast->hir(instructions, state); | |||
2140 | } | |||
2141 | ||||
2142 | /* Any errors should have already been emitted in the loop above. | |||
2143 | */ | |||
2144 | error_emitted = true; | |||
2145 | break; | |||
2146 | } | |||
2147 | } | |||
2148 | type = NULL__null; /* use result->type, not type. */ | |||
2149 | assert(error_emitted || (result != NULL || !needs_rvalue))(static_cast <bool> (error_emitted || (result != __null || !needs_rvalue)) ? void (0) : __assert_fail ("error_emitted || (result != NULL || !needs_rvalue)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
2150 | ||||
2151 | if (result && result->type->is_error() && !error_emitted) | |||
2152 | _mesa_glsl_error(& loc, state, "type mismatch"); | |||
2153 | ||||
2154 | return result; | |||
2155 | } | |||
2156 | ||||
2157 | bool | |||
2158 | ast_expression::has_sequence_subexpression() const | |||
2159 | { | |||
2160 | switch (this->oper) { | |||
2161 | case ast_plus: | |||
2162 | case ast_neg: | |||
2163 | case ast_bit_not: | |||
2164 | case ast_logic_not: | |||
2165 | case ast_pre_inc: | |||
2166 | case ast_pre_dec: | |||
2167 | case ast_post_inc: | |||
2168 | case ast_post_dec: | |||
2169 | return this->subexpressions[0]->has_sequence_subexpression(); | |||
2170 | ||||
2171 | case ast_assign: | |||
2172 | case ast_add: | |||
2173 | case ast_sub: | |||
2174 | case ast_mul: | |||
2175 | case ast_div: | |||
2176 | case ast_mod: | |||
2177 | case ast_lshift: | |||
2178 | case ast_rshift: | |||
2179 | case ast_less: | |||
2180 | case ast_greater: | |||
2181 | case ast_lequal: | |||
2182 | case ast_gequal: | |||
2183 | case ast_nequal: | |||
2184 | case ast_equal: | |||
2185 | case ast_bit_and: | |||
2186 | case ast_bit_xor: | |||
2187 | case ast_bit_or: | |||
2188 | case ast_logic_and: | |||
2189 | case ast_logic_or: | |||
2190 | case ast_logic_xor: | |||
2191 | case ast_array_index: | |||
2192 | case ast_mul_assign: | |||
2193 | case ast_div_assign: | |||
2194 | case ast_add_assign: | |||
2195 | case ast_sub_assign: | |||
2196 | case ast_mod_assign: | |||
2197 | case ast_ls_assign: | |||
2198 | case ast_rs_assign: | |||
2199 | case ast_and_assign: | |||
2200 | case ast_xor_assign: | |||
2201 | case ast_or_assign: | |||
2202 | return this->subexpressions[0]->has_sequence_subexpression() || | |||
2203 | this->subexpressions[1]->has_sequence_subexpression(); | |||
2204 | ||||
2205 | case ast_conditional: | |||
2206 | return this->subexpressions[0]->has_sequence_subexpression() || | |||
2207 | this->subexpressions[1]->has_sequence_subexpression() || | |||
2208 | this->subexpressions[2]->has_sequence_subexpression(); | |||
2209 | ||||
2210 | case ast_sequence: | |||
2211 | return true; | |||
2212 | ||||
2213 | case ast_field_selection: | |||
2214 | case ast_identifier: | |||
2215 | case ast_int_constant: | |||
2216 | case ast_uint_constant: | |||
2217 | case ast_float_constant: | |||
2218 | case ast_bool_constant: | |||
2219 | case ast_double_constant: | |||
2220 | case ast_int64_constant: | |||
2221 | case ast_uint64_constant: | |||
2222 | return false; | |||
2223 | ||||
2224 | case ast_aggregate: | |||
2225 | return false; | |||
2226 | ||||
2227 | case ast_function_call: | |||
2228 | unreachable("should be handled by ast_function_expression::hir")do { (static_cast <bool> (!"should be handled by ast_function_expression::hir" ) ? void (0) : __assert_fail ("!\"should be handled by ast_function_expression::hir\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2229 | ||||
2230 | case ast_unsized_array_dim: | |||
2231 | unreachable("ast_unsized_array_dim: Should never get here.")do { (static_cast <bool> (!"ast_unsized_array_dim: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_unsized_array_dim: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2232 | } | |||
2233 | ||||
2234 | return false; | |||
2235 | } | |||
2236 | ||||
2237 | ir_rvalue * | |||
2238 | ast_expression_statement::hir(exec_list *instructions, | |||
2239 | struct _mesa_glsl_parse_state *state) | |||
2240 | { | |||
2241 | /* It is possible to have expression statements that don't have an | |||
2242 | * expression. This is the solitary semicolon: | |||
2243 | * | |||
2244 | * for (i = 0; i < 5; i++) | |||
2245 | * ; | |||
2246 | * | |||
2247 | * In this case the expression will be NULL. Test for NULL and don't do | |||
2248 | * anything in that case. | |||
2249 | */ | |||
2250 | if (expression != NULL__null) | |||
2251 | expression->hir_no_rvalue(instructions, state); | |||
2252 | ||||
2253 | /* Statements do not have r-values. | |||
2254 | */ | |||
2255 | return NULL__null; | |||
2256 | } | |||
2257 | ||||
2258 | ||||
2259 | ir_rvalue * | |||
2260 | ast_compound_statement::hir(exec_list *instructions, | |||
2261 | struct _mesa_glsl_parse_state *state) | |||
2262 | { | |||
2263 | if (new_scope) | |||
2264 | state->symbols->push_scope(); | |||
2265 | ||||
2266 | foreach_list_typed (ast_node, ast, link, &this->statements)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->statements)->head_sentinel.next) ? ((ast_node *) (((uintptr_t ) (&this->statements)->head_sentinel.next) - (((char *) &((ast_node *) (&this->statements)->head_sentinel .next)->link) - ((char *) (&this->statements)->head_sentinel .next)))) : __null); (ast) != __null; (ast) = (!exec_node_is_tail_sentinel ((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)-> link.next) - (((char *) &((ast_node *) (ast)->link.next )->link) - ((char *) (ast)->link.next)))) : __null)) | |||
2267 | ast->hir(instructions, state); | |||
2268 | ||||
2269 | if (new_scope) | |||
2270 | state->symbols->pop_scope(); | |||
2271 | ||||
2272 | /* Compound statements do not have r-values. | |||
2273 | */ | |||
2274 | return NULL__null; | |||
2275 | } | |||
2276 | ||||
2277 | /** | |||
2278 | * Evaluate the given exec_node (which should be an ast_node representing | |||
2279 | * a single array dimension) and return its integer value. | |||
2280 | */ | |||
2281 | static unsigned | |||
2282 | process_array_size(exec_node *node, | |||
2283 | struct _mesa_glsl_parse_state *state) | |||
2284 | { | |||
2285 | void *mem_ctx = state; | |||
2286 | ||||
2287 | exec_list dummy_instructions; | |||
2288 | ||||
2289 | ast_node *array_size = exec_node_data(ast_node, node, link)((ast_node *) (((uintptr_t) node) - (((char *) &((ast_node *) node)->link) - ((char *) node)))); | |||
2290 | ||||
2291 | /** | |||
2292 | * Dimensions other than the outermost dimension can by unsized if they | |||
2293 | * are immediately sized by a constructor or initializer. | |||
2294 | */ | |||
2295 | if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) | |||
2296 | return 0; | |||
2297 | ||||
2298 | ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); | |||
2299 | YYLTYPE loc = array_size->get_location(); | |||
2300 | ||||
2301 | if (ir == NULL__null) { | |||
2302 | _mesa_glsl_error(& loc, state, | |||
2303 | "array size could not be resolved"); | |||
2304 | return 0; | |||
2305 | } | |||
2306 | ||||
2307 | if (!ir->type->is_integer_32()) { | |||
2308 | _mesa_glsl_error(& loc, state, | |||
2309 | "array size must be integer type"); | |||
2310 | return 0; | |||
2311 | } | |||
2312 | ||||
2313 | if (!ir->type->is_scalar()) { | |||
2314 | _mesa_glsl_error(& loc, state, | |||
2315 | "array size must be scalar type"); | |||
2316 | return 0; | |||
2317 | } | |||
2318 | ||||
2319 | ir_constant *const size = ir->constant_expression_value(mem_ctx); | |||
2320 | if (size == NULL__null || | |||
2321 | (state->is_version(120, 300) && | |||
2322 | array_size->has_sequence_subexpression())) { | |||
2323 | _mesa_glsl_error(& loc, state, "array size must be a " | |||
2324 | "constant valued expression"); | |||
2325 | return 0; | |||
2326 | } | |||
2327 | ||||
2328 | if (size->value.i[0] <= 0) { | |||
2329 | _mesa_glsl_error(& loc, state, "array size must be > 0"); | |||
2330 | return 0; | |||
2331 | } | |||
2332 | ||||
2333 | assert(size->type == ir->type)(static_cast <bool> (size->type == ir->type) ? void (0) : __assert_fail ("size->type == ir->type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2334 | ||||
2335 | /* If the array size is const (and we've verified that | |||
2336 | * it is) then no instructions should have been emitted | |||
2337 | * when we converted it to HIR. If they were emitted, | |||
2338 | * then either the array size isn't const after all, or | |||
2339 | * we are emitting unnecessary instructions. | |||
2340 | */ | |||
2341 | assert(dummy_instructions.is_empty())(static_cast <bool> (dummy_instructions.is_empty()) ? void (0) : __assert_fail ("dummy_instructions.is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2342 | ||||
2343 | return size->value.u[0]; | |||
2344 | } | |||
2345 | ||||
2346 | static const glsl_type * | |||
2347 | process_array_type(YYLTYPE *loc, const glsl_type *base, | |||
2348 | ast_array_specifier *array_specifier, | |||
2349 | struct _mesa_glsl_parse_state *state) | |||
2350 | { | |||
2351 | const glsl_type *array_type = base; | |||
2352 | ||||
2353 | if (array_specifier != NULL__null) { | |||
2354 | if (base->is_array()) { | |||
2355 | ||||
2356 | /* From page 19 (page 25) of the GLSL 1.20 spec: | |||
2357 | * | |||
2358 | * "Only one-dimensional arrays may be declared." | |||
2359 | */ | |||
2360 | if (!state->check_arrays_of_arrays_allowed(loc)) { | |||
2361 | return glsl_type::error_type; | |||
2362 | } | |||
2363 | } | |||
2364 | ||||
2365 | for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); | |||
2366 | !node->is_head_sentinel(); node = node->prev) { | |||
2367 | unsigned array_size = process_array_size(node, state); | |||
2368 | array_type = glsl_type::get_array_instance(array_type, array_size); | |||
2369 | } | |||
2370 | } | |||
2371 | ||||
2372 | return array_type; | |||
2373 | } | |||
2374 | ||||
2375 | static bool | |||
2376 | precision_qualifier_allowed(const glsl_type *type) | |||
2377 | { | |||
2378 | /* Precision qualifiers apply to floating point, integer and opaque | |||
2379 | * types. | |||
2380 | * | |||
2381 | * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: | |||
2382 | * "Any floating point or any integer declaration can have the type | |||
2383 | * preceded by one of these precision qualifiers [...] Literal | |||
2384 | * constants do not have precision qualifiers. Neither do Boolean | |||
2385 | * variables. | |||
2386 | * | |||
2387 | * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 | |||
2388 | * spec also says: | |||
2389 | * | |||
2390 | * "Precision qualifiers are added for code portability with OpenGL | |||
2391 | * ES, not for functionality. They have the same syntax as in OpenGL | |||
2392 | * ES." | |||
2393 | * | |||
2394 | * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: | |||
2395 | * | |||
2396 | * "uniform lowp sampler2D sampler; | |||
2397 | * highp vec2 coord; | |||
2398 | * ... | |||
2399 | * lowp vec4 col = texture2D (sampler, coord); | |||
2400 | * // texture2D returns lowp" | |||
2401 | * | |||
2402 | * From this, we infer that GLSL 1.30 (and later) should allow precision | |||
2403 | * qualifiers on sampler types just like float and integer types. | |||
2404 | */ | |||
2405 | const glsl_type *const t = type->without_array(); | |||
2406 | ||||
2407 | return (t->is_float() || t->is_integer_32() || t->contains_opaque()) && | |||
2408 | !t->is_struct(); | |||
2409 | } | |||
2410 | ||||
2411 | const glsl_type * | |||
2412 | ast_type_specifier::glsl_type(const char **name, | |||
2413 | struct _mesa_glsl_parse_state *state) const | |||
2414 | { | |||
2415 | const struct glsl_type *type; | |||
2416 | ||||
2417 | if (this->type != NULL__null) | |||
2418 | type = this->type; | |||
2419 | else if (structure) | |||
2420 | type = structure->type; | |||
2421 | else | |||
2422 | type = state->symbols->get_type(this->type_name); | |||
2423 | *name = this->type_name; | |||
2424 | ||||
2425 | YYLTYPE loc = this->get_location(); | |||
2426 | type = process_array_type(&loc, type, this->array_specifier, state); | |||
2427 | ||||
2428 | return type; | |||
2429 | } | |||
2430 | ||||
2431 | /** | |||
2432 | * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: | |||
2433 | * | |||
2434 | * "The precision statement | |||
2435 | * | |||
2436 | * precision precision-qualifier type; | |||
2437 | * | |||
2438 | * can be used to establish a default precision qualifier. The type field can | |||
2439 | * be either int or float or any of the sampler types, (...) If type is float, | |||
2440 | * the directive applies to non-precision-qualified floating point type | |||
2441 | * (scalar, vector, and matrix) declarations. If type is int, the directive | |||
2442 | * applies to all non-precision-qualified integer type (scalar, vector, signed, | |||
2443 | * and unsigned) declarations." | |||
2444 | * | |||
2445 | * We use the symbol table to keep the values of the default precisions for | |||
2446 | * each 'type' in each scope and we use the 'type' string from the precision | |||
2447 | * statement as key in the symbol table. When we want to retrieve the default | |||
2448 | * precision associated with a given glsl_type we need to know the type string | |||
2449 | * associated with it. This is what this function returns. | |||
2450 | */ | |||
2451 | static const char * | |||
2452 | get_type_name_for_precision_qualifier(const glsl_type *type) | |||
2453 | { | |||
2454 | switch (type->base_type) { | |||
2455 | case GLSL_TYPE_FLOAT: | |||
2456 | return "float"; | |||
2457 | case GLSL_TYPE_UINT: | |||
2458 | case GLSL_TYPE_INT: | |||
2459 | return "int"; | |||
2460 | case GLSL_TYPE_ATOMIC_UINT: | |||
2461 | return "atomic_uint"; | |||
2462 | case GLSL_TYPE_IMAGE: | |||
2463 | /* fallthrough */ | |||
2464 | case GLSL_TYPE_SAMPLER: { | |||
2465 | const unsigned type_idx = | |||
2466 | type->sampler_array + 2 * type->sampler_shadow; | |||
2467 | const unsigned offset = type->is_sampler() ? 0 : 4; | |||
2468 | assert(type_idx < 4)(static_cast <bool> (type_idx < 4) ? void (0) : __assert_fail ("type_idx < 4", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2469 | switch (type->sampled_type) { | |||
2470 | case GLSL_TYPE_FLOAT: | |||
2471 | switch (type->sampler_dimensionality) { | |||
2472 | case GLSL_SAMPLER_DIM_1D: { | |||
2473 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2474 | static const char *const names[4] = { | |||
2475 | "sampler1D", "sampler1DArray", | |||
2476 | "sampler1DShadow", "sampler1DArrayShadow" | |||
2477 | }; | |||
2478 | return names[type_idx]; | |||
2479 | } | |||
2480 | case GLSL_SAMPLER_DIM_2D: { | |||
2481 | static const char *const names[8] = { | |||
2482 | "sampler2D", "sampler2DArray", | |||
2483 | "sampler2DShadow", "sampler2DArrayShadow", | |||
2484 | "image2D", "image2DArray", NULL__null, NULL__null | |||
2485 | }; | |||
2486 | return names[offset + type_idx]; | |||
2487 | } | |||
2488 | case GLSL_SAMPLER_DIM_3D: { | |||
2489 | static const char *const names[8] = { | |||
2490 | "sampler3D", NULL__null, NULL__null, NULL__null, | |||
2491 | "image3D", NULL__null, NULL__null, NULL__null | |||
2492 | }; | |||
2493 | return names[offset + type_idx]; | |||
2494 | } | |||
2495 | case GLSL_SAMPLER_DIM_CUBE: { | |||
2496 | static const char *const names[8] = { | |||
2497 | "samplerCube", "samplerCubeArray", | |||
2498 | "samplerCubeShadow", "samplerCubeArrayShadow", | |||
2499 | "imageCube", NULL__null, NULL__null, NULL__null | |||
2500 | }; | |||
2501 | return names[offset + type_idx]; | |||
2502 | } | |||
2503 | case GLSL_SAMPLER_DIM_MS: { | |||
2504 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2505 | static const char *const names[4] = { | |||
2506 | "sampler2DMS", "sampler2DMSArray", NULL__null, NULL__null | |||
2507 | }; | |||
2508 | return names[type_idx]; | |||
2509 | } | |||
2510 | case GLSL_SAMPLER_DIM_RECT: { | |||
2511 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2512 | static const char *const names[4] = { | |||
2513 | "samplerRect", NULL__null, "samplerRectShadow", NULL__null | |||
2514 | }; | |||
2515 | return names[type_idx]; | |||
2516 | } | |||
2517 | case GLSL_SAMPLER_DIM_BUF: { | |||
2518 | static const char *const names[8] = { | |||
2519 | "samplerBuffer", NULL__null, NULL__null, NULL__null, | |||
2520 | "imageBuffer", NULL__null, NULL__null, NULL__null | |||
2521 | }; | |||
2522 | return names[offset + type_idx]; | |||
2523 | } | |||
2524 | case GLSL_SAMPLER_DIM_EXTERNAL: { | |||
2525 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2526 | static const char *const names[4] = { | |||
2527 | "samplerExternalOES", NULL__null, NULL__null, NULL__null | |||
2528 | }; | |||
2529 | return names[type_idx]; | |||
2530 | } | |||
2531 | default: | |||
2532 | unreachable("Unsupported sampler/image dimensionality")do { (static_cast <bool> (!"Unsupported sampler/image dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported sampler/image dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2533 | } /* sampler/image float dimensionality */ | |||
2534 | break; | |||
2535 | case GLSL_TYPE_INT: | |||
2536 | switch (type->sampler_dimensionality) { | |||
2537 | case GLSL_SAMPLER_DIM_1D: { | |||
2538 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2539 | static const char *const names[4] = { | |||
2540 | "isampler1D", "isampler1DArray", NULL__null, NULL__null | |||
2541 | }; | |||
2542 | return names[type_idx]; | |||
2543 | } | |||
2544 | case GLSL_SAMPLER_DIM_2D: { | |||
2545 | static const char *const names[8] = { | |||
2546 | "isampler2D", "isampler2DArray", NULL__null, NULL__null, | |||
2547 | "iimage2D", "iimage2DArray", NULL__null, NULL__null | |||
2548 | }; | |||
2549 | return names[offset + type_idx]; | |||
2550 | } | |||
2551 | case GLSL_SAMPLER_DIM_3D: { | |||
2552 | static const char *const names[8] = { | |||
2553 | "isampler3D", NULL__null, NULL__null, NULL__null, | |||
2554 | "iimage3D", NULL__null, NULL__null, NULL__null | |||
2555 | }; | |||
2556 | return names[offset + type_idx]; | |||
2557 | } | |||
2558 | case GLSL_SAMPLER_DIM_CUBE: { | |||
2559 | static const char *const names[8] = { | |||
2560 | "isamplerCube", "isamplerCubeArray", NULL__null, NULL__null, | |||
2561 | "iimageCube", NULL__null, NULL__null, NULL__null | |||
2562 | }; | |||
2563 | return names[offset + type_idx]; | |||
2564 | } | |||
2565 | case GLSL_SAMPLER_DIM_MS: { | |||
2566 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2567 | static const char *const names[4] = { | |||
2568 | "isampler2DMS", "isampler2DMSArray", NULL__null, NULL__null | |||
2569 | }; | |||
2570 | return names[type_idx]; | |||
2571 | } | |||
2572 | case GLSL_SAMPLER_DIM_RECT: { | |||
2573 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2574 | static const char *const names[4] = { | |||
2575 | "isamplerRect", NULL__null, "isamplerRectShadow", NULL__null | |||
2576 | }; | |||
2577 | return names[type_idx]; | |||
2578 | } | |||
2579 | case GLSL_SAMPLER_DIM_BUF: { | |||
2580 | static const char *const names[8] = { | |||
2581 | "isamplerBuffer", NULL__null, NULL__null, NULL__null, | |||
2582 | "iimageBuffer", NULL__null, NULL__null, NULL__null | |||
2583 | }; | |||
2584 | return names[offset + type_idx]; | |||
2585 | } | |||
2586 | default: | |||
2587 | unreachable("Unsupported isampler/iimage dimensionality")do { (static_cast <bool> (!"Unsupported isampler/iimage dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported isampler/iimage dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2588 | } /* sampler/image int dimensionality */ | |||
2589 | break; | |||
2590 | case GLSL_TYPE_UINT: | |||
2591 | switch (type->sampler_dimensionality) { | |||
2592 | case GLSL_SAMPLER_DIM_1D: { | |||
2593 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2594 | static const char *const names[4] = { | |||
2595 | "usampler1D", "usampler1DArray", NULL__null, NULL__null | |||
2596 | }; | |||
2597 | return names[type_idx]; | |||
2598 | } | |||
2599 | case GLSL_SAMPLER_DIM_2D: { | |||
2600 | static const char *const names[8] = { | |||
2601 | "usampler2D", "usampler2DArray", NULL__null, NULL__null, | |||
2602 | "uimage2D", "uimage2DArray", NULL__null, NULL__null | |||
2603 | }; | |||
2604 | return names[offset + type_idx]; | |||
2605 | } | |||
2606 | case GLSL_SAMPLER_DIM_3D: { | |||
2607 | static const char *const names[8] = { | |||
2608 | "usampler3D", NULL__null, NULL__null, NULL__null, | |||
2609 | "uimage3D", NULL__null, NULL__null, NULL__null | |||
2610 | }; | |||
2611 | return names[offset + type_idx]; | |||
2612 | } | |||
2613 | case GLSL_SAMPLER_DIM_CUBE: { | |||
2614 | static const char *const names[8] = { | |||
2615 | "usamplerCube", "usamplerCubeArray", NULL__null, NULL__null, | |||
2616 | "uimageCube", NULL__null, NULL__null, NULL__null | |||
2617 | }; | |||
2618 | return names[offset + type_idx]; | |||
2619 | } | |||
2620 | case GLSL_SAMPLER_DIM_MS: { | |||
2621 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2622 | static const char *const names[4] = { | |||
2623 | "usampler2DMS", "usampler2DMSArray", NULL__null, NULL__null | |||
2624 | }; | |||
2625 | return names[type_idx]; | |||
2626 | } | |||
2627 | case GLSL_SAMPLER_DIM_RECT: { | |||
2628 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2629 | static const char *const names[4] = { | |||
2630 | "usamplerRect", NULL__null, "usamplerRectShadow", NULL__null | |||
2631 | }; | |||
2632 | return names[type_idx]; | |||
2633 | } | |||
2634 | case GLSL_SAMPLER_DIM_BUF: { | |||
2635 | static const char *const names[8] = { | |||
2636 | "usamplerBuffer", NULL__null, NULL__null, NULL__null, | |||
2637 | "uimageBuffer", NULL__null, NULL__null, NULL__null | |||
2638 | }; | |||
2639 | return names[offset + type_idx]; | |||
2640 | } | |||
2641 | default: | |||
2642 | unreachable("Unsupported usampler/uimage dimensionality")do { (static_cast <bool> (!"Unsupported usampler/uimage dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported usampler/uimage dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2643 | } /* sampler/image uint dimensionality */ | |||
2644 | break; | |||
2645 | default: | |||
2646 | unreachable("Unsupported sampler/image type")do { (static_cast <bool> (!"Unsupported sampler/image type" ) ? void (0) : __assert_fail ("!\"Unsupported sampler/image type\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
2647 | } /* sampler/image type */ | |||
2648 | break; | |||
2649 | } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ | |||
2650 | break; | |||
2651 | default: | |||
2652 | unreachable("Unsupported type")do { (static_cast <bool> (!"Unsupported type") ? void ( 0) : __assert_fail ("!\"Unsupported type\"", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); | |||
2653 | } /* base type */ | |||
2654 | } | |||
2655 | ||||
2656 | static unsigned | |||
2657 | select_gles_precision(unsigned qual_precision, | |||
2658 | const glsl_type *type, | |||
2659 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
2660 | { | |||
2661 | /* Precision qualifiers do not have any meaning in Desktop GLSL. | |||
2662 | * In GLES we take the precision from the type qualifier if present, | |||
2663 | * otherwise, if the type of the variable allows precision qualifiers at | |||
2664 | * all, we look for the default precision qualifier for that type in the | |||
2665 | * current scope. | |||
2666 | */ | |||
2667 | assert(state->es_shader)(static_cast <bool> (state->es_shader) ? void (0) : __assert_fail ("state->es_shader", __builtin_FILE (), __builtin_LINE () , __extension__ __PRETTY_FUNCTION__)); | |||
2668 | ||||
2669 | unsigned precision = GLSL_PRECISION_NONE; | |||
2670 | if (qual_precision) { | |||
2671 | precision = qual_precision; | |||
2672 | } else if (precision_qualifier_allowed(type)) { | |||
2673 | const char *type_name = | |||
2674 | get_type_name_for_precision_qualifier(type->without_array()); | |||
2675 | assert(type_name != NULL)(static_cast <bool> (type_name != __null) ? void (0) : __assert_fail ("type_name != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
2676 | ||||
2677 | precision = | |||
2678 | state->symbols->get_default_precision_qualifier(type_name); | |||
2679 | if (precision == ast_precision_none) { | |||
2680 | _mesa_glsl_error(loc, state, | |||
2681 | "No precision specified in this scope for type `%s'", | |||
2682 | type->name); | |||
2683 | } | |||
2684 | } | |||
2685 | ||||
2686 | ||||
2687 | /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: | |||
2688 | * | |||
2689 | * "The default precision of all atomic types is highp. It is an error to | |||
2690 | * declare an atomic type with a different precision or to specify the | |||
2691 | * default precision for an atomic type to be lowp or mediump." | |||
2692 | */ | |||
2693 | if (type->is_atomic_uint() && precision != ast_precision_high) { | |||
2694 | _mesa_glsl_error(loc, state, | |||
2695 | "atomic_uint can only have highp precision qualifier"); | |||
2696 | } | |||
2697 | ||||
2698 | return precision; | |||
2699 | } | |||
2700 | ||||
2701 | const glsl_type * | |||
2702 | ast_fully_specified_type::glsl_type(const char **name, | |||
2703 | struct _mesa_glsl_parse_state *state) const | |||
2704 | { | |||
2705 | return this->specifier->glsl_type(name, state); | |||
2706 | } | |||
2707 | ||||
2708 | /** | |||
2709 | * Determine whether a toplevel variable declaration declares a varying. This | |||
2710 | * function operates by examining the variable's mode and the shader target, | |||
2711 | * so it correctly identifies linkage variables regardless of whether they are | |||
2712 | * declared using the deprecated "varying" syntax or the new "in/out" syntax. | |||
2713 | * | |||
2714 | * Passing a non-toplevel variable declaration (e.g. a function parameter) to | |||
2715 | * this function will produce undefined results. | |||
2716 | */ | |||
2717 | static bool | |||
2718 | is_varying_var(ir_variable *var, gl_shader_stage target) | |||
2719 | { | |||
2720 | switch (target) { | |||
2721 | case MESA_SHADER_VERTEX: | |||
2722 | return var->data.mode == ir_var_shader_out; | |||
2723 | case MESA_SHADER_FRAGMENT: | |||
2724 | return var->data.mode == ir_var_shader_in || | |||
2725 | (var->data.mode == ir_var_system_value && | |||
2726 | var->data.location == SYSTEM_VALUE_FRAG_COORD); | |||
2727 | default: | |||
2728 | return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; | |||
2729 | } | |||
2730 | } | |||
2731 | ||||
2732 | static bool | |||
2733 | is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) | |||
2734 | { | |||
2735 | if (is_varying_var(var, state->stage)) | |||
2736 | return true; | |||
2737 | ||||
2738 | /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: | |||
2739 | * "Only variables output from a vertex shader can be candidates | |||
2740 | * for invariance". | |||
2741 | */ | |||
2742 | if (!state->is_version(130, 100)) | |||
2743 | return false; | |||
2744 | ||||
2745 | /* | |||
2746 | * Later specs remove this language - so allowed invariant | |||
2747 | * on fragment shader outputs as well. | |||
2748 | */ | |||
2749 | if (state->stage == MESA_SHADER_FRAGMENT && | |||
2750 | var->data.mode == ir_var_shader_out) | |||
2751 | return true; | |||
2752 | return false; | |||
2753 | } | |||
2754 | ||||
2755 | /** | |||
2756 | * Matrix layout qualifiers are only allowed on certain types | |||
2757 | */ | |||
2758 | static void | |||
2759 | validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, | |||
2760 | YYLTYPE *loc, | |||
2761 | const glsl_type *type, | |||
2762 | ir_variable *var) | |||
2763 | { | |||
2764 | if (var && !var->is_in_buffer_block()) { | |||
2765 | /* Layout qualifiers may only apply to interface blocks and fields in | |||
2766 | * them. | |||
2767 | */ | |||
2768 | _mesa_glsl_error(loc, state, | |||
2769 | "uniform block layout qualifiers row_major and " | |||
2770 | "column_major may not be applied to variables " | |||
2771 | "outside of uniform blocks"); | |||
2772 | } else if (!type->without_array()->is_matrix()) { | |||
2773 | /* The OpenGL ES 3.0 conformance tests did not originally allow | |||
2774 | * matrix layout qualifiers on non-matrices. However, the OpenGL | |||
2775 | * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were | |||
2776 | * amended to specifically allow these layouts on all types. Emit | |||
2777 | * a warning so that people know their code may not be portable. | |||
2778 | */ | |||
2779 | _mesa_glsl_warning(loc, state, | |||
2780 | "uniform block layout qualifiers row_major and " | |||
2781 | "column_major applied to non-matrix types may " | |||
2782 | "be rejected by older compilers"); | |||
2783 | } | |||
2784 | } | |||
2785 | ||||
2786 | static bool | |||
2787 | validate_xfb_buffer_qualifier(YYLTYPE *loc, | |||
2788 | struct _mesa_glsl_parse_state *state, | |||
2789 | unsigned xfb_buffer) { | |||
2790 | if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { | |||
2791 | _mesa_glsl_error(loc, state, | |||
2792 | "invalid xfb_buffer specified %d is larger than " | |||
2793 | "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", | |||
2794 | xfb_buffer, | |||
2795 | state->Const.MaxTransformFeedbackBuffers - 1); | |||
2796 | return false; | |||
2797 | } | |||
2798 | ||||
2799 | return true; | |||
2800 | } | |||
2801 | ||||
2802 | /* From the ARB_enhanced_layouts spec: | |||
2803 | * | |||
2804 | * "Variables and block members qualified with *xfb_offset* can be | |||
2805 | * scalars, vectors, matrices, structures, and (sized) arrays of these. | |||
2806 | * The offset must be a multiple of the size of the first component of | |||
2807 | * the first qualified variable or block member, or a compile-time error | |||
2808 | * results. Further, if applied to an aggregate containing a double, | |||
2809 | * the offset must also be a multiple of 8, and the space taken in the | |||
2810 | * buffer will be a multiple of 8. | |||
2811 | */ | |||
2812 | static bool | |||
2813 | validate_xfb_offset_qualifier(YYLTYPE *loc, | |||
2814 | struct _mesa_glsl_parse_state *state, | |||
2815 | int xfb_offset, const glsl_type *type, | |||
2816 | unsigned component_size) { | |||
2817 | const glsl_type *t_without_array = type->without_array(); | |||
2818 | ||||
2819 | if (xfb_offset != -1 && type->is_unsized_array()) { | |||
2820 | _mesa_glsl_error(loc, state, | |||
2821 | "xfb_offset can't be used with unsized arrays."); | |||
2822 | return false; | |||
2823 | } | |||
2824 | ||||
2825 | /* Make sure nested structs don't contain unsized arrays, and validate | |||
2826 | * any xfb_offsets on interface members. | |||
2827 | */ | |||
2828 | if (t_without_array->is_struct() || t_without_array->is_interface()) | |||
2829 | for (unsigned int i = 0; i < t_without_array->length; i++) { | |||
2830 | const glsl_type *member_t = t_without_array->fields.structure[i].type; | |||
2831 | ||||
2832 | /* When the interface block doesn't have an xfb_offset qualifier then | |||
2833 | * we apply the component size rules at the member level. | |||
2834 | */ | |||
2835 | if (xfb_offset == -1) | |||
2836 | component_size = member_t->contains_double() ? 8 : 4; | |||
2837 | ||||
2838 | int xfb_offset = t_without_array->fields.structure[i].offset; | |||
2839 | validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, | |||
2840 | component_size); | |||
2841 | } | |||
2842 | ||||
2843 | /* Nested structs or interface block without offset may not have had an | |||
2844 | * offset applied yet so return. | |||
2845 | */ | |||
2846 | if (xfb_offset == -1) { | |||
2847 | return true; | |||
2848 | } | |||
2849 | ||||
2850 | if (xfb_offset % component_size) { | |||
2851 | _mesa_glsl_error(loc, state, | |||
2852 | "invalid qualifier xfb_offset=%d must be a multiple " | |||
2853 | "of the first component size of the first qualified " | |||
2854 | "variable or block member. Or double if an aggregate " | |||
2855 | "that contains a double (%d).", | |||
2856 | xfb_offset, component_size); | |||
2857 | return false; | |||
2858 | } | |||
2859 | ||||
2860 | return true; | |||
2861 | } | |||
2862 | ||||
2863 | static bool | |||
2864 | validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, | |||
2865 | unsigned stream) | |||
2866 | { | |||
2867 | if (stream >= state->ctx->Const.MaxVertexStreams) { | |||
2868 | _mesa_glsl_error(loc, state, | |||
2869 | "invalid stream specified %d is larger than " | |||
2870 | "MAX_VERTEX_STREAMS - 1 (%d).", | |||
2871 | stream, state->ctx->Const.MaxVertexStreams - 1); | |||
2872 | return false; | |||
2873 | } | |||
2874 | ||||
2875 | return true; | |||
2876 | } | |||
2877 | ||||
2878 | static void | |||
2879 | apply_explicit_binding(struct _mesa_glsl_parse_state *state, | |||
2880 | YYLTYPE *loc, | |||
2881 | ir_variable *var, | |||
2882 | const glsl_type *type, | |||
2883 | const ast_type_qualifier *qual) | |||
2884 | { | |||
2885 | if (!qual->flags.q.uniform && !qual->flags.q.buffer) { | |||
2886 | _mesa_glsl_error(loc, state, | |||
2887 | "the \"binding\" qualifier only applies to uniforms and " | |||
2888 | "shader storage buffer objects"); | |||
2889 | return; | |||
2890 | } | |||
2891 | ||||
2892 | unsigned qual_binding; | |||
2893 | if (!process_qualifier_constant(state, loc, "binding", qual->binding, | |||
2894 | &qual_binding)) { | |||
2895 | return; | |||
2896 | } | |||
2897 | ||||
2898 | const struct gl_context *const ctx = state->ctx; | |||
2899 | unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; | |||
2900 | unsigned max_index = qual_binding + elements - 1; | |||
2901 | const glsl_type *base_type = type->without_array(); | |||
2902 | ||||
2903 | if (base_type->is_interface()) { | |||
2904 | /* UBOs. From page 60 of the GLSL 4.20 specification: | |||
2905 | * "If the binding point for any uniform block instance is less than zero, | |||
2906 | * or greater than or equal to the implementation-dependent maximum | |||
2907 | * number of uniform buffer bindings, a compilation error will occur. | |||
2908 | * When the binding identifier is used with a uniform block instanced as | |||
2909 | * an array of size N, all elements of the array from binding through | |||
2910 | * binding + N – 1 must be within this range." | |||
2911 | * | |||
2912 | * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. | |||
2913 | */ | |||
2914 | if (qual->flags.q.uniform && | |||
2915 | max_index >= ctx->Const.MaxUniformBufferBindings) { | |||
2916 | _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " | |||
2917 | "the maximum number of UBO binding points (%d)", | |||
2918 | qual_binding, elements, | |||
2919 | ctx->Const.MaxUniformBufferBindings); | |||
2920 | return; | |||
2921 | } | |||
2922 | ||||
2923 | /* SSBOs. From page 67 of the GLSL 4.30 specification: | |||
2924 | * "If the binding point for any uniform or shader storage block instance | |||
2925 | * is less than zero, or greater than or equal to the | |||
2926 | * implementation-dependent maximum number of uniform buffer bindings, a | |||
2927 | * compile-time error will occur. When the binding identifier is used | |||
2928 | * with a uniform or shader storage block instanced as an array of size | |||
2929 | * N, all elements of the array from binding through binding + N – 1 must | |||
2930 | * be within this range." | |||
2931 | */ | |||
2932 | if (qual->flags.q.buffer && | |||
2933 | max_index >= ctx->Const.MaxShaderStorageBufferBindings) { | |||
2934 | _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " | |||
2935 | "the maximum number of SSBO binding points (%d)", | |||
2936 | qual_binding, elements, | |||
2937 | ctx->Const.MaxShaderStorageBufferBindings); | |||
2938 | return; | |||
2939 | } | |||
2940 | } else if (base_type->is_sampler()) { | |||
2941 | /* Samplers. From page 63 of the GLSL 4.20 specification: | |||
2942 | * "If the binding is less than zero, or greater than or equal to the | |||
2943 | * implementation-dependent maximum supported number of units, a | |||
2944 | * compilation error will occur. When the binding identifier is used | |||
2945 | * with an array of size N, all elements of the array from binding | |||
2946 | * through binding + N - 1 must be within this range." | |||
2947 | */ | |||
2948 | unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; | |||
2949 | ||||
2950 | if (max_index >= limit) { | |||
2951 | _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " | |||
2952 | "exceeds the maximum number of texture image units " | |||
2953 | "(%u)", qual_binding, elements, limit); | |||
2954 | ||||
2955 | return; | |||
2956 | } | |||
2957 | } else if (base_type->contains_atomic()) { | |||
2958 | assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS)(static_cast <bool> (ctx->Const.MaxAtomicBufferBindings <= (15 * 6)) ? void (0) : __assert_fail ("ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
2959 | if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { | |||
2960 | _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " | |||
2961 | "maximum number of atomic counter buffer bindings " | |||
2962 | "(%u)", qual_binding, | |||
2963 | ctx->Const.MaxAtomicBufferBindings); | |||
2964 | ||||
2965 | return; | |||
2966 | } | |||
2967 | } else if ((state->is_version(420, 310) || | |||
2968 | state->ARB_shading_language_420pack_enable) && | |||
2969 | base_type->is_image()) { | |||
2970 | assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS)(static_cast <bool> (ctx->Const.MaxImageUnits <= ( 32 * 6)) ? void (0) : __assert_fail ("ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
2971 | if (max_index >= ctx->Const.MaxImageUnits) { | |||
2972 | _mesa_glsl_error(loc, state, "Image binding %d exceeds the " | |||
2973 | "maximum number of image units (%d)", max_index, | |||
2974 | ctx->Const.MaxImageUnits); | |||
2975 | return; | |||
2976 | } | |||
2977 | ||||
2978 | } else { | |||
2979 | _mesa_glsl_error(loc, state, | |||
2980 | "the \"binding\" qualifier only applies to uniform " | |||
2981 | "blocks, storage blocks, opaque variables, or arrays " | |||
2982 | "thereof"); | |||
2983 | return; | |||
2984 | } | |||
2985 | ||||
2986 | var->data.explicit_binding = true; | |||
2987 | var->data.binding = qual_binding; | |||
2988 | ||||
2989 | return; | |||
2990 | } | |||
2991 | ||||
2992 | static void | |||
2993 | validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, | |||
2994 | YYLTYPE *loc, | |||
2995 | const glsl_interp_mode interpolation, | |||
2996 | const struct glsl_type *var_type, | |||
2997 | ir_variable_mode mode) | |||
2998 | { | |||
2999 | if (state->stage != MESA_SHADER_FRAGMENT || | |||
3000 | interpolation == INTERP_MODE_FLAT || | |||
3001 | mode != ir_var_shader_in) | |||
3002 | return; | |||
3003 | ||||
3004 | /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, | |||
3005 | * so must integer vertex outputs. | |||
3006 | * | |||
3007 | * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: | |||
3008 | * "Fragment shader inputs that are signed or unsigned integers or | |||
3009 | * integer vectors must be qualified with the interpolation qualifier | |||
3010 | * flat." | |||
3011 | * | |||
3012 | * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: | |||
3013 | * "Fragment shader inputs that are, or contain, signed or unsigned | |||
3014 | * integers or integer vectors must be qualified with the | |||
3015 | * interpolation qualifier flat." | |||
3016 | * | |||
3017 | * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: | |||
3018 | * "Vertex shader outputs that are, or contain, signed or unsigned | |||
3019 | * integers or integer vectors must be qualified with the | |||
3020 | * interpolation qualifier flat." | |||
3021 | * | |||
3022 | * Note that prior to GLSL 1.50, this requirement applied to vertex | |||
3023 | * outputs rather than fragment inputs. That creates problems in the | |||
3024 | * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all | |||
3025 | * desktop GL shaders. For GLSL ES shaders, we follow the spec and | |||
3026 | * apply the restriction to both vertex outputs and fragment inputs. | |||
3027 | * | |||
3028 | * Note also that the desktop GLSL specs are missing the text "or | |||
3029 | * contain"; this is presumably an oversight, since there is no | |||
3030 | * reasonable way to interpolate a fragment shader input that contains | |||
3031 | * an integer. See Khronos bug #15671. | |||
3032 | */ | |||
3033 | if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) | |||
3034 | && var_type->contains_integer()) { | |||
3035 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " | |||
3036 | "an integer, then it must be qualified with 'flat'"); | |||
3037 | } | |||
3038 | ||||
3039 | /* Double fragment inputs must be qualified with 'flat'. | |||
3040 | * | |||
3041 | * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: | |||
3042 | * "This extension does not support interpolation of double-precision | |||
3043 | * values; doubles used as fragment shader inputs must be qualified as | |||
3044 | * "flat"." | |||
3045 | * | |||
3046 | * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: | |||
3047 | * "Fragment shader inputs that are signed or unsigned integers, integer | |||
3048 | * vectors, or any double-precision floating-point type must be | |||
3049 | * qualified with the interpolation qualifier flat." | |||
3050 | * | |||
3051 | * Note that the GLSL specs are missing the text "or contain"; this is | |||
3052 | * presumably an oversight. See Khronos bug #15671. | |||
3053 | * | |||
3054 | * The 'double' type does not exist in GLSL ES so far. | |||
3055 | */ | |||
3056 | if (state->has_double() | |||
3057 | && var_type->contains_double()) { | |||
3058 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " | |||
3059 | "a double, then it must be qualified with 'flat'"); | |||
3060 | } | |||
3061 | ||||
3062 | /* Bindless sampler/image fragment inputs must be qualified with 'flat'. | |||
3063 | * | |||
3064 | * From section 4.3.4 of the ARB_bindless_texture spec: | |||
3065 | * | |||
3066 | * "(modify last paragraph, p. 35, allowing samplers and images as | |||
3067 | * fragment shader inputs) ... Fragment inputs can only be signed and | |||
3068 | * unsigned integers and integer vectors, floating point scalars, | |||
3069 | * floating-point vectors, matrices, sampler and image types, or arrays | |||
3070 | * or structures of these. Fragment shader inputs that are signed or | |||
3071 | * unsigned integers, integer vectors, or any double-precision floating- | |||
3072 | * point type, or any sampler or image type must be qualified with the | |||
3073 | * interpolation qualifier "flat"." | |||
3074 | */ | |||
3075 | if (state->has_bindless() | |||
3076 | && (var_type->contains_sampler() || var_type->contains_image())) { | |||
3077 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " | |||
3078 | "a bindless sampler (or image), then it must be " | |||
3079 | "qualified with 'flat'"); | |||
3080 | } | |||
3081 | } | |||
3082 | ||||
3083 | static void | |||
3084 | validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, | |||
3085 | YYLTYPE *loc, | |||
3086 | const glsl_interp_mode interpolation, | |||
3087 | const struct ast_type_qualifier *qual, | |||
3088 | const struct glsl_type *var_type, | |||
3089 | ir_variable_mode mode) | |||
3090 | { | |||
3091 | /* Interpolation qualifiers can only apply to shader inputs or outputs, but | |||
3092 | * not to vertex shader inputs nor fragment shader outputs. | |||
3093 | * | |||
3094 | * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: | |||
3095 | * "Outputs from a vertex shader (out) and inputs to a fragment | |||
3096 | * shader (in) can be further qualified with one or more of these | |||
3097 | * interpolation qualifiers" | |||
3098 | * ... | |||
3099 | * "These interpolation qualifiers may only precede the qualifiers in, | |||
3100 | * centroid in, out, or centroid out in a declaration. They do not apply | |||
3101 | * to the deprecated storage qualifiers varying or centroid | |||
3102 | * varying. They also do not apply to inputs into a vertex shader or | |||
3103 | * outputs from a fragment shader." | |||
3104 | * | |||
3105 | * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: | |||
3106 | * "Outputs from a shader (out) and inputs to a shader (in) can be | |||
3107 | * further qualified with one of these interpolation qualifiers." | |||
3108 | * ... | |||
3109 | * "These interpolation qualifiers may only precede the qualifiers | |||
3110 | * in, centroid in, out, or centroid out in a declaration. They do | |||
3111 | * not apply to inputs into a vertex shader or outputs from a | |||
3112 | * fragment shader." | |||
3113 | */ | |||
3114 | if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) | |||
3115 | && interpolation != INTERP_MODE_NONE) { | |||
3116 | const char *i = interpolation_string(interpolation); | |||
3117 | if (mode != ir_var_shader_in && mode != ir_var_shader_out) | |||
3118 | _mesa_glsl_error(loc, state, | |||
3119 | "interpolation qualifier `%s' can only be applied to " | |||
3120 | "shader inputs or outputs.", i); | |||
3121 | ||||
3122 | switch (state->stage) { | |||
3123 | case MESA_SHADER_VERTEX: | |||
3124 | if (mode == ir_var_shader_in) { | |||
3125 | _mesa_glsl_error(loc, state, | |||
3126 | "interpolation qualifier '%s' cannot be applied to " | |||
3127 | "vertex shader inputs", i); | |||
3128 | } | |||
3129 | break; | |||
3130 | case MESA_SHADER_FRAGMENT: | |||
3131 | if (mode == ir_var_shader_out) { | |||
3132 | _mesa_glsl_error(loc, state, | |||
3133 | "interpolation qualifier '%s' cannot be applied to " | |||
3134 | "fragment shader outputs", i); | |||
3135 | } | |||
3136 | break; | |||
3137 | default: | |||
3138 | break; | |||
3139 | } | |||
3140 | } | |||
3141 | ||||
3142 | /* Interpolation qualifiers cannot be applied to 'centroid' and | |||
3143 | * 'centroid varying'. | |||
3144 | * | |||
3145 | * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: | |||
3146 | * "interpolation qualifiers may only precede the qualifiers in, | |||
3147 | * centroid in, out, or centroid out in a declaration. They do not apply | |||
3148 | * to the deprecated storage qualifiers varying or centroid varying." | |||
3149 | * | |||
3150 | * These deprecated storage qualifiers do not exist in GLSL ES 3.00. | |||
3151 | * | |||
3152 | * GL_EXT_gpu_shader4 allows this. | |||
3153 | */ | |||
3154 | if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable | |||
3155 | && interpolation != INTERP_MODE_NONE | |||
3156 | && qual->flags.q.varying) { | |||
3157 | ||||
3158 | const char *i = interpolation_string(interpolation); | |||
3159 | const char *s; | |||
3160 | if (qual->flags.q.centroid) | |||
3161 | s = "centroid varying"; | |||
3162 | else | |||
3163 | s = "varying"; | |||
3164 | ||||
3165 | _mesa_glsl_error(loc, state, | |||
3166 | "qualifier '%s' cannot be applied to the " | |||
3167 | "deprecated storage qualifier '%s'", i, s); | |||
3168 | } | |||
3169 | ||||
3170 | validate_fragment_flat_interpolation_input(state, loc, interpolation, | |||
3171 | var_type, mode); | |||
3172 | } | |||
3173 | ||||
3174 | static glsl_interp_mode | |||
3175 | interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, | |||
3176 | const struct glsl_type *var_type, | |||
3177 | ir_variable_mode mode, | |||
3178 | struct _mesa_glsl_parse_state *state, | |||
3179 | YYLTYPE *loc) | |||
3180 | { | |||
3181 | glsl_interp_mode interpolation; | |||
3182 | if (qual->flags.q.flat) | |||
3183 | interpolation = INTERP_MODE_FLAT; | |||
3184 | else if (qual->flags.q.noperspective) | |||
3185 | interpolation = INTERP_MODE_NOPERSPECTIVE; | |||
3186 | else if (qual->flags.q.smooth) | |||
3187 | interpolation = INTERP_MODE_SMOOTH; | |||
3188 | else | |||
3189 | interpolation = INTERP_MODE_NONE; | |||
3190 | ||||
3191 | validate_interpolation_qualifier(state, loc, | |||
3192 | interpolation, | |||
3193 | qual, var_type, mode); | |||
3194 | ||||
3195 | return interpolation; | |||
3196 | } | |||
3197 | ||||
3198 | ||||
3199 | static void | |||
3200 | apply_explicit_location(const struct ast_type_qualifier *qual, | |||
3201 | ir_variable *var, | |||
3202 | struct _mesa_glsl_parse_state *state, | |||
3203 | YYLTYPE *loc) | |||
3204 | { | |||
3205 | bool fail = false; | |||
3206 | ||||
3207 | unsigned qual_location; | |||
3208 | if (!process_qualifier_constant(state, loc, "location", qual->location, | |||
3209 | &qual_location)) { | |||
3210 | return; | |||
3211 | } | |||
3212 | ||||
3213 | /* Checks for GL_ARB_explicit_uniform_location. */ | |||
3214 | if (qual->flags.q.uniform) { | |||
3215 | if (!state->check_explicit_uniform_location_allowed(loc, var)) | |||
3216 | return; | |||
3217 | ||||
3218 | const struct gl_context *const ctx = state->ctx; | |||
3219 | unsigned max_loc = qual_location + var->type->uniform_locations() - 1; | |||
3220 | ||||
3221 | if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { | |||
3222 | _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " | |||
3223 | ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, | |||
3224 | ctx->Const.MaxUserAssignableUniformLocations); | |||
3225 | return; | |||
3226 | } | |||
3227 | ||||
3228 | var->data.explicit_location = true; | |||
3229 | var->data.location = qual_location; | |||
3230 | return; | |||
3231 | } | |||
3232 | ||||
3233 | /* Between GL_ARB_explicit_attrib_location an | |||
3234 | * GL_ARB_separate_shader_objects, the inputs and outputs of any shader | |||
3235 | * stage can be assigned explicit locations. The checking here associates | |||
3236 | * the correct extension with the correct stage's input / output: | |||
3237 | * | |||
3238 | * input output | |||
3239 | * ----- ------ | |||
3240 | * vertex explicit_loc sso | |||
3241 | * tess control sso sso | |||
3242 | * tess eval sso sso | |||
3243 | * geometry sso sso | |||
3244 | * fragment sso explicit_loc | |||
3245 | */ | |||
3246 | switch (state->stage) { | |||
3247 | case MESA_SHADER_VERTEX: | |||
3248 | if (var->data.mode == ir_var_shader_in) { | |||
3249 | if (!state->check_explicit_attrib_location_allowed(loc, var)) | |||
3250 | return; | |||
3251 | ||||
3252 | break; | |||
3253 | } | |||
3254 | ||||
3255 | if (var->data.mode == ir_var_shader_out) { | |||
3256 | if (!state->check_separate_shader_objects_allowed(loc, var)) | |||
3257 | return; | |||
3258 | ||||
3259 | break; | |||
3260 | } | |||
3261 | ||||
3262 | fail = true; | |||
3263 | break; | |||
3264 | ||||
3265 | case MESA_SHADER_TESS_CTRL: | |||
3266 | case MESA_SHADER_TESS_EVAL: | |||
3267 | case MESA_SHADER_GEOMETRY: | |||
3268 | if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { | |||
3269 | if (!state->check_separate_shader_objects_allowed(loc, var)) | |||
3270 | return; | |||
3271 | ||||
3272 | break; | |||
3273 | } | |||
3274 | ||||
3275 | fail = true; | |||
3276 | break; | |||
3277 | ||||
3278 | case MESA_SHADER_FRAGMENT: | |||
3279 | if (var->data.mode == ir_var_shader_in) { | |||
3280 | if (!state->check_separate_shader_objects_allowed(loc, var)) | |||
3281 | return; | |||
3282 | ||||
3283 | break; | |||
3284 | } | |||
3285 | ||||
3286 | if (var->data.mode == ir_var_shader_out) { | |||
3287 | if (!state->check_explicit_attrib_location_allowed(loc, var)) | |||
3288 | return; | |||
3289 | ||||
3290 | break; | |||
3291 | } | |||
3292 | ||||
3293 | fail = true; | |||
3294 | break; | |||
3295 | ||||
3296 | case MESA_SHADER_COMPUTE: | |||
3297 | _mesa_glsl_error(loc, state, | |||
3298 | "compute shader variables cannot be given " | |||
3299 | "explicit locations"); | |||
3300 | return; | |||
3301 | default: | |||
3302 | fail = true; | |||
3303 | break; | |||
3304 | }; | |||
3305 | ||||
3306 | if (fail) { | |||
3307 | _mesa_glsl_error(loc, state, | |||
3308 | "%s cannot be given an explicit location in %s shader", | |||
3309 | mode_string(var), | |||
3310 | _mesa_shader_stage_to_string(state->stage)); | |||
3311 | } else { | |||
3312 | var->data.explicit_location = true; | |||
3313 | ||||
3314 | switch (state->stage) { | |||
3315 | case MESA_SHADER_VERTEX: | |||
3316 | var->data.location = (var->data.mode == ir_var_shader_in) | |||
3317 | ? (qual_location + VERT_ATTRIB_GENERIC0) | |||
3318 | : (qual_location + VARYING_SLOT_VAR0); | |||
3319 | break; | |||
3320 | ||||
3321 | case MESA_SHADER_TESS_CTRL: | |||
3322 | case MESA_SHADER_TESS_EVAL: | |||
3323 | case MESA_SHADER_GEOMETRY: | |||
3324 | if (var->data.patch) | |||
3325 | var->data.location = qual_location + VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)); | |||
3326 | else | |||
3327 | var->data.location = qual_location + VARYING_SLOT_VAR0; | |||
3328 | break; | |||
3329 | ||||
3330 | case MESA_SHADER_FRAGMENT: | |||
3331 | var->data.location = (var->data.mode == ir_var_shader_out) | |||
3332 | ? (qual_location + FRAG_RESULT_DATA0) | |||
3333 | : (qual_location + VARYING_SLOT_VAR0); | |||
3334 | break; | |||
3335 | default: | |||
3336 | assert(!"Unexpected shader type")(static_cast <bool> (!"Unexpected shader type") ? void ( 0) : __assert_fail ("!\"Unexpected shader type\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
3337 | break; | |||
3338 | } | |||
3339 | ||||
3340 | /* Check if index was set for the uniform instead of the function */ | |||
3341 | if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { | |||
3342 | _mesa_glsl_error(loc, state, "an index qualifier can only be " | |||
3343 | "used with subroutine functions"); | |||
3344 | return; | |||
3345 | } | |||
3346 | ||||
3347 | unsigned qual_index; | |||
3348 | if (qual->flags.q.explicit_index && | |||
3349 | process_qualifier_constant(state, loc, "index", qual->index, | |||
3350 | &qual_index)) { | |||
3351 | /* From the GLSL 4.30 specification, section 4.4.2 (Output | |||
3352 | * Layout Qualifiers): | |||
3353 | * | |||
3354 | * "It is also a compile-time error if a fragment shader | |||
3355 | * sets a layout index to less than 0 or greater than 1." | |||
3356 | * | |||
3357 | * Older specifications don't mandate a behavior; we take | |||
3358 | * this as a clarification and always generate the error. | |||
3359 | */ | |||
3360 | if (qual_index > 1) { | |||
3361 | _mesa_glsl_error(loc, state, | |||
3362 | "explicit index may only be 0 or 1"); | |||
3363 | } else { | |||
3364 | var->data.explicit_index = true; | |||
3365 | var->data.index = qual_index; | |||
3366 | } | |||
3367 | } | |||
3368 | } | |||
3369 | } | |||
3370 | ||||
3371 | static bool | |||
3372 | validate_storage_for_sampler_image_types(ir_variable *var, | |||
3373 | struct _mesa_glsl_parse_state *state, | |||
3374 | YYLTYPE *loc) | |||
3375 | { | |||
3376 | /* From section 4.1.7 of the GLSL 4.40 spec: | |||
3377 | * | |||
3378 | * "[Opaque types] can only be declared as function | |||
3379 | * parameters or uniform-qualified variables." | |||
3380 | * | |||
3381 | * From section 4.1.7 of the ARB_bindless_texture spec: | |||
3382 | * | |||
3383 | * "Samplers may be declared as shader inputs and outputs, as uniform | |||
3384 | * variables, as temporary variables, and as function parameters." | |||
3385 | * | |||
3386 | * From section 4.1.X of the ARB_bindless_texture spec: | |||
3387 | * | |||
3388 | * "Images may be declared as shader inputs and outputs, as uniform | |||
3389 | * variables, as temporary variables, and as function parameters." | |||
3390 | */ | |||
3391 | if (state->has_bindless()) { | |||
3392 | if (var->data.mode != ir_var_auto && | |||
3393 | var->data.mode != ir_var_uniform && | |||
3394 | var->data.mode != ir_var_shader_in && | |||
3395 | var->data.mode != ir_var_shader_out && | |||
3396 | var->data.mode != ir_var_function_in && | |||
3397 | var->data.mode != ir_var_function_out && | |||
3398 | var->data.mode != ir_var_function_inout) { | |||
3399 | _mesa_glsl_error(loc, state, "bindless image/sampler variables may " | |||
3400 | "only be declared as shader inputs and outputs, as " | |||
3401 | "uniform variables, as temporary variables and as " | |||
3402 | "function parameters"); | |||
3403 | return false; | |||
3404 | } | |||
3405 | } else { | |||
3406 | if (var->data.mode != ir_var_uniform && | |||
3407 | var->data.mode != ir_var_function_in) { | |||
3408 | _mesa_glsl_error(loc, state, "image/sampler variables may only be " | |||
3409 | "declared as function parameters or " | |||
3410 | "uniform-qualified global variables"); | |||
3411 | return false; | |||
3412 | } | |||
3413 | } | |||
3414 | return true; | |||
3415 | } | |||
3416 | ||||
3417 | static bool | |||
3418 | validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, | |||
3419 | YYLTYPE *loc, | |||
3420 | const struct ast_type_qualifier *qual, | |||
3421 | const glsl_type *type) | |||
3422 | { | |||
3423 | /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: | |||
3424 | * | |||
3425 | * "Memory qualifiers are only supported in the declarations of image | |||
3426 | * variables, buffer variables, and shader storage blocks; it is an error | |||
3427 | * to use such qualifiers in any other declarations. | |||
3428 | */ | |||
3429 | if (!type->is_image() && !qual->flags.q.buffer) { | |||
3430 | if (qual->flags.q.read_only || | |||
3431 | qual->flags.q.write_only || | |||
3432 | qual->flags.q.coherent || | |||
3433 | qual->flags.q._volatile || | |||
3434 | qual->flags.q.restrict_flag) { | |||
3435 | _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " | |||
3436 | "in the declarations of image variables, buffer " | |||
3437 | "variables, and shader storage blocks"); | |||
3438 | return false; | |||
3439 | } | |||
3440 | } | |||
3441 | return true; | |||
3442 | } | |||
3443 | ||||
3444 | static bool | |||
3445 | validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, | |||
3446 | YYLTYPE *loc, | |||
3447 | const struct ast_type_qualifier *qual, | |||
3448 | const glsl_type *type) | |||
3449 | { | |||
3450 | /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: | |||
3451 | * | |||
3452 | * "Format layout qualifiers can be used on image variable declarations | |||
3453 | * (those declared with a basic type having “image ” in its keyword)." | |||
3454 | */ | |||
3455 | if (!type->is_image() && qual->flags.q.explicit_image_format) { | |||
3456 | _mesa_glsl_error(loc, state, "format layout qualifiers may only be " | |||
3457 | "applied to images"); | |||
3458 | return false; | |||
3459 | } | |||
3460 | return true; | |||
3461 | } | |||
3462 | ||||
3463 | static void | |||
3464 | apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
3465 | ir_variable *var, | |||
3466 | struct _mesa_glsl_parse_state *state, | |||
3467 | YYLTYPE *loc) | |||
3468 | { | |||
3469 | const glsl_type *base_type = var->type->without_array(); | |||
3470 | ||||
3471 | if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || | |||
3472 | !validate_memory_qualifier_for_type(state, loc, qual, base_type)) | |||
3473 | return; | |||
3474 | ||||
3475 | if (!base_type->is_image()) | |||
3476 | return; | |||
3477 | ||||
3478 | if (!validate_storage_for_sampler_image_types(var, state, loc)) | |||
3479 | return; | |||
3480 | ||||
3481 | var->data.memory_read_only |= qual->flags.q.read_only; | |||
3482 | var->data.memory_write_only |= qual->flags.q.write_only; | |||
3483 | var->data.memory_coherent |= qual->flags.q.coherent; | |||
3484 | var->data.memory_volatile |= qual->flags.q._volatile; | |||
3485 | var->data.memory_restrict |= qual->flags.q.restrict_flag; | |||
3486 | ||||
3487 | if (qual->flags.q.explicit_image_format) { | |||
3488 | if (var->data.mode == ir_var_function_in) { | |||
3489 | _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " | |||
3490 | "image function parameters"); | |||
3491 | } | |||
3492 | ||||
3493 | if (qual->image_base_type != base_type->sampled_type) { | |||
3494 | _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " | |||
3495 | "data type of the image"); | |||
3496 | } | |||
3497 | ||||
3498 | var->data.image_format = qual->image_format; | |||
3499 | } else if (state->has_image_load_formatted()) { | |||
3500 | if (var->data.mode == ir_var_uniform && | |||
3501 | state->EXT_shader_image_load_formatted_warn) { | |||
3502 | _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used"); | |||
3503 | } | |||
3504 | } else { | |||
3505 | if (var->data.mode == ir_var_uniform) { | |||
3506 | if (state->es_shader || | |||
3507 | !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) { | |||
3508 | _mesa_glsl_error(loc, state, "all image uniforms must have a " | |||
3509 | "format layout qualifier"); | |||
3510 | } else if (!qual->flags.q.write_only) { | |||
3511 | _mesa_glsl_error(loc, state, "image uniforms not qualified with " | |||
3512 | "`writeonly' must have a format layout qualifier"); | |||
3513 | } | |||
3514 | } | |||
3515 | var->data.image_format = PIPE_FORMAT_NONE; | |||
3516 | } | |||
3517 | ||||
3518 | /* From page 70 of the GLSL ES 3.1 specification: | |||
3519 | * | |||
3520 | * "Except for image variables qualified with the format qualifiers r32f, | |||
3521 | * r32i, and r32ui, image variables must specify either memory qualifier | |||
3522 | * readonly or the memory qualifier writeonly." | |||
3523 | */ | |||
3524 | if (state->es_shader && | |||
3525 | var->data.image_format != PIPE_FORMAT_R32_FLOAT && | |||
3526 | var->data.image_format != PIPE_FORMAT_R32_SINT && | |||
3527 | var->data.image_format != PIPE_FORMAT_R32_UINT && | |||
3528 | !var->data.memory_read_only && | |||
3529 | !var->data.memory_write_only) { | |||
3530 | _mesa_glsl_error(loc, state, "image variables of format other than r32f, " | |||
3531 | "r32i or r32ui must be qualified `readonly' or " | |||
3532 | "`writeonly'"); | |||
3533 | } | |||
3534 | } | |||
3535 | ||||
3536 | static inline const char* | |||
3537 | get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) | |||
3538 | { | |||
3539 | if (origin_upper_left && pixel_center_integer) | |||
3540 | return "origin_upper_left, pixel_center_integer"; | |||
3541 | else if (origin_upper_left) | |||
3542 | return "origin_upper_left"; | |||
3543 | else if (pixel_center_integer) | |||
3544 | return "pixel_center_integer"; | |||
3545 | else | |||
3546 | return " "; | |||
3547 | } | |||
3548 | ||||
3549 | static inline bool | |||
3550 | is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, | |||
3551 | const struct ast_type_qualifier *qual) | |||
3552 | { | |||
3553 | /* If gl_FragCoord was previously declared, and the qualifiers were | |||
3554 | * different in any way, return true. | |||
3555 | */ | |||
3556 | if (state->fs_redeclares_gl_fragcoord) { | |||
3557 | return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer | |||
3558 | || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); | |||
3559 | } | |||
3560 | ||||
3561 | return false; | |||
3562 | } | |||
3563 | ||||
3564 | static inline bool | |||
3565 | is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state, | |||
3566 | const struct ast_type_qualifier *qual) | |||
3567 | { | |||
3568 | if (state->redeclares_gl_layer) { | |||
3569 | return state->layer_viewport_relative != qual->flags.q.viewport_relative; | |||
3570 | } | |||
3571 | return false; | |||
3572 | } | |||
3573 | ||||
3574 | static inline void | |||
3575 | validate_array_dimensions(const glsl_type *t, | |||
3576 | struct _mesa_glsl_parse_state *state, | |||
3577 | YYLTYPE *loc) { | |||
3578 | if (t->is_array()) { | |||
3579 | t = t->fields.array; | |||
3580 | while (t->is_array()) { | |||
3581 | if (t->is_unsized_array()) { | |||
3582 | _mesa_glsl_error(loc, state, | |||
3583 | "only the outermost array dimension can " | |||
3584 | "be unsized", | |||
3585 | t->name); | |||
3586 | break; | |||
3587 | } | |||
3588 | t = t->fields.array; | |||
3589 | } | |||
3590 | } | |||
3591 | } | |||
3592 | ||||
3593 | static void | |||
3594 | apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
3595 | ir_variable *var, | |||
3596 | struct _mesa_glsl_parse_state *state, | |||
3597 | YYLTYPE *loc) | |||
3598 | { | |||
3599 | bool has_local_qualifiers = qual->flags.q.bindless_sampler || | |||
3600 | qual->flags.q.bindless_image || | |||
3601 | qual->flags.q.bound_sampler || | |||
3602 | qual->flags.q.bound_image; | |||
3603 | ||||
3604 | /* The ARB_bindless_texture spec says: | |||
3605 | * | |||
3606 | * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 | |||
3607 | * spec" | |||
3608 | * | |||
3609 | * "If these layout qualifiers are applied to other types of default block | |||
3610 | * uniforms, or variables with non-uniform storage, a compile-time error | |||
3611 | * will be generated." | |||
3612 | */ | |||
3613 | if (has_local_qualifiers && !qual->flags.q.uniform) { | |||
3614 | _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " | |||
3615 | "can only be applied to default block uniforms or " | |||
3616 | "variables with uniform storage"); | |||
3617 | return; | |||
3618 | } | |||
3619 | ||||
3620 | /* The ARB_bindless_texture spec doesn't state anything in this situation, | |||
3621 | * but it makes sense to only allow bindless_sampler/bound_sampler for | |||
3622 | * sampler types, and respectively bindless_image/bound_image for image | |||
3623 | * types. | |||
3624 | */ | |||
3625 | if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && | |||
3626 | !var->type->contains_sampler()) { | |||
3627 | _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " | |||
3628 | "be applied to sampler types"); | |||
3629 | return; | |||
3630 | } | |||
3631 | ||||
3632 | if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && | |||
3633 | !var->type->contains_image()) { | |||
3634 | _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " | |||
3635 | "applied to image types"); | |||
3636 | return; | |||
3637 | } | |||
3638 | ||||
3639 | /* The bindless_sampler/bindless_image (and respectively | |||
3640 | * bound_sampler/bound_image) layout qualifiers can be set at global and at | |||
3641 | * local scope. | |||
3642 | */ | |||
3643 | if (var->type->contains_sampler() || var->type->contains_image()) { | |||
3644 | var->data.bindless = qual->flags.q.bindless_sampler || | |||
3645 | qual->flags.q.bindless_image || | |||
3646 | state->bindless_sampler_specified || | |||
3647 | state->bindless_image_specified; | |||
3648 | ||||
3649 | var->data.bound = qual->flags.q.bound_sampler || | |||
3650 | qual->flags.q.bound_image || | |||
3651 | state->bound_sampler_specified || | |||
3652 | state->bound_image_specified; | |||
3653 | } | |||
3654 | } | |||
3655 | ||||
3656 | static void | |||
3657 | apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
3658 | ir_variable *var, | |||
3659 | struct _mesa_glsl_parse_state *state, | |||
3660 | YYLTYPE *loc) | |||
3661 | { | |||
3662 | if (var->name != NULL__null && strcmp(var->name, "gl_FragCoord") == 0) { | |||
3663 | ||||
3664 | /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: | |||
3665 | * | |||
3666 | * "Within any shader, the first redeclarations of gl_FragCoord | |||
3667 | * must appear before any use of gl_FragCoord." | |||
3668 | * | |||
3669 | * Generate a compiler error if above condition is not met by the | |||
3670 | * fragment shader. | |||
3671 | */ | |||
3672 | ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); | |||
3673 | if (earlier != NULL__null && | |||
3674 | earlier->data.used && | |||
3675 | !state->fs_redeclares_gl_fragcoord) { | |||
3676 | _mesa_glsl_error(loc, state, | |||
3677 | "gl_FragCoord used before its first redeclaration " | |||
3678 | "in fragment shader"); | |||
3679 | } | |||
3680 | ||||
3681 | /* Make sure all gl_FragCoord redeclarations specify the same layout | |||
3682 | * qualifiers. | |||
3683 | */ | |||
3684 | if (is_conflicting_fragcoord_redeclaration(state, qual)) { | |||
3685 | const char *const qual_string = | |||
3686 | get_layout_qualifier_string(qual->flags.q.origin_upper_left, | |||
3687 | qual->flags.q.pixel_center_integer); | |||
3688 | ||||
3689 | const char *const state_string = | |||
3690 | get_layout_qualifier_string(state->fs_origin_upper_left, | |||
3691 | state->fs_pixel_center_integer); | |||
3692 | ||||
3693 | _mesa_glsl_error(loc, state, | |||
3694 | "gl_FragCoord redeclared with different layout " | |||
3695 | "qualifiers (%s) and (%s) ", | |||
3696 | state_string, | |||
3697 | qual_string); | |||
3698 | } | |||
3699 | state->fs_origin_upper_left = qual->flags.q.origin_upper_left; | |||
3700 | state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; | |||
3701 | state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = | |||
3702 | !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; | |||
3703 | state->fs_redeclares_gl_fragcoord = | |||
3704 | state->fs_origin_upper_left || | |||
3705 | state->fs_pixel_center_integer || | |||
3706 | state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; | |||
3707 | } | |||
3708 | ||||
3709 | if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) | |||
3710 | && (strcmp(var->name, "gl_FragCoord") != 0)) { | |||
3711 | const char *const qual_string = (qual->flags.q.origin_upper_left) | |||
3712 | ? "origin_upper_left" : "pixel_center_integer"; | |||
3713 | ||||
3714 | _mesa_glsl_error(loc, state, | |||
3715 | "layout qualifier `%s' can only be applied to " | |||
3716 | "fragment shader input `gl_FragCoord'", | |||
3717 | qual_string); | |||
3718 | } | |||
3719 | ||||
3720 | if (qual->flags.q.explicit_location) { | |||
3721 | apply_explicit_location(qual, var, state, loc); | |||
3722 | ||||
3723 | if (qual->flags.q.explicit_component) { | |||
3724 | unsigned qual_component; | |||
3725 | if (process_qualifier_constant(state, loc, "component", | |||
3726 | qual->component, &qual_component)) { | |||
3727 | const glsl_type *type = var->type->without_array(); | |||
3728 | unsigned components = type->component_slots(); | |||
3729 | ||||
3730 | if (type->is_matrix() || type->is_struct()) { | |||
3731 | _mesa_glsl_error(loc, state, "component layout qualifier " | |||
3732 | "cannot be applied to a matrix, a structure, " | |||
3733 | "a block, or an array containing any of " | |||
3734 | "these."); | |||
3735 | } else if (components > 4 && type->is_64bit()) { | |||
3736 | _mesa_glsl_error(loc, state, "component layout qualifier " | |||
3737 | "cannot be applied to dvec%u.", | |||
3738 | components / 2); | |||
3739 | } else if (qual_component != 0 && | |||
3740 | (qual_component + components - 1) > 3) { | |||
3741 | _mesa_glsl_error(loc, state, "component overflow (%u > 3)", | |||
3742 | (qual_component + components - 1)); | |||
3743 | } else if (qual_component == 1 && type->is_64bit()) { | |||
3744 | /* We don't bother checking for 3 as it should be caught by the | |||
3745 | * overflow check above. | |||
3746 | */ | |||
3747 | _mesa_glsl_error(loc, state, "doubles cannot begin at " | |||
3748 | "component 1 or 3"); | |||
3749 | } else { | |||
3750 | var->data.explicit_component = true; | |||
3751 | var->data.location_frac = qual_component; | |||
3752 | } | |||
3753 | } | |||
3754 | } | |||
3755 | } else if (qual->flags.q.explicit_index) { | |||
3756 | if (!qual->subroutine_list) | |||
3757 | _mesa_glsl_error(loc, state, | |||
3758 | "explicit index requires explicit location"); | |||
3759 | } else if (qual->flags.q.explicit_component) { | |||
3760 | _mesa_glsl_error(loc, state, | |||
3761 | "explicit component requires explicit location"); | |||
3762 | } | |||
3763 | ||||
3764 | if (qual->flags.q.explicit_binding) { | |||
3765 | apply_explicit_binding(state, loc, var, var->type, qual); | |||
3766 | } | |||
3767 | ||||
3768 | if (state->stage == MESA_SHADER_GEOMETRY && | |||
3769 | qual->flags.q.out && qual->flags.q.stream) { | |||
3770 | unsigned qual_stream; | |||
3771 | if (process_qualifier_constant(state, loc, "stream", qual->stream, | |||
3772 | &qual_stream) && | |||
3773 | validate_stream_qualifier(loc, state, qual_stream)) { | |||
3774 | var->data.stream = qual_stream; | |||
3775 | } | |||
3776 | } | |||
3777 | ||||
3778 | if (qual->flags.q.out && qual->flags.q.xfb_buffer) { | |||
3779 | unsigned qual_xfb_buffer; | |||
3780 | if (process_qualifier_constant(state, loc, "xfb_buffer", | |||
3781 | qual->xfb_buffer, &qual_xfb_buffer) && | |||
3782 | validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { | |||
3783 | var->data.xfb_buffer = qual_xfb_buffer; | |||
3784 | if (qual->flags.q.explicit_xfb_buffer) | |||
3785 | var->data.explicit_xfb_buffer = true; | |||
3786 | } | |||
3787 | } | |||
3788 | ||||
3789 | if (qual->flags.q.explicit_xfb_offset) { | |||
3790 | unsigned qual_xfb_offset; | |||
3791 | unsigned component_size = var->type->contains_double() ? 8 : 4; | |||
3792 | ||||
3793 | if (process_qualifier_constant(state, loc, "xfb_offset", | |||
3794 | qual->offset, &qual_xfb_offset) && | |||
3795 | validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, | |||
3796 | var->type, component_size)) { | |||
3797 | var->data.offset = qual_xfb_offset; | |||
3798 | var->data.explicit_xfb_offset = true; | |||
3799 | } | |||
3800 | } | |||
3801 | ||||
3802 | if (qual->flags.q.explicit_xfb_stride) { | |||
3803 | unsigned qual_xfb_stride; | |||
3804 | if (process_qualifier_constant(state, loc, "xfb_stride", | |||
3805 | qual->xfb_stride, &qual_xfb_stride)) { | |||
3806 | var->data.xfb_stride = qual_xfb_stride; | |||
3807 | var->data.explicit_xfb_stride = true; | |||
3808 | } | |||
3809 | } | |||
3810 | ||||
3811 | if (var->type->contains_atomic()) { | |||
3812 | if (var->data.mode == ir_var_uniform) { | |||
3813 | if (var->data.explicit_binding) { | |||
3814 | unsigned *offset = | |||
3815 | &state->atomic_counter_offsets[var->data.binding]; | |||
3816 | ||||
3817 | if (*offset % ATOMIC_COUNTER_SIZE4) | |||
3818 | _mesa_glsl_error(loc, state, | |||
3819 | "misaligned atomic counter offset"); | |||
3820 | ||||
3821 | var->data.offset = *offset; | |||
3822 | *offset += var->type->atomic_size(); | |||
3823 | ||||
3824 | } else { | |||
3825 | _mesa_glsl_error(loc, state, | |||
3826 | "atomic counters require explicit binding point"); | |||
3827 | } | |||
3828 | } else if (var->data.mode != ir_var_function_in) { | |||
3829 | _mesa_glsl_error(loc, state, "atomic counters may only be declared as " | |||
3830 | "function parameters or uniform-qualified " | |||
3831 | "global variables"); | |||
3832 | } | |||
3833 | } | |||
3834 | ||||
3835 | if (var->type->contains_sampler() && | |||
3836 | !validate_storage_for_sampler_image_types(var, state, loc)) | |||
3837 | return; | |||
3838 | ||||
3839 | /* Is the 'layout' keyword used with parameters that allow relaxed checking. | |||
3840 | * Many implementations of GL_ARB_fragment_coord_conventions_enable and some | |||
3841 | * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable | |||
3842 | * allowed the layout qualifier to be used with 'varying' and 'attribute'. | |||
3843 | * These extensions and all following extensions that add the 'layout' | |||
3844 | * keyword have been modified to require the use of 'in' or 'out'. | |||
3845 | * | |||
3846 | * The following extension do not allow the deprecated keywords: | |||
3847 | * | |||
3848 | * GL_AMD_conservative_depth | |||
3849 | * GL_ARB_conservative_depth | |||
3850 | * GL_ARB_gpu_shader5 | |||
3851 | * GL_ARB_separate_shader_objects | |||
3852 | * GL_ARB_tessellation_shader | |||
3853 | * GL_ARB_transform_feedback3 | |||
3854 | * GL_ARB_uniform_buffer_object | |||
3855 | * | |||
3856 | * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 | |||
3857 | * allow layout with the deprecated keywords. | |||
3858 | */ | |||
3859 | const bool relaxed_layout_qualifier_checking = | |||
3860 | state->ARB_fragment_coord_conventions_enable; | |||
3861 | ||||
3862 | const bool uses_deprecated_qualifier = qual->flags.q.attribute | |||
3863 | || qual->flags.q.varying; | |||
3864 | if (qual->has_layout() && uses_deprecated_qualifier) { | |||
3865 | if (relaxed_layout_qualifier_checking) { | |||
3866 | _mesa_glsl_warning(loc, state, | |||
3867 | "`layout' qualifier may not be used with " | |||
3868 | "`attribute' or `varying'"); | |||
3869 | } else { | |||
3870 | _mesa_glsl_error(loc, state, | |||
3871 | "`layout' qualifier may not be used with " | |||
3872 | "`attribute' or `varying'"); | |||
3873 | } | |||
3874 | } | |||
3875 | ||||
3876 | /* Layout qualifiers for gl_FragDepth, which are enabled by extension | |||
3877 | * AMD_conservative_depth. | |||
3878 | */ | |||
3879 | if (qual->flags.q.depth_type | |||
3880 | && !state->is_version(420, 0) | |||
3881 | && !state->AMD_conservative_depth_enable | |||
3882 | && !state->ARB_conservative_depth_enable) { | |||
3883 | _mesa_glsl_error(loc, state, | |||
3884 | "extension GL_AMD_conservative_depth or " | |||
3885 | "GL_ARB_conservative_depth must be enabled " | |||
3886 | "to use depth layout qualifiers"); | |||
3887 | } else if (qual->flags.q.depth_type | |||
3888 | && strcmp(var->name, "gl_FragDepth") != 0) { | |||
3889 | _mesa_glsl_error(loc, state, | |||
3890 | "depth layout qualifiers can be applied only to " | |||
3891 | "gl_FragDepth"); | |||
3892 | } | |||
3893 | ||||
3894 | switch (qual->depth_type) { | |||
3895 | case ast_depth_any: | |||
3896 | var->data.depth_layout = ir_depth_layout_any; | |||
3897 | break; | |||
3898 | case ast_depth_greater: | |||
3899 | var->data.depth_layout = ir_depth_layout_greater; | |||
3900 | break; | |||
3901 | case ast_depth_less: | |||
3902 | var->data.depth_layout = ir_depth_layout_less; | |||
3903 | break; | |||
3904 | case ast_depth_unchanged: | |||
3905 | var->data.depth_layout = ir_depth_layout_unchanged; | |||
3906 | break; | |||
3907 | default: | |||
3908 | var->data.depth_layout = ir_depth_layout_none; | |||
3909 | break; | |||
3910 | } | |||
3911 | ||||
3912 | if (qual->flags.q.std140 || | |||
3913 | qual->flags.q.std430 || | |||
3914 | qual->flags.q.packed || | |||
3915 | qual->flags.q.shared) { | |||
3916 | _mesa_glsl_error(loc, state, | |||
3917 | "uniform and shader storage block layout qualifiers " | |||
3918 | "std140, std430, packed, and shared can only be " | |||
3919 | "applied to uniform or shader storage blocks, not " | |||
3920 | "members"); | |||
3921 | } | |||
3922 | ||||
3923 | if (qual->flags.q.row_major || qual->flags.q.column_major) { | |||
3924 | validate_matrix_layout_for_type(state, loc, var->type, var); | |||
3925 | } | |||
3926 | ||||
3927 | /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader | |||
3928 | * Inputs): | |||
3929 | * | |||
3930 | * "Fragment shaders also allow the following layout qualifier on in only | |||
3931 | * (not with variable declarations) | |||
3932 | * layout-qualifier-id | |||
3933 | * early_fragment_tests | |||
3934 | * [...]" | |||
3935 | */ | |||
3936 | if (qual->flags.q.early_fragment_tests) { | |||
3937 | _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only " | |||
3938 | "valid in fragment shader input layout declaration."); | |||
3939 | } | |||
3940 | ||||
3941 | if (qual->flags.q.inner_coverage) { | |||
3942 | _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only " | |||
3943 | "valid in fragment shader input layout declaration."); | |||
3944 | } | |||
3945 | ||||
3946 | if (qual->flags.q.post_depth_coverage) { | |||
3947 | _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only " | |||
3948 | "valid in fragment shader input layout declaration."); | |||
3949 | } | |||
3950 | ||||
3951 | if (state->has_bindless()) | |||
3952 | apply_bindless_qualifier_to_variable(qual, var, state, loc); | |||
3953 | ||||
3954 | if (qual->flags.q.pixel_interlock_ordered || | |||
3955 | qual->flags.q.pixel_interlock_unordered || | |||
3956 | qual->flags.q.sample_interlock_ordered || | |||
3957 | qual->flags.q.sample_interlock_unordered) { | |||
3958 | _mesa_glsl_error(loc, state, "interlock layout qualifiers: " | |||
3959 | "pixel_interlock_ordered, pixel_interlock_unordered, " | |||
3960 | "sample_interlock_ordered and sample_interlock_unordered, " | |||
3961 | "only valid in fragment shader input layout declaration."); | |||
3962 | } | |||
3963 | ||||
3964 | if (var->name != NULL__null && strcmp(var->name, "gl_Layer") == 0) { | |||
3965 | if (is_conflicting_layer_redeclaration(state, qual)) { | |||
3966 | _mesa_glsl_error(loc, state, "gl_Layer redeclaration with " | |||
3967 | "different viewport_relative setting than earlier"); | |||
3968 | } | |||
3969 | state->redeclares_gl_layer = 1; | |||
3970 | if (qual->flags.q.viewport_relative) { | |||
3971 | state->layer_viewport_relative = 1; | |||
3972 | } | |||
3973 | } else if (qual->flags.q.viewport_relative) { | |||
3974 | _mesa_glsl_error(loc, state, | |||
3975 | "viewport_relative qualifier " | |||
3976 | "can only be applied to gl_Layer."); | |||
3977 | } | |||
3978 | } | |||
3979 | ||||
3980 | static void | |||
3981 | apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
3982 | ir_variable *var, | |||
3983 | struct _mesa_glsl_parse_state *state, | |||
3984 | YYLTYPE *loc, | |||
3985 | bool is_parameter) | |||
3986 | { | |||
3987 | STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i))do { (void) sizeof(char [1 - 2*!(sizeof(qual->flags.q) <= sizeof(qual->flags.i))]); } while (0); | |||
3988 | ||||
3989 | if (qual->flags.q.invariant) { | |||
3990 | if (var->data.used) { | |||
3991 | _mesa_glsl_error(loc, state, | |||
3992 | "variable `%s' may not be redeclared " | |||
3993 | "`invariant' after being used", | |||
3994 | var->name); | |||
3995 | } else { | |||
3996 | var->data.explicit_invariant = true; | |||
3997 | var->data.invariant = true; | |||
3998 | } | |||
3999 | } | |||
4000 | ||||
4001 | if (qual->flags.q.precise) { | |||
4002 | if (var->data.used) { | |||
4003 | _mesa_glsl_error(loc, state, | |||
4004 | "variable `%s' may not be redeclared " | |||
4005 | "`precise' after being used", | |||
4006 | var->name); | |||
4007 | } else { | |||
4008 | var->data.precise = 1; | |||
4009 | } | |||
4010 | } | |||
4011 | ||||
4012 | if (qual->is_subroutine_decl() && !qual->flags.q.uniform) { | |||
4013 | _mesa_glsl_error(loc, state, | |||
4014 | "`subroutine' may only be applied to uniforms, " | |||
4015 | "subroutine type declarations, or function definitions"); | |||
4016 | } | |||
4017 | ||||
4018 | if (qual->flags.q.constant || qual->flags.q.attribute | |||
4019 | || qual->flags.q.uniform | |||
4020 | || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) | |||
4021 | var->data.read_only = 1; | |||
4022 | ||||
4023 | if (qual->flags.q.centroid) | |||
4024 | var->data.centroid = 1; | |||
4025 | ||||
4026 | if (qual->flags.q.sample) | |||
4027 | var->data.sample = 1; | |||
4028 | ||||
4029 | /* Precision qualifiers do not hold any meaning in Desktop GLSL */ | |||
4030 | if (state->es_shader) { | |||
4031 | var->data.precision = | |||
4032 | select_gles_precision(qual->precision, var->type, state, loc); | |||
4033 | } | |||
4034 | ||||
4035 | if (qual->flags.q.patch) | |||
4036 | var->data.patch = 1; | |||
4037 | ||||
4038 | if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) { | |||
4039 | var->type = glsl_type::error_type; | |||
4040 | _mesa_glsl_error(loc, state, | |||
4041 | "`attribute' variables may not be declared in the " | |||
4042 | "%s shader", | |||
4043 | _mesa_shader_stage_to_string(state->stage)); | |||
4044 | } | |||
4045 | ||||
4046 | /* Disallow layout qualifiers which may only appear on layout declarations. */ | |||
4047 | if (qual->flags.q.prim_type) { | |||
4048 | _mesa_glsl_error(loc, state, | |||
4049 | "Primitive type may only be specified on GS input or output " | |||
4050 | "layout declaration, not on variables."); | |||
4051 | } | |||
4052 | ||||
4053 | /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says: | |||
4054 | * | |||
4055 | * "However, the const qualifier cannot be used with out or inout." | |||
4056 | * | |||
4057 | * The same section of the GLSL 4.40 spec further clarifies this saying: | |||
4058 | * | |||
4059 | * "The const qualifier cannot be used with out or inout, or a | |||
4060 | * compile-time error results." | |||
4061 | */ | |||
4062 | if (is_parameter && qual->flags.q.constant && qual->flags.q.out) { | |||
4063 | _mesa_glsl_error(loc, state, | |||
4064 | "`const' may not be applied to `out' or `inout' " | |||
4065 | "function parameters"); | |||
4066 | } | |||
4067 | ||||
4068 | /* If there is no qualifier that changes the mode of the variable, leave | |||
4069 | * the setting alone. | |||
4070 | */ | |||
4071 | assert(var->data.mode != ir_var_temporary)(static_cast <bool> (var->data.mode != ir_var_temporary ) ? void (0) : __assert_fail ("var->data.mode != ir_var_temporary" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
4072 | if (qual->flags.q.in && qual->flags.q.out) | |||
4073 | var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out; | |||
4074 | else if (qual->flags.q.in) | |||
4075 | var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in; | |||
4076 | else if (qual->flags.q.attribute | |||
4077 | || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) | |||
4078 | var->data.mode = ir_var_shader_in; | |||
4079 | else if (qual->flags.q.out) | |||
4080 | var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out; | |||
4081 | else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX)) | |||
4082 | var->data.mode = ir_var_shader_out; | |||
4083 | else if (qual->flags.q.uniform) | |||
4084 | var->data.mode = ir_var_uniform; | |||
4085 | else if (qual->flags.q.buffer) | |||
4086 | var->data.mode = ir_var_shader_storage; | |||
4087 | else if (qual->flags.q.shared_storage) | |||
4088 | var->data.mode = ir_var_shader_shared; | |||
4089 | ||||
4090 | if (!is_parameter && state->has_framebuffer_fetch() && | |||
4091 | state->stage == MESA_SHADER_FRAGMENT) { | |||
4092 | if (state->is_version(130, 300)) | |||
4093 | var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out; | |||
4094 | else | |||
4095 | var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0); | |||
4096 | } | |||
4097 | ||||
4098 | if (var->data.fb_fetch_output) { | |||
4099 | var->data.assigned = true; | |||
4100 | var->data.memory_coherent = !qual->flags.q.non_coherent; | |||
4101 | ||||
4102 | /* From the EXT_shader_framebuffer_fetch spec: | |||
4103 | * | |||
4104 | * "It is an error to declare an inout fragment output not qualified | |||
4105 | * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch | |||
4106 | * extension hasn't been enabled." | |||
4107 | */ | |||
4108 | if (var->data.memory_coherent && | |||
4109 | !state->EXT_shader_framebuffer_fetch_enable) | |||
4110 | _mesa_glsl_error(loc, state, | |||
4111 | "invalid declaration of framebuffer fetch output not " | |||
4112 | "qualified with layout(noncoherent)"); | |||
4113 | ||||
4114 | } else { | |||
4115 | /* From the EXT_shader_framebuffer_fetch spec: | |||
4116 | * | |||
4117 | * "Fragment outputs declared inout may specify the following layout | |||
4118 | * qualifier: [...] noncoherent" | |||
4119 | */ | |||
4120 | if (qual->flags.q.non_coherent) | |||
4121 | _mesa_glsl_error(loc, state, | |||
4122 | "invalid layout(noncoherent) qualifier not part of " | |||
4123 | "framebuffer fetch output declaration"); | |||
4124 | } | |||
4125 | ||||
4126 | if (!is_parameter && is_varying_var(var, state->stage)) { | |||
4127 | /* User-defined ins/outs are not permitted in compute shaders. */ | |||
4128 | if (state->stage == MESA_SHADER_COMPUTE) { | |||
4129 | _mesa_glsl_error(loc, state, | |||
4130 | "user-defined input and output variables are not " | |||
4131 | "permitted in compute shaders"); | |||
4132 | } | |||
4133 | ||||
4134 | /* This variable is being used to link data between shader stages (in | |||
4135 | * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type | |||
4136 | * that is allowed for such purposes. | |||
4137 | * | |||
4138 | * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: | |||
4139 | * | |||
4140 | * "The varying qualifier can be used only with the data types | |||
4141 | * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of | |||
4142 | * these." | |||
4143 | * | |||
4144 | * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From | |||
4145 | * page 31 (page 37 of the PDF) of the GLSL 1.30 spec: | |||
4146 | * | |||
4147 | * "Fragment inputs can only be signed and unsigned integers and | |||
4148 | * integer vectors, float, floating-point vectors, matrices, or | |||
4149 | * arrays of these. Structures cannot be input. | |||
4150 | * | |||
4151 | * Similar text exists in the section on vertex shader outputs. | |||
4152 | * | |||
4153 | * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES | |||
4154 | * 3.00 spec allows structs as well. Varying structs are also allowed | |||
4155 | * in GLSL 1.50. | |||
4156 | * | |||
4157 | * From section 4.3.4 of the ARB_bindless_texture spec: | |||
4158 | * | |||
4159 | * "(modify third paragraph of the section to allow sampler and image | |||
4160 | * types) ... Vertex shader inputs can only be float, | |||
4161 | * single-precision floating-point scalars, single-precision | |||
4162 | * floating-point vectors, matrices, signed and unsigned integers | |||
4163 | * and integer vectors, sampler and image types." | |||
4164 | * | |||
4165 | * From section 4.3.6 of the ARB_bindless_texture spec: | |||
4166 | * | |||
4167 | * "Output variables can only be floating-point scalars, | |||
4168 | * floating-point vectors, matrices, signed or unsigned integers or | |||
4169 | * integer vectors, sampler or image types, or arrays or structures | |||
4170 | * of any these." | |||
4171 | */ | |||
4172 | switch (var->type->without_array()->base_type) { | |||
4173 | case GLSL_TYPE_FLOAT: | |||
4174 | /* Ok in all GLSL versions */ | |||
4175 | break; | |||
4176 | case GLSL_TYPE_UINT: | |||
4177 | case GLSL_TYPE_INT: | |||
4178 | if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable) | |||
4179 | break; | |||
4180 | _mesa_glsl_error(loc, state, | |||
4181 | "varying variables must be of base type float in %s", | |||
4182 | state->get_version_string()); | |||
4183 | break; | |||
4184 | case GLSL_TYPE_STRUCT: | |||
4185 | if (state->is_version(150, 300)) | |||
4186 | break; | |||
4187 | _mesa_glsl_error(loc, state, | |||
4188 | "varying variables may not be of type struct"); | |||
4189 | break; | |||
4190 | case GLSL_TYPE_DOUBLE: | |||
4191 | case GLSL_TYPE_UINT64: | |||
4192 | case GLSL_TYPE_INT64: | |||
4193 | break; | |||
4194 | case GLSL_TYPE_SAMPLER: | |||
4195 | case GLSL_TYPE_IMAGE: | |||
4196 | if (state->has_bindless()) | |||
4197 | break; | |||
4198 | /* fallthrough */ | |||
4199 | default: | |||
4200 | _mesa_glsl_error(loc, state, "illegal type for a varying variable"); | |||
4201 | break; | |||
4202 | } | |||
4203 | } | |||
4204 | ||||
4205 | if (state->all_invariant && var->data.mode == ir_var_shader_out) { | |||
4206 | var->data.explicit_invariant = true; | |||
4207 | var->data.invariant = true; | |||
4208 | } | |||
4209 | ||||
4210 | var->data.interpolation = | |||
4211 | interpret_interpolation_qualifier(qual, var->type, | |||
4212 | (ir_variable_mode) var->data.mode, | |||
4213 | state, loc); | |||
4214 | ||||
4215 | /* Does the declaration use the deprecated 'attribute' or 'varying' | |||
4216 | * keywords? | |||
4217 | */ | |||
4218 | const bool uses_deprecated_qualifier = qual->flags.q.attribute | |||
4219 | || qual->flags.q.varying; | |||
4220 | ||||
4221 | ||||
4222 | /* Validate auxiliary storage qualifiers */ | |||
4223 | ||||
4224 | /* From section 4.3.4 of the GLSL 1.30 spec: | |||
4225 | * "It is an error to use centroid in in a vertex shader." | |||
4226 | * | |||
4227 | * From section 4.3.4 of the GLSL ES 3.00 spec: | |||
4228 | * "It is an error to use centroid in or interpolation qualifiers in | |||
4229 | * a vertex shader input." | |||
4230 | */ | |||
4231 | ||||
4232 | /* Section 4.3.6 of the GLSL 1.30 specification states: | |||
4233 | * "It is an error to use centroid out in a fragment shader." | |||
4234 | * | |||
4235 | * The GL_ARB_shading_language_420pack extension specification states: | |||
4236 | * "It is an error to use auxiliary storage qualifiers or interpolation | |||
4237 | * qualifiers on an output in a fragment shader." | |||
4238 | */ | |||
4239 | if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) { | |||
4240 | _mesa_glsl_error(loc, state, | |||
4241 | "sample qualifier may only be used on `in` or `out` " | |||
4242 | "variables between shader stages"); | |||
4243 | } | |||
4244 | if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) { | |||
4245 | _mesa_glsl_error(loc, state, | |||
4246 | "centroid qualifier may only be used with `in', " | |||
4247 | "`out' or `varying' variables between shader stages"); | |||
4248 | } | |||
4249 | ||||
4250 | if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) { | |||
4251 | _mesa_glsl_error(loc, state, | |||
4252 | "the shared storage qualifiers can only be used with " | |||
4253 | "compute shaders"); | |||
4254 | } | |||
4255 | ||||
4256 | apply_image_qualifier_to_variable(qual, var, state, loc); | |||
4257 | } | |||
4258 | ||||
4259 | /** | |||
4260 | * Get the variable that is being redeclared by this declaration or if it | |||
4261 | * does not exist, the current declared variable. | |||
4262 | * | |||
4263 | * Semantic checks to verify the validity of the redeclaration are also | |||
4264 | * performed. If semantic checks fail, compilation error will be emitted via | |||
4265 | * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned. | |||
4266 | * | |||
4267 | * \returns | |||
4268 | * A pointer to an existing variable in the current scope if the declaration | |||
4269 | * is a redeclaration, current variable otherwise. \c is_declared boolean | |||
4270 | * will return \c true if the declaration is a redeclaration, \c false | |||
4271 | * otherwise. | |||
4272 | */ | |||
4273 | static ir_variable * | |||
4274 | get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc, | |||
4275 | struct _mesa_glsl_parse_state *state, | |||
4276 | bool allow_all_redeclarations, | |||
4277 | bool *is_redeclaration) | |||
4278 | { | |||
4279 | ir_variable *var = *var_ptr; | |||
4280 | ||||
4281 | /* Check if this declaration is actually a re-declaration, either to | |||
4282 | * resize an array or add qualifiers to an existing variable. | |||
4283 | * | |||
4284 | * This is allowed for variables in the current scope, or when at | |||
4285 | * global scope (for built-ins in the implicit outer scope). | |||
4286 | */ | |||
4287 | ir_variable *earlier = state->symbols->get_variable(var->name); | |||
4288 | if (earlier == NULL__null || | |||
4289 | (state->current_function != NULL__null && | |||
4290 | !state->symbols->name_declared_this_scope(var->name))) { | |||
4291 | *is_redeclaration = false; | |||
4292 | return var; | |||
4293 | } | |||
4294 | ||||
4295 | *is_redeclaration = true; | |||
4296 | ||||
4297 | if (earlier->data.how_declared == ir_var_declared_implicitly) { | |||
4298 | /* Verify that the redeclaration of a built-in does not change the | |||
4299 | * storage qualifier. There are a couple special cases. | |||
4300 | * | |||
4301 | * 1. Some built-in variables that are defined as 'in' in the | |||
4302 | * specification are implemented as system values. Allow | |||
4303 | * ir_var_system_value -> ir_var_shader_in. | |||
4304 | * | |||
4305 | * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the | |||
4306 | * specification requires that redeclarations omit any qualifier. | |||
4307 | * Allow ir_var_shader_out -> ir_var_auto for this one variable. | |||
4308 | */ | |||
4309 | if (earlier->data.mode != var->data.mode && | |||
4310 | !(earlier->data.mode == ir_var_system_value && | |||
4311 | var->data.mode == ir_var_shader_in) && | |||
4312 | !(strcmp(var->name, "gl_LastFragData") == 0 && | |||
4313 | var->data.mode == ir_var_auto)) { | |||
4314 | _mesa_glsl_error(&loc, state, | |||
4315 | "redeclaration cannot change qualification of `%s'", | |||
4316 | var->name); | |||
4317 | } | |||
4318 | } | |||
4319 | ||||
4320 | /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, | |||
4321 | * | |||
4322 | * "It is legal to declare an array without a size and then | |||
4323 | * later re-declare the same name as an array of the same | |||
4324 | * type and specify a size." | |||
4325 | */ | |||
4326 | if (earlier->type->is_unsized_array() && var->type->is_array() | |||
4327 | && (var->type->fields.array == earlier->type->fields.array)) { | |||
4328 | const int size = var->type->array_size(); | |||
4329 | check_builtin_array_max_size(var->name, size, loc, state); | |||
4330 | if ((size > 0) && (size <= earlier->data.max_array_access)) { | |||
4331 | _mesa_glsl_error(& loc, state, "array size must be > %u due to " | |||
4332 | "previous access", | |||
4333 | earlier->data.max_array_access); | |||
4334 | } | |||
4335 | ||||
4336 | earlier->type = var->type; | |||
4337 | delete var; | |||
4338 | var = NULL__null; | |||
4339 | *var_ptr = NULL__null; | |||
4340 | } else if (earlier->type != var->type) { | |||
4341 | _mesa_glsl_error(&loc, state, | |||
4342 | "redeclaration of `%s' has incorrect type", | |||
4343 | var->name); | |||
4344 | } else if ((state->ARB_fragment_coord_conventions_enable || | |||
4345 | state->is_version(150, 0)) | |||
4346 | && strcmp(var->name, "gl_FragCoord") == 0) { | |||
4347 | /* Allow redeclaration of gl_FragCoord for ARB_fcc layout | |||
4348 | * qualifiers. | |||
4349 | * | |||
4350 | * We don't really need to do anything here, just allow the | |||
4351 | * redeclaration. Any error on the gl_FragCoord is handled on the ast | |||
4352 | * level at apply_layout_qualifier_to_variable using the | |||
4353 | * ast_type_qualifier and _mesa_glsl_parse_state, or later at | |||
4354 | * linker.cpp. | |||
4355 | */ | |||
4356 | /* According to section 4.3.7 of the GLSL 1.30 spec, | |||
4357 | * the following built-in varaibles can be redeclared with an | |||
4358 | * interpolation qualifier: | |||
4359 | * * gl_FrontColor | |||
4360 | * * gl_BackColor | |||
4361 | * * gl_FrontSecondaryColor | |||
4362 | * * gl_BackSecondaryColor | |||
4363 | * * gl_Color | |||
4364 | * * gl_SecondaryColor | |||
4365 | */ | |||
4366 | } else if (state->is_version(130, 0) | |||
4367 | && (strcmp(var->name, "gl_FrontColor") == 0 | |||
4368 | || strcmp(var->name, "gl_BackColor") == 0 | |||
4369 | || strcmp(var->name, "gl_FrontSecondaryColor") == 0 | |||
4370 | || strcmp(var->name, "gl_BackSecondaryColor") == 0 | |||
4371 | || strcmp(var->name, "gl_Color") == 0 | |||
4372 | || strcmp(var->name, "gl_SecondaryColor") == 0)) { | |||
4373 | earlier->data.interpolation = var->data.interpolation; | |||
4374 | ||||
4375 | /* Layout qualifiers for gl_FragDepth. */ | |||
4376 | } else if ((state->is_version(420, 0) || | |||
4377 | state->AMD_conservative_depth_enable || | |||
4378 | state->ARB_conservative_depth_enable) | |||
4379 | && strcmp(var->name, "gl_FragDepth") == 0) { | |||
4380 | ||||
4381 | /** From the AMD_conservative_depth spec: | |||
4382 | * Within any shader, the first redeclarations of gl_FragDepth | |||
4383 | * must appear before any use of gl_FragDepth. | |||
4384 | */ | |||
4385 | if (earlier->data.used) { | |||
4386 | _mesa_glsl_error(&loc, state, | |||
4387 | "the first redeclaration of gl_FragDepth " | |||
4388 | "must appear before any use of gl_FragDepth"); | |||
4389 | } | |||
4390 | ||||
4391 | /* Prevent inconsistent redeclaration of depth layout qualifier. */ | |||
4392 | if (earlier->data.depth_layout != ir_depth_layout_none | |||
4393 | && earlier->data.depth_layout != var->data.depth_layout) { | |||
4394 | _mesa_glsl_error(&loc, state, | |||
4395 | "gl_FragDepth: depth layout is declared here " | |||
4396 | "as '%s, but it was previously declared as " | |||
4397 | "'%s'", | |||
4398 | depth_layout_string(var->data.depth_layout), | |||
4399 | depth_layout_string(earlier->data.depth_layout)); | |||
4400 | } | |||
4401 | ||||
4402 | earlier->data.depth_layout = var->data.depth_layout; | |||
4403 | ||||
4404 | } else if (state->has_framebuffer_fetch() && | |||
4405 | strcmp(var->name, "gl_LastFragData") == 0 && | |||
4406 | var->data.mode == ir_var_auto) { | |||
4407 | /* According to the EXT_shader_framebuffer_fetch spec: | |||
4408 | * | |||
4409 | * "By default, gl_LastFragData is declared with the mediump precision | |||
4410 | * qualifier. This can be changed by redeclaring the corresponding | |||
4411 | * variables with the desired precision qualifier." | |||
4412 | * | |||
4413 | * "Fragment shaders may specify the following layout qualifier only for | |||
4414 | * redeclaring the built-in gl_LastFragData array [...]: noncoherent" | |||
4415 | */ | |||
4416 | earlier->data.precision = var->data.precision; | |||
4417 | earlier->data.memory_coherent = var->data.memory_coherent; | |||
4418 | ||||
4419 | } else if (state->NV_viewport_array2_enable && | |||
4420 | strcmp(var->name, "gl_Layer") == 0 && | |||
4421 | earlier->data.how_declared == ir_var_declared_implicitly) { | |||
4422 | /* No need to do anything, just allow it. Qualifier is stored in state */ | |||
4423 | ||||
4424 | } else if ((earlier->data.how_declared == ir_var_declared_implicitly && | |||
4425 | state->allow_builtin_variable_redeclaration) || | |||
4426 | allow_all_redeclarations) { | |||
4427 | /* Allow verbatim redeclarations of built-in variables. Not explicitly | |||
4428 | * valid, but some applications do it. | |||
4429 | */ | |||
4430 | } else { | |||
4431 | _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); | |||
4432 | } | |||
4433 | ||||
4434 | return earlier; | |||
4435 | } | |||
4436 | ||||
4437 | /** | |||
4438 | * Generate the IR for an initializer in a variable declaration | |||
4439 | */ | |||
4440 | static ir_rvalue * | |||
4441 | process_initializer(ir_variable *var, ast_declaration *decl, | |||
4442 | ast_fully_specified_type *type, | |||
4443 | exec_list *initializer_instructions, | |||
4444 | struct _mesa_glsl_parse_state *state) | |||
4445 | { | |||
4446 | void *mem_ctx = state; | |||
4447 | ir_rvalue *result = NULL__null; | |||
4448 | ||||
4449 | YYLTYPE initializer_loc = decl->initializer->get_location(); | |||
4450 | ||||
4451 | /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: | |||
4452 | * | |||
4453 | * "All uniform variables are read-only and are initialized either | |||
4454 | * directly by an application via API commands, or indirectly by | |||
4455 | * OpenGL." | |||
4456 | */ | |||
4457 | if (var->data.mode == ir_var_uniform) { | |||
4458 | state->check_version(120, 0, &initializer_loc, | |||
4459 | "cannot initialize uniform %s", | |||
4460 | var->name); | |||
4461 | } | |||
4462 | ||||
4463 | /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: | |||
4464 | * | |||
4465 | * "Buffer variables cannot have initializers." | |||
4466 | */ | |||
4467 | if (var->data.mode == ir_var_shader_storage) { | |||
4468 | _mesa_glsl_error(&initializer_loc, state, | |||
4469 | "cannot initialize buffer variable %s", | |||
4470 | var->name); | |||
4471 | } | |||
4472 | ||||
4473 | /* From section 4.1.7 of the GLSL 4.40 spec: | |||
4474 | * | |||
4475 | * "Opaque variables [...] are initialized only through the | |||
4476 | * OpenGL API; they cannot be declared with an initializer in a | |||
4477 | * shader." | |||
4478 | * | |||
4479 | * From section 4.1.7 of the ARB_bindless_texture spec: | |||
4480 | * | |||
4481 | * "Samplers may be declared as shader inputs and outputs, as uniform | |||
4482 | * variables, as temporary variables, and as function parameters." | |||
4483 | * | |||
4484 | * From section 4.1.X of the ARB_bindless_texture spec: | |||
4485 | * | |||
4486 | * "Images may be declared as shader inputs and outputs, as uniform | |||
4487 | * variables, as temporary variables, and as function parameters." | |||
4488 | */ | |||
4489 | if (var->type->contains_atomic() || | |||
4490 | (!state->has_bindless() && var->type->contains_opaque())) { | |||
4491 | _mesa_glsl_error(&initializer_loc, state, | |||
4492 | "cannot initialize %s variable %s", | |||
4493 | var->name, state->has_bindless() ? "atomic" : "opaque"); | |||
4494 | } | |||
4495 | ||||
4496 | if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL__null)) { | |||
4497 | _mesa_glsl_error(&initializer_loc, state, | |||
4498 | "cannot initialize %s shader input / %s %s", | |||
4499 | _mesa_shader_stage_to_string(state->stage), | |||
4500 | (state->stage == MESA_SHADER_VERTEX) | |||
4501 | ? "attribute" : "varying", | |||
4502 | var->name); | |||
4503 | } | |||
4504 | ||||
4505 | if (var->data.mode == ir_var_shader_out && state->current_function == NULL__null) { | |||
4506 | _mesa_glsl_error(&initializer_loc, state, | |||
4507 | "cannot initialize %s shader output %s", | |||
4508 | _mesa_shader_stage_to_string(state->stage), | |||
4509 | var->name); | |||
4510 | } | |||
4511 | ||||
4512 | /* If the initializer is an ast_aggregate_initializer, recursively store | |||
4513 | * type information from the LHS into it, so that its hir() function can do | |||
4514 | * type checking. | |||
4515 | */ | |||
4516 | if (decl->initializer->oper == ast_aggregate) | |||
4517 | _mesa_ast_set_aggregate_type(var->type, decl->initializer); | |||
4518 | ||||
4519 | ir_dereference *const lhs = new(state) ir_dereference_variable(var); | |||
4520 | ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state); | |||
4521 | ||||
4522 | /* Calculate the constant value if this is a const or uniform | |||
4523 | * declaration. | |||
4524 | * | |||
4525 | * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says: | |||
4526 | * | |||
4527 | * "Declarations of globals without a storage qualifier, or with | |||
4528 | * just the const qualifier, may include initializers, in which case | |||
4529 | * they will be initialized before the first line of main() is | |||
4530 | * executed. Such initializers must be a constant expression." | |||
4531 | * | |||
4532 | * The same section of the GLSL ES 3.00.4 spec has similar language. | |||
4533 | */ | |||
4534 | if (type->qualifier.flags.q.constant | |||
4535 | || type->qualifier.flags.q.uniform | |||
4536 | || (state->es_shader && state->current_function == NULL__null)) { | |||
4537 | ir_rvalue *new_rhs = validate_assignment(state, initializer_loc, | |||
4538 | lhs, rhs, true); | |||
4539 | if (new_rhs != NULL__null) { | |||
4540 | rhs = new_rhs; | |||
4541 | ||||
4542 | /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec | |||
4543 | * says: | |||
4544 | * | |||
4545 | * "A constant expression is one of | |||
4546 | * | |||
4547 | * ... | |||
4548 | * | |||
4549 | * - an expression formed by an operator on operands that are | |||
4550 | * all constant expressions, including getting an element of | |||
4551 | * a constant array, or a field of a constant structure, or | |||
4552 | * components of a constant vector. However, the sequence | |||
4553 | * operator ( , ) and the assignment operators ( =, +=, ...) | |||
4554 | * are not included in the operators that can create a | |||
4555 | * constant expression." | |||
4556 | * | |||
4557 | * Section 12.43 (Sequence operator and constant expressions) says: | |||
4558 | * | |||
4559 | * "Should the following construct be allowed? | |||
4560 | * | |||
4561 | * float a[2,3]; | |||
4562 | * | |||
4563 | * The expression within the brackets uses the sequence operator | |||
4564 | * (',') and returns the integer 3 so the construct is declaring | |||
4565 | * a single-dimensional array of size 3. In some languages, the | |||
4566 | * construct declares a two-dimensional array. It would be | |||
4567 | * preferable to make this construct illegal to avoid confusion. | |||
4568 | * | |||
4569 | * One possibility is to change the definition of the sequence | |||
4570 | * operator so that it does not return a constant-expression and | |||
4571 | * hence cannot be used to declare an array size. | |||
4572 | * | |||
4573 | * RESOLUTION: The result of a sequence operator is not a | |||
4574 | * constant-expression." | |||
4575 | * | |||
4576 | * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec | |||
4577 | * contains language almost identical to the section 4.3.3 in the | |||
4578 | * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL | |||
4579 | * versions. | |||
4580 | */ | |||
4581 | ir_constant *constant_value = | |||
4582 | rhs->constant_expression_value(mem_ctx); | |||
4583 | ||||
4584 | if (!constant_value || | |||
4585 | (state->is_version(430, 300) && | |||
4586 | decl->initializer->has_sequence_subexpression())) { | |||
4587 | const char *const variable_mode = | |||
4588 | (type->qualifier.flags.q.constant) | |||
4589 | ? "const" | |||
4590 | : ((type->qualifier.flags.q.uniform) ? "uniform" : "global"); | |||
4591 | ||||
4592 | /* If ARB_shading_language_420pack is enabled, initializers of | |||
4593 | * const-qualified local variables do not have to be constant | |||
4594 | * expressions. Const-qualified global variables must still be | |||
4595 | * initialized with constant expressions. | |||
4596 | */ | |||
4597 | if (!state->has_420pack() | |||
4598 | || state->current_function == NULL__null) { | |||
4599 | _mesa_glsl_error(& initializer_loc, state, | |||
4600 | "initializer of %s variable `%s' must be a " | |||
4601 | "constant expression", | |||
4602 | variable_mode, | |||
4603 | decl->identifier); | |||
4604 | if (var->type->is_numeric()) { | |||
4605 | /* Reduce cascading errors. */ | |||
4606 | var->constant_value = type->qualifier.flags.q.constant | |||
4607 | ? ir_constant::zero(state, var->type) : NULL__null; | |||
4608 | } | |||
4609 | } | |||
4610 | } else { | |||
4611 | rhs = constant_value; | |||
4612 | var->constant_value = type->qualifier.flags.q.constant | |||
4613 | ? constant_value : NULL__null; | |||
4614 | } | |||
4615 | } else { | |||
4616 | if (var->type->is_numeric()) { | |||
4617 | /* Reduce cascading errors. */ | |||
4618 | rhs = var->constant_value = type->qualifier.flags.q.constant | |||
4619 | ? ir_constant::zero(state, var->type) : NULL__null; | |||
4620 | } | |||
4621 | } | |||
4622 | } | |||
4623 | ||||
4624 | if (rhs && !rhs->type->is_error()) { | |||
4625 | bool temp = var->data.read_only; | |||
4626 | if (type->qualifier.flags.q.constant) | |||
4627 | var->data.read_only = false; | |||
4628 | ||||
4629 | /* Never emit code to initialize a uniform. | |||
4630 | */ | |||
4631 | const glsl_type *initializer_type; | |||
4632 | bool error_emitted = false; | |||
4633 | if (!type->qualifier.flags.q.uniform) { | |||
4634 | error_emitted = | |||
4635 | do_assignment(initializer_instructions, state, | |||
4636 | NULL__null, lhs, rhs, | |||
4637 | &result, true, true, | |||
4638 | type->get_location()); | |||
4639 | initializer_type = result->type; | |||
4640 | } else | |||
4641 | initializer_type = rhs->type; | |||
4642 | ||||
4643 | if (!error_emitted) { | |||
4644 | var->constant_initializer = rhs->constant_expression_value(mem_ctx); | |||
4645 | var->data.has_initializer = true; | |||
4646 | ||||
4647 | /* If the declared variable is an unsized array, it must inherrit | |||
4648 | * its full type from the initializer. A declaration such as | |||
4649 | * | |||
4650 | * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); | |||
4651 | * | |||
4652 | * becomes | |||
4653 | * | |||
4654 | * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); | |||
4655 | * | |||
4656 | * The assignment generated in the if-statement (below) will also | |||
4657 | * automatically handle this case for non-uniforms. | |||
4658 | * | |||
4659 | * If the declared variable is not an array, the types must | |||
4660 | * already match exactly. As a result, the type assignment | |||
4661 | * here can be done unconditionally. For non-uniforms the call | |||
4662 | * to do_assignment can change the type of the initializer (via | |||
4663 | * the implicit conversion rules). For uniforms the initializer | |||
4664 | * must be a constant expression, and the type of that expression | |||
4665 | * was validated above. | |||
4666 | */ | |||
4667 | var->type = initializer_type; | |||
4668 | } | |||
4669 | ||||
4670 | var->data.read_only = temp; | |||
4671 | } | |||
4672 | ||||
4673 | return result; | |||
4674 | } | |||
4675 | ||||
4676 | static void | |||
4677 | validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state, | |||
4678 | YYLTYPE loc, ir_variable *var, | |||
4679 | unsigned num_vertices, | |||
4680 | unsigned *size, | |||
4681 | const char *var_category) | |||
4682 | { | |||
4683 | if (var->type->is_unsized_array()) { | |||
4684 | /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says: | |||
4685 | * | |||
4686 | * All geometry shader input unsized array declarations will be | |||
4687 | * sized by an earlier input layout qualifier, when present, as per | |||
4688 | * the following table. | |||
4689 | * | |||
4690 | * Followed by a table mapping each allowed input layout qualifier to | |||
4691 | * the corresponding input length. | |||
4692 | * | |||
4693 | * Similarly for tessellation control shader outputs. | |||
4694 | */ | |||
4695 | if (num_vertices != 0) | |||
4696 | var->type = glsl_type::get_array_instance(var->type->fields.array, | |||
4697 | num_vertices); | |||
4698 | } else { | |||
4699 | /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec | |||
4700 | * includes the following examples of compile-time errors: | |||
4701 | * | |||
4702 | * // code sequence within one shader... | |||
4703 | * in vec4 Color1[]; // size unknown | |||
4704 | * ...Color1.length()...// illegal, length() unknown | |||
4705 | * in vec4 Color2[2]; // size is 2 | |||
4706 | * ...Color1.length()...// illegal, Color1 still has no size | |||
4707 | * in vec4 Color3[3]; // illegal, input sizes are inconsistent | |||
4708 | * layout(lines) in; // legal, input size is 2, matching | |||
4709 | * in vec4 Color4[3]; // illegal, contradicts layout | |||
4710 | * ... | |||
4711 | * | |||
4712 | * To detect the case illustrated by Color3, we verify that the size of | |||
4713 | * an explicitly-sized array matches the size of any previously declared | |||
4714 | * explicitly-sized array. To detect the case illustrated by Color4, we | |||
4715 | * verify that the size of an explicitly-sized array is consistent with | |||
4716 | * any previously declared input layout. | |||
4717 | */ | |||
4718 | if (num_vertices != 0 && var->type->length != num_vertices) { | |||
4719 | _mesa_glsl_error(&loc, state, | |||
4720 | "%s size contradicts previously declared layout " | |||
4721 | "(size is %u, but layout requires a size of %u)", | |||
4722 | var_category, var->type->length, num_vertices); | |||
4723 | } else if (*size != 0 && var->type->length != *size) { | |||
4724 | _mesa_glsl_error(&loc, state, | |||
4725 | "%s sizes are inconsistent (size is %u, but a " | |||
4726 | "previous declaration has size %u)", | |||
4727 | var_category, var->type->length, *size); | |||
4728 | } else { | |||
4729 | *size = var->type->length; | |||
4730 | } | |||
4731 | } | |||
4732 | } | |||
4733 | ||||
4734 | static void | |||
4735 | handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state, | |||
4736 | YYLTYPE loc, ir_variable *var) | |||
4737 | { | |||
4738 | unsigned num_vertices = 0; | |||
4739 | ||||
4740 | if (state->tcs_output_vertices_specified) { | |||
4741 | if (!state->out_qualifier->vertices-> | |||
4742 | process_qualifier_constant(state, "vertices", | |||
4743 | &num_vertices, false)) { | |||
4744 | return; | |||
4745 | } | |||
4746 | ||||
4747 | if (num_vertices > state->Const.MaxPatchVertices) { | |||
4748 | _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " | |||
4749 | "GL_MAX_PATCH_VERTICES", num_vertices); | |||
4750 | return; | |||
4751 | } | |||
4752 | } | |||
4753 | ||||
4754 | if (!var->type->is_array() && !var->data.patch) { | |||
4755 | _mesa_glsl_error(&loc, state, | |||
4756 | "tessellation control shader outputs must be arrays"); | |||
4757 | ||||
4758 | /* To avoid cascading failures, short circuit the checks below. */ | |||
4759 | return; | |||
4760 | } | |||
4761 | ||||
4762 | if (var->data.patch) | |||
4763 | return; | |||
4764 | ||||
4765 | validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, | |||
4766 | &state->tcs_output_size, | |||
4767 | "tessellation control shader output"); | |||
4768 | } | |||
4769 | ||||
4770 | /** | |||
4771 | * Do additional processing necessary for tessellation control/evaluation shader | |||
4772 | * input declarations. This covers both interface block arrays and bare input | |||
4773 | * variables. | |||
4774 | */ | |||
4775 | static void | |||
4776 | handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state, | |||
4777 | YYLTYPE loc, ir_variable *var) | |||
4778 | { | |||
4779 | if (!var->type->is_array() && !var->data.patch) { | |||
4780 | _mesa_glsl_error(&loc, state, | |||
4781 | "per-vertex tessellation shader inputs must be arrays"); | |||
4782 | /* Avoid cascading failures. */ | |||
4783 | return; | |||
4784 | } | |||
4785 | ||||
4786 | if (var->data.patch) | |||
4787 | return; | |||
4788 | ||||
4789 | /* The ARB_tessellation_shader spec says: | |||
4790 | * | |||
4791 | * "Declaring an array size is optional. If no size is specified, it | |||
4792 | * will be taken from the implementation-dependent maximum patch size | |||
4793 | * (gl_MaxPatchVertices). If a size is specified, it must match the | |||
4794 | * maximum patch size; otherwise, a compile or link error will occur." | |||
4795 | * | |||
4796 | * This text appears twice, once for TCS inputs, and again for TES inputs. | |||
4797 | */ | |||
4798 | if (var->type->is_unsized_array()) { | |||
4799 | var->type = glsl_type::get_array_instance(var->type->fields.array, | |||
4800 | state->Const.MaxPatchVertices); | |||
4801 | } else if (var->type->length != state->Const.MaxPatchVertices) { | |||
4802 | _mesa_glsl_error(&loc, state, | |||
4803 | "per-vertex tessellation shader input arrays must be " | |||
4804 | "sized to gl_MaxPatchVertices (%d).", | |||
4805 | state->Const.MaxPatchVertices); | |||
4806 | } | |||
4807 | } | |||
4808 | ||||
4809 | ||||
4810 | /** | |||
4811 | * Do additional processing necessary for geometry shader input declarations | |||
4812 | * (this covers both interface blocks arrays and bare input variables). | |||
4813 | */ | |||
4814 | static void | |||
4815 | handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state, | |||
4816 | YYLTYPE loc, ir_variable *var) | |||
4817 | { | |||
4818 | unsigned num_vertices = 0; | |||
4819 | ||||
4820 | if (state->gs_input_prim_type_specified) { | |||
4821 | num_vertices = vertices_per_prim(state->in_qualifier->prim_type); | |||
4822 | } | |||
4823 | ||||
4824 | /* Geometry shader input variables must be arrays. Caller should have | |||
4825 | * reported an error for this. | |||
4826 | */ | |||
4827 | if (!var->type->is_array()) { | |||
4828 | assert(state->error)(static_cast <bool> (state->error) ? void (0) : __assert_fail ("state->error", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4829 | ||||
4830 | /* To avoid cascading failures, short circuit the checks below. */ | |||
4831 | return; | |||
4832 | } | |||
4833 | ||||
4834 | validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, | |||
4835 | &state->gs_input_size, | |||
4836 | "geometry shader input"); | |||
4837 | } | |||
4838 | ||||
4839 | static void | |||
4840 | validate_identifier(const char *identifier, YYLTYPE loc, | |||
4841 | struct _mesa_glsl_parse_state *state) | |||
4842 | { | |||
4843 | /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, | |||
4844 | * | |||
4845 | * "Identifiers starting with "gl_" are reserved for use by | |||
4846 | * OpenGL, and may not be declared in a shader as either a | |||
4847 | * variable or a function." | |||
4848 | */ | |||
4849 | if (is_gl_identifier(identifier)) { | |||
4850 | _mesa_glsl_error(&loc, state, | |||
4851 | "identifier `%s' uses reserved `gl_' prefix", | |||
4852 | identifier); | |||
4853 | } else if (strstr(identifier, "__")) { | |||
4854 | /* From page 14 (page 20 of the PDF) of the GLSL 1.10 | |||
4855 | * spec: | |||
4856 | * | |||
4857 | * "In addition, all identifiers containing two | |||
4858 | * consecutive underscores (__) are reserved as | |||
4859 | * possible future keywords." | |||
4860 | * | |||
4861 | * The intention is that names containing __ are reserved for internal | |||
4862 | * use by the implementation, and names prefixed with GL_ are reserved | |||
4863 | * for use by Khronos. Names simply containing __ are dangerous to use, | |||
4864 | * but should be allowed. | |||
4865 | * | |||
4866 | * A future version of the GLSL specification will clarify this. | |||
4867 | */ | |||
4868 | _mesa_glsl_warning(&loc, state, | |||
4869 | "identifier `%s' uses reserved `__' string", | |||
4870 | identifier); | |||
4871 | } | |||
4872 | } | |||
4873 | ||||
4874 | ir_rvalue * | |||
4875 | ast_declarator_list::hir(exec_list *instructions, | |||
4876 | struct _mesa_glsl_parse_state *state) | |||
4877 | { | |||
4878 | void *ctx = state; | |||
4879 | const struct glsl_type *decl_type; | |||
4880 | const char *type_name = NULL__null; | |||
4881 | ir_rvalue *result = NULL__null; | |||
4882 | YYLTYPE loc = this->get_location(); | |||
4883 | ||||
4884 | /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: | |||
4885 | * | |||
4886 | * "To ensure that a particular output variable is invariant, it is | |||
4887 | * necessary to use the invariant qualifier. It can either be used to | |||
4888 | * qualify a previously declared variable as being invariant | |||
4889 | * | |||
4890 | * invariant gl_Position; // make existing gl_Position be invariant" | |||
4891 | * | |||
4892 | * In these cases the parser will set the 'invariant' flag in the declarator | |||
4893 | * list, and the type will be NULL. | |||
4894 | */ | |||
4895 | if (this->invariant) { | |||
4896 | assert(this->type == NULL)(static_cast <bool> (this->type == __null) ? void (0 ) : __assert_fail ("this->type == NULL", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4897 | ||||
4898 | if (state->current_function != NULL__null) { | |||
4899 | _mesa_glsl_error(& loc, state, | |||
4900 | "all uses of `invariant' keyword must be at global " | |||
4901 | "scope"); | |||
4902 | } | |||
4903 | ||||
4904 | foreach_list_typed (ast_declaration, decl, link, &this->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&this->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&this-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->declarations)->head_sentinel.next)))) : __null ); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel((decl )->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)-> link.next) - (((char *) &((ast_declaration *) (decl)-> link.next)->link) - ((char *) (decl)->link.next)))) : __null )) { | |||
4905 | assert(decl->array_specifier == NULL)(static_cast <bool> (decl->array_specifier == __null ) ? void (0) : __assert_fail ("decl->array_specifier == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
4906 | assert(decl->initializer == NULL)(static_cast <bool> (decl->initializer == __null) ? void (0) : __assert_fail ("decl->initializer == NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4907 | ||||
4908 | ir_variable *const earlier = | |||
4909 | state->symbols->get_variable(decl->identifier); | |||
4910 | if (earlier == NULL__null) { | |||
4911 | _mesa_glsl_error(& loc, state, | |||
4912 | "undeclared variable `%s' cannot be marked " | |||
4913 | "invariant", decl->identifier); | |||
4914 | } else if (!is_allowed_invariant(earlier, state)) { | |||
4915 | _mesa_glsl_error(&loc, state, | |||
4916 | "`%s' cannot be marked invariant; interfaces between " | |||
4917 | "shader stages only.", decl->identifier); | |||
4918 | } else if (earlier->data.used) { | |||
4919 | _mesa_glsl_error(& loc, state, | |||
4920 | "variable `%s' may not be redeclared " | |||
4921 | "`invariant' after being used", | |||
4922 | earlier->name); | |||
4923 | } else { | |||
4924 | earlier->data.explicit_invariant = true; | |||
4925 | earlier->data.invariant = true; | |||
4926 | } | |||
4927 | } | |||
4928 | ||||
4929 | /* Invariant redeclarations do not have r-values. | |||
4930 | */ | |||
4931 | return NULL__null; | |||
4932 | } | |||
4933 | ||||
4934 | if (this->precise) { | |||
4935 | assert(this->type == NULL)(static_cast <bool> (this->type == __null) ? void (0 ) : __assert_fail ("this->type == NULL", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4936 | ||||
4937 | foreach_list_typed (ast_declaration, decl, link, &this->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&this->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&this-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->declarations)->head_sentinel.next)))) : __null ); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel((decl )->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)-> link.next) - (((char *) &((ast_declaration *) (decl)-> link.next)->link) - ((char *) (decl)->link.next)))) : __null )) { | |||
4938 | assert(decl->array_specifier == NULL)(static_cast <bool> (decl->array_specifier == __null ) ? void (0) : __assert_fail ("decl->array_specifier == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
4939 | assert(decl->initializer == NULL)(static_cast <bool> (decl->initializer == __null) ? void (0) : __assert_fail ("decl->initializer == NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4940 | ||||
4941 | ir_variable *const earlier = | |||
4942 | state->symbols->get_variable(decl->identifier); | |||
4943 | if (earlier == NULL__null) { | |||
4944 | _mesa_glsl_error(& loc, state, | |||
4945 | "undeclared variable `%s' cannot be marked " | |||
4946 | "precise", decl->identifier); | |||
4947 | } else if (state->current_function != NULL__null && | |||
4948 | !state->symbols->name_declared_this_scope(decl->identifier)) { | |||
4949 | /* Note: we have to check if we're in a function, since | |||
4950 | * builtins are treated as having come from another scope. | |||
4951 | */ | |||
4952 | _mesa_glsl_error(& loc, state, | |||
4953 | "variable `%s' from an outer scope may not be " | |||
4954 | "redeclared `precise' in this scope", | |||
4955 | earlier->name); | |||
4956 | } else if (earlier->data.used) { | |||
4957 | _mesa_glsl_error(& loc, state, | |||
4958 | "variable `%s' may not be redeclared " | |||
4959 | "`precise' after being used", | |||
4960 | earlier->name); | |||
4961 | } else { | |||
4962 | earlier->data.precise = true; | |||
4963 | } | |||
4964 | } | |||
4965 | ||||
4966 | /* Precise redeclarations do not have r-values either. */ | |||
4967 | return NULL__null; | |||
4968 | } | |||
4969 | ||||
4970 | assert(this->type != NULL)(static_cast <bool> (this->type != __null) ? void (0 ) : __assert_fail ("this->type != NULL", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4971 | assert(!this->invariant)(static_cast <bool> (!this->invariant) ? void (0) : __assert_fail ("!this->invariant", __builtin_FILE (), __builtin_LINE () , __extension__ __PRETTY_FUNCTION__)); | |||
4972 | assert(!this->precise)(static_cast <bool> (!this->precise) ? void (0) : __assert_fail ("!this->precise", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
4973 | ||||
4974 | /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to | |||
4975 | * indicate that it needs to be updated later (see glsl_parser.yy). | |||
4976 | * This is done here, based on the layout qualifier and the type of the image var | |||
4977 | */ | |||
4978 | if (this->type->qualifier.flags.q.explicit_image_format && | |||
4979 | this->type->specifier->type->is_image() && | |||
4980 | this->type->qualifier.image_base_type == GLSL_TYPE_VOID) { | |||
4981 | /* "The ARB_shader_image_load_store says: | |||
4982 | * If both extensions are enabled in the shading language, the "size*" layout | |||
4983 | * qualifiers are treated as format qualifiers, and are mapped to equivalent | |||
4984 | * format qualifiers in the table below, according to the type of image | |||
4985 | * variable. | |||
4986 | * image* iimage* uimage* | |||
4987 | * -------- -------- -------- | |||
4988 | * size1x8 n/a r8i r8ui | |||
4989 | * size1x16 r16f r16i r16ui | |||
4990 | * size1x32 r32f r32i r32ui | |||
4991 | * size2x32 rg32f rg32i rg32ui | |||
4992 | * size4x32 rgba32f rgba32i rgba32ui" | |||
4993 | */ | |||
4994 | if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) { | |||
4995 | switch (this->type->qualifier.image_format) { | |||
4996 | case PIPE_FORMAT_R8_SINT: | |||
4997 | /* No valid qualifier in this case, driver will need to look at | |||
4998 | * the underlying image's format (just like no qualifier being | |||
4999 | * present). | |||
5000 | */ | |||
5001 | this->type->qualifier.image_format = PIPE_FORMAT_NONE; | |||
5002 | break; | |||
5003 | case PIPE_FORMAT_R16_SINT: | |||
5004 | this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT; | |||
5005 | break; | |||
5006 | case PIPE_FORMAT_R32_SINT: | |||
5007 | this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT; | |||
5008 | break; | |||
5009 | case PIPE_FORMAT_R32G32_SINT: | |||
5010 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT; | |||
5011 | break; | |||
5012 | case PIPE_FORMAT_R32G32B32A32_SINT: | |||
5013 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT; | |||
5014 | break; | |||
5015 | default: | |||
5016 | unreachable("Unknown image format")do { (static_cast <bool> (!"Unknown image format") ? void (0) : __assert_fail ("!\"Unknown image format\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); | |||
5017 | } | |||
5018 | this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT; | |||
5019 | } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) { | |||
5020 | switch (this->type->qualifier.image_format) { | |||
5021 | case PIPE_FORMAT_R8_SINT: | |||
5022 | this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT; | |||
5023 | break; | |||
5024 | case PIPE_FORMAT_R16_SINT: | |||
5025 | this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT; | |||
5026 | break; | |||
5027 | case PIPE_FORMAT_R32_SINT: | |||
5028 | this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT; | |||
5029 | break; | |||
5030 | case PIPE_FORMAT_R32G32_SINT: | |||
5031 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT; | |||
5032 | break; | |||
5033 | case PIPE_FORMAT_R32G32B32A32_SINT: | |||
5034 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT; | |||
5035 | break; | |||
5036 | default: | |||
5037 | unreachable("Unknown image format")do { (static_cast <bool> (!"Unknown image format") ? void (0) : __assert_fail ("!\"Unknown image format\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); | |||
5038 | } | |||
5039 | this->type->qualifier.image_base_type = GLSL_TYPE_UINT; | |||
5040 | } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) { | |||
5041 | this->type->qualifier.image_base_type = GLSL_TYPE_INT; | |||
5042 | } else { | |||
5043 | assert(false)(static_cast <bool> (false) ? void (0) : __assert_fail ( "false", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
5044 | } | |||
5045 | } | |||
5046 | ||||
5047 | /* The type specifier may contain a structure definition. Process that | |||
5048 | * before any of the variable declarations. | |||
5049 | */ | |||
5050 | (void) this->type->specifier->hir(instructions, state); | |||
5051 | ||||
5052 | decl_type = this->type->glsl_type(& type_name, state); | |||
5053 | ||||
5054 | /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: | |||
5055 | * "Buffer variables may only be declared inside interface blocks | |||
5056 | * (section 4.3.9 “Interface Blocks”), which are then referred to as | |||
5057 | * shader storage blocks. It is a compile-time error to declare buffer | |||
5058 | * variables at global scope (outside a block)." | |||
5059 | */ | |||
5060 | if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) { | |||
5061 | _mesa_glsl_error(&loc, state, | |||
5062 | "buffer variables cannot be declared outside " | |||
5063 | "interface blocks"); | |||
5064 | } | |||
5065 | ||||
5066 | /* An offset-qualified atomic counter declaration sets the default | |||
5067 | * offset for the next declaration within the same atomic counter | |||
5068 | * buffer. | |||
5069 | */ | |||
5070 | if (decl_type && decl_type->contains_atomic()) { | |||
5071 | if (type->qualifier.flags.q.explicit_binding && | |||
5072 | type->qualifier.flags.q.explicit_offset) { | |||
5073 | unsigned qual_binding; | |||
5074 | unsigned qual_offset; | |||
5075 | if (process_qualifier_constant(state, &loc, "binding", | |||
5076 | type->qualifier.binding, | |||
5077 | &qual_binding) | |||
5078 | && process_qualifier_constant(state, &loc, "offset", | |||
5079 | type->qualifier.offset, | |||
5080 | &qual_offset)) { | |||
5081 | if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets)(sizeof(state->atomic_counter_offsets) / sizeof((state-> atomic_counter_offsets)[0]))) | |||
5082 | state->atomic_counter_offsets[qual_binding] = qual_offset; | |||
5083 | } | |||
5084 | } | |||
5085 | ||||
5086 | ast_type_qualifier allowed_atomic_qual_mask; | |||
5087 | allowed_atomic_qual_mask.flags.i = 0; | |||
5088 | allowed_atomic_qual_mask.flags.q.explicit_binding = 1; | |||
5089 | allowed_atomic_qual_mask.flags.q.explicit_offset = 1; | |||
5090 | allowed_atomic_qual_mask.flags.q.uniform = 1; | |||
5091 | ||||
5092 | type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask, | |||
5093 | "invalid layout qualifier for", | |||
5094 | "atomic_uint"); | |||
5095 | } | |||
5096 | ||||
5097 | if (this->declarations.is_empty()) { | |||
5098 | /* If there is no structure involved in the program text, there are two | |||
5099 | * possible scenarios: | |||
5100 | * | |||
5101 | * - The program text contained something like 'vec4;'. This is an | |||
5102 | * empty declaration. It is valid but weird. Emit a warning. | |||
5103 | * | |||
5104 | * - The program text contained something like 'S;' and 'S' is not the | |||
5105 | * name of a known structure type. This is both invalid and weird. | |||
5106 | * Emit an error. | |||
5107 | * | |||
5108 | * - The program text contained something like 'mediump float;' | |||
5109 | * when the programmer probably meant 'precision mediump | |||
5110 | * float;' Emit a warning with a description of what they | |||
5111 | * probably meant to do. | |||
5112 | * | |||
5113 | * Note that if decl_type is NULL and there is a structure involved, | |||
5114 | * there must have been some sort of error with the structure. In this | |||
5115 | * case we assume that an error was already generated on this line of | |||
5116 | * code for the structure. There is no need to generate an additional, | |||
5117 | * confusing error. | |||
5118 | */ | |||
5119 | assert(this->type->specifier->structure == NULL || decl_type != NULL(static_cast <bool> (this->type->specifier->structure == __null || decl_type != __null || state->error) ? void ( 0) : __assert_fail ("this->type->specifier->structure == NULL || decl_type != NULL || state->error" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) | |||
5120 | || state->error)(static_cast <bool> (this->type->specifier->structure == __null || decl_type != __null || state->error) ? void ( 0) : __assert_fail ("this->type->specifier->structure == NULL || decl_type != NULL || state->error" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
5121 | ||||
5122 | if (decl_type == NULL__null) { | |||
5123 | _mesa_glsl_error(&loc, state, | |||
5124 | "invalid type `%s' in empty declaration", | |||
5125 | type_name); | |||
5126 | } else { | |||
5127 | if (decl_type->is_array()) { | |||
5128 | /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2 | |||
5129 | * spec: | |||
5130 | * | |||
5131 | * "... any declaration that leaves the size undefined is | |||
5132 | * disallowed as this would add complexity and there are no | |||
5133 | * use-cases." | |||
5134 | */ | |||
5135 | if (state->es_shader && decl_type->is_unsized_array()) { | |||
5136 | _mesa_glsl_error(&loc, state, "array size must be explicitly " | |||
5137 | "or implicitly defined"); | |||
5138 | } | |||
5139 | ||||
5140 | /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec: | |||
5141 | * | |||
5142 | * "The combinations of types and qualifiers that cause | |||
5143 | * compile-time or link-time errors are the same whether or not | |||
5144 | * the declaration is empty." | |||
5145 | */ | |||
5146 | validate_array_dimensions(decl_type, state, &loc); | |||
5147 | } | |||
5148 | ||||
5149 | if (decl_type->is_atomic_uint()) { | |||
5150 | /* Empty atomic counter declarations are allowed and useful | |||
5151 | * to set the default offset qualifier. | |||
5152 | */ | |||
5153 | return NULL__null; | |||
5154 | } else if (this->type->qualifier.precision != ast_precision_none) { | |||
5155 | if (this->type->specifier->structure != NULL__null) { | |||
5156 | _mesa_glsl_error(&loc, state, | |||
5157 | "precision qualifiers can't be applied " | |||
5158 | "to structures"); | |||
5159 | } else { | |||
5160 | static const char *const precision_names[] = { | |||
5161 | "highp", | |||
5162 | "highp", | |||
5163 | "mediump", | |||
5164 | "lowp" | |||
5165 | }; | |||
5166 | ||||
5167 | _mesa_glsl_warning(&loc, state, | |||
5168 | "empty declaration with precision " | |||
5169 | "qualifier, to set the default precision, " | |||
5170 | "use `precision %s %s;'", | |||
5171 | precision_names[this->type-> | |||
5172 | qualifier.precision], | |||
5173 | type_name); | |||
5174 | } | |||
5175 | } else if (this->type->specifier->structure == NULL__null) { | |||
5176 | _mesa_glsl_warning(&loc, state, "empty declaration"); | |||
5177 | } | |||
5178 | } | |||
5179 | } | |||
5180 | ||||
5181 | foreach_list_typed (ast_declaration, decl, link, &this->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&this->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&this-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->declarations)->head_sentinel.next)))) : __null ); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel((decl )->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)-> link.next) - (((char *) &((ast_declaration *) (decl)-> link.next)->link) - ((char *) (decl)->link.next)))) : __null )) { | |||
5182 | const struct glsl_type *var_type; | |||
5183 | ir_variable *var; | |||
5184 | const char *identifier = decl->identifier; | |||
5185 | /* FINISHME: Emit a warning if a variable declaration shadows a | |||
5186 | * FINISHME: declaration at a higher scope. | |||
5187 | */ | |||
5188 | ||||
5189 | if ((decl_type == NULL__null) || decl_type->is_void()) { | |||
5190 | if (type_name != NULL__null) { | |||
5191 | _mesa_glsl_error(& loc, state, | |||
5192 | "invalid type `%s' in declaration of `%s'", | |||
5193 | type_name, decl->identifier); | |||
5194 | } else { | |||
5195 | _mesa_glsl_error(& loc, state, | |||
5196 | "invalid type in declaration of `%s'", | |||
5197 | decl->identifier); | |||
5198 | } | |||
5199 | continue; | |||
5200 | } | |||
5201 | ||||
5202 | if (this->type->qualifier.is_subroutine_decl()) { | |||
5203 | const glsl_type *t; | |||
5204 | const char *name; | |||
5205 | ||||
5206 | t = state->symbols->get_type(this->type->specifier->type_name); | |||
5207 | if (!t) | |||
5208 | _mesa_glsl_error(& loc, state, | |||
5209 | "invalid type in declaration of `%s'", | |||
5210 | decl->identifier); | |||
5211 | name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier); | |||
5212 | ||||
5213 | identifier = name; | |||
5214 | ||||
5215 | } | |||
5216 | var_type = process_array_type(&loc, decl_type, decl->array_specifier, | |||
5217 | state); | |||
5218 | ||||
5219 | var = new(ctx) ir_variable(var_type, identifier, ir_var_auto); | |||
5220 | ||||
5221 | /* The 'varying in' and 'varying out' qualifiers can only be used with | |||
5222 | * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support | |||
5223 | * yet. | |||
5224 | */ | |||
5225 | if (this->type->qualifier.flags.q.varying) { | |||
5226 | if (this->type->qualifier.flags.q.in) { | |||
5227 | _mesa_glsl_error(& loc, state, | |||
5228 | "`varying in' qualifier in declaration of " | |||
5229 | "`%s' only valid for geometry shaders using " | |||
5230 | "ARB_geometry_shader4 or EXT_geometry_shader4", | |||
5231 | decl->identifier); | |||
5232 | } else if (this->type->qualifier.flags.q.out) { | |||
5233 | _mesa_glsl_error(& loc, state, | |||
5234 | "`varying out' qualifier in declaration of " | |||
5235 | "`%s' only valid for geometry shaders using " | |||
5236 | "ARB_geometry_shader4 or EXT_geometry_shader4", | |||
5237 | decl->identifier); | |||
5238 | } | |||
5239 | } | |||
5240 | ||||
5241 | /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; | |||
5242 | * | |||
5243 | * "Global variables can only use the qualifiers const, | |||
5244 | * attribute, uniform, or varying. Only one may be | |||
5245 | * specified. | |||
5246 | * | |||
5247 | * Local variables can only use the qualifier const." | |||
5248 | * | |||
5249 | * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by | |||
5250 | * any extension that adds the 'layout' keyword. | |||
5251 | */ | |||
5252 | if (!state->is_version(130, 300) | |||
5253 | && !state->has_explicit_attrib_location() | |||
5254 | && !state->has_separate_shader_objects() | |||
5255 | && !state->ARB_fragment_coord_conventions_enable) { | |||
5256 | /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader | |||
5257 | * outputs. (the varying flag is not set by the parser) | |||
5258 | */ | |||
5259 | if (this->type->qualifier.flags.q.out && | |||
5260 | (!state->EXT_gpu_shader4_enable || | |||
5261 | state->stage != MESA_SHADER_FRAGMENT)) { | |||
5262 | _mesa_glsl_error(& loc, state, | |||
5263 | "`out' qualifier in declaration of `%s' " | |||
5264 | "only valid for function parameters in %s", | |||
5265 | decl->identifier, state->get_version_string()); | |||
5266 | } | |||
5267 | if (this->type->qualifier.flags.q.in) { | |||
5268 | _mesa_glsl_error(& loc, state, | |||
5269 | "`in' qualifier in declaration of `%s' " | |||
5270 | "only valid for function parameters in %s", | |||
5271 | decl->identifier, state->get_version_string()); | |||
5272 | } | |||
5273 | /* FINISHME: Test for other invalid qualifiers. */ | |||
5274 | } | |||
5275 | ||||
5276 | apply_type_qualifier_to_variable(& this->type->qualifier, var, state, | |||
5277 | & loc, false); | |||
5278 | apply_layout_qualifier_to_variable(&this->type->qualifier, var, state, | |||
5279 | &loc); | |||
5280 | ||||
5281 | if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary | |||
5282 | || var->data.mode == ir_var_shader_out) | |||
5283 | && (var->type->is_numeric() || var->type->is_boolean()) | |||
5284 | && state->zero_init) { | |||
5285 | const ir_constant_data data = { { 0 } }; | |||
5286 | var->data.has_initializer = true; | |||
5287 | var->constant_initializer = new(var) ir_constant(var->type, &data); | |||
5288 | } | |||
5289 | ||||
5290 | if (this->type->qualifier.flags.q.invariant) { | |||
5291 | if (!is_allowed_invariant(var, state)) { | |||
5292 | _mesa_glsl_error(&loc, state, | |||
5293 | "`%s' cannot be marked invariant; interfaces between " | |||
5294 | "shader stages only", var->name); | |||
5295 | } | |||
5296 | } | |||
5297 | ||||
5298 | if (state->current_function != NULL__null) { | |||
5299 | const char *mode = NULL__null; | |||
5300 | const char *extra = ""; | |||
5301 | ||||
5302 | /* There is no need to check for 'inout' here because the parser will | |||
5303 | * only allow that in function parameter lists. | |||
5304 | */ | |||
5305 | if (this->type->qualifier.flags.q.attribute) { | |||
5306 | mode = "attribute"; | |||
5307 | } else if (this->type->qualifier.is_subroutine_decl()) { | |||
5308 | mode = "subroutine uniform"; | |||
5309 | } else if (this->type->qualifier.flags.q.uniform) { | |||
5310 | mode = "uniform"; | |||
5311 | } else if (this->type->qualifier.flags.q.varying) { | |||
5312 | mode = "varying"; | |||
5313 | } else if (this->type->qualifier.flags.q.in) { | |||
5314 | mode = "in"; | |||
5315 | extra = " or in function parameter list"; | |||
5316 | } else if (this->type->qualifier.flags.q.out) { | |||
5317 | mode = "out"; | |||
5318 | extra = " or in function parameter list"; | |||
5319 | } | |||
5320 | ||||
5321 | if (mode) { | |||
5322 | _mesa_glsl_error(& loc, state, | |||
5323 | "%s variable `%s' must be declared at " | |||
5324 | "global scope%s", | |||
5325 | mode, var->name, extra); | |||
5326 | } | |||
5327 | } else if (var->data.mode == ir_var_shader_in) { | |||
5328 | var->data.read_only = true; | |||
5329 | ||||
5330 | if (state->stage == MESA_SHADER_VERTEX) { | |||
5331 | bool error_emitted = false; | |||
5332 | ||||
5333 | /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: | |||
5334 | * | |||
5335 | * "Vertex shader inputs can only be float, floating-point | |||
5336 | * vectors, matrices, signed and unsigned integers and integer | |||
5337 | * vectors. Vertex shader inputs can also form arrays of these | |||
5338 | * types, but not structures." | |||
5339 | * | |||
5340 | * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: | |||
5341 | * | |||
5342 | * "Vertex shader inputs can only be float, floating-point | |||
5343 | * vectors, matrices, signed and unsigned integers and integer | |||
5344 | * vectors. They cannot be arrays or structures." | |||
5345 | * | |||
5346 | * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: | |||
5347 | * | |||
5348 | * "The attribute qualifier can be used only with float, | |||
5349 | * floating-point vectors, and matrices. Attribute variables | |||
5350 | * cannot be declared as arrays or structures." | |||
5351 | * | |||
5352 | * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec: | |||
5353 | * | |||
5354 | * "Vertex shader inputs can only be float, floating-point | |||
5355 | * vectors, matrices, signed and unsigned integers and integer | |||
5356 | * vectors. Vertex shader inputs cannot be arrays or | |||
5357 | * structures." | |||
5358 | * | |||
5359 | * From section 4.3.4 of the ARB_bindless_texture spec: | |||
5360 | * | |||
5361 | * "(modify third paragraph of the section to allow sampler and | |||
5362 | * image types) ... Vertex shader inputs can only be float, | |||
5363 | * single-precision floating-point scalars, single-precision | |||
5364 | * floating-point vectors, matrices, signed and unsigned | |||
5365 | * integers and integer vectors, sampler and image types." | |||
5366 | */ | |||
5367 | const glsl_type *check_type = var->type->without_array(); | |||
5368 | ||||
5369 | switch (check_type->base_type) { | |||
5370 | case GLSL_TYPE_FLOAT: | |||
5371 | break; | |||
5372 | case GLSL_TYPE_UINT64: | |||
5373 | case GLSL_TYPE_INT64: | |||
5374 | break; | |||
5375 | case GLSL_TYPE_UINT: | |||
5376 | case GLSL_TYPE_INT: | |||
5377 | if (state->is_version(120, 300) || state->EXT_gpu_shader4_enable) | |||
5378 | break; | |||
5379 | case GLSL_TYPE_DOUBLE: | |||
5380 | if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable)) | |||
5381 | break; | |||
5382 | case GLSL_TYPE_SAMPLER: | |||
5383 | if (check_type->is_sampler() && state->has_bindless()) | |||
5384 | break; | |||
5385 | case GLSL_TYPE_IMAGE: | |||
5386 | if (check_type->is_image() && state->has_bindless()) | |||
5387 | break; | |||
5388 | /* FALLTHROUGH */ | |||
5389 | default: | |||
5390 | _mesa_glsl_error(& loc, state, | |||
5391 | "vertex shader input / attribute cannot have " | |||
5392 | "type %s`%s'", | |||
5393 | var->type->is_array() ? "array of " : "", | |||
5394 | check_type->name); | |||
5395 | error_emitted = true; | |||
5396 | } | |||
5397 | ||||
5398 | if (!error_emitted && var->type->is_array() && | |||
5399 | !state->check_version(150, 0, &loc, | |||
5400 | "vertex shader input / attribute " | |||
5401 | "cannot have array type")) { | |||
5402 | error_emitted = true; | |||
5403 | } | |||
5404 | } else if (state->stage == MESA_SHADER_GEOMETRY) { | |||
5405 | /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: | |||
5406 | * | |||
5407 | * Geometry shader input variables get the per-vertex values | |||
5408 | * written out by vertex shader output variables of the same | |||
5409 | * names. Since a geometry shader operates on a set of | |||
5410 | * vertices, each input varying variable (or input block, see | |||
5411 | * interface blocks below) needs to be declared as an array. | |||
5412 | */ | |||
5413 | if (!var->type->is_array()) { | |||
5414 | _mesa_glsl_error(&loc, state, | |||
5415 | "geometry shader inputs must be arrays"); | |||
5416 | } | |||
5417 | ||||
5418 | handle_geometry_shader_input_decl(state, loc, var); | |||
5419 | } else if (state->stage == MESA_SHADER_FRAGMENT) { | |||
5420 | /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec: | |||
5421 | * | |||
5422 | * It is a compile-time error to declare a fragment shader | |||
5423 | * input with, or that contains, any of the following types: | |||
5424 | * | |||
5425 | * * A boolean type | |||
5426 | * * An opaque type | |||
5427 | * * An array of arrays | |||
5428 | * * An array of structures | |||
5429 | * * A structure containing an array | |||
5430 | * * A structure containing a structure | |||
5431 | */ | |||
5432 | if (state->es_shader) { | |||
5433 | const glsl_type *check_type = var->type->without_array(); | |||
5434 | if (check_type->is_boolean() || | |||
5435 | check_type->contains_opaque()) { | |||
5436 | _mesa_glsl_error(&loc, state, | |||
5437 | "fragment shader input cannot have type %s", | |||
5438 | check_type->name); | |||
5439 | } | |||
5440 | if (var->type->is_array() && | |||
5441 | var->type->fields.array->is_array()) { | |||
5442 | _mesa_glsl_error(&loc, state, | |||
5443 | "%s shader output " | |||
5444 | "cannot have an array of arrays", | |||
5445 | _mesa_shader_stage_to_string(state->stage)); | |||
5446 | } | |||
5447 | if (var->type->is_array() && | |||
5448 | var->type->fields.array->is_struct()) { | |||
5449 | _mesa_glsl_error(&loc, state, | |||
5450 | "fragment shader input " | |||
5451 | "cannot have an array of structs"); | |||
5452 | } | |||
5453 | if (var->type->is_struct()) { | |||
5454 | for (unsigned i = 0; i < var->type->length; i++) { | |||
5455 | if (var->type->fields.structure[i].type->is_array() || | |||
5456 | var->type->fields.structure[i].type->is_struct()) | |||
5457 | _mesa_glsl_error(&loc, state, | |||
5458 | "fragment shader input cannot have " | |||
5459 | "a struct that contains an " | |||
5460 | "array or struct"); | |||
5461 | } | |||
5462 | } | |||
5463 | } | |||
5464 | } else if (state->stage == MESA_SHADER_TESS_CTRL || | |||
5465 | state->stage == MESA_SHADER_TESS_EVAL) { | |||
5466 | handle_tess_shader_input_decl(state, loc, var); | |||
5467 | } | |||
5468 | } else if (var->data.mode == ir_var_shader_out) { | |||
5469 | const glsl_type *check_type = var->type->without_array(); | |||
5470 | ||||
5471 | /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec: | |||
5472 | * | |||
5473 | * It is a compile-time error to declare a fragment shader output | |||
5474 | * that contains any of the following: | |||
5475 | * | |||
5476 | * * A Boolean type (bool, bvec2 ...) | |||
5477 | * * A double-precision scalar or vector (double, dvec2 ...) | |||
5478 | * * An opaque type | |||
5479 | * * Any matrix type | |||
5480 | * * A structure | |||
5481 | */ | |||
5482 | if (state->stage == MESA_SHADER_FRAGMENT) { | |||
5483 | if (check_type->is_struct() || check_type->is_matrix()) | |||
5484 | _mesa_glsl_error(&loc, state, | |||
5485 | "fragment shader output " | |||
5486 | "cannot have struct or matrix type"); | |||
5487 | switch (check_type->base_type) { | |||
5488 | case GLSL_TYPE_UINT: | |||
5489 | case GLSL_TYPE_INT: | |||
5490 | case GLSL_TYPE_FLOAT: | |||
5491 | break; | |||
5492 | default: | |||
5493 | _mesa_glsl_error(&loc, state, | |||
5494 | "fragment shader output cannot have " | |||
5495 | "type %s", check_type->name); | |||
5496 | } | |||
5497 | } | |||
5498 | ||||
5499 | /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec: | |||
5500 | * | |||
5501 | * It is a compile-time error to declare a vertex shader output | |||
5502 | * with, or that contains, any of the following types: | |||
5503 | * | |||
5504 | * * A boolean type | |||
5505 | * * An opaque type | |||
5506 | * * An array of arrays | |||
5507 | * * An array of structures | |||
5508 | * * A structure containing an array | |||
5509 | * * A structure containing a structure | |||
5510 | * | |||
5511 | * It is a compile-time error to declare a fragment shader output | |||
5512 | * with, or that contains, any of the following types: | |||
5513 | * | |||
5514 | * * A boolean type | |||
5515 | * * An opaque type | |||
5516 | * * A matrix | |||
5517 | * * A structure | |||
5518 | * * An array of array | |||
5519 | * | |||
5520 | * ES 3.20 updates this to apply to tessellation and geometry shaders | |||
5521 | * as well. Because there are per-vertex arrays in the new stages, | |||
5522 | * it strikes the "array of..." rules and replaces them with these: | |||
5523 | * | |||
5524 | * * For per-vertex-arrayed variables (applies to tessellation | |||
5525 | * control, tessellation evaluation and geometry shaders): | |||
5526 | * | |||
5527 | * * Per-vertex-arrayed arrays of arrays | |||
5528 | * * Per-vertex-arrayed arrays of structures | |||
5529 | * | |||
5530 | * * For non-per-vertex-arrayed variables: | |||
5531 | * | |||
5532 | * * An array of arrays | |||
5533 | * * An array of structures | |||
5534 | * | |||
5535 | * which basically says to unwrap the per-vertex aspect and apply | |||
5536 | * the old rules. | |||
5537 | */ | |||
5538 | if (state->es_shader) { | |||
5539 | if (var->type->is_array() && | |||
5540 | var->type->fields.array->is_array()) { | |||
5541 | _mesa_glsl_error(&loc, state, | |||
5542 | "%s shader output " | |||
5543 | "cannot have an array of arrays", | |||
5544 | _mesa_shader_stage_to_string(state->stage)); | |||
5545 | } | |||
5546 | if (state->stage <= MESA_SHADER_GEOMETRY) { | |||
5547 | const glsl_type *type = var->type; | |||
5548 | ||||
5549 | if (state->stage == MESA_SHADER_TESS_CTRL && | |||
5550 | !var->data.patch && var->type->is_array()) { | |||
5551 | type = var->type->fields.array; | |||
5552 | } | |||
5553 | ||||
5554 | if (type->is_array() && type->fields.array->is_struct()) { | |||
5555 | _mesa_glsl_error(&loc, state, | |||
5556 | "%s shader output cannot have " | |||
5557 | "an array of structs", | |||
5558 | _mesa_shader_stage_to_string(state->stage)); | |||
5559 | } | |||
5560 | if (type->is_struct()) { | |||
5561 | for (unsigned i = 0; i < type->length; i++) { | |||
5562 | if (type->fields.structure[i].type->is_array() || | |||
5563 | type->fields.structure[i].type->is_struct()) | |||
5564 | _mesa_glsl_error(&loc, state, | |||
5565 | "%s shader output cannot have a " | |||
5566 | "struct that contains an " | |||
5567 | "array or struct", | |||
5568 | _mesa_shader_stage_to_string(state->stage)); | |||
5569 | } | |||
5570 | } | |||
5571 | } | |||
5572 | } | |||
5573 | ||||
5574 | if (state->stage == MESA_SHADER_TESS_CTRL) { | |||
5575 | handle_tess_ctrl_shader_output_decl(state, loc, var); | |||
5576 | } | |||
5577 | } else if (var->type->contains_subroutine()) { | |||
5578 | /* declare subroutine uniforms as hidden */ | |||
5579 | var->data.how_declared = ir_var_hidden; | |||
5580 | } | |||
5581 | ||||
5582 | /* From section 4.3.4 of the GLSL 4.00 spec: | |||
5583 | * "Input variables may not be declared using the patch in qualifier | |||
5584 | * in tessellation control or geometry shaders." | |||
5585 | * | |||
5586 | * From section 4.3.6 of the GLSL 4.00 spec: | |||
5587 | * "It is an error to use patch out in a vertex, tessellation | |||
5588 | * evaluation, or geometry shader." | |||
5589 | * | |||
5590 | * This doesn't explicitly forbid using them in a fragment shader, but | |||
5591 | * that's probably just an oversight. | |||
5592 | */ | |||
5593 | if (state->stage != MESA_SHADER_TESS_EVAL | |||
5594 | && this->type->qualifier.flags.q.patch | |||
5595 | && this->type->qualifier.flags.q.in) { | |||
5596 | ||||
5597 | _mesa_glsl_error(&loc, state, "'patch in' can only be used in a " | |||
5598 | "tessellation evaluation shader"); | |||
5599 | } | |||
5600 | ||||
5601 | if (state->stage != MESA_SHADER_TESS_CTRL | |||
5602 | && this->type->qualifier.flags.q.patch | |||
5603 | && this->type->qualifier.flags.q.out) { | |||
5604 | ||||
5605 | _mesa_glsl_error(&loc, state, "'patch out' can only be used in a " | |||
5606 | "tessellation control shader"); | |||
5607 | } | |||
5608 | ||||
5609 | /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30. | |||
5610 | */ | |||
5611 | if (this->type->qualifier.precision != ast_precision_none) { | |||
5612 | state->check_precision_qualifiers_allowed(&loc); | |||
5613 | } | |||
5614 | ||||
5615 | if (this->type->qualifier.precision != ast_precision_none && | |||
5616 | !precision_qualifier_allowed(var->type)) { | |||
5617 | _mesa_glsl_error(&loc, state, | |||
5618 | "precision qualifiers apply only to floating point" | |||
5619 | ", integer and opaque types"); | |||
5620 | } | |||
5621 | ||||
5622 | /* From section 4.1.7 of the GLSL 4.40 spec: | |||
5623 | * | |||
5624 | * "[Opaque types] can only be declared as function | |||
5625 | * parameters or uniform-qualified variables." | |||
5626 | * | |||
5627 | * From section 4.1.7 of the ARB_bindless_texture spec: | |||
5628 | * | |||
5629 | * "Samplers may be declared as shader inputs and outputs, as uniform | |||
5630 | * variables, as temporary variables, and as function parameters." | |||
5631 | * | |||
5632 | * From section 4.1.X of the ARB_bindless_texture spec: | |||
5633 | * | |||
5634 | * "Images may be declared as shader inputs and outputs, as uniform | |||
5635 | * variables, as temporary variables, and as function parameters." | |||
5636 | */ | |||
5637 | if (!this->type->qualifier.flags.q.uniform && | |||
5638 | (var_type->contains_atomic() || | |||
5639 | (!state->has_bindless() && var_type->contains_opaque()))) { | |||
5640 | _mesa_glsl_error(&loc, state, | |||
5641 | "%s variables must be declared uniform", | |||
5642 | state->has_bindless() ? "atomic" : "opaque"); | |||
5643 | } | |||
5644 | ||||
5645 | /* Process the initializer and add its instructions to a temporary | |||
5646 | * list. This list will be added to the instruction stream (below) after | |||
5647 | * the declaration is added. This is done because in some cases (such as | |||
5648 | * redeclarations) the declaration may not actually be added to the | |||
5649 | * instruction stream. | |||
5650 | */ | |||
5651 | exec_list initializer_instructions; | |||
5652 | ||||
5653 | /* Examine var name here since var may get deleted in the next call */ | |||
5654 | bool var_is_gl_id = is_gl_identifier(var->name); | |||
5655 | ||||
5656 | bool is_redeclaration; | |||
5657 | var = get_variable_being_redeclared(&var, decl->get_location(), state, | |||
5658 | false /* allow_all_redeclarations */, | |||
5659 | &is_redeclaration); | |||
5660 | if (is_redeclaration) { | |||
5661 | if (var_is_gl_id && | |||
5662 | var->data.how_declared == ir_var_declared_in_block) { | |||
5663 | _mesa_glsl_error(&loc, state, | |||
5664 | "`%s' has already been redeclared using " | |||
5665 | "gl_PerVertex", var->name); | |||
5666 | } | |||
5667 | var->data.how_declared = ir_var_declared_normally; | |||
5668 | } | |||
5669 | ||||
5670 | if (decl->initializer != NULL__null) { | |||
5671 | result = process_initializer(var, | |||
5672 | decl, this->type, | |||
5673 | &initializer_instructions, state); | |||
5674 | } else { | |||
5675 | validate_array_dimensions(var_type, state, &loc); | |||
5676 | } | |||
5677 | ||||
5678 | /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: | |||
5679 | * | |||
5680 | * "It is an error to write to a const variable outside of | |||
5681 | * its declaration, so they must be initialized when | |||
5682 | * declared." | |||
5683 | */ | |||
5684 | if (this->type->qualifier.flags.q.constant && decl->initializer == NULL__null) { | |||
5685 | _mesa_glsl_error(& loc, state, | |||
5686 | "const declaration of `%s' must be initialized", | |||
5687 | decl->identifier); | |||
5688 | } | |||
5689 | ||||
5690 | if (state->es_shader) { | |||
5691 | const glsl_type *const t = var->type; | |||
5692 | ||||
5693 | /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs. | |||
5694 | * | |||
5695 | * The GL_OES_tessellation_shader spec says about inputs: | |||
5696 | * | |||
5697 | * "Declaring an array size is optional. If no size is specified, | |||
5698 | * it will be taken from the implementation-dependent maximum | |||
5699 | * patch size (gl_MaxPatchVertices)." | |||
5700 | * | |||
5701 | * and about TCS outputs: | |||
5702 | * | |||
5703 | * "If no size is specified, it will be taken from output patch | |||
5704 | * size declared in the shader." | |||
5705 | * | |||
5706 | * The GL_OES_geometry_shader spec says: | |||
5707 | * | |||
5708 | * "All geometry shader input unsized array declarations will be | |||
5709 | * sized by an earlier input primitive layout qualifier, when | |||
5710 | * present, as per the following table." | |||
5711 | */ | |||
5712 | const bool implicitly_sized = | |||
5713 | (var->data.mode == ir_var_shader_in && | |||
5714 | state->stage >= MESA_SHADER_TESS_CTRL && | |||
5715 | state->stage <= MESA_SHADER_GEOMETRY) || | |||
5716 | (var->data.mode == ir_var_shader_out && | |||
5717 | state->stage == MESA_SHADER_TESS_CTRL); | |||
5718 | ||||
5719 | if (t->is_unsized_array() && !implicitly_sized) | |||
5720 | /* Section 10.17 of the GLSL ES 1.00 specification states that | |||
5721 | * unsized array declarations have been removed from the language. | |||
5722 | * Arrays that are sized using an initializer are still explicitly | |||
5723 | * sized. However, GLSL ES 1.00 does not allow array | |||
5724 | * initializers. That is only allowed in GLSL ES 3.00. | |||
5725 | * | |||
5726 | * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says: | |||
5727 | * | |||
5728 | * "An array type can also be formed without specifying a size | |||
5729 | * if the definition includes an initializer: | |||
5730 | * | |||
5731 | * float x[] = float[2] (1.0, 2.0); // declares an array of size 2 | |||
5732 | * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3 | |||
5733 | * | |||
5734 | * float a[5]; | |||
5735 | * float b[] = a;" | |||
5736 | */ | |||
5737 | _mesa_glsl_error(& loc, state, | |||
5738 | "unsized array declarations are not allowed in " | |||
5739 | "GLSL ES"); | |||
5740 | } | |||
5741 | ||||
5742 | /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec: | |||
5743 | * | |||
5744 | * "It is a compile-time error to declare an unsized array of | |||
5745 | * atomic_uint" | |||
5746 | */ | |||
5747 | if (var->type->is_unsized_array() && | |||
5748 | var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) { | |||
5749 | _mesa_glsl_error(& loc, state, | |||
5750 | "Unsized array of atomic_uint is not allowed"); | |||
5751 | } | |||
5752 | ||||
5753 | /* If the declaration is not a redeclaration, there are a few additional | |||
5754 | * semantic checks that must be applied. In addition, variable that was | |||
5755 | * created for the declaration should be added to the IR stream. | |||
5756 | */ | |||
5757 | if (!is_redeclaration) { | |||
5758 | validate_identifier(decl->identifier, loc, state); | |||
5759 | ||||
5760 | /* Add the variable to the symbol table. Note that the initializer's | |||
5761 | * IR was already processed earlier (though it hasn't been emitted | |||
5762 | * yet), without the variable in scope. | |||
5763 | * | |||
5764 | * This differs from most C-like languages, but it follows the GLSL | |||
5765 | * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 | |||
5766 | * spec: | |||
5767 | * | |||
5768 | * "Within a declaration, the scope of a name starts immediately | |||
5769 | * after the initializer if present or immediately after the name | |||
5770 | * being declared if not." | |||
5771 | */ | |||
5772 | if (!state->symbols->add_variable(var)) { | |||
5773 | YYLTYPE loc = this->get_location(); | |||
5774 | _mesa_glsl_error(&loc, state, "name `%s' already taken in the " | |||
5775 | "current scope", decl->identifier); | |||
5776 | continue; | |||
5777 | } | |||
5778 | ||||
5779 | /* Push the variable declaration to the top. It means that all the | |||
5780 | * variable declarations will appear in a funny last-to-first order, | |||
5781 | * but otherwise we run into trouble if a function is prototyped, a | |||
5782 | * global var is decled, then the function is defined with usage of | |||
5783 | * the global var. See glslparsertest's CorrectModule.frag. | |||
5784 | * However, do not insert declarations before default precision statements | |||
5785 | * or type declarations. | |||
5786 | */ | |||
5787 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); | |||
5788 | while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl)) | |||
5789 | before_node = (ir_instruction*)before_node->next; | |||
5790 | if (before_node) | |||
5791 | before_node->insert_before(var); | |||
5792 | else | |||
5793 | instructions->push_head(var); | |||
5794 | } | |||
5795 | ||||
5796 | instructions->append_list(&initializer_instructions); | |||
5797 | } | |||
5798 | ||||
5799 | ||||
5800 | /* Generally, variable declarations do not have r-values. However, | |||
5801 | * one is used for the declaration in | |||
5802 | * | |||
5803 | * while (bool b = some_condition()) { | |||
5804 | * ... | |||
5805 | * } | |||
5806 | * | |||
5807 | * so we return the rvalue from the last seen declaration here. | |||
5808 | */ | |||
5809 | return result; | |||
5810 | } | |||
5811 | ||||
5812 | ||||
5813 | ir_rvalue * | |||
5814 | ast_parameter_declarator::hir(exec_list *instructions, | |||
5815 | struct _mesa_glsl_parse_state *state) | |||
5816 | { | |||
5817 | void *ctx = state; | |||
5818 | const struct glsl_type *type; | |||
5819 | const char *name = NULL__null; | |||
5820 | YYLTYPE loc = this->get_location(); | |||
5821 | ||||
5822 | type = this->type->glsl_type(& name, state); | |||
5823 | ||||
5824 | if (type == NULL__null) { | |||
5825 | if (name != NULL__null) { | |||
5826 | _mesa_glsl_error(& loc, state, | |||
5827 | "invalid type `%s' in declaration of `%s'", | |||
5828 | name, this->identifier); | |||
5829 | } else { | |||
5830 | _mesa_glsl_error(& loc, state, | |||
5831 | "invalid type in declaration of `%s'", | |||
5832 | this->identifier); | |||
5833 | } | |||
5834 | ||||
5835 | type = glsl_type::error_type; | |||
5836 | } | |||
5837 | ||||
5838 | /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: | |||
5839 | * | |||
5840 | * "Functions that accept no input arguments need not use void in the | |||
5841 | * argument list because prototypes (or definitions) are required and | |||
5842 | * therefore there is no ambiguity when an empty argument list "( )" is | |||
5843 | * declared. The idiom "(void)" as a parameter list is provided for | |||
5844 | * convenience." | |||
5845 | * | |||
5846 | * Placing this check here prevents a void parameter being set up | |||
5847 | * for a function, which avoids tripping up checks for main taking | |||
5848 | * parameters and lookups of an unnamed symbol. | |||
5849 | */ | |||
5850 | if (type->is_void()) { | |||
5851 | if (this->identifier != NULL__null) | |||
5852 | _mesa_glsl_error(& loc, state, | |||
5853 | "named parameter cannot have type `void'"); | |||
5854 | ||||
5855 | is_void = true; | |||
5856 | return NULL__null; | |||
5857 | } | |||
5858 | ||||
5859 | if (formal_parameter && (this->identifier == NULL__null)) { | |||
5860 | _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); | |||
5861 | return NULL__null; | |||
5862 | } | |||
5863 | ||||
5864 | /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) | |||
5865 | * call already handled the "vec4[..] foo" case. | |||
5866 | */ | |||
5867 | type = process_array_type(&loc, type, this->array_specifier, state); | |||
5868 | ||||
5869 | if (!type->is_error() && type->is_unsized_array()) { | |||
5870 | _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " | |||
5871 | "a declared size"); | |||
5872 | type = glsl_type::error_type; | |||
5873 | } | |||
5874 | ||||
5875 | is_void = false; | |||
5876 | ir_variable *var = new(ctx) | |||
5877 | ir_variable(type, this->identifier, ir_var_function_in); | |||
5878 | ||||
5879 | /* Apply any specified qualifiers to the parameter declaration. Note that | |||
5880 | * for function parameters the default mode is 'in'. | |||
5881 | */ | |||
5882 | apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc, | |||
5883 | true); | |||
5884 | ||||
5885 | /* From section 4.1.7 of the GLSL 4.40 spec: | |||
5886 | * | |||
5887 | * "Opaque variables cannot be treated as l-values; hence cannot | |||
5888 | * be used as out or inout function parameters, nor can they be | |||
5889 | * assigned into." | |||
5890 | * | |||
5891 | * From section 4.1.7 of the ARB_bindless_texture spec: | |||
5892 | * | |||
5893 | * "Samplers can be used as l-values, so can be assigned into and used | |||
5894 | * as "out" and "inout" function parameters." | |||
5895 | * | |||
5896 | * From section 4.1.X of the ARB_bindless_texture spec: | |||
5897 | * | |||
5898 | * "Images can be used as l-values, so can be assigned into and used as | |||
5899 | * "out" and "inout" function parameters." | |||
5900 | */ | |||
5901 | if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) | |||
5902 | && (type->contains_atomic() || | |||
5903 | (!state->has_bindless() && type->contains_opaque()))) { | |||
5904 | _mesa_glsl_error(&loc, state, "out and inout parameters cannot " | |||
5905 | "contain %s variables", | |||
5906 | state->has_bindless() ? "atomic" : "opaque"); | |||
5907 | type = glsl_type::error_type; | |||
5908 | } | |||
5909 | ||||
5910 | /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec: | |||
5911 | * | |||
5912 | * "When calling a function, expressions that do not evaluate to | |||
5913 | * l-values cannot be passed to parameters declared as out or inout." | |||
5914 | * | |||
5915 | * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: | |||
5916 | * | |||
5917 | * "Other binary or unary expressions, non-dereferenced arrays, | |||
5918 | * function names, swizzles with repeated fields, and constants | |||
5919 | * cannot be l-values." | |||
5920 | * | |||
5921 | * So for GLSL 1.10, passing an array as an out or inout parameter is not | |||
5922 | * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES. | |||
5923 | */ | |||
5924 | if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) | |||
5925 | && type->is_array() | |||
5926 | && !state->check_version(120, 100, &loc, | |||
5927 | "arrays cannot be out or inout parameters")) { | |||
5928 | type = glsl_type::error_type; | |||
5929 | } | |||
5930 | ||||
5931 | instructions->push_tail(var); | |||
5932 | ||||
5933 | /* Parameter declarations do not have r-values. | |||
5934 | */ | |||
5935 | return NULL__null; | |||
5936 | } | |||
5937 | ||||
5938 | ||||
5939 | void | |||
5940 | ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, | |||
5941 | bool formal, | |||
5942 | exec_list *ir_parameters, | |||
5943 | _mesa_glsl_parse_state *state) | |||
5944 | { | |||
5945 | ast_parameter_declarator *void_param = NULL__null; | |||
5946 | unsigned count = 0; | |||
5947 | ||||
5948 | foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters)for (ast_parameter_declarator * param = (!exec_node_is_tail_sentinel ((ast_parameters)->head_sentinel.next) ? ((ast_parameter_declarator *) (((uintptr_t) (ast_parameters)->head_sentinel.next) - ( ((char *) &((ast_parameter_declarator *) (ast_parameters) ->head_sentinel.next)->link) - ((char *) (ast_parameters )->head_sentinel.next)))) : __null); (param) != __null; (param ) = (!exec_node_is_tail_sentinel((param)->link.next) ? ((ast_parameter_declarator *) (((uintptr_t) (param)->link.next) - (((char *) &(( ast_parameter_declarator *) (param)->link.next)->link) - ((char *) (param)->link.next)))) : __null)) { | |||
5949 | param->formal_parameter = formal; | |||
5950 | param->hir(ir_parameters, state); | |||
5951 | ||||
5952 | if (param->is_void) | |||
5953 | void_param = param; | |||
5954 | ||||
5955 | count++; | |||
5956 | } | |||
5957 | ||||
5958 | if ((void_param != NULL__null) && (count > 1)) { | |||
5959 | YYLTYPE loc = void_param->get_location(); | |||
5960 | ||||
5961 | _mesa_glsl_error(& loc, state, | |||
5962 | "`void' parameter must be only parameter"); | |||
5963 | } | |||
5964 | } | |||
5965 | ||||
5966 | ||||
5967 | void | |||
5968 | emit_function(_mesa_glsl_parse_state *state, ir_function *f) | |||
5969 | { | |||
5970 | /* IR invariants disallow function declarations or definitions | |||
5971 | * nested within other function definitions. But there is no | |||
5972 | * requirement about the relative order of function declarations | |||
5973 | * and definitions with respect to one another. So simply insert | |||
5974 | * the new ir_function block at the end of the toplevel instruction | |||
5975 | * list. | |||
5976 | */ | |||
5977 | state->toplevel_ir->push_tail(f); | |||
5978 | } | |||
5979 | ||||
5980 | ||||
5981 | ir_rvalue * | |||
5982 | ast_function::hir(exec_list *instructions, | |||
5983 | struct _mesa_glsl_parse_state *state) | |||
5984 | { | |||
5985 | void *ctx = state; | |||
5986 | ir_function *f = NULL__null; | |||
5987 | ir_function_signature *sig = NULL__null; | |||
5988 | exec_list hir_parameters; | |||
5989 | YYLTYPE loc = this->get_location(); | |||
5990 | ||||
5991 | const char *const name = identifier; | |||
5992 | ||||
5993 | /* New functions are always added to the top-level IR instruction stream, | |||
5994 | * so this instruction list pointer is ignored. See also emit_function | |||
5995 | * (called below). | |||
5996 | */ | |||
5997 | (void) instructions; | |||
5998 | ||||
5999 | /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, | |||
6000 | * | |||
6001 | * "Function declarations (prototypes) cannot occur inside of functions; | |||
6002 | * they must be at global scope, or for the built-in functions, outside | |||
6003 | * the global scope." | |||
6004 | * | |||
6005 | * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, | |||
6006 | * | |||
6007 | * "User defined functions may only be defined within the global scope." | |||
6008 | * | |||
6009 | * Note that this language does not appear in GLSL 1.10. | |||
6010 | */ | |||
6011 | if ((state->current_function != NULL__null) && | |||
6012 | state->is_version(120, 100)) { | |||
6013 | YYLTYPE loc = this->get_location(); | |||
6014 | _mesa_glsl_error(&loc, state, | |||
6015 | "declaration of function `%s' not allowed within " | |||
6016 | "function body", name); | |||
6017 | } | |||
6018 | ||||
6019 | validate_identifier(name, this->get_location(), state); | |||
6020 | ||||
6021 | /* Convert the list of function parameters to HIR now so that they can be | |||
6022 | * used below to compare this function's signature with previously seen | |||
6023 | * signatures for functions with the same name. | |||
6024 | */ | |||
6025 | ast_parameter_declarator::parameters_to_hir(& this->parameters, | |||
6026 | is_definition, | |||
6027 | & hir_parameters, state); | |||
6028 | ||||
6029 | const char *return_type_name; | |||
6030 | const glsl_type *return_type = | |||
6031 | this->return_type->glsl_type(& return_type_name, state); | |||
6032 | ||||
6033 | if (!return_type) { | |||
6034 | YYLTYPE loc = this->get_location(); | |||
6035 | _mesa_glsl_error(&loc, state, | |||
6036 | "function `%s' has undeclared return type `%s'", | |||
6037 | name, return_type_name); | |||
6038 | return_type = glsl_type::error_type; | |||
6039 | } | |||
6040 | ||||
6041 | /* ARB_shader_subroutine states: | |||
6042 | * "Subroutine declarations cannot be prototyped. It is an error to prepend | |||
6043 | * subroutine(...) to a function declaration." | |||
6044 | */ | |||
6045 | if (this->return_type->qualifier.subroutine_list && !is_definition) { | |||
6046 | YYLTYPE loc = this->get_location(); | |||
6047 | _mesa_glsl_error(&loc, state, | |||
6048 | "function declaration `%s' cannot have subroutine prepended", | |||
6049 | name); | |||
6050 | } | |||
6051 | ||||
6052 | /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: | |||
6053 | * "No qualifier is allowed on the return type of a function." | |||
6054 | */ | |||
6055 | if (this->return_type->has_qualifiers(state)) { | |||
6056 | YYLTYPE loc = this->get_location(); | |||
6057 | _mesa_glsl_error(& loc, state, | |||
6058 | "function `%s' return type has qualifiers", name); | |||
6059 | } | |||
6060 | ||||
6061 | /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says: | |||
6062 | * | |||
6063 | * "Arrays are allowed as arguments and as the return type. In both | |||
6064 | * cases, the array must be explicitly sized." | |||
6065 | */ | |||
6066 | if (return_type->is_unsized_array()) { | |||
6067 | YYLTYPE loc = this->get_location(); | |||
6068 | _mesa_glsl_error(& loc, state, | |||
6069 | "function `%s' return type array must be explicitly " | |||
6070 | "sized", name); | |||
6071 | } | |||
6072 | ||||
6073 | /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec: | |||
6074 | * | |||
6075 | * "Arrays are allowed as arguments, but not as the return type. [...] | |||
6076 | * The return type can also be a structure if the structure does not | |||
6077 | * contain an array." | |||
6078 | */ | |||
6079 | if (state->language_version == 100 && return_type->contains_array()) { | |||
6080 | YYLTYPE loc = this->get_location(); | |||
6081 | _mesa_glsl_error(& loc, state, | |||
6082 | "function `%s' return type contains an array", name); | |||
6083 | } | |||
6084 | ||||
6085 | /* From section 4.1.7 of the GLSL 4.40 spec: | |||
6086 | * | |||
6087 | * "[Opaque types] can only be declared as function parameters | |||
6088 | * or uniform-qualified variables." | |||
6089 | * | |||
6090 | * The ARB_bindless_texture spec doesn't clearly state this, but as it says | |||
6091 | * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X, | |||
6092 | * (Images)", this should be allowed. | |||
6093 | */ | |||
6094 | if (return_type->contains_atomic() || | |||
6095 | (!state->has_bindless() && return_type->contains_opaque())) { | |||
6096 | YYLTYPE loc = this->get_location(); | |||
6097 | _mesa_glsl_error(&loc, state, | |||
6098 | "function `%s' return type can't contain an %s type", | |||
6099 | name, state->has_bindless() ? "atomic" : "opaque"); | |||
6100 | } | |||
6101 | ||||
6102 | /**/ | |||
6103 | if (return_type->is_subroutine()) { | |||
6104 | YYLTYPE loc = this->get_location(); | |||
6105 | _mesa_glsl_error(&loc, state, | |||
6106 | "function `%s' return type can't be a subroutine type", | |||
6107 | name); | |||
6108 | } | |||
6109 | ||||
6110 | /* Get the precision for the return type */ | |||
6111 | unsigned return_precision; | |||
6112 | ||||
6113 | if (state->es_shader) { | |||
6114 | YYLTYPE loc = this->get_location(); | |||
6115 | return_precision = | |||
6116 | select_gles_precision(this->return_type->qualifier.precision, | |||
6117 | return_type, | |||
6118 | state, | |||
6119 | &loc); | |||
6120 | } else { | |||
6121 | return_precision = GLSL_PRECISION_NONE; | |||
6122 | } | |||
6123 | ||||
6124 | /* Create an ir_function if one doesn't already exist. */ | |||
6125 | f = state->symbols->get_function(name); | |||
6126 | if (f == NULL__null) { | |||
6127 | f = new(ctx) ir_function(name); | |||
6128 | if (!this->return_type->qualifier.is_subroutine_decl()) { | |||
6129 | if (!state->symbols->add_function(f)) { | |||
6130 | /* This function name shadows a non-function use of the same name. */ | |||
6131 | YYLTYPE loc = this->get_location(); | |||
6132 | _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " | |||
6133 | "non-function", name); | |||
6134 | return NULL__null; | |||
6135 | } | |||
6136 | } | |||
6137 | emit_function(state, f); | |||
6138 | } | |||
6139 | ||||
6140 | /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71: | |||
6141 | * | |||
6142 | * "A shader cannot redefine or overload built-in functions." | |||
6143 | * | |||
6144 | * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions": | |||
6145 | * | |||
6146 | * "User code can overload the built-in functions but cannot redefine | |||
6147 | * them." | |||
6148 | */ | |||
6149 | if (state->es_shader) { | |||
6150 | /* Local shader has no exact candidates; check the built-ins. */ | |||
6151 | if (state->language_version >= 300 && | |||
6152 | _mesa_glsl_has_builtin_function(state, name)) { | |||
6153 | YYLTYPE loc = this->get_location(); | |||
6154 | _mesa_glsl_error(& loc, state, | |||
6155 | "A shader cannot redefine or overload built-in " | |||
6156 | "function `%s' in GLSL ES 3.00", name); | |||
6157 | return NULL__null; | |||
6158 | } | |||
6159 | ||||
6160 | if (state->language_version == 100) { | |||
6161 | ir_function_signature *sig = | |||
6162 | _mesa_glsl_find_builtin_function(state, name, &hir_parameters); | |||
6163 | if (sig && sig->is_builtin()) { | |||
6164 | _mesa_glsl_error(& loc, state, | |||
6165 | "A shader cannot redefine built-in " | |||
6166 | "function `%s' in GLSL ES 1.00", name); | |||
6167 | } | |||
6168 | } | |||
6169 | } | |||
6170 | ||||
6171 | /* Verify that this function's signature either doesn't match a previously | |||
6172 | * seen signature for a function with the same name, or, if a match is found, | |||
6173 | * that the previously seen signature does not have an associated definition. | |||
6174 | */ | |||
6175 | if (state->es_shader || f->has_user_signature()) { | |||
6176 | sig = f->exact_matching_signature(state, &hir_parameters); | |||
6177 | if (sig != NULL__null) { | |||
6178 | const char *badvar = sig->qualifiers_match(&hir_parameters); | |||
6179 | if (badvar != NULL__null) { | |||
6180 | YYLTYPE loc = this->get_location(); | |||
6181 | ||||
6182 | _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " | |||
6183 | "qualifiers don't match prototype", name, badvar); | |||
6184 | } | |||
6185 | ||||
6186 | if (sig->return_type != return_type) { | |||
6187 | YYLTYPE loc = this->get_location(); | |||
6188 | ||||
6189 | _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " | |||
6190 | "match prototype", name); | |||
6191 | } | |||
6192 | ||||
6193 | if (sig->return_precision != return_precision) { | |||
6194 | YYLTYPE loc = this->get_location(); | |||
6195 | ||||
6196 | _mesa_glsl_error(&loc, state, "function `%s' return type precision " | |||
6197 | "doesn't match prototype", name); | |||
6198 | } | |||
6199 | ||||
6200 | if (sig->is_defined) { | |||
6201 | if (is_definition) { | |||
6202 | YYLTYPE loc = this->get_location(); | |||
6203 | _mesa_glsl_error(& loc, state, "function `%s' redefined", name); | |||
6204 | } else { | |||
6205 | /* We just encountered a prototype that exactly matches a | |||
6206 | * function that's already been defined. This is redundant, | |||
6207 | * and we should ignore it. | |||
6208 | */ | |||
6209 | return NULL__null; | |||
6210 | } | |||
6211 | } else if (state->language_version == 100 && !is_definition) { | |||
6212 | /* From the GLSL 1.00 spec, section 4.2.7: | |||
6213 | * | |||
6214 | * "A particular variable, structure or function declaration | |||
6215 | * may occur at most once within a scope with the exception | |||
6216 | * that a single function prototype plus the corresponding | |||
6217 | * function definition are allowed." | |||
6218 | */ | |||
6219 | YYLTYPE loc = this->get_location(); | |||
6220 | _mesa_glsl_error(&loc, state, "function `%s' redeclared", name); | |||
6221 | } | |||
6222 | } | |||
6223 | } | |||
6224 | ||||
6225 | /* Verify the return type of main() */ | |||
6226 | if (strcmp(name, "main") == 0) { | |||
6227 | if (! return_type->is_void()) { | |||
6228 | YYLTYPE loc = this->get_location(); | |||
6229 | ||||
6230 | _mesa_glsl_error(& loc, state, "main() must return void"); | |||
6231 | } | |||
6232 | ||||
6233 | if (!hir_parameters.is_empty()) { | |||
6234 | YYLTYPE loc = this->get_location(); | |||
6235 | ||||
6236 | _mesa_glsl_error(& loc, state, "main() must not take any parameters"); | |||
6237 | } | |||
6238 | } | |||
6239 | ||||
6240 | /* Finish storing the information about this new function in its signature. | |||
6241 | */ | |||
6242 | if (sig == NULL__null) { | |||
6243 | sig = new(ctx) ir_function_signature(return_type); | |||
6244 | sig->return_precision = return_precision; | |||
6245 | f->add_signature(sig); | |||
6246 | } | |||
6247 | ||||
6248 | sig->replace_parameters(&hir_parameters); | |||
6249 | signature = sig; | |||
6250 | ||||
6251 | if (this->return_type->qualifier.subroutine_list) { | |||
6252 | int idx; | |||
6253 | ||||
6254 | if (this->return_type->qualifier.flags.q.explicit_index) { | |||
6255 | unsigned qual_index; | |||
6256 | if (process_qualifier_constant(state, &loc, "index", | |||
6257 | this->return_type->qualifier.index, | |||
6258 | &qual_index)) { | |||
6259 | if (!state->has_explicit_uniform_location()) { | |||
6260 | _mesa_glsl_error(&loc, state, "subroutine index requires " | |||
6261 | "GL_ARB_explicit_uniform_location or " | |||
6262 | "GLSL 4.30"); | |||
6263 | } else if (qual_index >= MAX_SUBROUTINES256) { | |||
6264 | _mesa_glsl_error(&loc, state, | |||
6265 | "invalid subroutine index (%d) index must " | |||
6266 | "be a number between 0 and " | |||
6267 | "GL_MAX_SUBROUTINES - 1 (%d)", qual_index, | |||
6268 | MAX_SUBROUTINES256 - 1); | |||
6269 | } else { | |||
6270 | f->subroutine_index = qual_index; | |||
6271 | } | |||
6272 | } | |||
6273 | } | |||
6274 | ||||
6275 | f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length(); | |||
6276 | f->subroutine_types = ralloc_array(state, const struct glsl_type *,((const struct glsl_type * *) ralloc_array_size(state, sizeof (const struct glsl_type *), f->num_subroutine_types)) | |||
6277 | f->num_subroutine_types)((const struct glsl_type * *) ralloc_array_size(state, sizeof (const struct glsl_type *), f->num_subroutine_types)); | |||
6278 | idx = 0; | |||
6279 | foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->return_type->qualifier.subroutine_list->declarations )->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t ) (&this->return_type->qualifier.subroutine_list-> declarations)->head_sentinel.next) - (((char *) &((ast_declaration *) (&this->return_type->qualifier.subroutine_list-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->return_type->qualifier.subroutine_list->declarations )->head_sentinel.next)))) : __null); (decl) != __null; (decl ) = (!exec_node_is_tail_sentinel((decl)->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)->link.next) - (((char *) &((ast_declaration *) (decl)->link.next)->link) - ((char *) (decl)->link .next)))) : __null)) { | |||
6280 | const struct glsl_type *type; | |||
6281 | /* the subroutine type must be already declared */ | |||
6282 | type = state->symbols->get_type(decl->identifier); | |||
6283 | if (!type) { | |||
6284 | _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier); | |||
6285 | } | |||
6286 | ||||
6287 | for (int i = 0; i < state->num_subroutine_types; i++) { | |||
6288 | ir_function *fn = state->subroutine_types[i]; | |||
6289 | ir_function_signature *tsig = NULL__null; | |||
6290 | ||||
6291 | if (strcmp(fn->name, decl->identifier)) | |||
6292 | continue; | |||
6293 | ||||
6294 | tsig = fn->matching_signature(state, &sig->parameters, | |||
6295 | false); | |||
6296 | if (!tsig) { | |||
6297 | _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier); | |||
6298 | } else { | |||
6299 | if (tsig->return_type != sig->return_type) { | |||
6300 | _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier); | |||
6301 | } | |||
6302 | } | |||
6303 | } | |||
6304 | f->subroutine_types[idx++] = type; | |||
6305 | } | |||
6306 | state->subroutines = (ir_function **)reralloc(state, state->subroutines,((ir_function * *) reralloc_array_size(state, state->subroutines , sizeof(ir_function *), state->num_subroutines + 1)) | |||
6307 | ir_function *,((ir_function * *) reralloc_array_size(state, state->subroutines , sizeof(ir_function *), state->num_subroutines + 1)) | |||
6308 | state->num_subroutines + 1)((ir_function * *) reralloc_array_size(state, state->subroutines , sizeof(ir_function *), state->num_subroutines + 1)); | |||
6309 | state->subroutines[state->num_subroutines] = f; | |||
6310 | state->num_subroutines++; | |||
6311 | ||||
6312 | } | |||
6313 | ||||
6314 | if (this->return_type->qualifier.is_subroutine_decl()) { | |||
6315 | if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) { | |||
6316 | _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier); | |||
6317 | return NULL__null; | |||
6318 | } | |||
6319 | state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,((ir_function * *) reralloc_array_size(state, state->subroutine_types , sizeof(ir_function *), state->num_subroutine_types + 1)) | |||
6320 | ir_function *,((ir_function * *) reralloc_array_size(state, state->subroutine_types , sizeof(ir_function *), state->num_subroutine_types + 1)) | |||
6321 | state->num_subroutine_types + 1)((ir_function * *) reralloc_array_size(state, state->subroutine_types , sizeof(ir_function *), state->num_subroutine_types + 1)); | |||
6322 | state->subroutine_types[state->num_subroutine_types] = f; | |||
6323 | state->num_subroutine_types++; | |||
6324 | ||||
6325 | f->is_subroutine = true; | |||
6326 | } | |||
6327 | ||||
6328 | /* Function declarations (prototypes) do not have r-values. | |||
6329 | */ | |||
6330 | return NULL__null; | |||
6331 | } | |||
6332 | ||||
6333 | ||||
6334 | ir_rvalue * | |||
6335 | ast_function_definition::hir(exec_list *instructions, | |||
6336 | struct _mesa_glsl_parse_state *state) | |||
6337 | { | |||
6338 | prototype->is_definition = true; | |||
6339 | prototype->hir(instructions, state); | |||
6340 | ||||
6341 | ir_function_signature *signature = prototype->signature; | |||
6342 | if (signature == NULL__null) | |||
6343 | return NULL__null; | |||
6344 | ||||
6345 | assert(state->current_function == NULL)(static_cast <bool> (state->current_function == __null ) ? void (0) : __assert_fail ("state->current_function == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
6346 | state->current_function = signature; | |||
6347 | state->found_return = false; | |||
6348 | state->found_begin_interlock = false; | |||
6349 | state->found_end_interlock = false; | |||
6350 | ||||
6351 | /* Duplicate parameters declared in the prototype as concrete variables. | |||
6352 | * Add these to the symbol table. | |||
6353 | */ | |||
6354 | state->symbols->push_scope(); | |||
6355 | foreach_in_list(ir_variable, var, &signature->parameters)for (ir_variable *var = (!exec_node_is_tail_sentinel((&signature ->parameters)->head_sentinel.next) ? (ir_variable *) (( &signature->parameters)->head_sentinel.next) : __null ); (var) != __null; (var) = (!exec_node_is_tail_sentinel((var )->next) ? (ir_variable *) ((var)->next) : __null)) { | |||
6356 | assert(var->as_variable() != NULL)(static_cast <bool> (var->as_variable() != __null) ? void (0) : __assert_fail ("var->as_variable() != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
6357 | ||||
6358 | /* The only way a parameter would "exist" is if two parameters have | |||
6359 | * the same name. | |||
6360 | */ | |||
6361 | if (state->symbols->name_declared_this_scope(var->name)) { | |||
6362 | YYLTYPE loc = this->get_location(); | |||
6363 | ||||
6364 | _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); | |||
6365 | } else { | |||
6366 | state->symbols->add_variable(var); | |||
6367 | } | |||
6368 | } | |||
6369 | ||||
6370 | /* Convert the body of the function to HIR. */ | |||
6371 | this->body->hir(&signature->body, state); | |||
6372 | signature->is_defined = true; | |||
6373 | ||||
6374 | state->symbols->pop_scope(); | |||
6375 | ||||
6376 | assert(state->current_function == signature)(static_cast <bool> (state->current_function == signature ) ? void (0) : __assert_fail ("state->current_function == signature" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
6377 | state->current_function = NULL__null; | |||
6378 | ||||
6379 | if (!signature->return_type->is_void() && !state->found_return) { | |||
6380 | YYLTYPE loc = this->get_location(); | |||
6381 | _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " | |||
6382 | "%s, but no return statement", | |||
6383 | signature->function_name(), | |||
6384 | signature->return_type->name); | |||
6385 | } | |||
6386 | ||||
6387 | /* Function definitions do not have r-values. | |||
6388 | */ | |||
6389 | return NULL__null; | |||
6390 | } | |||
6391 | ||||
6392 | ||||
6393 | ir_rvalue * | |||
6394 | ast_jump_statement::hir(exec_list *instructions, | |||
6395 | struct _mesa_glsl_parse_state *state) | |||
6396 | { | |||
6397 | void *ctx = state; | |||
6398 | ||||
6399 | switch (mode) { | |||
6400 | case ast_return: { | |||
6401 | ir_return *inst; | |||
6402 | assert(state->current_function)(static_cast <bool> (state->current_function) ? void (0) : __assert_fail ("state->current_function", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
6403 | ||||
6404 | if (opt_return_value) { | |||
6405 | ir_rvalue *ret = opt_return_value->hir(instructions, state); | |||
6406 | ||||
6407 | /* The value of the return type can be NULL if the shader says | |||
6408 | * 'return foo();' and foo() is a function that returns void. | |||
6409 | * | |||
6410 | * NOTE: The GLSL spec doesn't say that this is an error. The type | |||
6411 | * of the return value is void. If the return type of the function is | |||
6412 | * also void, then this should compile without error. Seriously. | |||
6413 | */ | |||
6414 | const glsl_type *const ret_type = | |||
6415 | (ret == NULL__null) ? glsl_type::void_type : ret->type; | |||
6416 | ||||
6417 | /* Implicit conversions are not allowed for return values prior to | |||
6418 | * ARB_shading_language_420pack. | |||
6419 | */ | |||
6420 | if (state->current_function->return_type != ret_type) { | |||
6421 | YYLTYPE loc = this->get_location(); | |||
6422 | ||||
6423 | if (state->has_420pack()) { | |||
6424 | if (!apply_implicit_conversion(state->current_function->return_type, | |||
6425 | ret, state) | |||
6426 | || (ret->type != state->current_function->return_type)) { | |||
6427 | _mesa_glsl_error(& loc, state, | |||
6428 | "could not implicitly convert return value " | |||
6429 | "to %s, in function `%s'", | |||
6430 | state->current_function->return_type->name, | |||
6431 | state->current_function->function_name()); | |||
6432 | } | |||
6433 | } else { | |||
6434 | _mesa_glsl_error(& loc, state, | |||
6435 | "`return' with wrong type %s, in function `%s' " | |||
6436 | "returning %s", | |||
6437 | ret_type->name, | |||
6438 | state->current_function->function_name(), | |||
6439 | state->current_function->return_type->name); | |||
6440 | } | |||
6441 | } else if (state->current_function->return_type->base_type == | |||
6442 | GLSL_TYPE_VOID) { | |||
6443 | YYLTYPE loc = this->get_location(); | |||
6444 | ||||
6445 | /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20 | |||
6446 | * specs add a clarification: | |||
6447 | * | |||
6448 | * "A void function can only use return without a return argument, even if | |||
6449 | * the return argument has void type. Return statements only accept values: | |||
6450 | * | |||
6451 | * void func1() { } | |||
6452 | * void func2() { return func1(); } // illegal return statement" | |||
6453 | */ | |||
6454 | _mesa_glsl_error(& loc, state, | |||
6455 | "void functions can only use `return' without a " | |||
6456 | "return argument"); | |||
6457 | } | |||
6458 | ||||
6459 | inst = new(ctx) ir_return(ret); | |||
6460 | } else { | |||
6461 | if (state->current_function->return_type->base_type != | |||
6462 | GLSL_TYPE_VOID) { | |||
6463 | YYLTYPE loc = this->get_location(); | |||
6464 | ||||
6465 | _mesa_glsl_error(& loc, state, | |||
6466 | "`return' with no value, in function %s returning " | |||
6467 | "non-void", | |||
6468 | state->current_function->function_name()); | |||
6469 | } | |||
6470 | inst = new(ctx) ir_return; | |||
6471 | } | |||
6472 | ||||
6473 | state->found_return = true; | |||
6474 | instructions->push_tail(inst); | |||
6475 | break; | |||
6476 | } | |||
6477 | ||||
6478 | case ast_discard: | |||
6479 | if (state->stage != MESA_SHADER_FRAGMENT) { | |||
6480 | YYLTYPE loc = this->get_location(); | |||
6481 | ||||
6482 | _mesa_glsl_error(& loc, state, | |||
6483 | "`discard' may only appear in a fragment shader"); | |||
6484 | } | |||
6485 | instructions->push_tail(new(ctx) ir_discard); | |||
6486 | break; | |||
6487 | ||||
6488 | case ast_break: | |||
6489 | case ast_continue: | |||
6490 | if (mode == ast_continue && | |||
6491 | state->loop_nesting_ast == NULL__null) { | |||
6492 | YYLTYPE loc = this->get_location(); | |||
6493 | ||||
6494 | _mesa_glsl_error(& loc, state, "continue may only appear in a loop"); | |||
6495 | } else if (mode == ast_break && | |||
6496 | state->loop_nesting_ast == NULL__null && | |||
6497 | state->switch_state.switch_nesting_ast == NULL__null) { | |||
6498 | YYLTYPE loc = this->get_location(); | |||
6499 | ||||
6500 | _mesa_glsl_error(& loc, state, | |||
6501 | "break may only appear in a loop or a switch"); | |||
6502 | } else { | |||
6503 | /* For a loop, inline the for loop expression again, since we don't | |||
6504 | * know where near the end of the loop body the normal copy of it is | |||
6505 | * going to be placed. Same goes for the condition for a do-while | |||
6506 | * loop. | |||
6507 | */ | |||
6508 | if (state->loop_nesting_ast != NULL__null && | |||
6509 | mode == ast_continue) { | |||
6510 | if (state->loop_nesting_ast->rest_expression) { | |||
6511 | state->loop_nesting_ast->rest_expression->hir(instructions, | |||
6512 | state); | |||
6513 | } | |||
6514 | if (state->loop_nesting_ast->mode == | |||
6515 | ast_iteration_statement::ast_do_while) { | |||
6516 | state->loop_nesting_ast->condition_to_hir(instructions, state); | |||
6517 | } | |||
6518 | } | |||
6519 | ||||
6520 | if (state->switch_state.is_switch_innermost && | |||
6521 | mode == ast_break) { | |||
6522 | /* Force break out of switch by setting is_break switch state. | |||
6523 | */ | |||
6524 | ir_variable *const is_break_var = state->switch_state.is_break_var; | |||
6525 | ir_dereference_variable *const deref_is_break_var = | |||
6526 | new(ctx) ir_dereference_variable(is_break_var); | |||
6527 | ir_constant *const true_val = new(ctx) ir_constant(true); | |||
6528 | ir_assignment *const set_break_var = | |||
6529 | new(ctx) ir_assignment(deref_is_break_var, true_val); | |||
6530 | ||||
6531 | instructions->push_tail(set_break_var); | |||
6532 | } else { | |||
6533 | ir_loop_jump *const jump = | |||
6534 | new(ctx) ir_loop_jump((mode == ast_break) | |||
6535 | ? ir_loop_jump::jump_break | |||
6536 | : ir_loop_jump::jump_continue); | |||
6537 | instructions->push_tail(jump); | |||
6538 | } | |||
6539 | } | |||
6540 | ||||
6541 | break; | |||
6542 | } | |||
6543 | ||||
6544 | /* Jump instructions do not have r-values. | |||
6545 | */ | |||
6546 | return NULL__null; | |||
6547 | } | |||
6548 | ||||
6549 | ||||
6550 | ir_rvalue * | |||
6551 | ast_demote_statement::hir(exec_list *instructions, | |||
6552 | struct _mesa_glsl_parse_state *state) | |||
6553 | { | |||
6554 | void *ctx = state; | |||
6555 | ||||
6556 | if (state->stage != MESA_SHADER_FRAGMENT) { | |||
6557 | YYLTYPE loc = this->get_location(); | |||
6558 | ||||
6559 | _mesa_glsl_error(& loc, state, | |||
6560 | "`demote' may only appear in a fragment shader"); | |||
6561 | } | |||
6562 | ||||
6563 | instructions->push_tail(new(ctx) ir_demote); | |||
6564 | ||||
6565 | return NULL__null; | |||
6566 | } | |||
6567 | ||||
6568 | ||||
6569 | ir_rvalue * | |||
6570 | ast_selection_statement::hir(exec_list *instructions, | |||
6571 | struct _mesa_glsl_parse_state *state) | |||
6572 | { | |||
6573 | void *ctx = state; | |||
6574 | ||||
6575 | ir_rvalue *const condition = this->condition->hir(instructions, state); | |||
6576 | ||||
6577 | /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: | |||
6578 | * | |||
6579 | * "Any expression whose type evaluates to a Boolean can be used as the | |||
6580 | * conditional expression bool-expression. Vector types are not accepted | |||
6581 | * as the expression to if." | |||
6582 | * | |||
6583 | * The checks are separated so that higher quality diagnostics can be | |||
6584 | * generated for cases where both rules are violated. | |||
6585 | */ | |||
6586 | if (!condition->type->is_boolean() || !condition->type->is_scalar()) { | |||
6587 | YYLTYPE loc = this->condition->get_location(); | |||
6588 | ||||
6589 | _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " | |||
6590 | "boolean"); | |||
6591 | } | |||
6592 | ||||
6593 | ir_if *const stmt = new(ctx) ir_if(condition); | |||
6594 | ||||
6595 | if (then_statement != NULL__null) { | |||
6596 | state->symbols->push_scope(); | |||
6597 | then_statement->hir(& stmt->then_instructions, state); | |||
6598 | state->symbols->pop_scope(); | |||
6599 | } | |||
6600 | ||||
6601 | if (else_statement != NULL__null) { | |||
6602 | state->symbols->push_scope(); | |||
6603 | else_statement->hir(& stmt->else_instructions, state); | |||
6604 | state->symbols->pop_scope(); | |||
6605 | } | |||
6606 | ||||
6607 | instructions->push_tail(stmt); | |||
6608 | ||||
6609 | /* if-statements do not have r-values. | |||
6610 | */ | |||
6611 | return NULL__null; | |||
6612 | } | |||
6613 | ||||
6614 | ||||
6615 | struct case_label { | |||
6616 | /** Value of the case label. */ | |||
6617 | unsigned value; | |||
6618 | ||||
6619 | /** Does this label occur after the default? */ | |||
6620 | bool after_default; | |||
6621 | ||||
6622 | /** | |||
6623 | * AST for the case label. | |||
6624 | * | |||
6625 | * This is only used to generate error messages for duplicate labels. | |||
6626 | */ | |||
6627 | ast_expression *ast; | |||
6628 | }; | |||
6629 | ||||
6630 | /* Used for detection of duplicate case values, compare | |||
6631 | * given contents directly. | |||
6632 | */ | |||
6633 | static bool | |||
6634 | compare_case_value(const void *a, const void *b) | |||
6635 | { | |||
6636 | return ((struct case_label *) a)->value == ((struct case_label *) b)->value; | |||
6637 | } | |||
6638 | ||||
6639 | ||||
6640 | /* Used for detection of duplicate case values, just | |||
6641 | * returns key contents as is. | |||
6642 | */ | |||
6643 | static unsigned | |||
6644 | key_contents(const void *key) | |||
6645 | { | |||
6646 | return ((struct case_label *) key)->value; | |||
6647 | } | |||
6648 | ||||
6649 | ||||
6650 | ir_rvalue * | |||
6651 | ast_switch_statement::hir(exec_list *instructions, | |||
6652 | struct _mesa_glsl_parse_state *state) | |||
6653 | { | |||
6654 | void *ctx = state; | |||
6655 | ||||
6656 | ir_rvalue *const test_expression = | |||
6657 | this->test_expression->hir(instructions, state); | |||
6658 | ||||
6659 | /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec: | |||
6660 | * | |||
6661 | * "The type of init-expression in a switch statement must be a | |||
6662 | * scalar integer." | |||
6663 | */ | |||
6664 | if (!test_expression->type->is_scalar() || | |||
6665 | !test_expression->type->is_integer_32()) { | |||
6666 | YYLTYPE loc = this->test_expression->get_location(); | |||
6667 | ||||
6668 | _mesa_glsl_error(& loc, | |||
6669 | state, | |||
6670 | "switch-statement expression must be scalar " | |||
6671 | "integer"); | |||
6672 | return NULL__null; | |||
6673 | } | |||
6674 | ||||
6675 | /* Track the switch-statement nesting in a stack-like manner. | |||
6676 | */ | |||
6677 | struct glsl_switch_state saved = state->switch_state; | |||
6678 | ||||
6679 | state->switch_state.is_switch_innermost = true; | |||
6680 | state->switch_state.switch_nesting_ast = this; | |||
6681 | state->switch_state.labels_ht = | |||
6682 | _mesa_hash_table_create(NULL__null, key_contents, | |||
6683 | compare_case_value); | |||
6684 | state->switch_state.previous_default = NULL__null; | |||
6685 | ||||
6686 | /* Initalize is_fallthru state to false. | |||
6687 | */ | |||
6688 | ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false); | |||
6689 | state->switch_state.is_fallthru_var = | |||
6690 | new(ctx) ir_variable(glsl_type::bool_type, | |||
6691 | "switch_is_fallthru_tmp", | |||
6692 | ir_var_temporary); | |||
6693 | instructions->push_tail(state->switch_state.is_fallthru_var); | |||
6694 | ||||
6695 | ir_dereference_variable *deref_is_fallthru_var = | |||
6696 | new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var); | |||
6697 | instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var, | |||
6698 | is_fallthru_val)); | |||
6699 | ||||
6700 | /* Initialize is_break state to false. | |||
6701 | */ | |||
6702 | ir_rvalue *const is_break_val = new (ctx) ir_constant(false); | |||
6703 | state->switch_state.is_break_var = | |||
6704 | new(ctx) ir_variable(glsl_type::bool_type, | |||
6705 | "switch_is_break_tmp", | |||
6706 | ir_var_temporary); | |||
6707 | instructions->push_tail(state->switch_state.is_break_var); | |||
6708 | ||||
6709 | ir_dereference_variable *deref_is_break_var = | |||
6710 | new(ctx) ir_dereference_variable(state->switch_state.is_break_var); | |||
6711 | instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var, | |||
6712 | is_break_val)); | |||
6713 | ||||
6714 | state->switch_state.run_default = | |||
6715 | new(ctx) ir_variable(glsl_type::bool_type, | |||
6716 | "run_default_tmp", | |||
6717 | ir_var_temporary); | |||
6718 | instructions->push_tail(state->switch_state.run_default); | |||
6719 | ||||
6720 | /* Cache test expression. | |||
6721 | */ | |||
6722 | test_to_hir(instructions, state); | |||
6723 | ||||
6724 | /* Emit code for body of switch stmt. | |||
6725 | */ | |||
6726 | body->hir(instructions, state); | |||
6727 | ||||
6728 | _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL__null); | |||
6729 | ||||
6730 | state->switch_state = saved; | |||
6731 | ||||
6732 | /* Switch statements do not have r-values. */ | |||
6733 | return NULL__null; | |||
6734 | } | |||
6735 | ||||
6736 | ||||
6737 | void | |||
6738 | ast_switch_statement::test_to_hir(exec_list *instructions, | |||
6739 | struct _mesa_glsl_parse_state *state) | |||
6740 | { | |||
6741 | void *ctx = state; | |||
6742 | ||||
6743 | /* set to true to avoid a duplicate "use of uninitialized variable" warning | |||
6744 | * on the switch test case. The first one would be already raised when | |||
6745 | * getting the test_expression at ast_switch_statement::hir | |||
6746 | */ | |||
6747 | test_expression->set_is_lhs(true); | |||
6748 | /* Cache value of test expression. */ | |||
6749 | ir_rvalue *const test_val = test_expression->hir(instructions, state); | |||
6750 | ||||
6751 | state->switch_state.test_var = new(ctx) ir_variable(test_val->type, | |||
6752 | "switch_test_tmp", | |||
6753 | ir_var_temporary); | |||
6754 | ir_dereference_variable *deref_test_var = | |||
6755 | new(ctx) ir_dereference_variable(state->switch_state.test_var); | |||
6756 | ||||
6757 | instructions->push_tail(state->switch_state.test_var); | |||
6758 | instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val)); | |||
6759 | } | |||
6760 | ||||
6761 | ||||
6762 | ir_rvalue * | |||
6763 | ast_switch_body::hir(exec_list *instructions, | |||
6764 | struct _mesa_glsl_parse_state *state) | |||
6765 | { | |||
6766 | if (stmts != NULL__null) | |||
6767 | stmts->hir(instructions, state); | |||
6768 | ||||
6769 | /* Switch bodies do not have r-values. */ | |||
6770 | return NULL__null; | |||
6771 | } | |||
6772 | ||||
6773 | ir_rvalue * | |||
6774 | ast_case_statement_list::hir(exec_list *instructions, | |||
6775 | struct _mesa_glsl_parse_state *state) | |||
6776 | { | |||
6777 | exec_list default_case, after_default, tmp; | |||
6778 | ||||
6779 | foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)for (ast_case_statement * case_stmt = (!exec_node_is_tail_sentinel ((& this->cases)->head_sentinel.next) ? ((ast_case_statement *) (((uintptr_t) (& this->cases)->head_sentinel.next ) - (((char *) &((ast_case_statement *) (& this->cases )->head_sentinel.next)->link) - ((char *) (& this-> cases)->head_sentinel.next)))) : __null); (case_stmt) != __null ; (case_stmt) = (!exec_node_is_tail_sentinel((case_stmt)-> link.next) ? ((ast_case_statement *) (((uintptr_t) (case_stmt )->link.next) - (((char *) &((ast_case_statement *) (case_stmt )->link.next)->link) - ((char *) (case_stmt)->link.next )))) : __null)) { | |||
6780 | case_stmt->hir(&tmp, state); | |||
6781 | ||||
6782 | /* Default case. */ | |||
6783 | if (state->switch_state.previous_default && default_case.is_empty()) { | |||
6784 | default_case.append_list(&tmp); | |||
6785 | continue; | |||
6786 | } | |||
6787 | ||||
6788 | /* If default case found, append 'after_default' list. */ | |||
6789 | if (!default_case.is_empty()) | |||
6790 | after_default.append_list(&tmp); | |||
6791 | else | |||
6792 | instructions->append_list(&tmp); | |||
6793 | } | |||
6794 | ||||
6795 | /* Handle the default case. This is done here because default might not be | |||
6796 | * the last case. We need to add checks against following cases first to see | |||
6797 | * if default should be chosen or not. | |||
6798 | */ | |||
6799 | if (!default_case.is_empty()) { | |||
6800 | ir_factory body(instructions, state); | |||
6801 | ||||
6802 | ir_expression *cmp = NULL__null; | |||
6803 | ||||
6804 | hash_table_foreach(state->switch_state.labels_ht, entry)for (struct hash_entry *entry = _mesa_hash_table_next_entry(state ->switch_state.labels_ht, __null); entry != __null; entry = _mesa_hash_table_next_entry(state->switch_state.labels_ht , entry)) { | |||
6805 | const struct case_label *const l = (struct case_label *) entry->data; | |||
6806 | ||||
6807 | /* If the switch init-value is the value of one of the labels that | |||
6808 | * occurs after the default case, disable execution of the default | |||
6809 | * case. | |||
6810 | */ | |||
6811 | if (l->after_default) { | |||
6812 | ir_constant *const cnst = | |||
6813 | state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT | |||
6814 | ? body.constant(unsigned(l->value)) | |||
6815 | : body.constant(int(l->value)); | |||
6816 | ||||
6817 | cmp = cmp == NULL__null | |||
6818 | ? equal(cnst, state->switch_state.test_var) | |||
6819 | : logic_or(cmp, equal(cnst, state->switch_state.test_var)); | |||
6820 | } | |||
6821 | } | |||
6822 | ||||
6823 | if (cmp != NULL__null) | |||
6824 | body.emit(assign(state->switch_state.run_default, logic_not(cmp))); | |||
6825 | else | |||
6826 | body.emit(assign(state->switch_state.run_default, body.constant(true))); | |||
6827 | ||||
6828 | /* Append default case and all cases after it. */ | |||
6829 | instructions->append_list(&default_case); | |||
6830 | instructions->append_list(&after_default); | |||
6831 | } | |||
6832 | ||||
6833 | /* Case statements do not have r-values. */ | |||
6834 | return NULL__null; | |||
6835 | } | |||
6836 | ||||
6837 | ir_rvalue * | |||
6838 | ast_case_statement::hir(exec_list *instructions, | |||
6839 | struct _mesa_glsl_parse_state *state) | |||
6840 | { | |||
6841 | labels->hir(instructions, state); | |||
6842 | ||||
6843 | /* Conditionally set fallthru state based on break state. */ | |||
6844 | ir_factory reset_fallthru(instructions, state); | |||
6845 | reset_fallthru.emit(assign(state->switch_state.is_fallthru_var, | |||
6846 | logic_and(state->switch_state.is_fallthru_var, | |||
6847 | logic_not(state->switch_state.is_break_var)))); | |||
6848 | ||||
6849 | /* Guard case statements depending on fallthru state. */ | |||
6850 | ir_dereference_variable *const deref_fallthru_guard = | |||
6851 | new(state) ir_dereference_variable(state->switch_state.is_fallthru_var); | |||
6852 | ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard); | |||
6853 | ||||
6854 | foreach_list_typed (ast_node, stmt, link, & this->stmts)for (ast_node * stmt = (!exec_node_is_tail_sentinel((& this ->stmts)->head_sentinel.next) ? ((ast_node *) (((uintptr_t ) (& this->stmts)->head_sentinel.next) - (((char *) &((ast_node *) (& this->stmts)->head_sentinel. next)->link) - ((char *) (& this->stmts)->head_sentinel .next)))) : __null); (stmt) != __null; (stmt) = (!exec_node_is_tail_sentinel ((stmt)->link.next) ? ((ast_node *) (((uintptr_t) (stmt)-> link.next) - (((char *) &((ast_node *) (stmt)->link.next )->link) - ((char *) (stmt)->link.next)))) : __null)) | |||
6855 | stmt->hir(& test_fallthru->then_instructions, state); | |||
6856 | ||||
6857 | instructions->push_tail(test_fallthru); | |||
6858 | ||||
6859 | /* Case statements do not have r-values. */ | |||
6860 | return NULL__null; | |||
6861 | } | |||
6862 | ||||
6863 | ||||
6864 | ir_rvalue * | |||
6865 | ast_case_label_list::hir(exec_list *instructions, | |||
6866 | struct _mesa_glsl_parse_state *state) | |||
6867 | { | |||
6868 | foreach_list_typed (ast_case_label, label, link, & this->labels)for (ast_case_label * label = (!exec_node_is_tail_sentinel((& this->labels)->head_sentinel.next) ? ((ast_case_label * ) (((uintptr_t) (& this->labels)->head_sentinel.next ) - (((char *) &((ast_case_label *) (& this->labels )->head_sentinel.next)->link) - ((char *) (& this-> labels)->head_sentinel.next)))) : __null); (label) != __null ; (label) = (!exec_node_is_tail_sentinel((label)->link.next ) ? ((ast_case_label *) (((uintptr_t) (label)->link.next) - (((char *) &((ast_case_label *) (label)->link.next)-> link) - ((char *) (label)->link.next)))) : __null)) | |||
6869 | label->hir(instructions, state); | |||
6870 | ||||
6871 | /* Case labels do not have r-values. */ | |||
6872 | return NULL__null; | |||
6873 | } | |||
6874 | ||||
6875 | ir_rvalue * | |||
6876 | ast_case_label::hir(exec_list *instructions, | |||
6877 | struct _mesa_glsl_parse_state *state) | |||
6878 | { | |||
6879 | ir_factory body(instructions, state); | |||
6880 | ||||
6881 | ir_variable *const fallthru_var = state->switch_state.is_fallthru_var; | |||
6882 | ||||
6883 | /* If not default case, ... */ | |||
6884 | if (this->test_value != NULL__null) { | |||
6885 | /* Conditionally set fallthru state based on | |||
6886 | * comparison of cached test expression value to case label. | |||
6887 | */ | |||
6888 | ir_rvalue *const label_rval = this->test_value->hir(instructions, state); | |||
6889 | ir_constant *label_const = | |||
6890 | label_rval->constant_expression_value(body.mem_ctx); | |||
6891 | ||||
6892 | if (!label_const) { | |||
6893 | YYLTYPE loc = this->test_value->get_location(); | |||
6894 | ||||
6895 | _mesa_glsl_error(& loc, state, | |||
6896 | "switch statement case label must be a " | |||
6897 | "constant expression"); | |||
6898 | ||||
6899 | /* Stuff a dummy value in to allow processing to continue. */ | |||
6900 | label_const = body.constant(0); | |||
6901 | } else { | |||
6902 | hash_entry *entry = | |||
6903 | _mesa_hash_table_search(state->switch_state.labels_ht, | |||
6904 | &label_const->value.u[0]); | |||
6905 | ||||
6906 | if (entry) { | |||
6907 | const struct case_label *const l = | |||
6908 | (struct case_label *) entry->data; | |||
6909 | const ast_expression *const previous_label = l->ast; | |||
6910 | YYLTYPE loc = this->test_value->get_location(); | |||
6911 | ||||
6912 | _mesa_glsl_error(& loc, state, "duplicate case value"); | |||
6913 | ||||
6914 | loc = previous_label->get_location(); | |||
6915 | _mesa_glsl_error(& loc, state, "this is the previous case label"); | |||
6916 | } else { | |||
6917 | struct case_label *l = ralloc(state->switch_state.labels_ht,((struct case_label *) ralloc_size(state->switch_state.labels_ht , sizeof(struct case_label))) | |||
6918 | struct case_label)((struct case_label *) ralloc_size(state->switch_state.labels_ht , sizeof(struct case_label))); | |||
6919 | ||||
6920 | l->value = label_const->value.u[0]; | |||
6921 | l->after_default = state->switch_state.previous_default != NULL__null; | |||
6922 | l->ast = this->test_value; | |||
6923 | ||||
6924 | _mesa_hash_table_insert(state->switch_state.labels_ht, | |||
6925 | &label_const->value.u[0], | |||
6926 | l); | |||
6927 | } | |||
6928 | } | |||
6929 | ||||
6930 | /* Create an r-value version of the ir_constant label here (after we may | |||
6931 | * have created a fake one in error cases) that can be passed to | |||
6932 | * apply_implicit_conversion below. | |||
6933 | */ | |||
6934 | ir_rvalue *label = label_const; | |||
6935 | ||||
6936 | ir_rvalue *deref_test_var = | |||
6937 | new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var); | |||
6938 | ||||
6939 | /* | |||
6940 | * From GLSL 4.40 specification section 6.2 ("Selection"): | |||
6941 | * | |||
6942 | * "The type of the init-expression value in a switch statement must | |||
6943 | * be a scalar int or uint. The type of the constant-expression value | |||
6944 | * in a case label also must be a scalar int or uint. When any pair | |||
6945 | * of these values is tested for "equal value" and the types do not | |||
6946 | * match, an implicit conversion will be done to convert the int to a | |||
6947 | * uint (see section 4.1.10 “Implicit Conversions”) before the compare | |||
6948 | * is done." | |||
6949 | */ | |||
6950 | if (label->type != state->switch_state.test_var->type) { | |||
6951 | YYLTYPE loc = this->test_value->get_location(); | |||
6952 | ||||
6953 | const glsl_type *type_a = label->type; | |||
6954 | const glsl_type *type_b = state->switch_state.test_var->type; | |||
6955 | ||||
6956 | /* Check if int->uint implicit conversion is supported. */ | |||
6957 | bool integer_conversion_supported = | |||
6958 | glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type, | |||
6959 | state); | |||
6960 | ||||
6961 | if ((!type_a->is_integer_32() || !type_b->is_integer_32()) || | |||
6962 | !integer_conversion_supported) { | |||
6963 | _mesa_glsl_error(&loc, state, "type mismatch with switch " | |||
6964 | "init-expression and case label (%s != %s)", | |||
6965 | type_a->name, type_b->name); | |||
6966 | } else { | |||
6967 | /* Conversion of the case label. */ | |||
6968 | if (type_a->base_type == GLSL_TYPE_INT) { | |||
6969 | if (!apply_implicit_conversion(glsl_type::uint_type, | |||
6970 | label, state)) | |||
6971 | _mesa_glsl_error(&loc, state, "implicit type conversion error"); | |||
6972 | } else { | |||
6973 | /* Conversion of the init-expression value. */ | |||
6974 | if (!apply_implicit_conversion(glsl_type::uint_type, | |||
6975 | deref_test_var, state)) | |||
6976 | _mesa_glsl_error(&loc, state, "implicit type conversion error"); | |||
6977 | } | |||
6978 | } | |||
6979 | ||||
6980 | /* If the implicit conversion was allowed, the types will already be | |||
6981 | * the same. If the implicit conversion wasn't allowed, smash the | |||
6982 | * type of the label anyway. This will prevent the expression | |||
6983 | * constructor (below) from failing an assertion. | |||
6984 | */ | |||
6985 | label->type = deref_test_var->type; | |||
6986 | } | |||
6987 | ||||
6988 | body.emit(assign(fallthru_var, | |||
6989 | logic_or(fallthru_var, equal(label, deref_test_var)))); | |||
6990 | } else { /* default case */ | |||
6991 | if (state->switch_state.previous_default) { | |||
6992 | YYLTYPE loc = this->get_location(); | |||
6993 | _mesa_glsl_error(& loc, state, | |||
6994 | "multiple default labels in one switch"); | |||
6995 | ||||
6996 | loc = state->switch_state.previous_default->get_location(); | |||
6997 | _mesa_glsl_error(& loc, state, "this is the first default label"); | |||
6998 | } | |||
6999 | state->switch_state.previous_default = this; | |||
7000 | ||||
7001 | /* Set fallthru condition on 'run_default' bool. */ | |||
7002 | body.emit(assign(fallthru_var, | |||
7003 | logic_or(fallthru_var, | |||
7004 | state->switch_state.run_default))); | |||
7005 | } | |||
7006 | ||||
7007 | /* Case statements do not have r-values. */ | |||
7008 | return NULL__null; | |||
7009 | } | |||
7010 | ||||
7011 | void | |||
7012 | ast_iteration_statement::condition_to_hir(exec_list *instructions, | |||
7013 | struct _mesa_glsl_parse_state *state) | |||
7014 | { | |||
7015 | void *ctx = state; | |||
7016 | ||||
7017 | if (condition != NULL__null) { | |||
7018 | ir_rvalue *const cond = | |||
7019 | condition->hir(instructions, state); | |||
7020 | ||||
7021 | if ((cond == NULL__null) | |||
7022 | || !cond->type->is_boolean() || !cond->type->is_scalar()) { | |||
7023 | YYLTYPE loc = condition->get_location(); | |||
7024 | ||||
7025 | _mesa_glsl_error(& loc, state, | |||
7026 | "loop condition must be scalar boolean"); | |||
7027 | } else { | |||
7028 | /* As the first code in the loop body, generate a block that looks | |||
7029 | * like 'if (!condition) break;' as the loop termination condition. | |||
7030 | */ | |||
7031 | ir_rvalue *const not_cond = | |||
7032 | new(ctx) ir_expression(ir_unop_logic_not, cond); | |||
7033 | ||||
7034 | ir_if *const if_stmt = new(ctx) ir_if(not_cond); | |||
7035 | ||||
7036 | ir_jump *const break_stmt = | |||
7037 | new(ctx) ir_loop_jump(ir_loop_jump::jump_break); | |||
7038 | ||||
7039 | if_stmt->then_instructions.push_tail(break_stmt); | |||
7040 | instructions->push_tail(if_stmt); | |||
7041 | } | |||
7042 | } | |||
7043 | } | |||
7044 | ||||
7045 | ||||
7046 | ir_rvalue * | |||
7047 | ast_iteration_statement::hir(exec_list *instructions, | |||
7048 | struct _mesa_glsl_parse_state *state) | |||
7049 | { | |||
7050 | void *ctx = state; | |||
7051 | ||||
7052 | /* For-loops and while-loops start a new scope, but do-while loops do not. | |||
7053 | */ | |||
7054 | if (mode != ast_do_while) | |||
7055 | state->symbols->push_scope(); | |||
7056 | ||||
7057 | if (init_statement != NULL__null) | |||
7058 | init_statement->hir(instructions, state); | |||
7059 | ||||
7060 | ir_loop *const stmt = new(ctx) ir_loop(); | |||
7061 | instructions->push_tail(stmt); | |||
7062 | ||||
7063 | /* Track the current loop nesting. */ | |||
7064 | ast_iteration_statement *nesting_ast = state->loop_nesting_ast; | |||
7065 | ||||
7066 | state->loop_nesting_ast = this; | |||
7067 | ||||
7068 | /* Likewise, indicate that following code is closest to a loop, | |||
7069 | * NOT closest to a switch. | |||
7070 | */ | |||
7071 | bool saved_is_switch_innermost = state->switch_state.is_switch_innermost; | |||
7072 | state->switch_state.is_switch_innermost = false; | |||
7073 | ||||
7074 | if (mode != ast_do_while) | |||
7075 | condition_to_hir(&stmt->body_instructions, state); | |||
7076 | ||||
7077 | if (body != NULL__null) | |||
7078 | body->hir(& stmt->body_instructions, state); | |||
7079 | ||||
7080 | if (rest_expression != NULL__null) | |||
7081 | rest_expression->hir(& stmt->body_instructions, state); | |||
7082 | ||||
7083 | if (mode == ast_do_while) | |||
7084 | condition_to_hir(&stmt->body_instructions, state); | |||
7085 | ||||
7086 | if (mode != ast_do_while) | |||
7087 | state->symbols->pop_scope(); | |||
7088 | ||||
7089 | /* Restore previous nesting before returning. */ | |||
7090 | state->loop_nesting_ast = nesting_ast; | |||
7091 | state->switch_state.is_switch_innermost = saved_is_switch_innermost; | |||
7092 | ||||
7093 | /* Loops do not have r-values. | |||
7094 | */ | |||
7095 | return NULL__null; | |||
7096 | } | |||
7097 | ||||
7098 | ||||
7099 | /** | |||
7100 | * Determine if the given type is valid for establishing a default precision | |||
7101 | * qualifier. | |||
7102 | * | |||
7103 | * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"): | |||
7104 | * | |||
7105 | * "The precision statement | |||
7106 | * | |||
7107 | * precision precision-qualifier type; | |||
7108 | * | |||
7109 | * can be used to establish a default precision qualifier. The type field | |||
7110 | * can be either int or float or any of the sampler types, and the | |||
7111 | * precision-qualifier can be lowp, mediump, or highp." | |||
7112 | * | |||
7113 | * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision | |||
7114 | * qualifiers on sampler types, but this seems like an oversight (since the | |||
7115 | * intention of including these in GLSL 1.30 is to allow compatibility with ES | |||
7116 | * shaders). So we allow int, float, and all sampler types regardless of GLSL | |||
7117 | * version. | |||
7118 | */ | |||
7119 | static bool | |||
7120 | is_valid_default_precision_type(const struct glsl_type *const type) | |||
7121 | { | |||
7122 | if (type == NULL__null) | |||
7123 | return false; | |||
7124 | ||||
7125 | switch (type->base_type) { | |||
7126 | case GLSL_TYPE_INT: | |||
7127 | case GLSL_TYPE_FLOAT: | |||
7128 | /* "int" and "float" are valid, but vectors and matrices are not. */ | |||
7129 | return type->vector_elements == 1 && type->matrix_columns == 1; | |||
7130 | case GLSL_TYPE_SAMPLER: | |||
7131 | case GLSL_TYPE_IMAGE: | |||
7132 | case GLSL_TYPE_ATOMIC_UINT: | |||
7133 | return true; | |||
7134 | default: | |||
7135 | return false; | |||
7136 | } | |||
7137 | } | |||
7138 | ||||
7139 | ||||
7140 | ir_rvalue * | |||
7141 | ast_type_specifier::hir(exec_list *instructions, | |||
7142 | struct _mesa_glsl_parse_state *state) | |||
7143 | { | |||
7144 | if (this->default_precision == ast_precision_none && this->structure == NULL__null) | |||
7145 | return NULL__null; | |||
7146 | ||||
7147 | YYLTYPE loc = this->get_location(); | |||
7148 | ||||
7149 | /* If this is a precision statement, check that the type to which it is | |||
7150 | * applied is either float or int. | |||
7151 | * | |||
7152 | * From section 4.5.3 of the GLSL 1.30 spec: | |||
7153 | * "The precision statement | |||
7154 | * precision precision-qualifier type; | |||
7155 | * can be used to establish a default precision qualifier. The type | |||
7156 | * field can be either int or float [...]. Any other types or | |||
7157 | * qualifiers will result in an error. | |||
7158 | */ | |||
7159 | if (this->default_precision != ast_precision_none) { | |||
7160 | if (!state->check_precision_qualifiers_allowed(&loc)) | |||
7161 | return NULL__null; | |||
7162 | ||||
7163 | if (this->structure != NULL__null) { | |||
7164 | _mesa_glsl_error(&loc, state, | |||
7165 | "precision qualifiers do not apply to structures"); | |||
7166 | return NULL__null; | |||
7167 | } | |||
7168 | ||||
7169 | if (this->array_specifier != NULL__null) { | |||
7170 | _mesa_glsl_error(&loc, state, | |||
7171 | "default precision statements do not apply to " | |||
7172 | "arrays"); | |||
7173 | return NULL__null; | |||
7174 | } | |||
7175 | ||||
7176 | const struct glsl_type *const type = | |||
7177 | state->symbols->get_type(this->type_name); | |||
7178 | if (!is_valid_default_precision_type(type)) { | |||
7179 | _mesa_glsl_error(&loc, state, | |||
7180 | "default precision statements apply only to " | |||
7181 | "float, int, and opaque types"); | |||
7182 | return NULL__null; | |||
7183 | } | |||
7184 | ||||
7185 | if (state->es_shader) { | |||
7186 | /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00 | |||
7187 | * spec says: | |||
7188 | * | |||
7189 | * "Non-precision qualified declarations will use the precision | |||
7190 | * qualifier specified in the most recent precision statement | |||
7191 | * that is still in scope. The precision statement has the same | |||
7192 | * scoping rules as variable declarations. If it is declared | |||
7193 | * inside a compound statement, its effect stops at the end of | |||
7194 | * the innermost statement it was declared in. Precision | |||
7195 | * statements in nested scopes override precision statements in | |||
7196 | * outer scopes. Multiple precision statements for the same basic | |||
7197 | * type can appear inside the same scope, with later statements | |||
7198 | * overriding earlier statements within that scope." | |||
7199 | * | |||
7200 | * Default precision specifications follow the same scope rules as | |||
7201 | * variables. So, we can track the state of the default precision | |||
7202 | * qualifiers in the symbol table, and the rules will just work. This | |||
7203 | * is a slight abuse of the symbol table, but it has the semantics | |||
7204 | * that we want. | |||
7205 | */ | |||
7206 | state->symbols->add_default_precision_qualifier(this->type_name, | |||
7207 | this->default_precision); | |||
7208 | } | |||
7209 | ||||
7210 | { | |||
7211 | void *ctx = state; | |||
7212 | ||||
7213 | const char* precision_type = NULL__null; | |||
7214 | switch (this->default_precision) { | |||
7215 | case GLSL_PRECISION_HIGH: | |||
7216 | precision_type = "highp"; | |||
7217 | break; | |||
7218 | case GLSL_PRECISION_MEDIUM: | |||
7219 | precision_type = "mediump"; | |||
7220 | break; | |||
7221 | case GLSL_PRECISION_LOW: | |||
7222 | precision_type = "lowp"; | |||
7223 | break; | |||
7224 | case GLSL_PRECISION_NONE: | |||
7225 | precision_type = ""; | |||
7226 | break; | |||
7227 | } | |||
7228 | ||||
7229 | char* precision_statement = ralloc_asprintf(ctx, "precision %s %s", precision_type, this->type_name); | |||
7230 | ir_precision_statement *const stmt = new(ctx) ir_precision_statement(precision_statement); | |||
7231 | ||||
7232 | instructions->push_head(stmt); | |||
7233 | } | |||
7234 | ||||
7235 | return NULL__null; | |||
7236 | } | |||
7237 | ||||
7238 | /* _mesa_ast_set_aggregate_type() sets the <structure> field so that | |||
7239 | * process_record_constructor() can do type-checking on C-style initializer | |||
7240 | * expressions of structs, but ast_struct_specifier should only be translated | |||
7241 | * to HIR if it is declaring the type of a structure. | |||
7242 | * | |||
7243 | * The ->is_declaration field is false for initializers of variables | |||
7244 | * declared separately from the struct's type definition. | |||
7245 | * | |||
7246 | * struct S { ... }; (is_declaration = true) | |||
7247 | * struct T { ... } t = { ... }; (is_declaration = true) | |||
7248 | * S s = { ... }; (is_declaration = false) | |||
7249 | */ | |||
7250 | if (this->structure != NULL__null && this->structure->is_declaration) | |||
7251 | return this->structure->hir(instructions, state); | |||
7252 | ||||
7253 | return NULL__null; | |||
7254 | } | |||
7255 | ||||
7256 | ||||
7257 | /** | |||
7258 | * Process a structure or interface block tree into an array of structure fields | |||
7259 | * | |||
7260 | * After parsing, where there are some syntax differnces, structures and | |||
7261 | * interface blocks are almost identical. They are similar enough that the | |||
7262 | * AST for each can be processed the same way into a set of | |||
7263 | * \c glsl_struct_field to describe the members. | |||
7264 | * | |||
7265 | * If we're processing an interface block, var_mode should be the type of the | |||
7266 | * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or | |||
7267 | * ir_var_shader_storage). If we're processing a structure, var_mode should be | |||
7268 | * ir_var_auto. | |||
7269 | * | |||
7270 | * \return | |||
7271 | * The number of fields processed. A pointer to the array structure fields is | |||
7272 | * stored in \c *fields_ret. | |||
7273 | */ | |||
7274 | static unsigned | |||
7275 | ast_process_struct_or_iface_block_members(exec_list *instructions, | |||
7276 | struct _mesa_glsl_parse_state *state, | |||
7277 | exec_list *declarations, | |||
7278 | glsl_struct_field **fields_ret, | |||
7279 | bool is_interface, | |||
7280 | enum glsl_matrix_layout matrix_layout, | |||
7281 | bool allow_reserved_names, | |||
7282 | ir_variable_mode var_mode, | |||
7283 | ast_type_qualifier *layout, | |||
7284 | unsigned block_stream, | |||
7285 | unsigned block_xfb_buffer, | |||
7286 | unsigned block_xfb_offset, | |||
7287 | unsigned expl_location, | |||
7288 | unsigned expl_align) | |||
7289 | { | |||
7290 | unsigned decl_count = 0; | |||
7291 | unsigned next_offset = 0; | |||
7292 | ||||
7293 | /* Make an initial pass over the list of fields to determine how | |||
7294 | * many there are. Each element in this list is an ast_declarator_list. | |||
7295 | * This means that we actually need to count the number of elements in the | |||
7296 | * 'declarations' list in each of the elements. | |||
7297 | */ | |||
7298 | foreach_list_typed (ast_declarator_list, decl_list, link, declarations)for (ast_declarator_list * decl_list = (!exec_node_is_tail_sentinel ((declarations)->head_sentinel.next) ? ((ast_declarator_list *) (((uintptr_t) (declarations)->head_sentinel.next) - (( (char *) &((ast_declarator_list *) (declarations)->head_sentinel .next)->link) - ((char *) (declarations)->head_sentinel .next)))) : __null); (decl_list) != __null; (decl_list) = (!exec_node_is_tail_sentinel ((decl_list)->link.next) ? ((ast_declarator_list *) (((uintptr_t ) (decl_list)->link.next) - (((char *) &((ast_declarator_list *) (decl_list)->link.next)->link) - ((char *) (decl_list )->link.next)))) : __null)) { | |||
7299 | decl_count += decl_list->declarations.length(); | |||
7300 | } | |||
7301 | ||||
7302 | /* Allocate storage for the fields and process the field | |||
7303 | * declarations. As the declarations are processed, try to also convert | |||
7304 | * the types to HIR. This ensures that structure definitions embedded in | |||
7305 | * other structure definitions or in interface blocks are processed. | |||
7306 | */ | |||
7307 | glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,((glsl_struct_field *) rzalloc_array_size(state, sizeof(glsl_struct_field ), decl_count)) | |||
7308 | decl_count)((glsl_struct_field *) rzalloc_array_size(state, sizeof(glsl_struct_field ), decl_count)); | |||
7309 | ||||
7310 | bool first_member = true; | |||
7311 | bool first_member_has_explicit_location = false; | |||
7312 | ||||
7313 | unsigned i = 0; | |||
7314 | foreach_list_typed (ast_declarator_list, decl_list, link, declarations)for (ast_declarator_list * decl_list = (!exec_node_is_tail_sentinel ((declarations)->head_sentinel.next) ? ((ast_declarator_list *) (((uintptr_t) (declarations)->head_sentinel.next) - (( (char *) &((ast_declarator_list *) (declarations)->head_sentinel .next)->link) - ((char *) (declarations)->head_sentinel .next)))) : __null); (decl_list) != __null; (decl_list) = (!exec_node_is_tail_sentinel ((decl_list)->link.next) ? ((ast_declarator_list *) (((uintptr_t ) (decl_list)->link.next) - (((char *) &((ast_declarator_list *) (decl_list)->link.next)->link) - ((char *) (decl_list )->link.next)))) : __null)) { | |||
7315 | const char *type_name; | |||
7316 | YYLTYPE loc = decl_list->get_location(); | |||
7317 | ||||
7318 | decl_list->type->specifier->hir(instructions, state); | |||
7319 | ||||
7320 | /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says: | |||
7321 | * | |||
7322 | * "Anonymous structures are not supported; so embedded structures | |||
7323 | * must have a declarator. A name given to an embedded struct is | |||
7324 | * scoped at the same level as the struct it is embedded in." | |||
7325 | * | |||
7326 | * The same section of the GLSL 1.20 spec says: | |||
7327 | * | |||
7328 | * "Anonymous structures are not supported. Embedded structures are | |||
7329 | * not supported." | |||
7330 | * | |||
7331 | * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow | |||
7332 | * embedded structures in 1.10 only. | |||
7333 | */ | |||
7334 | if (state->language_version != 110 && | |||
7335 | decl_list->type->specifier->structure != NULL__null) | |||
7336 | _mesa_glsl_error(&loc, state, | |||
7337 | "embedded structure declarations are not allowed"); | |||
7338 | ||||
7339 | const glsl_type *decl_type = | |||
7340 | decl_list->type->glsl_type(& type_name, state); | |||
7341 | ||||
7342 | const struct ast_type_qualifier *const qual = | |||
7343 | &decl_list->type->qualifier; | |||
7344 | ||||
7345 | /* From section 4.3.9 of the GLSL 4.40 spec: | |||
7346 | * | |||
7347 | * "[In interface blocks] opaque types are not allowed." | |||
7348 | * | |||
7349 | * It should be impossible for decl_type to be NULL here. Cases that | |||
7350 | * might naturally lead to decl_type being NULL, especially for the | |||
7351 | * is_interface case, will have resulted in compilation having | |||
7352 | * already halted due to a syntax error. | |||
7353 | */ | |||
7354 | assert(decl_type)(static_cast <bool> (decl_type) ? void (0) : __assert_fail ("decl_type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
7355 | ||||
7356 | if (is_interface) { | |||
7357 | /* From section 4.3.7 of the ARB_bindless_texture spec: | |||
7358 | * | |||
7359 | * "(remove the following bullet from the last list on p. 39, | |||
7360 | * thereby permitting sampler types in interface blocks; image | |||
7361 | * types are also permitted in blocks by this extension)" | |||
7362 | * | |||
7363 | * * sampler types are not allowed | |||
7364 | */ | |||
7365 | if (decl_type->contains_atomic() || | |||
7366 | (!state->has_bindless() && decl_type->contains_opaque())) { | |||
7367 | _mesa_glsl_error(&loc, state, "uniform/buffer in non-default " | |||
7368 | "interface block contains %s variable", | |||
7369 | state->has_bindless() ? "atomic" : "opaque"); | |||
7370 | } | |||
7371 | } else { | |||
7372 | if (decl_type->contains_atomic()) { | |||
7373 | /* From section 4.1.7.3 of the GLSL 4.40 spec: | |||
7374 | * | |||
7375 | * "Members of structures cannot be declared as atomic counter | |||
7376 | * types." | |||
7377 | */ | |||
7378 | _mesa_glsl_error(&loc, state, "atomic counter in structure"); | |||
7379 | } | |||
7380 | ||||
7381 | if (!state->has_bindless() && decl_type->contains_image()) { | |||
7382 | /* FINISHME: Same problem as with atomic counters. | |||
7383 | * FINISHME: Request clarification from Khronos and add | |||
7384 | * FINISHME: spec quotation here. | |||
7385 | */ | |||
7386 | _mesa_glsl_error(&loc, state, "image in structure"); | |||
7387 | } | |||
7388 | } | |||
7389 | ||||
7390 | if (qual->flags.q.explicit_binding) { | |||
7391 | _mesa_glsl_error(&loc, state, | |||
7392 | "binding layout qualifier cannot be applied " | |||
7393 | "to struct or interface block members"); | |||
7394 | } | |||
7395 | ||||
7396 | if (is_interface) { | |||
7397 | if (!first_member) { | |||
7398 | if (!layout->flags.q.explicit_location && | |||
7399 | ((first_member_has_explicit_location && | |||
7400 | !qual->flags.q.explicit_location) || | |||
7401 | (!first_member_has_explicit_location && | |||
7402 | qual->flags.q.explicit_location))) { | |||
7403 | _mesa_glsl_error(&loc, state, | |||
7404 | "when block-level location layout qualifier " | |||
7405 | "is not supplied either all members must " | |||
7406 | "have a location layout qualifier or all " | |||
7407 | "members must not have a location layout " | |||
7408 | "qualifier"); | |||
7409 | } | |||
7410 | } else { | |||
7411 | first_member = false; | |||
7412 | first_member_has_explicit_location = | |||
7413 | qual->flags.q.explicit_location; | |||
7414 | } | |||
7415 | } | |||
7416 | ||||
7417 | if (qual->flags.q.std140 || | |||
7418 | qual->flags.q.std430 || | |||
7419 | qual->flags.q.packed || | |||
7420 | qual->flags.q.shared) { | |||
7421 | _mesa_glsl_error(&loc, state, | |||
7422 | "uniform/shader storage block layout qualifiers " | |||
7423 | "std140, std430, packed, and shared can only be " | |||
7424 | "applied to uniform/shader storage blocks, not " | |||
7425 | "members"); | |||
7426 | } | |||
7427 | ||||
7428 | if (qual->flags.q.constant) { | |||
7429 | _mesa_glsl_error(&loc, state, | |||
7430 | "const storage qualifier cannot be applied " | |||
7431 | "to struct or interface block members"); | |||
7432 | } | |||
7433 | ||||
7434 | validate_memory_qualifier_for_type(state, &loc, qual, decl_type); | |||
7435 | validate_image_format_qualifier_for_type(state, &loc, qual, decl_type); | |||
7436 | ||||
7437 | /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec: | |||
7438 | * | |||
7439 | * "A block member may be declared with a stream identifier, but | |||
7440 | * the specified stream must match the stream associated with the | |||
7441 | * containing block." | |||
7442 | */ | |||
7443 | if (qual->flags.q.explicit_stream) { | |||
7444 | unsigned qual_stream; | |||
7445 | if (process_qualifier_constant(state, &loc, "stream", | |||
7446 | qual->stream, &qual_stream) && | |||
7447 | qual_stream != block_stream) { | |||
7448 | _mesa_glsl_error(&loc, state, "stream layout qualifier on " | |||
7449 | "interface block member does not match " | |||
7450 | "the interface block (%u vs %u)", qual_stream, | |||
7451 | block_stream); | |||
7452 | } | |||
7453 | } | |||
7454 | ||||
7455 | int xfb_buffer; | |||
7456 | unsigned explicit_xfb_buffer = 0; | |||
7457 | if (qual->flags.q.explicit_xfb_buffer) { | |||
7458 | unsigned qual_xfb_buffer; | |||
7459 | if (process_qualifier_constant(state, &loc, "xfb_buffer", | |||
7460 | qual->xfb_buffer, &qual_xfb_buffer)) { | |||
7461 | explicit_xfb_buffer = 1; | |||
7462 | if (qual_xfb_buffer != block_xfb_buffer) | |||
7463 | _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on " | |||
7464 | "interface block member does not match " | |||
7465 | "the interface block (%u vs %u)", | |||
7466 | qual_xfb_buffer, block_xfb_buffer); | |||
7467 | } | |||
7468 | xfb_buffer = (int) qual_xfb_buffer; | |||
7469 | } else { | |||
7470 | if (layout) | |||
7471 | explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer; | |||
7472 | xfb_buffer = (int) block_xfb_buffer; | |||
7473 | } | |||
7474 | ||||
7475 | int xfb_stride = -1; | |||
7476 | if (qual->flags.q.explicit_xfb_stride) { | |||
7477 | unsigned qual_xfb_stride; | |||
7478 | if (process_qualifier_constant(state, &loc, "xfb_stride", | |||
7479 | qual->xfb_stride, &qual_xfb_stride)) { | |||
7480 | xfb_stride = (int) qual_xfb_stride; | |||
7481 | } | |||
7482 | } | |||
7483 | ||||
7484 | if (qual->flags.q.uniform && qual->has_interpolation()) { | |||
7485 | _mesa_glsl_error(&loc, state, | |||
7486 | "interpolation qualifiers cannot be used " | |||
7487 | "with uniform interface blocks"); | |||
7488 | } | |||
7489 | ||||
7490 | if ((qual->flags.q.uniform || !is_interface) && | |||
7491 | qual->has_auxiliary_storage()) { | |||
7492 | _mesa_glsl_error(&loc, state, | |||
7493 | "auxiliary storage qualifiers cannot be used " | |||
7494 | "in uniform blocks or structures."); | |||
7495 | } | |||
7496 | ||||
7497 | if (qual->flags.q.row_major || qual->flags.q.column_major) { | |||
7498 | if (!qual->flags.q.uniform && !qual->flags.q.buffer) { | |||
7499 | _mesa_glsl_error(&loc, state, | |||
7500 | "row_major and column_major can only be " | |||
7501 | "applied to interface blocks"); | |||
7502 | } else | |||
7503 | validate_matrix_layout_for_type(state, &loc, decl_type, NULL__null); | |||
7504 | } | |||
7505 | ||||
7506 | foreach_list_typed (ast_declaration, decl, link,for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& decl_list->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&decl_list->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&decl_list ->declarations)->head_sentinel.next)->link) - ((char *) (&decl_list->declarations)->head_sentinel.next) ))) : __null); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel ((decl)->link.next) ? ((ast_declaration *) (((uintptr_t) ( decl)->link.next) - (((char *) &((ast_declaration *) ( decl)->link.next)->link) - ((char *) (decl)->link.next )))) : __null)) | |||
7507 | &decl_list->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& decl_list->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&decl_list->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&decl_list ->declarations)->head_sentinel.next)->link) - ((char *) (&decl_list->declarations)->head_sentinel.next) ))) : __null); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel ((decl)->link.next) ? ((ast_declaration *) (((uintptr_t) ( decl)->link.next) - (((char *) &((ast_declaration *) ( decl)->link.next)->link) - ((char *) (decl)->link.next )))) : __null)) { | |||
7508 | YYLTYPE loc = decl->get_location(); | |||
7509 | ||||
7510 | if (!allow_reserved_names) | |||
7511 | validate_identifier(decl->identifier, loc, state); | |||
7512 | ||||
7513 | const struct glsl_type *field_type = | |||
7514 | process_array_type(&loc, decl_type, decl->array_specifier, state); | |||
7515 | validate_array_dimensions(field_type, state, &loc); | |||
7516 | fields[i].type = field_type; | |||
7517 | fields[i].name = decl->identifier; | |||
7518 | fields[i].interpolation = | |||
7519 | interpret_interpolation_qualifier(qual, field_type, | |||
7520 | var_mode, state, &loc); | |||
7521 | fields[i].centroid = qual->flags.q.centroid ? 1 : 0; | |||
7522 | fields[i].sample = qual->flags.q.sample ? 1 : 0; | |||
7523 | fields[i].patch = qual->flags.q.patch ? 1 : 0; | |||
7524 | fields[i].offset = -1; | |||
7525 | fields[i].explicit_xfb_buffer = explicit_xfb_buffer; | |||
7526 | fields[i].xfb_buffer = xfb_buffer; | |||
7527 | fields[i].xfb_stride = xfb_stride; | |||
7528 | ||||
7529 | if (qual->flags.q.explicit_location) { | |||
7530 | unsigned qual_location; | |||
7531 | if (process_qualifier_constant(state, &loc, "location", | |||
7532 | qual->location, &qual_location)) { | |||
7533 | fields[i].location = qual_location + | |||
7534 | (fields[i].patch ? VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)) : VARYING_SLOT_VAR0); | |||
7535 | expl_location = fields[i].location + | |||
7536 | fields[i].type->count_attribute_slots(false); | |||
7537 | } | |||
7538 | } else { | |||
7539 | if (layout && layout->flags.q.explicit_location) { | |||
7540 | fields[i].location = expl_location; | |||
7541 | expl_location += fields[i].type->count_attribute_slots(false); | |||
7542 | } else { | |||
7543 | fields[i].location = -1; | |||
7544 | } | |||
7545 | } | |||
7546 | ||||
7547 | /* Offset can only be used with std430 and std140 layouts an initial | |||
7548 | * value of 0 is used for error detection. | |||
7549 | */ | |||
7550 | unsigned align = 0; | |||
7551 | unsigned size = 0; | |||
7552 | if (layout) { | |||
7553 | bool row_major; | |||
7554 | if (qual->flags.q.row_major || | |||
7555 | matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { | |||
7556 | row_major = true; | |||
7557 | } else { | |||
7558 | row_major = false; | |||
7559 | } | |||
7560 | ||||
7561 | if(layout->flags.q.std140) { | |||
7562 | align = field_type->std140_base_alignment(row_major); | |||
7563 | size = field_type->std140_size(row_major); | |||
7564 | } else if (layout->flags.q.std430) { | |||
7565 | align = field_type->std430_base_alignment(row_major); | |||
7566 | size = field_type->std430_size(row_major); | |||
7567 | } | |||
7568 | } | |||
7569 | ||||
7570 | if (qual->flags.q.explicit_offset) { | |||
7571 | unsigned qual_offset; | |||
7572 | if (process_qualifier_constant(state, &loc, "offset", | |||
7573 | qual->offset, &qual_offset)) { | |||
7574 | if (align != 0 && size != 0) { | |||
7575 | if (next_offset > qual_offset) | |||
7576 | _mesa_glsl_error(&loc, state, "layout qualifier " | |||
7577 | "offset overlaps previous member"); | |||
7578 | ||||
7579 | if (qual_offset % align) { | |||
7580 | _mesa_glsl_error(&loc, state, "layout qualifier offset " | |||
7581 | "must be a multiple of the base " | |||
7582 | "alignment of %s", field_type->name); | |||
7583 | } | |||
7584 | fields[i].offset = qual_offset; | |||
7585 | next_offset = qual_offset + size; | |||
7586 | } else { | |||
7587 | _mesa_glsl_error(&loc, state, "offset can only be used " | |||
7588 | "with std430 and std140 layouts"); | |||
7589 | } | |||
7590 | } | |||
7591 | } | |||
7592 | ||||
7593 | if (qual->flags.q.explicit_align || expl_align != 0) { | |||
7594 | unsigned offset = fields[i].offset != -1 ? fields[i].offset : | |||
7595 | next_offset; | |||
7596 | if (align == 0 || size == 0) { | |||
7597 | _mesa_glsl_error(&loc, state, "align can only be used with " | |||
7598 | "std430 and std140 layouts"); | |||
7599 | } else if (qual->flags.q.explicit_align) { | |||
7600 | unsigned member_align; | |||
7601 | if (process_qualifier_constant(state, &loc, "align", | |||
7602 | qual->align, &member_align)) { | |||
7603 | if (member_align == 0 || | |||
7604 | member_align & (member_align - 1)) { | |||
7605 | _mesa_glsl_error(&loc, state, "align layout qualifier " | |||
7606 | "is not a power of 2"); | |||
7607 | } else { | |||
7608 | fields[i].offset = glsl_align(offset, member_align); | |||
7609 | next_offset = fields[i].offset + size; | |||
7610 | } | |||
7611 | } | |||
7612 | } else { | |||
7613 | fields[i].offset = glsl_align(offset, expl_align); | |||
7614 | next_offset = fields[i].offset + size; | |||
7615 | } | |||
7616 | } else if (!qual->flags.q.explicit_offset) { | |||
7617 | if (align != 0 && size != 0) | |||
7618 | next_offset = glsl_align(next_offset, align) + size; | |||
7619 | } | |||
7620 | ||||
7621 | /* From the ARB_enhanced_layouts spec: | |||
7622 | * | |||
7623 | * "The given offset applies to the first component of the first | |||
7624 | * member of the qualified entity. Then, within the qualified | |||
7625 | * entity, subsequent components are each assigned, in order, to | |||
7626 | * the next available offset aligned to a multiple of that | |||
7627 | * component's size. Aggregate types are flattened down to the | |||
7628 | * component level to get this sequence of components." | |||
7629 | */ | |||
7630 | if (qual->flags.q.explicit_xfb_offset) { | |||
7631 | unsigned xfb_offset; | |||
7632 | if (process_qualifier_constant(state, &loc, "xfb_offset", | |||
7633 | qual->offset, &xfb_offset)) { | |||
7634 | fields[i].offset = xfb_offset; | |||
7635 | block_xfb_offset = fields[i].offset + | |||
7636 | 4 * field_type->component_slots(); | |||
7637 | } | |||
7638 | } else { | |||
7639 | if (layout && layout->flags.q.explicit_xfb_offset) { | |||
7640 | unsigned align = field_type->is_64bit() ? 8 : 4; | |||
7641 | fields[i].offset = glsl_align(block_xfb_offset, align); | |||
7642 | block_xfb_offset += 4 * field_type->component_slots(); | |||
7643 | } | |||
7644 | } | |||
7645 | ||||
7646 | /* Propogate row- / column-major information down the fields of the | |||
7647 | * structure or interface block. Structures need this data because | |||
7648 | * the structure may contain a structure that contains ... a matrix | |||
7649 | * that need the proper layout. | |||
7650 | */ | |||
7651 | if (is_interface && layout && | |||
7652 | (layout->flags.q.uniform || layout->flags.q.buffer) && | |||
7653 | (field_type->without_array()->is_matrix() | |||
7654 | || field_type->without_array()->is_struct())) { | |||
7655 | /* If no layout is specified for the field, inherit the layout | |||
7656 | * from the block. | |||
7657 | */ | |||
7658 | fields[i].matrix_layout = matrix_layout; | |||
7659 | ||||
7660 | if (qual->flags.q.row_major) | |||
7661 | fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; | |||
7662 | else if (qual->flags.q.column_major) | |||
7663 | fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; | |||
7664 | ||||
7665 | /* If we're processing an uniform or buffer block, the matrix | |||
7666 | * layout must be decided by this point. | |||
7667 | */ | |||
7668 | assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR(static_cast <bool> (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR ) ? void (0) : __assert_fail ("fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) | |||
7669 | || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR)(static_cast <bool> (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR ) ? void (0) : __assert_fail ("fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
7670 | } | |||
7671 | ||||
7672 | /* Memory qualifiers are allowed on buffer and image variables, while | |||
7673 | * the format qualifier is only accepted for images. | |||
7674 | */ | |||
7675 | if (var_mode == ir_var_shader_storage || | |||
7676 | field_type->without_array()->is_image()) { | |||
7677 | /* For readonly and writeonly qualifiers the field definition, | |||
7678 | * if set, overwrites the layout qualifier. | |||
7679 | */ | |||
7680 | if (qual->flags.q.read_only || qual->flags.q.write_only) { | |||
7681 | fields[i].memory_read_only = qual->flags.q.read_only; | |||
7682 | fields[i].memory_write_only = qual->flags.q.write_only; | |||
7683 | } else { | |||
7684 | fields[i].memory_read_only = | |||
7685 | layout ? layout->flags.q.read_only : 0; | |||
7686 | fields[i].memory_write_only = | |||
7687 | layout ? layout->flags.q.write_only : 0; | |||
7688 | } | |||
7689 | ||||
7690 | /* For other qualifiers, we set the flag if either the layout | |||
7691 | * qualifier or the field qualifier are set | |||
7692 | */ | |||
7693 | fields[i].memory_coherent = qual->flags.q.coherent || | |||
7694 | (layout && layout->flags.q.coherent); | |||
7695 | fields[i].memory_volatile = qual->flags.q._volatile || | |||
7696 | (layout && layout->flags.q._volatile); | |||
7697 | fields[i].memory_restrict = qual->flags.q.restrict_flag || | |||
7698 | (layout && layout->flags.q.restrict_flag); | |||
7699 | ||||
7700 | if (field_type->without_array()->is_image()) { | |||
7701 | if (qual->flags.q.explicit_image_format) { | |||
7702 | if (qual->image_base_type != | |||
7703 | field_type->without_array()->sampled_type) { | |||
7704 | _mesa_glsl_error(&loc, state, "format qualifier doesn't " | |||
7705 | "match the base data type of the image"); | |||
7706 | } | |||
7707 | ||||
7708 | fields[i].image_format = qual->image_format; | |||
7709 | } else { | |||
7710 | if (!qual->flags.q.write_only) { | |||
7711 | _mesa_glsl_error(&loc, state, "image not qualified with " | |||
7712 | "`writeonly' must have a format layout " | |||
7713 | "qualifier"); | |||
7714 | } | |||
7715 | ||||
7716 | fields[i].image_format = PIPE_FORMAT_NONE; | |||
7717 | } | |||
7718 | } | |||
7719 | } | |||
7720 | ||||
7721 | /* Precision qualifiers do not hold any meaning in Desktop GLSL */ | |||
7722 | if (state->es_shader) { | |||
7723 | fields[i].precision = select_gles_precision(qual->precision, | |||
7724 | field_type, | |||
7725 | state, | |||
7726 | &loc); | |||
7727 | } else { | |||
7728 | fields[i].precision = qual->precision; | |||
7729 | } | |||
7730 | ||||
7731 | i++; | |||
7732 | } | |||
7733 | } | |||
7734 | ||||
7735 | assert(i == decl_count)(static_cast <bool> (i == decl_count) ? void (0) : __assert_fail ("i == decl_count", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
7736 | ||||
7737 | *fields_ret = fields; | |||
7738 | return decl_count; | |||
7739 | } | |||
7740 | ||||
7741 | ||||
7742 | ir_rvalue * | |||
7743 | ast_struct_specifier::hir(exec_list *instructions, | |||
7744 | struct _mesa_glsl_parse_state *state) | |||
7745 | { | |||
7746 | YYLTYPE loc = this->get_location(); | |||
7747 | ||||
7748 | unsigned expl_location = 0; | |||
7749 | if (layout && layout->flags.q.explicit_location) { | |||
7750 | if (!process_qualifier_constant(state, &loc, "location", | |||
7751 | layout->location, &expl_location)) { | |||
7752 | return NULL__null; | |||
7753 | } else { | |||
7754 | expl_location = VARYING_SLOT_VAR0 + expl_location; | |||
7755 | } | |||
7756 | } | |||
7757 | ||||
7758 | glsl_struct_field *fields; | |||
7759 | unsigned decl_count = | |||
7760 | ast_process_struct_or_iface_block_members(instructions, | |||
7761 | state, | |||
7762 | &this->declarations, | |||
7763 | &fields, | |||
7764 | false, | |||
7765 | GLSL_MATRIX_LAYOUT_INHERITED, | |||
7766 | false /* allow_reserved_names */, | |||
7767 | ir_var_auto, | |||
7768 | layout, | |||
7769 | 0, /* for interface only */ | |||
7770 | 0, /* for interface only */ | |||
7771 | 0, /* for interface only */ | |||
7772 | expl_location, | |||
7773 | 0 /* for interface only */); | |||
7774 | ||||
7775 | validate_identifier(this->name, loc, state); | |||
7776 | ||||
7777 | type = glsl_type::get_struct_instance(fields, decl_count, this->name); | |||
7778 | ||||
7779 | if (!type->is_anonymous() && !state->symbols->add_type(name, type)) { | |||
7780 | const glsl_type *match = state->symbols->get_type(name); | |||
7781 | /* allow struct matching for desktop GL - older UE4 does this */ | |||
7782 | if (match != NULL__null && state->is_version(130, 0) && match->record_compare(type, true, false)) | |||
7783 | _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name); | |||
7784 | else | |||
7785 | _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); | |||
7786 | } else { | |||
7787 | const glsl_type **s = reralloc(state, state->user_structures,((const glsl_type * *) reralloc_array_size(state, state->user_structures , sizeof(const glsl_type *), state->num_user_structures + 1 )) | |||
7788 | const glsl_type *,((const glsl_type * *) reralloc_array_size(state, state->user_structures , sizeof(const glsl_type *), state->num_user_structures + 1 )) | |||
7789 | state->num_user_structures + 1)((const glsl_type * *) reralloc_array_size(state, state->user_structures , sizeof(const glsl_type *), state->num_user_structures + 1 )); | |||
7790 | if (s != NULL__null) { | |||
7791 | s[state->num_user_structures] = type; | |||
7792 | state->user_structures = s; | |||
7793 | state->num_user_structures++; | |||
7794 | ||||
7795 | ir_typedecl_statement* stmt = new(state) ir_typedecl_statement(type); | |||
7796 | /* Push the struct declarations to the top. | |||
7797 | * However, do not insert declarations before default precision | |||
7798 | * statements or other declarations | |||
7799 | */ | |||
7800 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); | |||
7801 | while (before_node && | |||
7802 | (before_node->ir_type == ir_type_precision || | |||
7803 | before_node->ir_type == ir_type_typedecl)) | |||
7804 | before_node = (ir_instruction*)before_node->next; | |||
7805 | if (before_node) | |||
7806 | before_node->insert_before(stmt); | |||
7807 | else | |||
7808 | instructions->push_head(stmt); | |||
7809 | } | |||
7810 | } | |||
7811 | ||||
7812 | /* Structure type definitions do not have r-values. | |||
7813 | */ | |||
7814 | return NULL__null; | |||
7815 | } | |||
7816 | ||||
7817 | ||||
7818 | /** | |||
7819 | * Visitor class which detects whether a given interface block has been used. | |||
7820 | */ | |||
7821 | class interface_block_usage_visitor : public ir_hierarchical_visitor | |||
7822 | { | |||
7823 | public: | |||
7824 | interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block) | |||
7825 | : mode(mode), block(block), found(false) | |||
7826 | { | |||
7827 | } | |||
7828 | ||||
7829 | virtual ir_visitor_status visit(ir_dereference_variable *ir) | |||
7830 | { | |||
7831 | if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) { | |||
7832 | found = true; | |||
7833 | return visit_stop; | |||
7834 | } | |||
7835 | return visit_continue; | |||
7836 | } | |||
7837 | ||||
7838 | bool usage_found() const | |||
7839 | { | |||
7840 | return this->found; | |||
7841 | } | |||
7842 | ||||
7843 | private: | |||
7844 | ir_variable_mode mode; | |||
7845 | const glsl_type *block; | |||
7846 | bool found; | |||
7847 | }; | |||
7848 | ||||
7849 | static bool | |||
7850 | is_unsized_array_last_element(ir_variable *v) | |||
7851 | { | |||
7852 | const glsl_type *interface_type = v->get_interface_type(); | |||
7853 | int length = interface_type->length; | |||
7854 | ||||
7855 | assert(v->type->is_unsized_array())(static_cast <bool> (v->type->is_unsized_array()) ? void (0) : __assert_fail ("v->type->is_unsized_array()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
7856 | ||||
7857 | /* Check if it is the last element of the interface */ | |||
7858 | if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0) | |||
7859 | return true; | |||
7860 | return false; | |||
7861 | } | |||
7862 | ||||
7863 | static void | |||
7864 | apply_memory_qualifiers(ir_variable *var, glsl_struct_field field) | |||
7865 | { | |||
7866 | var->data.memory_read_only = field.memory_read_only; | |||
7867 | var->data.memory_write_only = field.memory_write_only; | |||
7868 | var->data.memory_coherent = field.memory_coherent; | |||
7869 | var->data.memory_volatile = field.memory_volatile; | |||
7870 | var->data.memory_restrict = field.memory_restrict; | |||
7871 | } | |||
7872 | ||||
7873 | ir_rvalue * | |||
7874 | ast_interface_block::hir(exec_list *instructions, | |||
7875 | struct _mesa_glsl_parse_state *state) | |||
7876 | { | |||
7877 | YYLTYPE loc = this->get_location(); | |||
7878 | ||||
7879 | /* Interface blocks must be declared at global scope */ | |||
7880 | if (state->current_function != NULL__null) { | |||
7881 | _mesa_glsl_error(&loc, state, | |||
7882 | "Interface block `%s' must be declared " | |||
7883 | "at global scope", | |||
7884 | this->block_name); | |||
7885 | } | |||
7886 | ||||
7887 | /* Validate qualifiers: | |||
7888 | * | |||
7889 | * - Layout Qualifiers as per the table in Section 4.4 | |||
7890 | * ("Layout Qualifiers") of the GLSL 4.50 spec. | |||
7891 | * | |||
7892 | * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the | |||
7893 | * GLSL 4.50 spec: | |||
7894 | * | |||
7895 | * "Additionally, memory qualifiers may also be used in the declaration | |||
7896 | * of shader storage blocks" | |||
7897 | * | |||
7898 | * Note the table in Section 4.4 says std430 is allowed on both uniform and | |||
7899 | * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block | |||
7900 | * Layout Qualifiers) of the GLSL 4.50 spec says: | |||
7901 | * | |||
7902 | * "The std430 qualifier is supported only for shader storage blocks; | |||
7903 | * using std430 on a uniform block will result in a compile-time error." | |||
7904 | */ | |||
7905 | ast_type_qualifier allowed_blk_qualifiers; | |||
7906 | allowed_blk_qualifiers.flags.i = 0; | |||
7907 | if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) { | |||
7908 | allowed_blk_qualifiers.flags.q.shared = 1; | |||
7909 | allowed_blk_qualifiers.flags.q.packed = 1; | |||
7910 | allowed_blk_qualifiers.flags.q.std140 = 1; | |||
7911 | allowed_blk_qualifiers.flags.q.row_major = 1; | |||
7912 | allowed_blk_qualifiers.flags.q.column_major = 1; | |||
7913 | allowed_blk_qualifiers.flags.q.explicit_align = 1; | |||
7914 | allowed_blk_qualifiers.flags.q.explicit_binding = 1; | |||
7915 | if (this->layout.flags.q.buffer) { | |||
7916 | allowed_blk_qualifiers.flags.q.buffer = 1; | |||
7917 | allowed_blk_qualifiers.flags.q.std430 = 1; | |||
7918 | allowed_blk_qualifiers.flags.q.coherent = 1; | |||
7919 | allowed_blk_qualifiers.flags.q._volatile = 1; | |||
7920 | allowed_blk_qualifiers.flags.q.restrict_flag = 1; | |||
7921 | allowed_blk_qualifiers.flags.q.read_only = 1; | |||
7922 | allowed_blk_qualifiers.flags.q.write_only = 1; | |||
7923 | } else { | |||
7924 | allowed_blk_qualifiers.flags.q.uniform = 1; | |||
7925 | } | |||
7926 | } else { | |||
7927 | /* Interface block */ | |||
7928 | assert(this->layout.flags.q.in || this->layout.flags.q.out)(static_cast <bool> (this->layout.flags.q.in || this ->layout.flags.q.out) ? void (0) : __assert_fail ("this->layout.flags.q.in || this->layout.flags.q.out" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
7929 | ||||
7930 | allowed_blk_qualifiers.flags.q.explicit_location = 1; | |||
7931 | if (this->layout.flags.q.out) { | |||
7932 | allowed_blk_qualifiers.flags.q.out = 1; | |||
7933 | if (state->stage == MESA_SHADER_GEOMETRY || | |||
7934 | state->stage == MESA_SHADER_TESS_CTRL || | |||
7935 | state->stage == MESA_SHADER_TESS_EVAL || | |||
7936 | state->stage == MESA_SHADER_VERTEX ) { | |||
7937 | allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1; | |||
7938 | allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1; | |||
7939 | allowed_blk_qualifiers.flags.q.xfb_buffer = 1; | |||
7940 | allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1; | |||
7941 | allowed_blk_qualifiers.flags.q.xfb_stride = 1; | |||
7942 | if (state->stage == MESA_SHADER_GEOMETRY) { | |||
7943 | allowed_blk_qualifiers.flags.q.stream = 1; | |||
7944 | allowed_blk_qualifiers.flags.q.explicit_stream = 1; | |||
7945 | } | |||
7946 | if (state->stage == MESA_SHADER_TESS_CTRL) { | |||
7947 | allowed_blk_qualifiers.flags.q.patch = 1; | |||
7948 | } | |||
7949 | } | |||
7950 | } else { | |||
7951 | allowed_blk_qualifiers.flags.q.in = 1; | |||
7952 | if (state->stage == MESA_SHADER_TESS_EVAL) { | |||
7953 | allowed_blk_qualifiers.flags.q.patch = 1; | |||
7954 | } | |||
7955 | } | |||
7956 | } | |||
7957 | ||||
7958 | this->layout.validate_flags(&loc, state, allowed_blk_qualifiers, | |||
7959 | "invalid qualifier for block", | |||
7960 | this->block_name); | |||
7961 | ||||
7962 | enum glsl_interface_packing packing; | |||
7963 | if (this->layout.flags.q.std140) { | |||
7964 | packing = GLSL_INTERFACE_PACKING_STD140; | |||
7965 | } else if (this->layout.flags.q.packed) { | |||
7966 | packing = GLSL_INTERFACE_PACKING_PACKED; | |||
7967 | } else if (this->layout.flags.q.std430) { | |||
7968 | packing = GLSL_INTERFACE_PACKING_STD430; | |||
7969 | } else { | |||
7970 | /* The default layout is shared. | |||
7971 | */ | |||
7972 | packing = GLSL_INTERFACE_PACKING_SHARED; | |||
7973 | } | |||
7974 | ||||
7975 | ir_variable_mode var_mode; | |||
7976 | const char *iface_type_name; | |||
7977 | if (this->layout.flags.q.in) { | |||
7978 | var_mode = ir_var_shader_in; | |||
7979 | iface_type_name = "in"; | |||
7980 | } else if (this->layout.flags.q.out) { | |||
7981 | var_mode = ir_var_shader_out; | |||
7982 | iface_type_name = "out"; | |||
7983 | } else if (this->layout.flags.q.uniform) { | |||
7984 | var_mode = ir_var_uniform; | |||
7985 | iface_type_name = "uniform"; | |||
7986 | } else if (this->layout.flags.q.buffer) { | |||
7987 | var_mode = ir_var_shader_storage; | |||
7988 | iface_type_name = "buffer"; | |||
7989 | } else { | |||
7990 | var_mode = ir_var_auto; | |||
7991 | iface_type_name = "UNKNOWN"; | |||
7992 | assert(!"interface block layout qualifier not found!")(static_cast <bool> (!"interface block layout qualifier not found!" ) ? void (0) : __assert_fail ("!\"interface block layout qualifier not found!\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
7993 | } | |||
7994 | ||||
7995 | enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; | |||
7996 | if (this->layout.flags.q.row_major) | |||
7997 | matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; | |||
7998 | else if (this->layout.flags.q.column_major) | |||
7999 | matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; | |||
8000 | ||||
8001 | bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0; | |||
8002 | exec_list declared_variables; | |||
8003 | glsl_struct_field *fields; | |||
8004 | ||||
8005 | /* For blocks that accept memory qualifiers (i.e. shader storage), verify | |||
8006 | * that we don't have incompatible qualifiers | |||
8007 | */ | |||
8008 | if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) { | |||
8009 | _mesa_glsl_error(&loc, state, | |||
8010 | "Interface block sets both readonly and writeonly"); | |||
8011 | } | |||
8012 | ||||
8013 | unsigned qual_stream; | |||
8014 | if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream, | |||
8015 | &qual_stream) || | |||
8016 | !validate_stream_qualifier(&loc, state, qual_stream)) { | |||
8017 | /* If the stream qualifier is invalid it doesn't make sense to continue | |||
8018 | * on and try to compare stream layouts on member variables against it | |||
8019 | * so just return early. | |||
8020 | */ | |||
8021 | return NULL__null; | |||
8022 | } | |||
8023 | ||||
8024 | unsigned qual_xfb_buffer; | |||
8025 | if (!process_qualifier_constant(state, &loc, "xfb_buffer", | |||
8026 | layout.xfb_buffer, &qual_xfb_buffer) || | |||
8027 | !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) { | |||
8028 | return NULL__null; | |||
8029 | } | |||
8030 | ||||
8031 | unsigned qual_xfb_offset; | |||
8032 | if (layout.flags.q.explicit_xfb_offset) { | |||
8033 | if (!process_qualifier_constant(state, &loc, "xfb_offset", | |||
8034 | layout.offset, &qual_xfb_offset)) { | |||
8035 | return NULL__null; | |||
8036 | } | |||
8037 | } | |||
8038 | ||||
8039 | unsigned qual_xfb_stride; | |||
8040 | if (layout.flags.q.explicit_xfb_stride) { | |||
8041 | if (!process_qualifier_constant(state, &loc, "xfb_stride", | |||
8042 | layout.xfb_stride, &qual_xfb_stride)) { | |||
8043 | return NULL__null; | |||
8044 | } | |||
8045 | } | |||
8046 | ||||
8047 | unsigned expl_location = 0; | |||
8048 | if (layout.flags.q.explicit_location) { | |||
8049 | if (!process_qualifier_constant(state, &loc, "location", | |||
8050 | layout.location, &expl_location)) { | |||
8051 | return NULL__null; | |||
8052 | } else { | |||
8053 | expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)) | |||
8054 | : VARYING_SLOT_VAR0; | |||
8055 | } | |||
8056 | } | |||
8057 | ||||
8058 | unsigned expl_align = 0; | |||
8059 | if (layout.flags.q.explicit_align) { | |||
8060 | if (!process_qualifier_constant(state, &loc, "align", | |||
8061 | layout.align, &expl_align)) { | |||
8062 | return NULL__null; | |||
8063 | } else { | |||
8064 | if (expl_align == 0 || expl_align & (expl_align - 1)) { | |||
8065 | _mesa_glsl_error(&loc, state, "align layout qualifier is not a " | |||
8066 | "power of 2."); | |||
8067 | return NULL__null; | |||
8068 | } | |||
8069 | } | |||
8070 | } | |||
8071 | ||||
8072 | unsigned int num_variables = | |||
8073 | ast_process_struct_or_iface_block_members(&declared_variables, | |||
8074 | state, | |||
8075 | &this->declarations, | |||
8076 | &fields, | |||
8077 | true, | |||
8078 | matrix_layout, | |||
8079 | redeclaring_per_vertex, | |||
8080 | var_mode, | |||
8081 | &this->layout, | |||
8082 | qual_stream, | |||
8083 | qual_xfb_buffer, | |||
8084 | qual_xfb_offset, | |||
8085 | expl_location, | |||
8086 | expl_align); | |||
8087 | ||||
8088 | if (!redeclaring_per_vertex) { | |||
8089 | validate_identifier(this->block_name, loc, state); | |||
8090 | ||||
8091 | /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec: | |||
8092 | * | |||
8093 | * "Block names have no other use within a shader beyond interface | |||
8094 | * matching; it is a compile-time error to use a block name at global | |||
8095 | * scope for anything other than as a block name." | |||
8096 | */ | |||
8097 | ir_variable *var = state->symbols->get_variable(this->block_name); | |||
8098 | if (var && !var->type->is_interface()) { | |||
8099 | _mesa_glsl_error(&loc, state, "Block name `%s' is " | |||
8100 | "already used in the scope.", | |||
8101 | this->block_name); | |||
8102 | } | |||
8103 | } | |||
8104 | ||||
8105 | const glsl_type *earlier_per_vertex = NULL__null; | |||
8106 | if (redeclaring_per_vertex) { | |||
8107 | /* Find the previous declaration of gl_PerVertex. If we're redeclaring | |||
8108 | * the named interface block gl_in, we can find it by looking at the | |||
8109 | * previous declaration of gl_in. Otherwise we can find it by looking | |||
8110 | * at the previous decalartion of any of the built-in outputs, | |||
8111 | * e.g. gl_Position. | |||
8112 | * | |||
8113 | * Also check that the instance name and array-ness of the redeclaration | |||
8114 | * are correct. | |||
8115 | */ | |||
8116 | switch (var_mode) { | |||
8117 | case ir_var_shader_in: | |||
8118 | if (ir_variable *earlier_gl_in = | |||
8119 | state->symbols->get_variable("gl_in")) { | |||
8120 | earlier_per_vertex = earlier_gl_in->get_interface_type(); | |||
8121 | } else { | |||
8122 | _mesa_glsl_error(&loc, state, | |||
8123 | "redeclaration of gl_PerVertex input not allowed " | |||
8124 | "in the %s shader", | |||
8125 | _mesa_shader_stage_to_string(state->stage)); | |||
8126 | } | |||
8127 | if (this->instance_name == NULL__null || | |||
8128 | strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL__null || | |||
8129 | !this->array_specifier->is_single_dimension()) { | |||
8130 | _mesa_glsl_error(&loc, state, | |||
8131 | "gl_PerVertex input must be redeclared as " | |||
8132 | "gl_in[]"); | |||
8133 | } | |||
8134 | break; | |||
8135 | case ir_var_shader_out: | |||
8136 | if (ir_variable *earlier_gl_Position = | |||
8137 | state->symbols->get_variable("gl_Position")) { | |||
8138 | earlier_per_vertex = earlier_gl_Position->get_interface_type(); | |||
8139 | } else if (ir_variable *earlier_gl_out = | |||
8140 | state->symbols->get_variable("gl_out")) { | |||
8141 | earlier_per_vertex = earlier_gl_out->get_interface_type(); | |||
8142 | } else { | |||
8143 | _mesa_glsl_error(&loc, state, | |||
8144 | "redeclaration of gl_PerVertex output not " | |||
8145 | "allowed in the %s shader", | |||
8146 | _mesa_shader_stage_to_string(state->stage)); | |||
8147 | } | |||
8148 | if (state->stage == MESA_SHADER_TESS_CTRL) { | |||
8149 | if (this->instance_name == NULL__null || | |||
8150 | strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL__null) { | |||
8151 | _mesa_glsl_error(&loc, state, | |||
8152 | "gl_PerVertex output must be redeclared as " | |||
8153 | "gl_out[]"); | |||
8154 | } | |||
8155 | } else { | |||
8156 | if (this->instance_name != NULL__null) { | |||
8157 | _mesa_glsl_error(&loc, state, | |||
8158 | "gl_PerVertex output may not be redeclared with " | |||
8159 | "an instance name"); | |||
8160 | } | |||
8161 | } | |||
8162 | break; | |||
8163 | default: | |||
8164 | _mesa_glsl_error(&loc, state, | |||
8165 | "gl_PerVertex must be declared as an input or an " | |||
8166 | "output"); | |||
8167 | break; | |||
8168 | } | |||
8169 | ||||
8170 | if (earlier_per_vertex == NULL__null) { | |||
8171 | /* An error has already been reported. Bail out to avoid null | |||
8172 | * dereferences later in this function. | |||
8173 | */ | |||
8174 | return NULL__null; | |||
8175 | } | |||
8176 | ||||
8177 | /* Copy locations from the old gl_PerVertex interface block. */ | |||
8178 | for (unsigned i = 0; i < num_variables; i++) { | |||
8179 | int j = earlier_per_vertex->field_index(fields[i].name); | |||
8180 | if (j == -1) { | |||
8181 | _mesa_glsl_error(&loc, state, | |||
8182 | "redeclaration of gl_PerVertex must be a subset " | |||
8183 | "of the built-in members of gl_PerVertex"); | |||
8184 | } else { | |||
8185 | fields[i].location = | |||
8186 | earlier_per_vertex->fields.structure[j].location; | |||
8187 | fields[i].offset = | |||
8188 | earlier_per_vertex->fields.structure[j].offset; | |||
8189 | fields[i].interpolation = | |||
8190 | earlier_per_vertex->fields.structure[j].interpolation; | |||
8191 | fields[i].centroid = | |||
8192 | earlier_per_vertex->fields.structure[j].centroid; | |||
8193 | fields[i].sample = | |||
8194 | earlier_per_vertex->fields.structure[j].sample; | |||
8195 | fields[i].patch = | |||
8196 | earlier_per_vertex->fields.structure[j].patch; | |||
8197 | fields[i].precision = | |||
8198 | earlier_per_vertex->fields.structure[j].precision; | |||
8199 | fields[i].explicit_xfb_buffer = | |||
8200 | earlier_per_vertex->fields.structure[j].explicit_xfb_buffer; | |||
8201 | fields[i].xfb_buffer = | |||
8202 | earlier_per_vertex->fields.structure[j].xfb_buffer; | |||
8203 | fields[i].xfb_stride = | |||
8204 | earlier_per_vertex->fields.structure[j].xfb_stride; | |||
8205 | } | |||
8206 | } | |||
8207 | ||||
8208 | /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 | |||
8209 | * spec: | |||
8210 | * | |||
8211 | * If a built-in interface block is redeclared, it must appear in | |||
8212 | * the shader before any use of any member included in the built-in | |||
8213 | * declaration, or a compilation error will result. | |||
8214 | * | |||
8215 | * This appears to be a clarification to the behaviour established for | |||
8216 | * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour | |||
8217 | * regardless of GLSL version. | |||
8218 | */ | |||
8219 | interface_block_usage_visitor v(var_mode, earlier_per_vertex); | |||
8220 | v.run(instructions); | |||
8221 | if (v.usage_found()) { | |||
8222 | _mesa_glsl_error(&loc, state, | |||
8223 | "redeclaration of a built-in interface block must " | |||
8224 | "appear before any use of any member of the " | |||
8225 | "interface block"); | |||
8226 | } | |||
8227 | } | |||
8228 | ||||
8229 | const glsl_type *block_type = | |||
8230 | glsl_type::get_interface_instance(fields, | |||
8231 | num_variables, | |||
8232 | packing, | |||
8233 | matrix_layout == | |||
8234 | GLSL_MATRIX_LAYOUT_ROW_MAJOR, | |||
8235 | this->block_name); | |||
8236 | ||||
8237 | unsigned component_size = block_type->contains_double() ? 8 : 4; | |||
8238 | int xfb_offset = | |||
8239 | layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1; | |||
8240 | validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type, | |||
8241 | component_size); | |||
8242 | ||||
8243 | if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) { | |||
8244 | YYLTYPE loc = this->get_location(); | |||
8245 | _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' " | |||
8246 | "already taken in the current scope", | |||
8247 | this->block_name, iface_type_name); | |||
8248 | } | |||
8249 | ||||
8250 | /* Since interface blocks cannot contain statements, it should be | |||
8251 | * impossible for the block to generate any instructions. | |||
8252 | */ | |||
8253 | assert(declared_variables.is_empty())(static_cast <bool> (declared_variables.is_empty()) ? void (0) : __assert_fail ("declared_variables.is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
8254 | ||||
8255 | /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: | |||
8256 | * | |||
8257 | * Geometry shader input variables get the per-vertex values written | |||
8258 | * out by vertex shader output variables of the same names. Since a | |||
8259 | * geometry shader operates on a set of vertices, each input varying | |||
8260 | * variable (or input block, see interface blocks below) needs to be | |||
8261 | * declared as an array. | |||
8262 | */ | |||
8263 | if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL__null && | |||
8264 | var_mode == ir_var_shader_in) { | |||
8265 | _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays"); | |||
8266 | } else if ((state->stage == MESA_SHADER_TESS_CTRL || | |||
8267 | state->stage == MESA_SHADER_TESS_EVAL) && | |||
8268 | !this->layout.flags.q.patch && | |||
8269 | this->array_specifier == NULL__null && | |||
8270 | var_mode == ir_var_shader_in) { | |||
8271 | _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays"); | |||
8272 | } else if (state->stage == MESA_SHADER_TESS_CTRL && | |||
8273 | !this->layout.flags.q.patch && | |||
8274 | this->array_specifier == NULL__null && | |||
8275 | var_mode == ir_var_shader_out) { | |||
8276 | _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays"); | |||
8277 | } | |||
8278 | ||||
8279 | ||||
8280 | ir_typedecl_statement* stmt = new(state) ir_typedecl_statement(block_type); | |||
8281 | /* Push the interface declarations to the top. | |||
8282 | * However, do not insert declarations before default precision | |||
8283 | * statements or other declarations | |||
8284 | */ | |||
8285 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); | |||
8286 | while (before_node && | |||
8287 | (before_node->ir_type == ir_type_precision || | |||
8288 | before_node->ir_type == ir_type_typedecl)) | |||
8289 | before_node = (ir_instruction*)before_node->next; | |||
8290 | if (before_node) | |||
8291 | before_node->insert_before(stmt); | |||
8292 | else | |||
8293 | instructions->push_head(stmt); | |||
8294 | ||||
8295 | /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec | |||
8296 | * says: | |||
8297 | * | |||
8298 | * "If an instance name (instance-name) is used, then it puts all the | |||
8299 | * members inside a scope within its own name space, accessed with the | |||
8300 | * field selector ( . ) operator (analogously to structures)." | |||
8301 | */ | |||
8302 | if (this->instance_name) { | |||
8303 | if (redeclaring_per_vertex) { | |||
8304 | /* When a built-in in an unnamed interface block is redeclared, | |||
8305 | * get_variable_being_redeclared() calls | |||
8306 | * check_builtin_array_max_size() to make sure that built-in array | |||
8307 | * variables aren't redeclared to illegal sizes. But we're looking | |||
8308 | * at a redeclaration of a named built-in interface block. So we | |||
8309 | * have to manually call check_builtin_array_max_size() for all parts | |||
8310 | * of the interface that are arrays. | |||
8311 | */ | |||
8312 | for (unsigned i = 0; i < num_variables; i++) { | |||
8313 | if (fields[i].type->is_array()) { | |||
8314 | const unsigned size = fields[i].type->array_size(); | |||
8315 | check_builtin_array_max_size(fields[i].name, size, loc, state); | |||
8316 | } | |||
8317 | } | |||
8318 | } else { | |||
8319 | validate_identifier(this->instance_name, loc, state); | |||
8320 | } | |||
8321 | ||||
8322 | ir_variable *var; | |||
8323 | ||||
8324 | if (this->array_specifier != NULL__null) { | |||
8325 | const glsl_type *block_array_type = | |||
8326 | process_array_type(&loc, block_type, this->array_specifier, state); | |||
8327 | ||||
8328 | /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says: | |||
8329 | * | |||
8330 | * For uniform blocks declared an array, each individual array | |||
8331 | * element corresponds to a separate buffer object backing one | |||
8332 | * instance of the block. As the array size indicates the number | |||
8333 | * of buffer objects needed, uniform block array declarations | |||
8334 | * must specify an array size. | |||
8335 | * | |||
8336 | * And a few paragraphs later: | |||
8337 | * | |||
8338 | * Geometry shader input blocks must be declared as arrays and | |||
8339 | * follow the array declaration and linking rules for all | |||
8340 | * geometry shader inputs. All other input and output block | |||
8341 | * arrays must specify an array size. | |||
8342 | * | |||
8343 | * The same applies to tessellation shaders. | |||
8344 | * | |||
8345 | * The upshot of this is that the only circumstance where an | |||
8346 | * interface array size *doesn't* need to be specified is on a | |||
8347 | * geometry shader input, tessellation control shader input, | |||
8348 | * tessellation control shader output, and tessellation evaluation | |||
8349 | * shader input. | |||
8350 | */ | |||
8351 | if (block_array_type->is_unsized_array()) { | |||
8352 | bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY || | |||
8353 | state->stage == MESA_SHADER_TESS_CTRL || | |||
8354 | state->stage == MESA_SHADER_TESS_EVAL; | |||
8355 | bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL; | |||
8356 | ||||
8357 | if (this->layout.flags.q.in) { | |||
8358 | if (!allow_inputs) | |||
8359 | _mesa_glsl_error(&loc, state, | |||
8360 | "unsized input block arrays not allowed in " | |||
8361 | "%s shader", | |||
8362 | _mesa_shader_stage_to_string(state->stage)); | |||
8363 | } else if (this->layout.flags.q.out) { | |||
8364 | if (!allow_outputs) | |||
8365 | _mesa_glsl_error(&loc, state, | |||
8366 | "unsized output block arrays not allowed in " | |||
8367 | "%s shader", | |||
8368 | _mesa_shader_stage_to_string(state->stage)); | |||
8369 | } else { | |||
8370 | /* by elimination, this is a uniform block array */ | |||
8371 | _mesa_glsl_error(&loc, state, | |||
8372 | "unsized uniform block arrays not allowed in " | |||
8373 | "%s shader", | |||
8374 | _mesa_shader_stage_to_string(state->stage)); | |||
8375 | } | |||
8376 | } | |||
8377 | ||||
8378 | /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec: | |||
8379 | * | |||
8380 | * * Arrays of arrays of blocks are not allowed | |||
8381 | */ | |||
8382 | if (state->es_shader && block_array_type->is_array() && | |||
8383 | block_array_type->fields.array->is_array()) { | |||
8384 | _mesa_glsl_error(&loc, state, | |||
8385 | "arrays of arrays interface blocks are " | |||
8386 | "not allowed"); | |||
8387 | } | |||
8388 | ||||
8389 | var = new(state) ir_variable(block_array_type, | |||
8390 | this->instance_name, | |||
8391 | var_mode); | |||
8392 | } else { | |||
8393 | var = new(state) ir_variable(block_type, | |||
8394 | this->instance_name, | |||
8395 | var_mode); | |||
8396 | } | |||
8397 | ||||
8398 | var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED | |||
8399 | ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; | |||
8400 | ||||
8401 | if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) | |||
8402 | var->data.read_only = true; | |||
8403 | ||||
8404 | var->data.patch = this->layout.flags.q.patch; | |||
8405 | ||||
8406 | if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in) | |||
8407 | handle_geometry_shader_input_decl(state, loc, var); | |||
8408 | else if ((state->stage == MESA_SHADER_TESS_CTRL || | |||
8409 | state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in) | |||
8410 | handle_tess_shader_input_decl(state, loc, var); | |||
8411 | else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out) | |||
8412 | handle_tess_ctrl_shader_output_decl(state, loc, var); | |||
8413 | ||||
8414 | for (unsigned i = 0; i < num_variables; i++) { | |||
8415 | if (var->data.mode == ir_var_shader_storage) | |||
8416 | apply_memory_qualifiers(var, fields[i]); | |||
8417 | } | |||
8418 | ||||
8419 | if (ir_variable *earlier = | |||
8420 | state->symbols->get_variable(this->instance_name)) { | |||
8421 | if (!redeclaring_per_vertex) { | |||
8422 | _mesa_glsl_error(&loc, state, "`%s' redeclared", | |||
8423 | this->instance_name); | |||
8424 | } | |||
8425 | earlier->data.how_declared = ir_var_declared_normally; | |||
8426 | earlier->type = var->type; | |||
8427 | earlier->reinit_interface_type(block_type); | |||
8428 | delete var; | |||
8429 | } else { | |||
8430 | if (this->layout.flags.q.explicit_binding) { | |||
8431 | apply_explicit_binding(state, &loc, var, var->type, | |||
8432 | &this->layout); | |||
8433 | } | |||
8434 | ||||
8435 | var->data.stream = qual_stream; | |||
8436 | if (layout.flags.q.explicit_location) { | |||
8437 | var->data.location = expl_location; | |||
8438 | var->data.explicit_location = true; | |||
8439 | } | |||
8440 | ||||
8441 | state->symbols->add_variable(var); | |||
8442 | instructions->push_tail(var); | |||
8443 | } | |||
8444 | } else { | |||
8445 | /* In order to have an array size, the block must also be declared with | |||
8446 | * an instance name. | |||
8447 | */ | |||
8448 | assert(this->array_specifier == NULL)(static_cast <bool> (this->array_specifier == __null ) ? void (0) : __assert_fail ("this->array_specifier == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
8449 | ||||
8450 | for (unsigned i = 0; i < num_variables; i++) { | |||
8451 | ir_variable *var = | |||
8452 | new(state) ir_variable(fields[i].type, | |||
8453 | ralloc_strdup(state, fields[i].name), | |||
8454 | var_mode); | |||
8455 | var->data.interpolation = fields[i].interpolation; | |||
8456 | var->data.centroid = fields[i].centroid; | |||
8457 | var->data.sample = fields[i].sample; | |||
8458 | var->data.patch = fields[i].patch; | |||
8459 | var->data.stream = qual_stream; | |||
8460 | var->data.location = fields[i].location; | |||
8461 | ||||
8462 | if (fields[i].location != -1) | |||
8463 | var->data.explicit_location = true; | |||
8464 | ||||
8465 | var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer; | |||
8466 | var->data.xfb_buffer = fields[i].xfb_buffer; | |||
8467 | ||||
8468 | if (fields[i].offset != -1) | |||
8469 | var->data.explicit_xfb_offset = true; | |||
8470 | var->data.offset = fields[i].offset; | |||
8471 | ||||
8472 | var->init_interface_type(block_type); | |||
8473 | ||||
8474 | if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) | |||
8475 | var->data.read_only = true; | |||
8476 | ||||
8477 | /* Precision qualifiers do not have any meaning in Desktop GLSL */ | |||
8478 | if (state->es_shader) { | |||
8479 | var->data.precision = | |||
8480 | select_gles_precision(fields[i].precision, fields[i].type, | |||
8481 | state, &loc); | |||
8482 | } | |||
8483 | ||||
8484 | if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) { | |||
8485 | var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED | |||
8486 | ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; | |||
8487 | } else { | |||
8488 | var->data.matrix_layout = fields[i].matrix_layout; | |||
8489 | } | |||
8490 | ||||
8491 | if (var->data.mode == ir_var_shader_storage) | |||
8492 | apply_memory_qualifiers(var, fields[i]); | |||
8493 | ||||
8494 | /* Examine var name here since var may get deleted in the next call */ | |||
8495 | bool var_is_gl_id = is_gl_identifier(var->name); | |||
8496 | ||||
8497 | if (redeclaring_per_vertex) { | |||
8498 | bool is_redeclaration; | |||
8499 | var = | |||
8500 | get_variable_being_redeclared(&var, loc, state, | |||
8501 | true /* allow_all_redeclarations */, | |||
8502 | &is_redeclaration); | |||
8503 | if (!var_is_gl_id || !is_redeclaration) { | |||
8504 | _mesa_glsl_error(&loc, state, | |||
8505 | "redeclaration of gl_PerVertex can only " | |||
8506 | "include built-in variables"); | |||
8507 | } else if (var->data.how_declared == ir_var_declared_normally) { | |||
8508 | _mesa_glsl_error(&loc, state, | |||
8509 | "`%s' has already been redeclared", | |||
8510 | var->name); | |||
8511 | } else { | |||
8512 | var->data.how_declared = ir_var_declared_in_block; | |||
8513 | var->reinit_interface_type(block_type); | |||
8514 | } | |||
8515 | continue; | |||
8516 | } | |||
8517 | ||||
8518 | if (state->symbols->get_variable(var->name) != NULL__null) | |||
8519 | _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); | |||
8520 | ||||
8521 | /* Propagate the "binding" keyword into this UBO/SSBO's fields. | |||
8522 | * The UBO declaration itself doesn't get an ir_variable unless it | |||
8523 | * has an instance name. This is ugly. | |||
8524 | */ | |||
8525 | if (this->layout.flags.q.explicit_binding) { | |||
8526 | apply_explicit_binding(state, &loc, var, | |||
8527 | var->get_interface_type(), &this->layout); | |||
8528 | } | |||
8529 | ||||
8530 | if (var->type->is_unsized_array()) { | |||
8531 | if (var->is_in_shader_storage_block() && | |||
8532 | is_unsized_array_last_element(var)) { | |||
8533 | var->data.from_ssbo_unsized_array = true; | |||
8534 | } else { | |||
8535 | /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays": | |||
8536 | * | |||
8537 | * "If an array is declared as the last member of a shader storage | |||
8538 | * block and the size is not specified at compile-time, it is | |||
8539 | * sized at run-time. In all other cases, arrays are sized only | |||
8540 | * at compile-time." | |||
8541 | * | |||
8542 | * In desktop GLSL it is allowed to have unsized-arrays that are | |||
8543 | * not last, as long as we can determine that they are implicitly | |||
8544 | * sized. | |||
8545 | */ | |||
8546 | if (state->es_shader) { | |||
8547 | _mesa_glsl_error(&loc, state, "unsized array `%s' " | |||
8548 | "definition: only last member of a shader " | |||
8549 | "storage block can be defined as unsized " | |||
8550 | "array", fields[i].name); | |||
8551 | } | |||
8552 | } | |||
8553 | } | |||
8554 | ||||
8555 | state->symbols->add_variable(var); | |||
8556 | instructions->push_tail(var); | |||
8557 | } | |||
8558 | ||||
8559 | if (redeclaring_per_vertex && block_type != earlier_per_vertex) { | |||
8560 | /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec: | |||
8561 | * | |||
8562 | * It is also a compilation error ... to redeclare a built-in | |||
8563 | * block and then use a member from that built-in block that was | |||
8564 | * not included in the redeclaration. | |||
8565 | * | |||
8566 | * This appears to be a clarification to the behaviour established | |||
8567 | * for gl_PerVertex by GLSL 1.50, therefore we implement this | |||
8568 | * behaviour regardless of GLSL version. | |||
8569 | * | |||
8570 | * To prevent the shader from using a member that was not included in | |||
8571 | * the redeclaration, we disable any ir_variables that are still | |||
8572 | * associated with the old declaration of gl_PerVertex (since we've | |||
8573 | * already updated all of the variables contained in the new | |||
8574 | * gl_PerVertex to point to it). | |||
8575 | * | |||
8576 | * As a side effect this will prevent | |||
8577 | * validate_intrastage_interface_blocks() from getting confused and | |||
8578 | * thinking there are conflicting definitions of gl_PerVertex in the | |||
8579 | * shader. | |||
8580 | */ | |||
8581 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { | |||
8582 | ir_variable *const var = node->as_variable(); | |||
8583 | if (var != NULL__null && | |||
8584 | var->get_interface_type() == earlier_per_vertex && | |||
8585 | var->data.mode == var_mode) { | |||
8586 | if (var->data.how_declared == ir_var_declared_normally) { | |||
8587 | _mesa_glsl_error(&loc, state, | |||
8588 | "redeclaration of gl_PerVertex cannot " | |||
8589 | "follow a redeclaration of `%s'", | |||
8590 | var->name); | |||
8591 | } | |||
8592 | state->symbols->disable_variable(var->name); | |||
8593 | var->remove(); | |||
8594 | } | |||
8595 | } | |||
8596 | } | |||
8597 | } | |||
8598 | ||||
8599 | return NULL__null; | |||
8600 | } | |||
8601 | ||||
8602 | ||||
8603 | ir_rvalue * | |||
8604 | ast_tcs_output_layout::hir(exec_list *instructions, | |||
8605 | struct _mesa_glsl_parse_state *state) | |||
8606 | { | |||
8607 | YYLTYPE loc = this->get_location(); | |||
8608 | ||||
8609 | unsigned num_vertices; | |||
8610 | if (!state->out_qualifier->vertices-> | |||
8611 | process_qualifier_constant(state, "vertices", &num_vertices, | |||
8612 | false)) { | |||
8613 | /* return here to stop cascading incorrect error messages */ | |||
8614 | return NULL__null; | |||
8615 | } | |||
8616 | ||||
8617 | /* If any shader outputs occurred before this declaration and specified an | |||
8618 | * array size, make sure the size they specified is consistent with the | |||
8619 | * primitive type. | |||
8620 | */ | |||
8621 | if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) { | |||
8622 | _mesa_glsl_error(&loc, state, | |||
8623 | "this tessellation control shader output layout " | |||
8624 | "specifies %u vertices, but a previous output " | |||
8625 | "is declared with size %u", | |||
8626 | num_vertices, state->tcs_output_size); | |||
8627 | return NULL__null; | |||
8628 | } | |||
8629 | ||||
8630 | state->tcs_output_vertices_specified = true; | |||
8631 | ||||
8632 | /* If any shader outputs occurred before this declaration and did not | |||
8633 | * specify an array size, their size is determined now. | |||
8634 | */ | |||
8635 | foreach_in_list (ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null); (node) != __null; (node) = (!exec_node_is_tail_sentinel((node)->next) ? (ir_instruction *) ((node)->next) : __null)) { | |||
8636 | ir_variable *var = node->as_variable(); | |||
8637 | if (var == NULL__null || var->data.mode != ir_var_shader_out) | |||
8638 | continue; | |||
8639 | ||||
8640 | /* Note: Not all tessellation control shader output are arrays. */ | |||
8641 | if (!var->type->is_unsized_array() || var->data.patch) | |||
8642 | continue; | |||
8643 | ||||
8644 | if (var->data.max_array_access >= (int)num_vertices) { | |||
8645 | _mesa_glsl_error(&loc, state, | |||
8646 | "this tessellation control shader output layout " | |||
8647 | "specifies %u vertices, but an access to element " | |||
8648 | "%u of output `%s' already exists", num_vertices, | |||
8649 | var->data.max_array_access, var->name); | |||
8650 | } else { | |||
8651 | var->type = glsl_type::get_array_instance(var->type->fields.array, | |||
8652 | num_vertices); | |||
8653 | } | |||
8654 | } | |||
8655 | ||||
8656 | return NULL__null; | |||
8657 | } | |||
8658 | ||||
8659 | ||||
8660 | ir_rvalue * | |||
8661 | ast_gs_input_layout::hir(exec_list *instructions, | |||
8662 | struct _mesa_glsl_parse_state *state) | |||
8663 | { | |||
8664 | YYLTYPE loc = this->get_location(); | |||
8665 | ||||
8666 | /* Should have been prevented by the parser. */ | |||
8667 | assert(!state->gs_input_prim_type_specified(static_cast <bool> (!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type ) ? void (0) : __assert_fail ("!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) | |||
8668 | || state->in_qualifier->prim_type == this->prim_type)(static_cast <bool> (!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type ) ? void (0) : __assert_fail ("!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
8669 | ||||
8670 | /* If any shader inputs occurred before this declaration and specified an | |||
8671 | * array size, make sure the size they specified is consistent with the | |||
8672 | * primitive type. | |||
8673 | */ | |||
8674 | unsigned num_vertices = vertices_per_prim(this->prim_type); | |||
8675 | if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) { | |||
8676 | _mesa_glsl_error(&loc, state, | |||
8677 | "this geometry shader input layout implies %u vertices" | |||
8678 | " per primitive, but a previous input is declared" | |||
8679 | " with size %u", num_vertices, state->gs_input_size); | |||
8680 | return NULL__null; | |||
8681 | } | |||
8682 | ||||
8683 | state->gs_input_prim_type_specified = true; | |||
8684 | ||||
8685 | /* If any shader inputs occurred before this declaration and did not | |||
8686 | * specify an array size, their size is determined now. | |||
8687 | */ | |||
8688 | foreach_in_list(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null); (node) != __null; (node) = (!exec_node_is_tail_sentinel((node)->next) ? (ir_instruction *) ((node)->next) : __null)) { | |||
8689 | ir_variable *var = node->as_variable(); | |||
8690 | if (var == NULL__null || var->data.mode != ir_var_shader_in) | |||
8691 | continue; | |||
8692 | ||||
8693 | /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an | |||
8694 | * array; skip it. | |||
8695 | */ | |||
8696 | ||||
8697 | if (var->type->is_unsized_array()) { | |||
8698 | if (var->data.max_array_access >= (int)num_vertices) { | |||
8699 | _mesa_glsl_error(&loc, state, | |||
8700 | "this geometry shader input layout implies %u" | |||
8701 | " vertices, but an access to element %u of input" | |||
8702 | " `%s' already exists", num_vertices, | |||
8703 | var->data.max_array_access, var->name); | |||
8704 | } else { | |||
8705 | var->type = glsl_type::get_array_instance(var->type->fields.array, | |||
8706 | num_vertices); | |||
8707 | } | |||
8708 | } | |||
8709 | } | |||
8710 | ||||
8711 | return NULL__null; | |||
8712 | } | |||
8713 | ||||
8714 | ||||
8715 | ir_rvalue * | |||
8716 | ast_cs_input_layout::hir(exec_list *instructions, | |||
8717 | struct _mesa_glsl_parse_state *state) | |||
8718 | { | |||
8719 | YYLTYPE loc = this->get_location(); | |||
8720 | ||||
8721 | /* From the ARB_compute_shader specification: | |||
8722 | * | |||
8723 | * If the local size of the shader in any dimension is greater | |||
8724 | * than the maximum size supported by the implementation for that | |||
8725 | * dimension, a compile-time error results. | |||
8726 | * | |||
8727 | * It is not clear from the spec how the error should be reported if | |||
8728 | * the total size of the work group exceeds | |||
8729 | * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to | |||
8730 | * report it at compile time as well. | |||
8731 | */ | |||
8732 | GLuint64 total_invocations = 1; | |||
8733 | unsigned qual_local_size[3]; | |||
8734 | for (int i = 0; i < 3; i++) { | |||
| ||||
8735 | ||||
8736 | char *local_size_str = ralloc_asprintf(NULL__null, "invalid local_size_%c", | |||
8737 | 'x' + i); | |||
8738 | /* Infer a local_size of 1 for unspecified dimensions */ | |||
8739 | if (this->local_size[i] == NULL__null) { | |||
8740 | qual_local_size[i] = 1; | |||
8741 | } else if (!this->local_size[i]-> | |||
8742 | process_qualifier_constant(state, local_size_str, | |||
8743 | &qual_local_size[i], false)) { | |||
8744 | ralloc_free(local_size_str); | |||
8745 | return NULL__null; | |||
8746 | } | |||
8747 | ralloc_free(local_size_str); | |||
8748 | ||||
8749 | if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) { | |||
8750 | _mesa_glsl_error(&loc, state, | |||
8751 | "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE" | |||
8752 | " (%d)", 'x' + i, | |||
8753 | state->ctx->Const.MaxComputeWorkGroupSize[i]); | |||
8754 | break; | |||
8755 | } | |||
8756 | total_invocations *= qual_local_size[i]; | |||
8757 | if (total_invocations > | |||
8758 | state->ctx->Const.MaxComputeWorkGroupInvocations) { | |||
8759 | _mesa_glsl_error(&loc, state, | |||
8760 | "product of local_sizes exceeds " | |||
8761 | "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)", | |||
8762 | state->ctx->Const.MaxComputeWorkGroupInvocations); | |||
8763 | break; | |||
8764 | } | |||
8765 | } | |||
8766 | ||||
8767 | /* If any compute input layout declaration preceded this one, make sure it | |||
8768 | * was consistent with this one. | |||
8769 | */ | |||
8770 | if (state->cs_input_local_size_specified) { | |||
8771 | for (int i = 0; i < 3; i++) { | |||
8772 | if (state->cs_input_local_size[i] != qual_local_size[i]) { | |||
8773 | _mesa_glsl_error(&loc, state, | |||
8774 | "compute shader input layout does not match" | |||
8775 | " previous declaration"); | |||
8776 | return NULL__null; | |||
8777 | } | |||
8778 | } | |||
8779 | } | |||
8780 | ||||
8781 | /* The ARB_compute_variable_group_size spec says: | |||
8782 | * | |||
8783 | * If a compute shader including a *local_size_variable* qualifier also | |||
8784 | * declares a fixed local group size using the *local_size_x*, | |||
8785 | * *local_size_y*, or *local_size_z* qualifiers, a compile-time error | |||
8786 | * results | |||
8787 | */ | |||
8788 | if (state->cs_input_local_size_variable_specified) { | |||
8789 | _mesa_glsl_error(&loc, state, | |||
8790 | "compute shader can't include both a variable and a " | |||
8791 | "fixed local group size"); | |||
8792 | return NULL__null; | |||
8793 | } | |||
8794 | ||||
8795 | state->cs_input_local_size_specified = true; | |||
8796 | for (int i = 0; i < 3; i++) | |||
8797 | state->cs_input_local_size[i] = qual_local_size[i]; | |||
| ||||
8798 | ||||
8799 | /* We may now declare the built-in constant gl_WorkGroupSize (see | |||
8800 | * builtin_variable_generator::generate_constants() for why we didn't | |||
8801 | * declare it earlier). | |||
8802 | */ | |||
8803 | ir_variable *var = new(state->symbols) | |||
8804 | ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); | |||
8805 | var->data.how_declared = ir_var_declared_implicitly; | |||
8806 | var->data.read_only = true; | |||
8807 | instructions->push_tail(var); | |||
8808 | state->symbols->add_variable(var); | |||
8809 | ir_constant_data data; | |||
8810 | memset(&data, 0, sizeof(data)); | |||
8811 | for (int i = 0; i < 3; i++) | |||
8812 | data.u[i] = qual_local_size[i]; | |||
8813 | var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data); | |||
8814 | var->constant_initializer = | |||
8815 | new(var) ir_constant(glsl_type::uvec3_type, &data); | |||
8816 | var->data.has_initializer = true; | |||
8817 | ||||
8818 | return NULL__null; | |||
8819 | } | |||
8820 | ||||
8821 | ||||
8822 | static void | |||
8823 | detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, | |||
8824 | exec_list *instructions) | |||
8825 | { | |||
8826 | bool gl_FragColor_assigned = false; | |||
8827 | bool gl_FragData_assigned = false; | |||
8828 | bool gl_FragSecondaryColor_assigned = false; | |||
8829 | bool gl_FragSecondaryData_assigned = false; | |||
8830 | bool user_defined_fs_output_assigned = false; | |||
8831 | ir_variable *user_defined_fs_output = NULL__null; | |||
8832 | ||||
8833 | /* It would be nice to have proper location information. */ | |||
8834 | YYLTYPE loc; | |||
8835 | memset(&loc, 0, sizeof(loc)); | |||
8836 | ||||
8837 | foreach_in_list(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null); (node) != __null; (node) = (!exec_node_is_tail_sentinel((node)->next) ? (ir_instruction *) ((node)->next) : __null)) { | |||
8838 | ir_variable *var = node->as_variable(); | |||
8839 | ||||
8840 | if (!var || !var->data.assigned) | |||
8841 | continue; | |||
8842 | ||||
8843 | if (strcmp(var->name, "gl_FragColor") == 0) | |||
8844 | gl_FragColor_assigned = true; | |||
8845 | else if (strcmp(var->name, "gl_FragData") == 0) | |||
8846 | gl_FragData_assigned = true; | |||
8847 | else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0) | |||
8848 | gl_FragSecondaryColor_assigned = true; | |||
8849 | else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0) | |||
8850 | gl_FragSecondaryData_assigned = true; | |||
8851 | else if (!is_gl_identifier(var->name)) { | |||
8852 | if (state->stage == MESA_SHADER_FRAGMENT && | |||
8853 | var->data.mode == ir_var_shader_out) { | |||
8854 | user_defined_fs_output_assigned = true; | |||
8855 | user_defined_fs_output = var; | |||
8856 | } | |||
8857 | } | |||
8858 | } | |||
8859 | ||||
8860 | /* From the GLSL 1.30 spec: | |||
8861 | * | |||
8862 | * "If a shader statically assigns a value to gl_FragColor, it | |||
8863 | * may not assign a value to any element of gl_FragData. If a | |||
8864 | * shader statically writes a value to any element of | |||
8865 | * gl_FragData, it may not assign a value to | |||
8866 | * gl_FragColor. That is, a shader may assign values to either | |||
8867 | * gl_FragColor or gl_FragData, but not both. Multiple shaders | |||
8868 | * linked together must also consistently write just one of | |||
8869 | * these variables. Similarly, if user declared output | |||
8870 | * variables are in use (statically assigned to), then the | |||
8871 | * built-in variables gl_FragColor and gl_FragData may not be | |||
8872 | * assigned to. These incorrect usages all generate compile | |||
8873 | * time errors." | |||
8874 | */ | |||
8875 | if (gl_FragColor_assigned && gl_FragData_assigned) { | |||
8876 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " | |||
8877 | "`gl_FragColor' and `gl_FragData'"); | |||
8878 | } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) { | |||
8879 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " | |||
8880 | "`gl_FragColor' and `%s'", | |||
8881 | user_defined_fs_output->name); | |||
8882 | } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) { | |||
8883 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " | |||
8884 | "`gl_FragSecondaryColorEXT' and" | |||
8885 | " `gl_FragSecondaryDataEXT'"); | |||
8886 | } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) { | |||
8887 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " | |||
8888 | "`gl_FragColor' and" | |||
8889 | " `gl_FragSecondaryDataEXT'"); | |||
8890 | } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) { | |||
8891 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " | |||
8892 | "`gl_FragData' and" | |||
8893 | " `gl_FragSecondaryColorEXT'"); | |||
8894 | } else if (gl_FragData_assigned && user_defined_fs_output_assigned) { | |||
8895 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " | |||
8896 | "`gl_FragData' and `%s'", | |||
8897 | user_defined_fs_output->name); | |||
8898 | } | |||
8899 | ||||
8900 | if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) && | |||
8901 | !state->EXT_blend_func_extended_enable) { | |||
8902 | _mesa_glsl_error(&loc, state, | |||
8903 | "Dual source blending requires EXT_blend_func_extended"); | |||
8904 | } | |||
8905 | } | |||
8906 | ||||
8907 | static void | |||
8908 | verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state) | |||
8909 | { | |||
8910 | YYLTYPE loc; | |||
8911 | memset(&loc, 0, sizeof(loc)); | |||
8912 | ||||
8913 | /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: | |||
8914 | * | |||
8915 | * "A program will fail to compile or link if any shader | |||
8916 | * or stage contains two or more functions with the same | |||
8917 | * name if the name is associated with a subroutine type." | |||
8918 | */ | |||
8919 | ||||
8920 | for (int i = 0; i < state->num_subroutines; i++) { | |||
8921 | unsigned definitions = 0; | |||
8922 | ir_function *fn = state->subroutines[i]; | |||
8923 | /* Calculate number of function definitions with the same name */ | |||
8924 | foreach_in_list(ir_function_signature, sig, &fn->signatures)for (ir_function_signature *sig = (!exec_node_is_tail_sentinel ((&fn->signatures)->head_sentinel.next) ? (ir_function_signature *) ((&fn->signatures)->head_sentinel.next) : __null ); (sig) != __null; (sig) = (!exec_node_is_tail_sentinel((sig )->next) ? (ir_function_signature *) ((sig)->next) : __null )) { | |||
8925 | if (sig->is_defined) { | |||
8926 | if (++definitions > 1) { | |||
8927 | _mesa_glsl_error(&loc, state, | |||
8928 | "%s shader contains two or more function " | |||
8929 | "definitions with name `%s', which is " | |||
8930 | "associated with a subroutine type.\n", | |||
8931 | _mesa_shader_stage_to_string(state->stage), | |||
8932 | fn->name); | |||
8933 | return; | |||
8934 | } | |||
8935 | } | |||
8936 | } | |||
8937 | } | |||
8938 | } | |||
8939 | ||||
8940 | static void | |||
8941 | remove_per_vertex_blocks(exec_list *instructions, | |||
8942 | _mesa_glsl_parse_state *state, ir_variable_mode mode) | |||
8943 | { | |||
8944 | /* Find the gl_PerVertex interface block of the appropriate (in/out) mode, | |||
8945 | * if it exists in this shader type. | |||
8946 | */ | |||
8947 | const glsl_type *per_vertex = NULL__null; | |||
8948 | switch (mode) { | |||
8949 | case ir_var_shader_in: | |||
8950 | if (ir_variable *gl_in = state->symbols->get_variable("gl_in")) | |||
8951 | per_vertex = gl_in->get_interface_type(); | |||
8952 | break; | |||
8953 | case ir_var_shader_out: | |||
8954 | if (ir_variable *gl_Position = | |||
8955 | state->symbols->get_variable("gl_Position")) { | |||
8956 | per_vertex = gl_Position->get_interface_type(); | |||
8957 | } | |||
8958 | break; | |||
8959 | default: | |||
8960 | assert(!"Unexpected mode")(static_cast <bool> (!"Unexpected mode") ? void (0) : __assert_fail ("!\"Unexpected mode\"", __builtin_FILE (), __builtin_LINE ( ), __extension__ __PRETTY_FUNCTION__)); | |||
8961 | break; | |||
8962 | } | |||
8963 | ||||
8964 | /* If we didn't find a built-in gl_PerVertex interface block, then we don't | |||
8965 | * need to do anything. | |||
8966 | */ | |||
8967 | if (per_vertex == NULL__null) | |||
8968 | return; | |||
8969 | ||||
8970 | /* If the interface block is used by the shader, then we don't need to do | |||
8971 | * anything. | |||
8972 | */ | |||
8973 | interface_block_usage_visitor v(mode, per_vertex); | |||
8974 | v.run(instructions); | |||
8975 | if (v.usage_found()) | |||
8976 | return; | |||
8977 | ||||
8978 | /* Remove any ir_variable declarations that refer to the interface block | |||
8979 | * we're removing. | |||
8980 | */ | |||
8981 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { | |||
8982 | ir_variable *const var = node->as_variable(); | |||
8983 | if (var != NULL__null && var->get_interface_type() == per_vertex && | |||
8984 | var->data.mode == mode) { | |||
8985 | state->symbols->disable_variable(var->name); | |||
8986 | var->remove(); | |||
8987 | } | |||
8988 | } | |||
8989 | } | |||
8990 | ||||
8991 | ir_rvalue * | |||
8992 | ast_warnings_toggle::hir(exec_list *, | |||
8993 | struct _mesa_glsl_parse_state *state) | |||
8994 | { | |||
8995 | state->warnings_enabled = enable; | |||
8996 | return NULL__null; | |||
8997 | } |