File: | root/firefox-clang/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/ast_to_hir.cpp |
Warning: | line 5402, column 16 Value stored to 'error_emitted' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright © 2010 Intel Corporation |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice (including the next |
12 | * paragraph) shall be included in all copies or substantial portions of the |
13 | * Software. |
14 | * |
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
21 | * DEALINGS IN THE SOFTWARE. |
22 | */ |
23 | |
24 | /** |
25 | * \file ast_to_hir.c |
26 | * Convert abstract syntax to to high-level intermediate reprensentation (HIR). |
27 | * |
28 | * During the conversion to HIR, the majority of the symantic checking is |
29 | * preformed on the program. This includes: |
30 | * |
31 | * * Symbol table management |
32 | * * Type checking |
33 | * * Function binding |
34 | * |
35 | * The majority of this work could be done during parsing, and the parser could |
36 | * probably generate HIR directly. However, this results in frequent changes |
37 | * to the parser code. Since we do not assume that every system this complier |
38 | * is built on will have Flex and Bison installed, we have to store the code |
39 | * generated by these tools in our version control system. In other parts of |
40 | * the system we've seen problems where a parser was changed but the generated |
41 | * code was not committed, merge conflicts where created because two developers |
42 | * had slightly different versions of Bison installed, etc. |
43 | * |
44 | * I have also noticed that running Bison generated parsers in GDB is very |
45 | * irritating. When you get a segfault on '$$ = $1->foo', you can't very |
46 | * well 'print $1' in GDB. |
47 | * |
48 | * As a result, my preference is to put as little C code as possible in the |
49 | * parser (and lexer) sources. |
50 | */ |
51 | |
52 | #include "glsl_symbol_table.h" |
53 | #include "glsl_parser_extras.h" |
54 | #include "ast.h" |
55 | #include "compiler/glsl_types.h" |
56 | #include "util/hash_table.h" |
57 | #include "main/mtypes.h" |
58 | #include "main/macros.h" |
59 | #include "main/shaderobj.h" |
60 | #include "ir.h" |
61 | #include "ir_builder.h" |
62 | #include "builtin_functions.h" |
63 | |
64 | using namespace ir_builder; |
65 | |
66 | static void |
67 | detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, |
68 | exec_list *instructions); |
69 | static void |
70 | verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); |
71 | |
72 | static void |
73 | remove_per_vertex_blocks(exec_list *instructions, |
74 | _mesa_glsl_parse_state *state, ir_variable_mode mode); |
75 | |
76 | /** |
77 | * Visitor class that finds the first instance of any write-only variable that |
78 | * is ever read, if any |
79 | */ |
80 | class read_from_write_only_variable_visitor : public ir_hierarchical_visitor |
81 | { |
82 | public: |
83 | read_from_write_only_variable_visitor() : found(NULL__null) |
84 | { |
85 | } |
86 | |
87 | virtual ir_visitor_status visit(ir_dereference_variable *ir) |
88 | { |
89 | if (this->in_assignee) |
90 | return visit_continue; |
91 | |
92 | ir_variable *var = ir->variable_referenced(); |
93 | /* We can have memory_write_only set on both images and buffer variables, |
94 | * but in the former there is a distinction between reads from |
95 | * the variable itself (write_only) and from the memory they point to |
96 | * (memory_write_only), while in the case of buffer variables there is |
97 | * no such distinction, that is why this check here is limited to |
98 | * buffer variables alone. |
99 | */ |
100 | if (!var || var->data.mode != ir_var_shader_storage) |
101 | return visit_continue; |
102 | |
103 | if (var->data.memory_write_only) { |
104 | found = var; |
105 | return visit_stop; |
106 | } |
107 | |
108 | return visit_continue; |
109 | } |
110 | |
111 | ir_variable *get_variable() { |
112 | return found; |
113 | } |
114 | |
115 | virtual ir_visitor_status visit_enter(ir_expression *ir) |
116 | { |
117 | /* .length() doesn't actually read anything */ |
118 | if (ir->operation == ir_unop_ssbo_unsized_array_length) |
119 | return visit_continue_with_parent; |
120 | |
121 | return visit_continue; |
122 | } |
123 | |
124 | private: |
125 | ir_variable *found; |
126 | }; |
127 | |
128 | void |
129 | _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) |
130 | { |
131 | _mesa_glsl_initialize_variables(instructions, state); |
132 | |
133 | state->symbols->separate_function_namespace = state->language_version == 110; |
134 | |
135 | state->current_function = NULL__null; |
136 | |
137 | state->toplevel_ir = instructions; |
138 | |
139 | state->gs_input_prim_type_specified = false; |
140 | state->tcs_output_vertices_specified = false; |
141 | state->cs_input_local_size_specified = false; |
142 | |
143 | /* Section 4.2 of the GLSL 1.20 specification states: |
144 | * "The built-in functions are scoped in a scope outside the global scope |
145 | * users declare global variables in. That is, a shader's global scope, |
146 | * available for user-defined functions and global variables, is nested |
147 | * inside the scope containing the built-in functions." |
148 | * |
149 | * Since built-in functions like ftransform() access built-in variables, |
150 | * it follows that those must be in the outer scope as well. |
151 | * |
152 | * We push scope here to create this nesting effect...but don't pop. |
153 | * This way, a shader's globals are still in the symbol table for use |
154 | * by the linker. |
155 | */ |
156 | state->symbols->push_scope(); |
157 | |
158 | foreach_list_typed (ast_node, ast, link, & state->translation_unit)for (ast_node * ast = (!exec_node_is_tail_sentinel((& state ->translation_unit)->head_sentinel.next) ? ((ast_node * ) (((uintptr_t) (& state->translation_unit)->head_sentinel .next) - (((char *) &((ast_node *) (& state->translation_unit )->head_sentinel.next)->link) - ((char *) (& state-> translation_unit)->head_sentinel.next)))) : __null); (ast) != __null; (ast) = (!exec_node_is_tail_sentinel((ast)->link .next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - ( ((char *) &((ast_node *) (ast)->link.next)->link) - ((char *) (ast)->link.next)))) : __null)) |
159 | ast->hir(instructions, state); |
160 | |
161 | verify_subroutine_associated_funcs(state); |
162 | detect_recursion_unlinked(state, instructions); |
163 | detect_conflicting_assignments(state, instructions); |
164 | |
165 | state->toplevel_ir = NULL__null; |
166 | |
167 | /* Move all of the variable declarations to the front of the IR list, and |
168 | * reverse the order. This has the (intended!) side effect that vertex |
169 | * shader inputs and fragment shader outputs will appear in the IR in the |
170 | * same order that they appeared in the shader code. This results in the |
171 | * locations being assigned in the declared order. Many (arguably buggy) |
172 | * applications depend on this behavior, and it matches what nearly all |
173 | * other drivers do. |
174 | * However, do not push the declarations before struct decls or precision |
175 | * statements. |
176 | */ |
177 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); |
178 | ir_instruction* after_node = NULL__null; |
179 | while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl)) |
180 | { |
181 | after_node = before_node; |
182 | before_node = (ir_instruction*)before_node->next; |
183 | } |
184 | |
185 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { |
186 | ir_variable *const var = node->as_variable(); |
187 | |
188 | if (var == NULL__null) |
189 | continue; |
190 | |
191 | var->remove(); |
192 | if (after_node) |
193 | after_node->insert_after(var); |
194 | else |
195 | instructions->push_head(var); |
196 | } |
197 | |
198 | /* Figure out if gl_FragCoord is actually used in fragment shader */ |
199 | ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); |
200 | if (var != NULL__null) |
201 | state->fs_uses_gl_fragcoord = var->data.used; |
202 | |
203 | /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: |
204 | * |
205 | * If multiple shaders using members of a built-in block belonging to |
206 | * the same interface are linked together in the same program, they |
207 | * must all redeclare the built-in block in the same way, as described |
208 | * in section 4.3.7 "Interface Blocks" for interface block matching, or |
209 | * a link error will result. |
210 | * |
211 | * The phrase "using members of a built-in block" implies that if two |
212 | * shaders are linked together and one of them *does not use* any members |
213 | * of the built-in block, then that shader does not need to have a matching |
214 | * redeclaration of the built-in block. |
215 | * |
216 | * This appears to be a clarification to the behaviour established for |
217 | * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL |
218 | * version. |
219 | * |
220 | * The definition of "interface" in section 4.3.7 that applies here is as |
221 | * follows: |
222 | * |
223 | * The boundary between adjacent programmable pipeline stages: This |
224 | * spans all the outputs in all compilation units of the first stage |
225 | * and all the inputs in all compilation units of the second stage. |
226 | * |
227 | * Therefore this rule applies to both inter- and intra-stage linking. |
228 | * |
229 | * The easiest way to implement this is to check whether the shader uses |
230 | * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply |
231 | * remove all the relevant variable declaration from the IR, so that the |
232 | * linker won't see them and complain about mismatches. |
233 | */ |
234 | remove_per_vertex_blocks(instructions, state, ir_var_shader_in); |
235 | remove_per_vertex_blocks(instructions, state, ir_var_shader_out); |
236 | |
237 | /* Check that we don't have reads from write-only variables */ |
238 | read_from_write_only_variable_visitor v; |
239 | v.run(instructions); |
240 | ir_variable *error_var = v.get_variable(); |
241 | if (error_var) { |
242 | /* It would be nice to have proper location information, but for that |
243 | * we would need to check this as we process each kind of AST node |
244 | */ |
245 | YYLTYPE loc; |
246 | memset(&loc, 0, sizeof(loc)); |
247 | _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", |
248 | error_var->name); |
249 | } |
250 | } |
251 | |
252 | |
253 | static ir_expression_operation |
254 | get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, |
255 | struct _mesa_glsl_parse_state *state) |
256 | { |
257 | switch (to->base_type) { |
258 | case GLSL_TYPE_FLOAT: |
259 | switch (from->base_type) { |
260 | case GLSL_TYPE_INT: return ir_unop_i2f; |
261 | case GLSL_TYPE_UINT: return ir_unop_u2f; |
262 | default: return (ir_expression_operation)0; |
263 | } |
264 | |
265 | case GLSL_TYPE_UINT: |
266 | if (!state->has_implicit_uint_to_int_conversion()) |
267 | return (ir_expression_operation)0; |
268 | switch (from->base_type) { |
269 | case GLSL_TYPE_INT: return ir_unop_i2u; |
270 | default: return (ir_expression_operation)0; |
271 | } |
272 | |
273 | case GLSL_TYPE_DOUBLE: |
274 | if (!state->has_double()) |
275 | return (ir_expression_operation)0; |
276 | switch (from->base_type) { |
277 | case GLSL_TYPE_INT: return ir_unop_i2d; |
278 | case GLSL_TYPE_UINT: return ir_unop_u2d; |
279 | case GLSL_TYPE_FLOAT: return ir_unop_f2d; |
280 | case GLSL_TYPE_INT64: return ir_unop_i642d; |
281 | case GLSL_TYPE_UINT64: return ir_unop_u642d; |
282 | default: return (ir_expression_operation)0; |
283 | } |
284 | |
285 | case GLSL_TYPE_UINT64: |
286 | if (!state->has_int64()) |
287 | return (ir_expression_operation)0; |
288 | switch (from->base_type) { |
289 | case GLSL_TYPE_INT: return ir_unop_i2u64; |
290 | case GLSL_TYPE_UINT: return ir_unop_u2u64; |
291 | case GLSL_TYPE_INT64: return ir_unop_i642u64; |
292 | default: return (ir_expression_operation)0; |
293 | } |
294 | |
295 | case GLSL_TYPE_INT64: |
296 | if (!state->has_int64()) |
297 | return (ir_expression_operation)0; |
298 | switch (from->base_type) { |
299 | case GLSL_TYPE_INT: return ir_unop_i2i64; |
300 | default: return (ir_expression_operation)0; |
301 | } |
302 | |
303 | default: return (ir_expression_operation)0; |
304 | } |
305 | } |
306 | |
307 | |
308 | /** |
309 | * If a conversion is available, convert one operand to a different type |
310 | * |
311 | * The \c from \c ir_rvalue is converted "in place". |
312 | * |
313 | * \param to Type that the operand it to be converted to |
314 | * \param from Operand that is being converted |
315 | * \param state GLSL compiler state |
316 | * |
317 | * \return |
318 | * If a conversion is possible (or unnecessary), \c true is returned. |
319 | * Otherwise \c false is returned. |
320 | */ |
321 | static bool |
322 | apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, |
323 | struct _mesa_glsl_parse_state *state) |
324 | { |
325 | void *ctx = state; |
326 | if (to->base_type == from->type->base_type) |
327 | return true; |
328 | |
329 | /* Prior to GLSL 1.20, there are no implicit conversions */ |
330 | if (!state->has_implicit_conversions()) |
331 | return false; |
332 | |
333 | /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: |
334 | * |
335 | * "There are no implicit array or structure conversions. For |
336 | * example, an array of int cannot be implicitly converted to an |
337 | * array of float. |
338 | */ |
339 | if (!to->is_numeric() || !from->type->is_numeric()) |
340 | return false; |
341 | |
342 | /* We don't actually want the specific type `to`, we want a type |
343 | * with the same base type as `to`, but the same vector width as |
344 | * `from`. |
345 | */ |
346 | to = glsl_type::get_instance(to->base_type, from->type->vector_elements, |
347 | from->type->matrix_columns); |
348 | |
349 | ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); |
350 | if (op) { |
351 | from = new(ctx) ir_expression(op, to, from, NULL__null); |
352 | return true; |
353 | } else { |
354 | return false; |
355 | } |
356 | } |
357 | |
358 | |
359 | static const struct glsl_type * |
360 | arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, |
361 | bool multiply, |
362 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
363 | { |
364 | const glsl_type *type_a = value_a->type; |
365 | const glsl_type *type_b = value_b->type; |
366 | |
367 | /* From GLSL 1.50 spec, page 56: |
368 | * |
369 | * "The arithmetic binary operators add (+), subtract (-), |
370 | * multiply (*), and divide (/) operate on integer and |
371 | * floating-point scalars, vectors, and matrices." |
372 | */ |
373 | if (!type_a->is_numeric() || !type_b->is_numeric()) { |
374 | _mesa_glsl_error(loc, state, |
375 | "operands to arithmetic operators must be numeric"); |
376 | return glsl_type::error_type; |
377 | } |
378 | |
379 | |
380 | /* "If one operand is floating-point based and the other is |
381 | * not, then the conversions from Section 4.1.10 "Implicit |
382 | * Conversions" are applied to the non-floating-point-based operand." |
383 | */ |
384 | if (!apply_implicit_conversion(type_a, value_b, state) |
385 | && !apply_implicit_conversion(type_b, value_a, state)) { |
386 | _mesa_glsl_error(loc, state, |
387 | "could not implicitly convert operands to " |
388 | "arithmetic operator"); |
389 | return glsl_type::error_type; |
390 | } |
391 | type_a = value_a->type; |
392 | type_b = value_b->type; |
393 | |
394 | /* "If the operands are integer types, they must both be signed or |
395 | * both be unsigned." |
396 | * |
397 | * From this rule and the preceeding conversion it can be inferred that |
398 | * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. |
399 | * The is_numeric check above already filtered out the case where either |
400 | * type is not one of these, so now the base types need only be tested for |
401 | * equality. |
402 | */ |
403 | if (type_a->base_type != type_b->base_type) { |
404 | _mesa_glsl_error(loc, state, |
405 | "base type mismatch for arithmetic operator"); |
406 | return glsl_type::error_type; |
407 | } |
408 | |
409 | /* "All arithmetic binary operators result in the same fundamental type |
410 | * (signed integer, unsigned integer, or floating-point) as the |
411 | * operands they operate on, after operand type conversion. After |
412 | * conversion, the following cases are valid |
413 | * |
414 | * * The two operands are scalars. In this case the operation is |
415 | * applied, resulting in a scalar." |
416 | */ |
417 | if (type_a->is_scalar() && type_b->is_scalar()) |
418 | return type_a; |
419 | |
420 | /* "* One operand is a scalar, and the other is a vector or matrix. |
421 | * In this case, the scalar operation is applied independently to each |
422 | * component of the vector or matrix, resulting in the same size |
423 | * vector or matrix." |
424 | */ |
425 | if (type_a->is_scalar()) { |
426 | if (!type_b->is_scalar()) |
427 | return type_b; |
428 | } else if (type_b->is_scalar()) { |
429 | return type_a; |
430 | } |
431 | |
432 | /* All of the combinations of <scalar, scalar>, <vector, scalar>, |
433 | * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been |
434 | * handled. |
435 | */ |
436 | assert(!type_a->is_scalar())(static_cast <bool> (!type_a->is_scalar()) ? void (0 ) : __assert_fail ("!type_a->is_scalar()", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
437 | assert(!type_b->is_scalar())(static_cast <bool> (!type_b->is_scalar()) ? void (0 ) : __assert_fail ("!type_b->is_scalar()", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
438 | |
439 | /* "* The two operands are vectors of the same size. In this case, the |
440 | * operation is done component-wise resulting in the same size |
441 | * vector." |
442 | */ |
443 | if (type_a->is_vector() && type_b->is_vector()) { |
444 | if (type_a == type_b) { |
445 | return type_a; |
446 | } else { |
447 | _mesa_glsl_error(loc, state, |
448 | "vector size mismatch for arithmetic operator"); |
449 | return glsl_type::error_type; |
450 | } |
451 | } |
452 | |
453 | /* All of the combinations of <scalar, scalar>, <vector, scalar>, |
454 | * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and |
455 | * <vector, vector> have been handled. At least one of the operands must |
456 | * be matrix. Further, since there are no integer matrix types, the base |
457 | * type of both operands must be float. |
458 | */ |
459 | assert(type_a->is_matrix() || type_b->is_matrix())(static_cast <bool> (type_a->is_matrix() || type_b-> is_matrix()) ? void (0) : __assert_fail ("type_a->is_matrix() || type_b->is_matrix()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
460 | assert(type_a->is_float() || type_a->is_double())(static_cast <bool> (type_a->is_float() || type_a-> is_double()) ? void (0) : __assert_fail ("type_a->is_float() || type_a->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
461 | assert(type_b->is_float() || type_b->is_double())(static_cast <bool> (type_b->is_float() || type_b-> is_double()) ? void (0) : __assert_fail ("type_b->is_float() || type_b->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
462 | |
463 | /* "* The operator is add (+), subtract (-), or divide (/), and the |
464 | * operands are matrices with the same number of rows and the same |
465 | * number of columns. In this case, the operation is done component- |
466 | * wise resulting in the same size matrix." |
467 | * * The operator is multiply (*), where both operands are matrices or |
468 | * one operand is a vector and the other a matrix. A right vector |
469 | * operand is treated as a column vector and a left vector operand as a |
470 | * row vector. In all these cases, it is required that the number of |
471 | * columns of the left operand is equal to the number of rows of the |
472 | * right operand. Then, the multiply (*) operation does a linear |
473 | * algebraic multiply, yielding an object that has the same number of |
474 | * rows as the left operand and the same number of columns as the right |
475 | * operand. Section 5.10 "Vector and Matrix Operations" explains in |
476 | * more detail how vectors and matrices are operated on." |
477 | */ |
478 | if (! multiply) { |
479 | if (type_a == type_b) |
480 | return type_a; |
481 | } else { |
482 | const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); |
483 | |
484 | if (type == glsl_type::error_type) { |
485 | _mesa_glsl_error(loc, state, |
486 | "size mismatch for matrix multiplication"); |
487 | } |
488 | |
489 | return type; |
490 | } |
491 | |
492 | |
493 | /* "All other cases are illegal." |
494 | */ |
495 | _mesa_glsl_error(loc, state, "type mismatch"); |
496 | return glsl_type::error_type; |
497 | } |
498 | |
499 | |
500 | static const struct glsl_type * |
501 | unary_arithmetic_result_type(const struct glsl_type *type, |
502 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
503 | { |
504 | /* From GLSL 1.50 spec, page 57: |
505 | * |
506 | * "The arithmetic unary operators negate (-), post- and pre-increment |
507 | * and decrement (-- and ++) operate on integer or floating-point |
508 | * values (including vectors and matrices). All unary operators work |
509 | * component-wise on their operands. These result with the same type |
510 | * they operated on." |
511 | */ |
512 | if (!type->is_numeric()) { |
513 | _mesa_glsl_error(loc, state, |
514 | "operands to arithmetic operators must be numeric"); |
515 | return glsl_type::error_type; |
516 | } |
517 | |
518 | return type; |
519 | } |
520 | |
521 | /** |
522 | * \brief Return the result type of a bit-logic operation. |
523 | * |
524 | * If the given types to the bit-logic operator are invalid, return |
525 | * glsl_type::error_type. |
526 | * |
527 | * \param value_a LHS of bit-logic op |
528 | * \param value_b RHS of bit-logic op |
529 | */ |
530 | static const struct glsl_type * |
531 | bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, |
532 | ast_operators op, |
533 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
534 | { |
535 | const glsl_type *type_a = value_a->type; |
536 | const glsl_type *type_b = value_b->type; |
537 | |
538 | if (!state->check_bitwise_operations_allowed(loc)) { |
539 | return glsl_type::error_type; |
540 | } |
541 | |
542 | /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: |
543 | * |
544 | * "The bitwise operators and (&), exclusive-or (^), and inclusive-or |
545 | * (|). The operands must be of type signed or unsigned integers or |
546 | * integer vectors." |
547 | */ |
548 | if (!type_a->is_integer_32_64()) { |
549 | _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", |
550 | ast_expression::operator_string(op)); |
551 | return glsl_type::error_type; |
552 | } |
553 | if (!type_b->is_integer_32_64()) { |
554 | _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", |
555 | ast_expression::operator_string(op)); |
556 | return glsl_type::error_type; |
557 | } |
558 | |
559 | /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't |
560 | * make sense for bitwise operations, as they don't operate on floats. |
561 | * |
562 | * GLSL 4.0 added implicit int -> uint conversions, which are relevant |
563 | * here. It wasn't clear whether or not we should apply them to bitwise |
564 | * operations. However, Khronos has decided that they should in future |
565 | * language revisions. Applications also rely on this behavior. We opt |
566 | * to apply them in general, but issue a portability warning. |
567 | * |
568 | * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 |
569 | */ |
570 | if (type_a->base_type != type_b->base_type) { |
571 | if (!apply_implicit_conversion(type_a, value_b, state) |
572 | && !apply_implicit_conversion(type_b, value_a, state)) { |
573 | _mesa_glsl_error(loc, state, |
574 | "could not implicitly convert operands to " |
575 | "`%s` operator", |
576 | ast_expression::operator_string(op)); |
577 | return glsl_type::error_type; |
578 | } else { |
579 | _mesa_glsl_warning(loc, state, |
580 | "some implementations may not support implicit " |
581 | "int -> uint conversions for `%s' operators; " |
582 | "consider casting explicitly for portability", |
583 | ast_expression::operator_string(op)); |
584 | } |
585 | type_a = value_a->type; |
586 | type_b = value_b->type; |
587 | } |
588 | |
589 | /* "The fundamental types of the operands (signed or unsigned) must |
590 | * match," |
591 | */ |
592 | if (type_a->base_type != type_b->base_type) { |
593 | _mesa_glsl_error(loc, state, "operands of `%s' must have the same " |
594 | "base type", ast_expression::operator_string(op)); |
595 | return glsl_type::error_type; |
596 | } |
597 | |
598 | /* "The operands cannot be vectors of differing size." */ |
599 | if (type_a->is_vector() && |
600 | type_b->is_vector() && |
601 | type_a->vector_elements != type_b->vector_elements) { |
602 | _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " |
603 | "different sizes", ast_expression::operator_string(op)); |
604 | return glsl_type::error_type; |
605 | } |
606 | |
607 | /* "If one operand is a scalar and the other a vector, the scalar is |
608 | * applied component-wise to the vector, resulting in the same type as |
609 | * the vector. The fundamental types of the operands [...] will be the |
610 | * resulting fundamental type." |
611 | */ |
612 | if (type_a->is_scalar()) |
613 | return type_b; |
614 | else |
615 | return type_a; |
616 | } |
617 | |
618 | static const struct glsl_type * |
619 | modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, |
620 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
621 | { |
622 | const glsl_type *type_a = value_a->type; |
623 | const glsl_type *type_b = value_b->type; |
624 | |
625 | if (!state->EXT_gpu_shader4_enable && |
626 | !state->check_version(130, 300, loc, "operator '%%' is reserved")) { |
627 | return glsl_type::error_type; |
628 | } |
629 | |
630 | /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: |
631 | * |
632 | * "The operator modulus (%) operates on signed or unsigned integers or |
633 | * integer vectors." |
634 | */ |
635 | if (!type_a->is_integer_32_64()) { |
636 | _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); |
637 | return glsl_type::error_type; |
638 | } |
639 | if (!type_b->is_integer_32_64()) { |
640 | _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); |
641 | return glsl_type::error_type; |
642 | } |
643 | |
644 | /* "If the fundamental types in the operands do not match, then the |
645 | * conversions from section 4.1.10 "Implicit Conversions" are applied |
646 | * to create matching types." |
647 | * |
648 | * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit |
649 | * int -> uint conversion rules. Prior to that, there were no implicit |
650 | * conversions. So it's harmless to apply them universally - no implicit |
651 | * conversions will exist. If the types don't match, we'll receive false, |
652 | * and raise an error, satisfying the GLSL 1.50 spec, page 56: |
653 | * |
654 | * "The operand types must both be signed or unsigned." |
655 | */ |
656 | if (!apply_implicit_conversion(type_a, value_b, state) && |
657 | !apply_implicit_conversion(type_b, value_a, state)) { |
658 | _mesa_glsl_error(loc, state, |
659 | "could not implicitly convert operands to " |
660 | "modulus (%%) operator"); |
661 | return glsl_type::error_type; |
662 | } |
663 | type_a = value_a->type; |
664 | type_b = value_b->type; |
665 | |
666 | /* "The operands cannot be vectors of differing size. If one operand is |
667 | * a scalar and the other vector, then the scalar is applied component- |
668 | * wise to the vector, resulting in the same type as the vector. If both |
669 | * are vectors of the same size, the result is computed component-wise." |
670 | */ |
671 | if (type_a->is_vector()) { |
672 | if (!type_b->is_vector() |
673 | || (type_a->vector_elements == type_b->vector_elements)) |
674 | return type_a; |
675 | } else |
676 | return type_b; |
677 | |
678 | /* "The operator modulus (%) is not defined for any other data types |
679 | * (non-integer types)." |
680 | */ |
681 | _mesa_glsl_error(loc, state, "type mismatch"); |
682 | return glsl_type::error_type; |
683 | } |
684 | |
685 | |
686 | static const struct glsl_type * |
687 | relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, |
688 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
689 | { |
690 | const glsl_type *type_a = value_a->type; |
691 | const glsl_type *type_b = value_b->type; |
692 | |
693 | /* From GLSL 1.50 spec, page 56: |
694 | * "The relational operators greater than (>), less than (<), greater |
695 | * than or equal (>=), and less than or equal (<=) operate only on |
696 | * scalar integer and scalar floating-point expressions." |
697 | */ |
698 | if (!type_a->is_numeric() |
699 | || !type_b->is_numeric() |
700 | || !type_a->is_scalar() |
701 | || !type_b->is_scalar()) { |
702 | _mesa_glsl_error(loc, state, |
703 | "operands to relational operators must be scalar and " |
704 | "numeric"); |
705 | return glsl_type::error_type; |
706 | } |
707 | |
708 | /* "Either the operands' types must match, or the conversions from |
709 | * Section 4.1.10 "Implicit Conversions" will be applied to the integer |
710 | * operand, after which the types must match." |
711 | */ |
712 | if (!apply_implicit_conversion(type_a, value_b, state) |
713 | && !apply_implicit_conversion(type_b, value_a, state)) { |
714 | _mesa_glsl_error(loc, state, |
715 | "could not implicitly convert operands to " |
716 | "relational operator"); |
717 | return glsl_type::error_type; |
718 | } |
719 | type_a = value_a->type; |
720 | type_b = value_b->type; |
721 | |
722 | if (type_a->base_type != type_b->base_type) { |
723 | _mesa_glsl_error(loc, state, "base type mismatch"); |
724 | return glsl_type::error_type; |
725 | } |
726 | |
727 | /* "The result is scalar Boolean." |
728 | */ |
729 | return glsl_type::bool_type; |
730 | } |
731 | |
732 | /** |
733 | * \brief Return the result type of a bit-shift operation. |
734 | * |
735 | * If the given types to the bit-shift operator are invalid, return |
736 | * glsl_type::error_type. |
737 | * |
738 | * \param type_a Type of LHS of bit-shift op |
739 | * \param type_b Type of RHS of bit-shift op |
740 | */ |
741 | static const struct glsl_type * |
742 | shift_result_type(const struct glsl_type *type_a, |
743 | const struct glsl_type *type_b, |
744 | ast_operators op, |
745 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
746 | { |
747 | if (!state->check_bitwise_operations_allowed(loc)) { |
748 | return glsl_type::error_type; |
749 | } |
750 | |
751 | /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: |
752 | * |
753 | * "The shift operators (<<) and (>>). For both operators, the operands |
754 | * must be signed or unsigned integers or integer vectors. One operand |
755 | * can be signed while the other is unsigned." |
756 | */ |
757 | if (!type_a->is_integer_32_64()) { |
758 | _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " |
759 | "integer vector", ast_expression::operator_string(op)); |
760 | return glsl_type::error_type; |
761 | |
762 | } |
763 | if (!type_b->is_integer_32()) { |
764 | _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " |
765 | "integer vector", ast_expression::operator_string(op)); |
766 | return glsl_type::error_type; |
767 | } |
768 | |
769 | /* "If the first operand is a scalar, the second operand has to be |
770 | * a scalar as well." |
771 | */ |
772 | if (type_a->is_scalar() && !type_b->is_scalar()) { |
773 | _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " |
774 | "second must be scalar as well", |
775 | ast_expression::operator_string(op)); |
776 | return glsl_type::error_type; |
777 | } |
778 | |
779 | /* If both operands are vectors, check that they have same number of |
780 | * elements. |
781 | */ |
782 | if (type_a->is_vector() && |
783 | type_b->is_vector() && |
784 | type_a->vector_elements != type_b->vector_elements) { |
785 | _mesa_glsl_error(loc, state, "vector operands to operator %s must " |
786 | "have same number of elements", |
787 | ast_expression::operator_string(op)); |
788 | return glsl_type::error_type; |
789 | } |
790 | |
791 | /* "In all cases, the resulting type will be the same type as the left |
792 | * operand." |
793 | */ |
794 | return type_a; |
795 | } |
796 | |
797 | /** |
798 | * Returns the innermost array index expression in an rvalue tree. |
799 | * This is the largest indexing level -- if an array of blocks, then |
800 | * it is the block index rather than an indexing expression for an |
801 | * array-typed member of an array of blocks. |
802 | */ |
803 | static ir_rvalue * |
804 | find_innermost_array_index(ir_rvalue *rv) |
805 | { |
806 | ir_dereference_array *last = NULL__null; |
807 | while (rv) { |
808 | if (rv->as_dereference_array()) { |
809 | last = rv->as_dereference_array(); |
810 | rv = last->array; |
811 | } else if (rv->as_dereference_record()) |
812 | rv = rv->as_dereference_record()->record; |
813 | else if (rv->as_swizzle()) |
814 | rv = rv->as_swizzle()->val; |
815 | else |
816 | rv = NULL__null; |
817 | } |
818 | |
819 | if (last) |
820 | return last->array_index; |
821 | |
822 | return NULL__null; |
823 | } |
824 | |
825 | /** |
826 | * Validates that a value can be assigned to a location with a specified type |
827 | * |
828 | * Validates that \c rhs can be assigned to some location. If the types are |
829 | * not an exact match but an automatic conversion is possible, \c rhs will be |
830 | * converted. |
831 | * |
832 | * \return |
833 | * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. |
834 | * Otherwise the actual RHS to be assigned will be returned. This may be |
835 | * \c rhs, or it may be \c rhs after some type conversion. |
836 | * |
837 | * \note |
838 | * In addition to being used for assignments, this function is used to |
839 | * type-check return values. |
840 | */ |
841 | static ir_rvalue * |
842 | validate_assignment(struct _mesa_glsl_parse_state *state, |
843 | YYLTYPE loc, ir_rvalue *lhs, |
844 | ir_rvalue *rhs, bool is_initializer) |
845 | { |
846 | /* If there is already some error in the RHS, just return it. Anything |
847 | * else will lead to an avalanche of error message back to the user. |
848 | */ |
849 | if (rhs->type->is_error()) |
850 | return rhs; |
851 | |
852 | /* In the Tessellation Control Shader: |
853 | * If a per-vertex output variable is used as an l-value, it is an error |
854 | * if the expression indicating the vertex number is not the identifier |
855 | * `gl_InvocationID`. |
856 | */ |
857 | if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { |
858 | ir_variable *var = lhs->variable_referenced(); |
859 | if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { |
860 | ir_rvalue *index = find_innermost_array_index(lhs); |
861 | ir_variable *index_var = index ? index->variable_referenced() : NULL__null; |
862 | if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { |
863 | _mesa_glsl_error(&loc, state, |
864 | "Tessellation control shader outputs can only " |
865 | "be indexed by gl_InvocationID"); |
866 | return NULL__null; |
867 | } |
868 | } |
869 | } |
870 | |
871 | /* If the types are identical, the assignment can trivially proceed. |
872 | */ |
873 | if (rhs->type == lhs->type) |
874 | return rhs; |
875 | |
876 | /* If the array element types are the same and the LHS is unsized, |
877 | * the assignment is okay for initializers embedded in variable |
878 | * declarations. |
879 | * |
880 | * Note: Whole-array assignments are not permitted in GLSL 1.10, but this |
881 | * is handled by ir_dereference::is_lvalue. |
882 | */ |
883 | const glsl_type *lhs_t = lhs->type; |
884 | const glsl_type *rhs_t = rhs->type; |
885 | bool unsized_array = false; |
886 | while(lhs_t->is_array()) { |
887 | if (rhs_t == lhs_t) |
888 | break; /* the rest of the inner arrays match so break out early */ |
889 | if (!rhs_t->is_array()) { |
890 | unsized_array = false; |
891 | break; /* number of dimensions mismatch */ |
892 | } |
893 | if (lhs_t->length == rhs_t->length) { |
894 | lhs_t = lhs_t->fields.array; |
895 | rhs_t = rhs_t->fields.array; |
896 | continue; |
897 | } else if (lhs_t->is_unsized_array()) { |
898 | unsized_array = true; |
899 | } else { |
900 | unsized_array = false; |
901 | break; /* sized array mismatch */ |
902 | } |
903 | lhs_t = lhs_t->fields.array; |
904 | rhs_t = rhs_t->fields.array; |
905 | } |
906 | if (unsized_array) { |
907 | if (is_initializer) { |
908 | if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) |
909 | return rhs; |
910 | } else { |
911 | _mesa_glsl_error(&loc, state, |
912 | "implicitly sized arrays cannot be assigned"); |
913 | return NULL__null; |
914 | } |
915 | } |
916 | |
917 | /* Check for implicit conversion in GLSL 1.20 */ |
918 | if (apply_implicit_conversion(lhs->type, rhs, state)) { |
919 | if (rhs->type == lhs->type) |
920 | return rhs; |
921 | } |
922 | |
923 | _mesa_glsl_error(&loc, state, |
924 | "%s of type %s cannot be assigned to " |
925 | "variable of type %s", |
926 | is_initializer ? "initializer" : "value", |
927 | rhs->type->name, lhs->type->name); |
928 | |
929 | return NULL__null; |
930 | } |
931 | |
932 | static void |
933 | mark_whole_array_access(ir_rvalue *access) |
934 | { |
935 | ir_dereference_variable *deref = access->as_dereference_variable(); |
936 | |
937 | if (deref && deref->var) { |
938 | deref->var->data.max_array_access = deref->type->length - 1; |
939 | } |
940 | } |
941 | |
942 | static bool |
943 | do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, |
944 | const char *non_lvalue_description, |
945 | ir_rvalue *lhs, ir_rvalue *rhs, |
946 | ir_rvalue **out_rvalue, bool needs_rvalue, |
947 | bool is_initializer, |
948 | YYLTYPE lhs_loc) |
949 | { |
950 | void *ctx = state; |
951 | bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); |
952 | |
953 | ir_variable *lhs_var = lhs->variable_referenced(); |
954 | if (lhs_var) |
955 | lhs_var->data.assigned = true; |
956 | |
957 | if (!error_emitted) { |
958 | if (non_lvalue_description != NULL__null) { |
959 | _mesa_glsl_error(&lhs_loc, state, |
960 | "assignment to %s", |
961 | non_lvalue_description); |
962 | error_emitted = true; |
963 | } else if (lhs_var != NULL__null && (lhs_var->data.read_only || |
964 | (lhs_var->data.mode == ir_var_shader_storage && |
965 | lhs_var->data.memory_read_only))) { |
966 | /* We can have memory_read_only set on both images and buffer variables, |
967 | * but in the former there is a distinction between assignments to |
968 | * the variable itself (read_only) and to the memory they point to |
969 | * (memory_read_only), while in the case of buffer variables there is |
970 | * no such distinction, that is why this check here is limited to |
971 | * buffer variables alone. |
972 | */ |
973 | _mesa_glsl_error(&lhs_loc, state, |
974 | "assignment to read-only variable '%s'", |
975 | lhs_var->name); |
976 | error_emitted = true; |
977 | } else if (lhs->type->is_array() && |
978 | !state->check_version(120, 300, &lhs_loc, |
979 | "whole array assignment forbidden")) { |
980 | /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: |
981 | * |
982 | * "Other binary or unary expressions, non-dereferenced |
983 | * arrays, function names, swizzles with repeated fields, |
984 | * and constants cannot be l-values." |
985 | * |
986 | * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. |
987 | */ |
988 | error_emitted = true; |
989 | } else if (!lhs->is_lvalue(state)) { |
990 | _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); |
991 | error_emitted = true; |
992 | } |
993 | } |
994 | |
995 | ir_rvalue *new_rhs = |
996 | validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); |
997 | if (new_rhs != NULL__null) { |
998 | rhs = new_rhs; |
999 | |
1000 | /* If the LHS array was not declared with a size, it takes it size from |
1001 | * the RHS. If the LHS is an l-value and a whole array, it must be a |
1002 | * dereference of a variable. Any other case would require that the LHS |
1003 | * is either not an l-value or not a whole array. |
1004 | */ |
1005 | if (lhs->type->is_unsized_array()) { |
1006 | ir_dereference *const d = lhs->as_dereference(); |
1007 | |
1008 | assert(d != NULL)(static_cast <bool> (d != __null) ? void (0) : __assert_fail ("d != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1009 | |
1010 | ir_variable *const var = d->variable_referenced(); |
1011 | |
1012 | assert(var != NULL)(static_cast <bool> (var != __null) ? void (0) : __assert_fail ("var != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1013 | |
1014 | if (var->data.max_array_access >= rhs->type->array_size()) { |
1015 | /* FINISHME: This should actually log the location of the RHS. */ |
1016 | _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " |
1017 | "previous access", |
1018 | var->data.max_array_access); |
1019 | } |
1020 | |
1021 | var->type = glsl_type::get_array_instance(lhs->type->fields.array, |
1022 | rhs->type->array_size()); |
1023 | d->type = var->type; |
1024 | } |
1025 | if (lhs->type->is_array()) { |
1026 | mark_whole_array_access(rhs); |
1027 | mark_whole_array_access(lhs); |
1028 | } |
1029 | } else { |
1030 | error_emitted = true; |
1031 | } |
1032 | |
1033 | /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, |
1034 | * but not post_inc) need the converted assigned value as an rvalue |
1035 | * to handle things like: |
1036 | * |
1037 | * i = j += 1; |
1038 | */ |
1039 | if (needs_rvalue) { |
1040 | ir_rvalue *rvalue; |
1041 | if (!error_emitted) { |
1042 | ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", |
1043 | ir_var_temporary); |
1044 | instructions->push_tail(var); |
1045 | instructions->push_tail(assign(var, rhs)); |
1046 | |
1047 | ir_dereference_variable *deref_var = |
1048 | new(ctx) ir_dereference_variable(var); |
1049 | instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); |
1050 | rvalue = new(ctx) ir_dereference_variable(var); |
1051 | } else { |
1052 | rvalue = ir_rvalue::error_value(ctx); |
1053 | } |
1054 | *out_rvalue = rvalue; |
1055 | } else { |
1056 | if (!error_emitted) |
1057 | instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); |
1058 | *out_rvalue = NULL__null; |
1059 | } |
1060 | |
1061 | return error_emitted; |
1062 | } |
1063 | |
1064 | static ir_rvalue * |
1065 | get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) |
1066 | { |
1067 | void *ctx = ralloc_parent(lvalue); |
1068 | ir_variable *var; |
1069 | |
1070 | var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", |
1071 | ir_var_temporary); |
1072 | instructions->push_tail(var); |
1073 | |
1074 | instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), |
1075 | lvalue)); |
1076 | |
1077 | return new(ctx) ir_dereference_variable(var); |
1078 | } |
1079 | |
1080 | |
1081 | ir_rvalue * |
1082 | ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) |
1083 | { |
1084 | (void) instructions; |
1085 | (void) state; |
1086 | |
1087 | return NULL__null; |
1088 | } |
1089 | |
1090 | bool |
1091 | ast_node::has_sequence_subexpression() const |
1092 | { |
1093 | return false; |
1094 | } |
1095 | |
1096 | void |
1097 | ast_node::set_is_lhs(bool /* new_value */) |
1098 | { |
1099 | } |
1100 | |
1101 | void |
1102 | ast_function_expression::hir_no_rvalue(exec_list *instructions, |
1103 | struct _mesa_glsl_parse_state *state) |
1104 | { |
1105 | (void)hir(instructions, state); |
1106 | } |
1107 | |
1108 | void |
1109 | ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, |
1110 | struct _mesa_glsl_parse_state *state) |
1111 | { |
1112 | (void)hir(instructions, state); |
1113 | } |
1114 | |
1115 | static ir_rvalue * |
1116 | do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) |
1117 | { |
1118 | int join_op; |
1119 | ir_rvalue *cmp = NULL__null; |
1120 | |
1121 | if (operation == ir_binop_all_equal) |
1122 | join_op = ir_binop_logic_and; |
1123 | else |
1124 | join_op = ir_binop_logic_or; |
1125 | |
1126 | switch (op0->type->base_type) { |
1127 | case GLSL_TYPE_FLOAT: |
1128 | case GLSL_TYPE_FLOAT16: |
1129 | case GLSL_TYPE_UINT: |
1130 | case GLSL_TYPE_INT: |
1131 | case GLSL_TYPE_BOOL: |
1132 | case GLSL_TYPE_DOUBLE: |
1133 | case GLSL_TYPE_UINT64: |
1134 | case GLSL_TYPE_INT64: |
1135 | case GLSL_TYPE_UINT16: |
1136 | case GLSL_TYPE_INT16: |
1137 | case GLSL_TYPE_UINT8: |
1138 | case GLSL_TYPE_INT8: |
1139 | return new(mem_ctx) ir_expression(operation, op0, op1); |
1140 | |
1141 | case GLSL_TYPE_ARRAY: { |
1142 | for (unsigned int i = 0; i < op0->type->length; i++) { |
1143 | ir_rvalue *e0, *e1, *result; |
1144 | |
1145 | e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL__null), |
1146 | new(mem_ctx) ir_constant(i)); |
1147 | e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL__null), |
1148 | new(mem_ctx) ir_constant(i)); |
1149 | result = do_comparison(mem_ctx, operation, e0, e1); |
1150 | |
1151 | if (cmp) { |
1152 | cmp = new(mem_ctx) ir_expression(join_op, cmp, result); |
1153 | } else { |
1154 | cmp = result; |
1155 | } |
1156 | } |
1157 | |
1158 | mark_whole_array_access(op0); |
1159 | mark_whole_array_access(op1); |
1160 | break; |
1161 | } |
1162 | |
1163 | case GLSL_TYPE_STRUCT: { |
1164 | for (unsigned int i = 0; i < op0->type->length; i++) { |
1165 | ir_rvalue *e0, *e1, *result; |
1166 | const char *field_name = op0->type->fields.structure[i].name; |
1167 | |
1168 | e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL__null), |
1169 | field_name); |
1170 | e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL__null), |
1171 | field_name); |
1172 | result = do_comparison(mem_ctx, operation, e0, e1); |
1173 | |
1174 | if (cmp) { |
1175 | cmp = new(mem_ctx) ir_expression(join_op, cmp, result); |
1176 | } else { |
1177 | cmp = result; |
1178 | } |
1179 | } |
1180 | break; |
1181 | } |
1182 | |
1183 | case GLSL_TYPE_ERROR: |
1184 | case GLSL_TYPE_VOID: |
1185 | case GLSL_TYPE_SAMPLER: |
1186 | case GLSL_TYPE_IMAGE: |
1187 | case GLSL_TYPE_INTERFACE: |
1188 | case GLSL_TYPE_ATOMIC_UINT: |
1189 | case GLSL_TYPE_SUBROUTINE: |
1190 | case GLSL_TYPE_FUNCTION: |
1191 | /* I assume a comparison of a struct containing a sampler just |
1192 | * ignores the sampler present in the type. |
1193 | */ |
1194 | break; |
1195 | } |
1196 | |
1197 | if (cmp == NULL__null) |
1198 | cmp = new(mem_ctx) ir_constant(true); |
1199 | |
1200 | return cmp; |
1201 | } |
1202 | |
1203 | /* For logical operations, we want to ensure that the operands are |
1204 | * scalar booleans. If it isn't, emit an error and return a constant |
1205 | * boolean to avoid triggering cascading error messages. |
1206 | */ |
1207 | static ir_rvalue * |
1208 | get_scalar_boolean_operand(exec_list *instructions, |
1209 | struct _mesa_glsl_parse_state *state, |
1210 | ast_expression *parent_expr, |
1211 | int operand, |
1212 | const char *operand_name, |
1213 | bool *error_emitted) |
1214 | { |
1215 | ast_expression *expr = parent_expr->subexpressions[operand]; |
1216 | void *ctx = state; |
1217 | ir_rvalue *val = expr->hir(instructions, state); |
1218 | |
1219 | if (val->type->is_boolean() && val->type->is_scalar()) |
1220 | return val; |
1221 | |
1222 | if (!*error_emitted) { |
1223 | YYLTYPE loc = expr->get_location(); |
1224 | _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", |
1225 | operand_name, |
1226 | parent_expr->operator_string(parent_expr->oper)); |
1227 | *error_emitted = true; |
1228 | } |
1229 | |
1230 | return new(ctx) ir_constant(true); |
1231 | } |
1232 | |
1233 | /** |
1234 | * If name refers to a builtin array whose maximum allowed size is less than |
1235 | * size, report an error and return true. Otherwise return false. |
1236 | */ |
1237 | void |
1238 | check_builtin_array_max_size(const char *name, unsigned size, |
1239 | YYLTYPE loc, struct _mesa_glsl_parse_state *state) |
1240 | { |
1241 | if ((strcmp("gl_TexCoord", name) == 0) |
1242 | && (size > state->Const.MaxTextureCoords)) { |
1243 | /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: |
1244 | * |
1245 | * "The size [of gl_TexCoord] can be at most |
1246 | * gl_MaxTextureCoords." |
1247 | */ |
1248 | _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " |
1249 | "be larger than gl_MaxTextureCoords (%u)", |
1250 | state->Const.MaxTextureCoords); |
1251 | } else if (strcmp("gl_ClipDistance", name) == 0) { |
1252 | state->clip_dist_size = size; |
1253 | if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { |
1254 | /* From section 7.1 (Vertex Shader Special Variables) of the |
1255 | * GLSL 1.30 spec: |
1256 | * |
1257 | * "The gl_ClipDistance array is predeclared as unsized and |
1258 | * must be sized by the shader either redeclaring it with a |
1259 | * size or indexing it only with integral constant |
1260 | * expressions. ... The size can be at most |
1261 | * gl_MaxClipDistances." |
1262 | */ |
1263 | _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " |
1264 | "be larger than gl_MaxClipDistances (%u)", |
1265 | state->Const.MaxClipPlanes); |
1266 | } |
1267 | } else if (strcmp("gl_CullDistance", name) == 0) { |
1268 | state->cull_dist_size = size; |
1269 | if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { |
1270 | /* From the ARB_cull_distance spec: |
1271 | * |
1272 | * "The gl_CullDistance array is predeclared as unsized and |
1273 | * must be sized by the shader either redeclaring it with |
1274 | * a size or indexing it only with integral constant |
1275 | * expressions. The size determines the number and set of |
1276 | * enabled cull distances and can be at most |
1277 | * gl_MaxCullDistances." |
1278 | */ |
1279 | _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " |
1280 | "be larger than gl_MaxCullDistances (%u)", |
1281 | state->Const.MaxClipPlanes); |
1282 | } |
1283 | } |
1284 | } |
1285 | |
1286 | /** |
1287 | * Create the constant 1, of a which is appropriate for incrementing and |
1288 | * decrementing values of the given GLSL type. For example, if type is vec4, |
1289 | * this creates a constant value of 1.0 having type float. |
1290 | * |
1291 | * If the given type is invalid for increment and decrement operators, return |
1292 | * a floating point 1--the error will be detected later. |
1293 | */ |
1294 | static ir_rvalue * |
1295 | constant_one_for_inc_dec(void *ctx, const glsl_type *type) |
1296 | { |
1297 | switch (type->base_type) { |
1298 | case GLSL_TYPE_UINT: |
1299 | return new(ctx) ir_constant((unsigned) 1); |
1300 | case GLSL_TYPE_INT: |
1301 | return new(ctx) ir_constant(1); |
1302 | case GLSL_TYPE_UINT64: |
1303 | return new(ctx) ir_constant((uint64_t) 1); |
1304 | case GLSL_TYPE_INT64: |
1305 | return new(ctx) ir_constant((int64_t) 1); |
1306 | default: |
1307 | case GLSL_TYPE_FLOAT: |
1308 | return new(ctx) ir_constant(1.0f); |
1309 | } |
1310 | } |
1311 | |
1312 | ir_rvalue * |
1313 | ast_expression::hir(exec_list *instructions, |
1314 | struct _mesa_glsl_parse_state *state) |
1315 | { |
1316 | return do_hir(instructions, state, true); |
1317 | } |
1318 | |
1319 | void |
1320 | ast_expression::hir_no_rvalue(exec_list *instructions, |
1321 | struct _mesa_glsl_parse_state *state) |
1322 | { |
1323 | do_hir(instructions, state, false); |
1324 | } |
1325 | |
1326 | void |
1327 | ast_expression::set_is_lhs(bool new_value) |
1328 | { |
1329 | /* is_lhs is tracked only to print "variable used uninitialized" warnings, |
1330 | * if we lack an identifier we can just skip it. |
1331 | */ |
1332 | if (this->primary_expression.identifier == NULL__null) |
1333 | return; |
1334 | |
1335 | this->is_lhs = new_value; |
1336 | |
1337 | /* We need to go through the subexpressions tree to cover cases like |
1338 | * ast_field_selection |
1339 | */ |
1340 | if (this->subexpressions[0] != NULL__null) |
1341 | this->subexpressions[0]->set_is_lhs(new_value); |
1342 | } |
1343 | |
1344 | ir_rvalue * |
1345 | ast_expression::do_hir(exec_list *instructions, |
1346 | struct _mesa_glsl_parse_state *state, |
1347 | bool needs_rvalue) |
1348 | { |
1349 | void *ctx = state; |
1350 | static const int operations[AST_NUM_OPERATORS(ast_aggregate + 1)] = { |
1351 | -1, /* ast_assign doesn't convert to ir_expression. */ |
1352 | -1, /* ast_plus doesn't convert to ir_expression. */ |
1353 | ir_unop_neg, |
1354 | ir_binop_add, |
1355 | ir_binop_sub, |
1356 | ir_binop_mul, |
1357 | ir_binop_div, |
1358 | ir_binop_mod, |
1359 | ir_binop_lshift, |
1360 | ir_binop_rshift, |
1361 | ir_binop_less, |
1362 | ir_binop_less, /* This is correct. See the ast_greater case below. */ |
1363 | ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ |
1364 | ir_binop_gequal, |
1365 | ir_binop_all_equal, |
1366 | ir_binop_any_nequal, |
1367 | ir_binop_bit_and, |
1368 | ir_binop_bit_xor, |
1369 | ir_binop_bit_or, |
1370 | ir_unop_bit_not, |
1371 | ir_binop_logic_and, |
1372 | ir_binop_logic_xor, |
1373 | ir_binop_logic_or, |
1374 | ir_unop_logic_not, |
1375 | |
1376 | /* Note: The following block of expression types actually convert |
1377 | * to multiple IR instructions. |
1378 | */ |
1379 | ir_binop_mul, /* ast_mul_assign */ |
1380 | ir_binop_div, /* ast_div_assign */ |
1381 | ir_binop_mod, /* ast_mod_assign */ |
1382 | ir_binop_add, /* ast_add_assign */ |
1383 | ir_binop_sub, /* ast_sub_assign */ |
1384 | ir_binop_lshift, /* ast_ls_assign */ |
1385 | ir_binop_rshift, /* ast_rs_assign */ |
1386 | ir_binop_bit_and, /* ast_and_assign */ |
1387 | ir_binop_bit_xor, /* ast_xor_assign */ |
1388 | ir_binop_bit_or, /* ast_or_assign */ |
1389 | |
1390 | -1, /* ast_conditional doesn't convert to ir_expression. */ |
1391 | ir_binop_add, /* ast_pre_inc. */ |
1392 | ir_binop_sub, /* ast_pre_dec. */ |
1393 | ir_binop_add, /* ast_post_inc. */ |
1394 | ir_binop_sub, /* ast_post_dec. */ |
1395 | -1, /* ast_field_selection doesn't conv to ir_expression. */ |
1396 | -1, /* ast_array_index doesn't convert to ir_expression. */ |
1397 | -1, /* ast_function_call doesn't conv to ir_expression. */ |
1398 | -1, /* ast_identifier doesn't convert to ir_expression. */ |
1399 | -1, /* ast_int_constant doesn't convert to ir_expression. */ |
1400 | -1, /* ast_uint_constant doesn't conv to ir_expression. */ |
1401 | -1, /* ast_float_constant doesn't conv to ir_expression. */ |
1402 | -1, /* ast_bool_constant doesn't conv to ir_expression. */ |
1403 | -1, /* ast_sequence doesn't convert to ir_expression. */ |
1404 | -1, /* ast_aggregate shouldn't ever even get here. */ |
1405 | }; |
1406 | ir_rvalue *result = NULL__null; |
1407 | ir_rvalue *op[3]; |
1408 | const struct glsl_type *type, *orig_type; |
1409 | bool error_emitted = false; |
1410 | YYLTYPE loc; |
1411 | |
1412 | loc = this->get_location(); |
1413 | |
1414 | switch (this->oper) { |
1415 | case ast_aggregate: |
1416 | unreachable("ast_aggregate: Should never get here.")do { (static_cast <bool> (!"ast_aggregate: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_aggregate: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
1417 | |
1418 | case ast_assign: { |
1419 | this->subexpressions[0]->set_is_lhs(true); |
1420 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1421 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1422 | |
1423 | error_emitted = |
1424 | do_assignment(instructions, state, |
1425 | this->subexpressions[0]->non_lvalue_description, |
1426 | op[0], op[1], &result, needs_rvalue, false, |
1427 | this->subexpressions[0]->get_location()); |
1428 | break; |
1429 | } |
1430 | |
1431 | case ast_plus: |
1432 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1433 | |
1434 | type = unary_arithmetic_result_type(op[0]->type, state, & loc); |
1435 | |
1436 | error_emitted = type->is_error(); |
1437 | |
1438 | result = op[0]; |
1439 | break; |
1440 | |
1441 | case ast_neg: |
1442 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1443 | |
1444 | type = unary_arithmetic_result_type(op[0]->type, state, & loc); |
1445 | |
1446 | error_emitted = type->is_error(); |
1447 | |
1448 | result = new(ctx) ir_expression(operations[this->oper], type, |
1449 | op[0], NULL__null); |
1450 | break; |
1451 | |
1452 | case ast_add: |
1453 | case ast_sub: |
1454 | case ast_mul: |
1455 | case ast_div: |
1456 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1457 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1458 | |
1459 | type = arithmetic_result_type(op[0], op[1], |
1460 | (this->oper == ast_mul), |
1461 | state, & loc); |
1462 | error_emitted = type->is_error(); |
1463 | |
1464 | result = new(ctx) ir_expression(operations[this->oper], type, |
1465 | op[0], op[1]); |
1466 | break; |
1467 | |
1468 | case ast_mod: |
1469 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1470 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1471 | |
1472 | type = modulus_result_type(op[0], op[1], state, &loc); |
1473 | |
1474 | assert(operations[this->oper] == ir_binop_mod)(static_cast <bool> (operations[this->oper] == ir_binop_mod ) ? void (0) : __assert_fail ("operations[this->oper] == ir_binop_mod" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1475 | |
1476 | result = new(ctx) ir_expression(operations[this->oper], type, |
1477 | op[0], op[1]); |
1478 | error_emitted = type->is_error(); |
1479 | break; |
1480 | |
1481 | case ast_lshift: |
1482 | case ast_rshift: |
1483 | if (!state->check_bitwise_operations_allowed(&loc)) { |
1484 | error_emitted = true; |
1485 | } |
1486 | |
1487 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1488 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1489 | type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, |
1490 | &loc); |
1491 | result = new(ctx) ir_expression(operations[this->oper], type, |
1492 | op[0], op[1]); |
1493 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); |
1494 | break; |
1495 | |
1496 | case ast_less: |
1497 | case ast_greater: |
1498 | case ast_lequal: |
1499 | case ast_gequal: |
1500 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1501 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1502 | |
1503 | type = relational_result_type(op[0], op[1], state, & loc); |
1504 | |
1505 | /* The relational operators must either generate an error or result |
1506 | * in a scalar boolean. See page 57 of the GLSL 1.50 spec. |
1507 | */ |
1508 | assert(type->is_error()(static_cast <bool> (type->is_error() || (type->is_boolean () && type->is_scalar())) ? void (0) : __assert_fail ("type->is_error() || (type->is_boolean() && type->is_scalar())" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) |
1509 | || (type->is_boolean() && type->is_scalar()))(static_cast <bool> (type->is_error() || (type->is_boolean () && type->is_scalar())) ? void (0) : __assert_fail ("type->is_error() || (type->is_boolean() && type->is_scalar())" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1510 | |
1511 | /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap |
1512 | * the arguments and use < or >=. |
1513 | */ |
1514 | if (this->oper == ast_greater || this->oper == ast_lequal) { |
1515 | ir_rvalue *const tmp = op[0]; |
1516 | op[0] = op[1]; |
1517 | op[1] = tmp; |
1518 | } |
1519 | |
1520 | result = new(ctx) ir_expression(operations[this->oper], type, |
1521 | op[0], op[1]); |
1522 | error_emitted = type->is_error(); |
1523 | break; |
1524 | |
1525 | case ast_nequal: |
1526 | case ast_equal: |
1527 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1528 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1529 | |
1530 | /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: |
1531 | * |
1532 | * "The equality operators equal (==), and not equal (!=) |
1533 | * operate on all types. They result in a scalar Boolean. If |
1534 | * the operand types do not match, then there must be a |
1535 | * conversion from Section 4.1.10 "Implicit Conversions" |
1536 | * applied to one operand that can make them match, in which |
1537 | * case this conversion is done." |
1538 | */ |
1539 | |
1540 | if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { |
1541 | _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " |
1542 | "no operation `%1$s' exists that takes a left-hand " |
1543 | "operand of type 'void' or a right operand of type " |
1544 | "'void'", (this->oper == ast_equal) ? "==" : "!="); |
1545 | error_emitted = true; |
1546 | } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) |
1547 | && !apply_implicit_conversion(op[1]->type, op[0], state)) |
1548 | || (op[0]->type != op[1]->type)) { |
1549 | _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " |
1550 | "type", (this->oper == ast_equal) ? "==" : "!="); |
1551 | error_emitted = true; |
1552 | } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && |
1553 | !state->check_version(120, 300, &loc, |
1554 | "array comparisons forbidden")) { |
1555 | error_emitted = true; |
1556 | } else if ((op[0]->type->contains_subroutine() || |
1557 | op[1]->type->contains_subroutine())) { |
1558 | _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); |
1559 | error_emitted = true; |
1560 | } else if ((op[0]->type->contains_opaque() || |
1561 | op[1]->type->contains_opaque())) { |
1562 | _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); |
1563 | error_emitted = true; |
1564 | } |
1565 | |
1566 | if (error_emitted) { |
1567 | result = new(ctx) ir_constant(false); |
1568 | } else { |
1569 | result = do_comparison(ctx, operations[this->oper], op[0], op[1]); |
1570 | assert(result->type == glsl_type::bool_type)(static_cast <bool> (result->type == glsl_type::bool_type ) ? void (0) : __assert_fail ("result->type == glsl_type::bool_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1571 | } |
1572 | break; |
1573 | |
1574 | case ast_bit_and: |
1575 | case ast_bit_xor: |
1576 | case ast_bit_or: |
1577 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1578 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1579 | type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); |
1580 | result = new(ctx) ir_expression(operations[this->oper], type, |
1581 | op[0], op[1]); |
1582 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); |
1583 | break; |
1584 | |
1585 | case ast_bit_not: |
1586 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1587 | |
1588 | if (!state->check_bitwise_operations_allowed(&loc)) { |
1589 | error_emitted = true; |
1590 | } |
1591 | |
1592 | if (!op[0]->type->is_integer_32_64()) { |
1593 | _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); |
1594 | error_emitted = true; |
1595 | } |
1596 | |
1597 | type = error_emitted ? glsl_type::error_type : op[0]->type; |
1598 | result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL__null); |
1599 | break; |
1600 | |
1601 | case ast_logic_and: { |
1602 | exec_list rhs_instructions; |
1603 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, |
1604 | "LHS", &error_emitted); |
1605 | op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, |
1606 | "RHS", &error_emitted); |
1607 | |
1608 | if (rhs_instructions.is_empty()) { |
1609 | result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); |
1610 | } else { |
1611 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, |
1612 | "and_tmp", |
1613 | ir_var_temporary); |
1614 | instructions->push_tail(tmp); |
1615 | |
1616 | ir_if *const stmt = new(ctx) ir_if(op[0]); |
1617 | instructions->push_tail(stmt); |
1618 | |
1619 | stmt->then_instructions.append_list(&rhs_instructions); |
1620 | ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); |
1621 | ir_assignment *const then_assign = |
1622 | new(ctx) ir_assignment(then_deref, op[1]); |
1623 | stmt->then_instructions.push_tail(then_assign); |
1624 | |
1625 | ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); |
1626 | ir_assignment *const else_assign = |
1627 | new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); |
1628 | stmt->else_instructions.push_tail(else_assign); |
1629 | |
1630 | result = new(ctx) ir_dereference_variable(tmp); |
1631 | } |
1632 | break; |
1633 | } |
1634 | |
1635 | case ast_logic_or: { |
1636 | exec_list rhs_instructions; |
1637 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, |
1638 | "LHS", &error_emitted); |
1639 | op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, |
1640 | "RHS", &error_emitted); |
1641 | |
1642 | if (rhs_instructions.is_empty()) { |
1643 | result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); |
1644 | } else { |
1645 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, |
1646 | "or_tmp", |
1647 | ir_var_temporary); |
1648 | instructions->push_tail(tmp); |
1649 | |
1650 | ir_if *const stmt = new(ctx) ir_if(op[0]); |
1651 | instructions->push_tail(stmt); |
1652 | |
1653 | ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); |
1654 | ir_assignment *const then_assign = |
1655 | new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); |
1656 | stmt->then_instructions.push_tail(then_assign); |
1657 | |
1658 | stmt->else_instructions.append_list(&rhs_instructions); |
1659 | ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); |
1660 | ir_assignment *const else_assign = |
1661 | new(ctx) ir_assignment(else_deref, op[1]); |
1662 | stmt->else_instructions.push_tail(else_assign); |
1663 | |
1664 | result = new(ctx) ir_dereference_variable(tmp); |
1665 | } |
1666 | break; |
1667 | } |
1668 | |
1669 | case ast_logic_xor: |
1670 | /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: |
1671 | * |
1672 | * "The logical binary operators and (&&), or ( | | ), and |
1673 | * exclusive or (^^). They operate only on two Boolean |
1674 | * expressions and result in a Boolean expression." |
1675 | */ |
1676 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", |
1677 | &error_emitted); |
1678 | op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", |
1679 | &error_emitted); |
1680 | |
1681 | result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, |
1682 | op[0], op[1]); |
1683 | break; |
1684 | |
1685 | case ast_logic_not: |
1686 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, |
1687 | "operand", &error_emitted); |
1688 | |
1689 | result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, |
1690 | op[0], NULL__null); |
1691 | break; |
1692 | |
1693 | case ast_mul_assign: |
1694 | case ast_div_assign: |
1695 | case ast_add_assign: |
1696 | case ast_sub_assign: { |
1697 | this->subexpressions[0]->set_is_lhs(true); |
1698 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1699 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1700 | |
1701 | orig_type = op[0]->type; |
1702 | |
1703 | /* Break out if operand types were not parsed successfully. */ |
1704 | if ((op[0]->type == glsl_type::error_type || |
1705 | op[1]->type == glsl_type::error_type)) { |
1706 | error_emitted = true; |
1707 | break; |
1708 | } |
1709 | |
1710 | type = arithmetic_result_type(op[0], op[1], |
1711 | (this->oper == ast_mul_assign), |
1712 | state, & loc); |
1713 | |
1714 | if (type != orig_type) { |
1715 | _mesa_glsl_error(& loc, state, |
1716 | "could not implicitly convert " |
1717 | "%s to %s", type->name, orig_type->name); |
1718 | type = glsl_type::error_type; |
1719 | } |
1720 | |
1721 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, |
1722 | op[0], op[1]); |
1723 | |
1724 | error_emitted = |
1725 | do_assignment(instructions, state, |
1726 | this->subexpressions[0]->non_lvalue_description, |
1727 | op[0]->clone(ctx, NULL__null), temp_rhs, |
1728 | &result, needs_rvalue, false, |
1729 | this->subexpressions[0]->get_location()); |
1730 | |
1731 | /* GLSL 1.10 does not allow array assignment. However, we don't have to |
1732 | * explicitly test for this because none of the binary expression |
1733 | * operators allow array operands either. |
1734 | */ |
1735 | |
1736 | break; |
1737 | } |
1738 | |
1739 | case ast_mod_assign: { |
1740 | this->subexpressions[0]->set_is_lhs(true); |
1741 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1742 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1743 | |
1744 | orig_type = op[0]->type; |
1745 | type = modulus_result_type(op[0], op[1], state, &loc); |
1746 | |
1747 | if (type != orig_type) { |
1748 | _mesa_glsl_error(& loc, state, |
1749 | "could not implicitly convert " |
1750 | "%s to %s", type->name, orig_type->name); |
1751 | type = glsl_type::error_type; |
1752 | } |
1753 | |
1754 | assert(operations[this->oper] == ir_binop_mod)(static_cast <bool> (operations[this->oper] == ir_binop_mod ) ? void (0) : __assert_fail ("operations[this->oper] == ir_binop_mod" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1755 | |
1756 | ir_rvalue *temp_rhs; |
1757 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, |
1758 | op[0], op[1]); |
1759 | |
1760 | error_emitted = |
1761 | do_assignment(instructions, state, |
1762 | this->subexpressions[0]->non_lvalue_description, |
1763 | op[0]->clone(ctx, NULL__null), temp_rhs, |
1764 | &result, needs_rvalue, false, |
1765 | this->subexpressions[0]->get_location()); |
1766 | break; |
1767 | } |
1768 | |
1769 | case ast_ls_assign: |
1770 | case ast_rs_assign: { |
1771 | this->subexpressions[0]->set_is_lhs(true); |
1772 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1773 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1774 | type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, |
1775 | &loc); |
1776 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], |
1777 | type, op[0], op[1]); |
1778 | error_emitted = |
1779 | do_assignment(instructions, state, |
1780 | this->subexpressions[0]->non_lvalue_description, |
1781 | op[0]->clone(ctx, NULL__null), temp_rhs, |
1782 | &result, needs_rvalue, false, |
1783 | this->subexpressions[0]->get_location()); |
1784 | break; |
1785 | } |
1786 | |
1787 | case ast_and_assign: |
1788 | case ast_xor_assign: |
1789 | case ast_or_assign: { |
1790 | this->subexpressions[0]->set_is_lhs(true); |
1791 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1792 | op[1] = this->subexpressions[1]->hir(instructions, state); |
1793 | |
1794 | orig_type = op[0]->type; |
1795 | type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); |
1796 | |
1797 | if (type != orig_type) { |
1798 | _mesa_glsl_error(& loc, state, |
1799 | "could not implicitly convert " |
1800 | "%s to %s", type->name, orig_type->name); |
1801 | type = glsl_type::error_type; |
1802 | } |
1803 | |
1804 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], |
1805 | type, op[0], op[1]); |
1806 | error_emitted = |
1807 | do_assignment(instructions, state, |
1808 | this->subexpressions[0]->non_lvalue_description, |
1809 | op[0]->clone(ctx, NULL__null), temp_rhs, |
1810 | &result, needs_rvalue, false, |
1811 | this->subexpressions[0]->get_location()); |
1812 | break; |
1813 | } |
1814 | |
1815 | case ast_conditional: { |
1816 | /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: |
1817 | * |
1818 | * "The ternary selection operator (?:). It operates on three |
1819 | * expressions (exp1 ? exp2 : exp3). This operator evaluates the |
1820 | * first expression, which must result in a scalar Boolean." |
1821 | */ |
1822 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, |
1823 | "condition", &error_emitted); |
1824 | |
1825 | /* The :? operator is implemented by generating an anonymous temporary |
1826 | * followed by an if-statement. The last instruction in each branch of |
1827 | * the if-statement assigns a value to the anonymous temporary. This |
1828 | * temporary is the r-value of the expression. |
1829 | */ |
1830 | exec_list then_instructions; |
1831 | exec_list else_instructions; |
1832 | |
1833 | op[1] = this->subexpressions[1]->hir(&then_instructions, state); |
1834 | op[2] = this->subexpressions[2]->hir(&else_instructions, state); |
1835 | |
1836 | /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: |
1837 | * |
1838 | * "The second and third expressions can be any type, as |
1839 | * long their types match, or there is a conversion in |
1840 | * Section 4.1.10 "Implicit Conversions" that can be applied |
1841 | * to one of the expressions to make their types match. This |
1842 | * resulting matching type is the type of the entire |
1843 | * expression." |
1844 | */ |
1845 | if ((!apply_implicit_conversion(op[1]->type, op[2], state) |
1846 | && !apply_implicit_conversion(op[2]->type, op[1], state)) |
1847 | || (op[1]->type != op[2]->type)) { |
1848 | YYLTYPE loc = this->subexpressions[1]->get_location(); |
1849 | |
1850 | _mesa_glsl_error(& loc, state, "second and third operands of ?: " |
1851 | "operator must have matching types"); |
1852 | error_emitted = true; |
1853 | type = glsl_type::error_type; |
1854 | } else { |
1855 | type = op[1]->type; |
1856 | } |
1857 | |
1858 | /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: |
1859 | * |
1860 | * "The second and third expressions must be the same type, but can |
1861 | * be of any type other than an array." |
1862 | */ |
1863 | if (type->is_array() && |
1864 | !state->check_version(120, 300, &loc, |
1865 | "second and third operands of ?: operator " |
1866 | "cannot be arrays")) { |
1867 | error_emitted = true; |
1868 | } |
1869 | |
1870 | /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): |
1871 | * |
1872 | * "Except for array indexing, structure member selection, and |
1873 | * parentheses, opaque variables are not allowed to be operands in |
1874 | * expressions; such use results in a compile-time error." |
1875 | */ |
1876 | if (type->contains_opaque()) { |
1877 | if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { |
1878 | _mesa_glsl_error(&loc, state, "variables of type %s cannot be " |
1879 | "operands of the ?: operator", type->name); |
1880 | error_emitted = true; |
1881 | } |
1882 | } |
1883 | |
1884 | ir_constant *cond_val = op[0]->constant_expression_value(ctx); |
1885 | |
1886 | if (then_instructions.is_empty() |
1887 | && else_instructions.is_empty() |
1888 | && cond_val != NULL__null) { |
1889 | result = cond_val->value.b[0] ? op[1] : op[2]; |
1890 | } else { |
1891 | /* The copy to conditional_tmp reads the whole array. */ |
1892 | if (type->is_array()) { |
1893 | mark_whole_array_access(op[1]); |
1894 | mark_whole_array_access(op[2]); |
1895 | } |
1896 | |
1897 | ir_variable *const tmp = |
1898 | new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); |
1899 | instructions->push_tail(tmp); |
1900 | |
1901 | ir_if *const stmt = new(ctx) ir_if(op[0]); |
1902 | instructions->push_tail(stmt); |
1903 | |
1904 | then_instructions.move_nodes_to(& stmt->then_instructions); |
1905 | ir_dereference *const then_deref = |
1906 | new(ctx) ir_dereference_variable(tmp); |
1907 | ir_assignment *const then_assign = |
1908 | new(ctx) ir_assignment(then_deref, op[1]); |
1909 | stmt->then_instructions.push_tail(then_assign); |
1910 | |
1911 | else_instructions.move_nodes_to(& stmt->else_instructions); |
1912 | ir_dereference *const else_deref = |
1913 | new(ctx) ir_dereference_variable(tmp); |
1914 | ir_assignment *const else_assign = |
1915 | new(ctx) ir_assignment(else_deref, op[2]); |
1916 | stmt->else_instructions.push_tail(else_assign); |
1917 | |
1918 | result = new(ctx) ir_dereference_variable(tmp); |
1919 | } |
1920 | break; |
1921 | } |
1922 | |
1923 | case ast_pre_inc: |
1924 | case ast_pre_dec: { |
1925 | this->non_lvalue_description = (this->oper == ast_pre_inc) |
1926 | ? "pre-increment operation" : "pre-decrement operation"; |
1927 | |
1928 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1929 | op[1] = constant_one_for_inc_dec(ctx, op[0]->type); |
1930 | |
1931 | type = arithmetic_result_type(op[0], op[1], false, state, & loc); |
1932 | |
1933 | ir_rvalue *temp_rhs; |
1934 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, |
1935 | op[0], op[1]); |
1936 | |
1937 | error_emitted = |
1938 | do_assignment(instructions, state, |
1939 | this->subexpressions[0]->non_lvalue_description, |
1940 | op[0]->clone(ctx, NULL__null), temp_rhs, |
1941 | &result, needs_rvalue, false, |
1942 | this->subexpressions[0]->get_location()); |
1943 | break; |
1944 | } |
1945 | |
1946 | case ast_post_inc: |
1947 | case ast_post_dec: { |
1948 | this->non_lvalue_description = (this->oper == ast_post_inc) |
1949 | ? "post-increment operation" : "post-decrement operation"; |
1950 | op[0] = this->subexpressions[0]->hir(instructions, state); |
1951 | op[1] = constant_one_for_inc_dec(ctx, op[0]->type); |
1952 | |
1953 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); |
1954 | |
1955 | if (error_emitted) { |
1956 | result = ir_rvalue::error_value(ctx); |
1957 | break; |
1958 | } |
1959 | |
1960 | type = arithmetic_result_type(op[0], op[1], false, state, & loc); |
1961 | |
1962 | ir_rvalue *temp_rhs; |
1963 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, |
1964 | op[0], op[1]); |
1965 | |
1966 | /* Get a temporary of a copy of the lvalue before it's modified. |
1967 | * This may get thrown away later. |
1968 | */ |
1969 | result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL__null)); |
1970 | |
1971 | ir_rvalue *junk_rvalue; |
1972 | error_emitted = |
1973 | do_assignment(instructions, state, |
1974 | this->subexpressions[0]->non_lvalue_description, |
1975 | op[0]->clone(ctx, NULL__null), temp_rhs, |
1976 | &junk_rvalue, false, false, |
1977 | this->subexpressions[0]->get_location()); |
1978 | |
1979 | break; |
1980 | } |
1981 | |
1982 | case ast_field_selection: |
1983 | result = _mesa_ast_field_selection_to_hir(this, instructions, state); |
1984 | break; |
1985 | |
1986 | case ast_array_index: { |
1987 | YYLTYPE index_loc = subexpressions[1]->get_location(); |
1988 | |
1989 | /* Getting if an array is being used uninitialized is beyond what we get |
1990 | * from ir_value.data.assigned. Setting is_lhs as true would force to |
1991 | * not raise a uninitialized warning when using an array |
1992 | */ |
1993 | subexpressions[0]->set_is_lhs(true); |
1994 | op[0] = subexpressions[0]->hir(instructions, state); |
1995 | op[1] = subexpressions[1]->hir(instructions, state); |
1996 | |
1997 | result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], |
1998 | loc, index_loc); |
1999 | |
2000 | if (result->type->is_error()) |
2001 | error_emitted = true; |
2002 | |
2003 | break; |
2004 | } |
2005 | |
2006 | case ast_unsized_array_dim: |
2007 | unreachable("ast_unsized_array_dim: Should never get here.")do { (static_cast <bool> (!"ast_unsized_array_dim: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_unsized_array_dim: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2008 | |
2009 | case ast_function_call: |
2010 | /* Should *NEVER* get here. ast_function_call should always be handled |
2011 | * by ast_function_expression::hir. |
2012 | */ |
2013 | unreachable("ast_function_call: handled elsewhere ")do { (static_cast <bool> (!"ast_function_call: handled elsewhere " ) ? void (0) : __assert_fail ("!\"ast_function_call: handled elsewhere \"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2014 | |
2015 | case ast_identifier: { |
2016 | /* ast_identifier can appear several places in a full abstract syntax |
2017 | * tree. This particular use must be at location specified in the grammar |
2018 | * as 'variable_identifier'. |
2019 | */ |
2020 | ir_variable *var = |
2021 | state->symbols->get_variable(this->primary_expression.identifier); |
2022 | |
2023 | if (var == NULL__null) { |
2024 | /* the identifier might be a subroutine name */ |
2025 | char *sub_name; |
2026 | sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); |
2027 | var = state->symbols->get_variable(sub_name); |
2028 | ralloc_free(sub_name); |
2029 | } |
2030 | |
2031 | if (var != NULL__null) { |
2032 | var->data.used = true; |
2033 | result = new(ctx) ir_dereference_variable(var); |
2034 | |
2035 | if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) |
2036 | && !this->is_lhs |
2037 | && result->variable_referenced()->data.assigned != true |
2038 | && !is_gl_identifier(var->name)) { |
2039 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", |
2040 | this->primary_expression.identifier); |
2041 | } |
2042 | |
2043 | /* From the EXT_shader_framebuffer_fetch spec: |
2044 | * |
2045 | * "Unless the GL_EXT_shader_framebuffer_fetch extension has been |
2046 | * enabled in addition, it's an error to use gl_LastFragData if it |
2047 | * hasn't been explicitly redeclared with layout(noncoherent)." |
2048 | */ |
2049 | if (var->data.fb_fetch_output && var->data.memory_coherent && |
2050 | !state->EXT_shader_framebuffer_fetch_enable) { |
2051 | _mesa_glsl_error(&loc, state, |
2052 | "invalid use of framebuffer fetch output not " |
2053 | "qualified with layout(noncoherent)"); |
2054 | } |
2055 | |
2056 | } else { |
2057 | _mesa_glsl_error(& loc, state, "`%s' undeclared", |
2058 | this->primary_expression.identifier); |
2059 | |
2060 | result = ir_rvalue::error_value(ctx); |
2061 | error_emitted = true; |
2062 | } |
2063 | break; |
2064 | } |
2065 | |
2066 | case ast_int_constant: |
2067 | result = new(ctx) ir_constant(this->primary_expression.int_constant); |
2068 | break; |
2069 | |
2070 | case ast_uint_constant: |
2071 | result = new(ctx) ir_constant(this->primary_expression.uint_constant); |
2072 | break; |
2073 | |
2074 | case ast_float_constant: |
2075 | result = new(ctx) ir_constant(this->primary_expression.float_constant); |
2076 | break; |
2077 | |
2078 | case ast_bool_constant: |
2079 | result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); |
2080 | break; |
2081 | |
2082 | case ast_double_constant: |
2083 | result = new(ctx) ir_constant(this->primary_expression.double_constant); |
2084 | break; |
2085 | |
2086 | case ast_uint64_constant: |
2087 | result = new(ctx) ir_constant(this->primary_expression.uint64_constant); |
2088 | break; |
2089 | |
2090 | case ast_int64_constant: |
2091 | result = new(ctx) ir_constant(this->primary_expression.int64_constant); |
2092 | break; |
2093 | |
2094 | case ast_sequence: { |
2095 | /* It should not be possible to generate a sequence in the AST without |
2096 | * any expressions in it. |
2097 | */ |
2098 | assert(!this->expressions.is_empty())(static_cast <bool> (!this->expressions.is_empty()) ? void (0) : __assert_fail ("!this->expressions.is_empty()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
2099 | |
2100 | /* The r-value of a sequence is the last expression in the sequence. If |
2101 | * the other expressions in the sequence do not have side-effects (and |
2102 | * therefore add instructions to the instruction list), they get dropped |
2103 | * on the floor. |
2104 | */ |
2105 | exec_node *previous_tail = NULL__null; |
2106 | YYLTYPE previous_operand_loc = loc; |
2107 | |
2108 | foreach_list_typed (ast_node, ast, link, &this->expressions)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->expressions)->head_sentinel.next) ? ((ast_node *) ((( uintptr_t) (&this->expressions)->head_sentinel.next ) - (((char *) &((ast_node *) (&this->expressions) ->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - (((char * ) &((ast_node *) (ast)->link.next)->link) - ((char * ) (ast)->link.next)))) : __null)) { |
2109 | /* If one of the operands of comma operator does not generate any |
2110 | * code, we want to emit a warning. At each pass through the loop |
2111 | * previous_tail will point to the last instruction in the stream |
2112 | * *before* processing the previous operand. Naturally, |
2113 | * instructions->get_tail_raw() will point to the last instruction in |
2114 | * the stream *after* processing the previous operand. If the two |
2115 | * pointers match, then the previous operand had no effect. |
2116 | * |
2117 | * The warning behavior here differs slightly from GCC. GCC will |
2118 | * only emit a warning if none of the left-hand operands have an |
2119 | * effect. However, it will emit a warning for each. I believe that |
2120 | * there are some cases in C (especially with GCC extensions) where |
2121 | * it is useful to have an intermediate step in a sequence have no |
2122 | * effect, but I don't think these cases exist in GLSL. Either way, |
2123 | * it would be a giant hassle to replicate that behavior. |
2124 | */ |
2125 | if (previous_tail == instructions->get_tail_raw()) { |
2126 | _mesa_glsl_warning(&previous_operand_loc, state, |
2127 | "left-hand operand of comma expression has " |
2128 | "no effect"); |
2129 | } |
2130 | |
2131 | /* The tail is directly accessed instead of using the get_tail() |
2132 | * method for performance reasons. get_tail() has extra code to |
2133 | * return NULL when the list is empty. We don't care about that |
2134 | * here, so using get_tail_raw() is fine. |
2135 | */ |
2136 | previous_tail = instructions->get_tail_raw(); |
2137 | previous_operand_loc = ast->get_location(); |
2138 | |
2139 | result = ast->hir(instructions, state); |
2140 | } |
2141 | |
2142 | /* Any errors should have already been emitted in the loop above. |
2143 | */ |
2144 | error_emitted = true; |
2145 | break; |
2146 | } |
2147 | } |
2148 | type = NULL__null; /* use result->type, not type. */ |
2149 | assert(error_emitted || (result != NULL || !needs_rvalue))(static_cast <bool> (error_emitted || (result != __null || !needs_rvalue)) ? void (0) : __assert_fail ("error_emitted || (result != NULL || !needs_rvalue)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
2150 | |
2151 | if (result && result->type->is_error() && !error_emitted) |
2152 | _mesa_glsl_error(& loc, state, "type mismatch"); |
2153 | |
2154 | return result; |
2155 | } |
2156 | |
2157 | bool |
2158 | ast_expression::has_sequence_subexpression() const |
2159 | { |
2160 | switch (this->oper) { |
2161 | case ast_plus: |
2162 | case ast_neg: |
2163 | case ast_bit_not: |
2164 | case ast_logic_not: |
2165 | case ast_pre_inc: |
2166 | case ast_pre_dec: |
2167 | case ast_post_inc: |
2168 | case ast_post_dec: |
2169 | return this->subexpressions[0]->has_sequence_subexpression(); |
2170 | |
2171 | case ast_assign: |
2172 | case ast_add: |
2173 | case ast_sub: |
2174 | case ast_mul: |
2175 | case ast_div: |
2176 | case ast_mod: |
2177 | case ast_lshift: |
2178 | case ast_rshift: |
2179 | case ast_less: |
2180 | case ast_greater: |
2181 | case ast_lequal: |
2182 | case ast_gequal: |
2183 | case ast_nequal: |
2184 | case ast_equal: |
2185 | case ast_bit_and: |
2186 | case ast_bit_xor: |
2187 | case ast_bit_or: |
2188 | case ast_logic_and: |
2189 | case ast_logic_or: |
2190 | case ast_logic_xor: |
2191 | case ast_array_index: |
2192 | case ast_mul_assign: |
2193 | case ast_div_assign: |
2194 | case ast_add_assign: |
2195 | case ast_sub_assign: |
2196 | case ast_mod_assign: |
2197 | case ast_ls_assign: |
2198 | case ast_rs_assign: |
2199 | case ast_and_assign: |
2200 | case ast_xor_assign: |
2201 | case ast_or_assign: |
2202 | return this->subexpressions[0]->has_sequence_subexpression() || |
2203 | this->subexpressions[1]->has_sequence_subexpression(); |
2204 | |
2205 | case ast_conditional: |
2206 | return this->subexpressions[0]->has_sequence_subexpression() || |
2207 | this->subexpressions[1]->has_sequence_subexpression() || |
2208 | this->subexpressions[2]->has_sequence_subexpression(); |
2209 | |
2210 | case ast_sequence: |
2211 | return true; |
2212 | |
2213 | case ast_field_selection: |
2214 | case ast_identifier: |
2215 | case ast_int_constant: |
2216 | case ast_uint_constant: |
2217 | case ast_float_constant: |
2218 | case ast_bool_constant: |
2219 | case ast_double_constant: |
2220 | case ast_int64_constant: |
2221 | case ast_uint64_constant: |
2222 | return false; |
2223 | |
2224 | case ast_aggregate: |
2225 | return false; |
2226 | |
2227 | case ast_function_call: |
2228 | unreachable("should be handled by ast_function_expression::hir")do { (static_cast <bool> (!"should be handled by ast_function_expression::hir" ) ? void (0) : __assert_fail ("!\"should be handled by ast_function_expression::hir\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2229 | |
2230 | case ast_unsized_array_dim: |
2231 | unreachable("ast_unsized_array_dim: Should never get here.")do { (static_cast <bool> (!"ast_unsized_array_dim: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_unsized_array_dim: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2232 | } |
2233 | |
2234 | return false; |
2235 | } |
2236 | |
2237 | ir_rvalue * |
2238 | ast_expression_statement::hir(exec_list *instructions, |
2239 | struct _mesa_glsl_parse_state *state) |
2240 | { |
2241 | /* It is possible to have expression statements that don't have an |
2242 | * expression. This is the solitary semicolon: |
2243 | * |
2244 | * for (i = 0; i < 5; i++) |
2245 | * ; |
2246 | * |
2247 | * In this case the expression will be NULL. Test for NULL and don't do |
2248 | * anything in that case. |
2249 | */ |
2250 | if (expression != NULL__null) |
2251 | expression->hir_no_rvalue(instructions, state); |
2252 | |
2253 | /* Statements do not have r-values. |
2254 | */ |
2255 | return NULL__null; |
2256 | } |
2257 | |
2258 | |
2259 | ir_rvalue * |
2260 | ast_compound_statement::hir(exec_list *instructions, |
2261 | struct _mesa_glsl_parse_state *state) |
2262 | { |
2263 | if (new_scope) |
2264 | state->symbols->push_scope(); |
2265 | |
2266 | foreach_list_typed (ast_node, ast, link, &this->statements)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->statements)->head_sentinel.next) ? ((ast_node *) (((uintptr_t ) (&this->statements)->head_sentinel.next) - (((char *) &((ast_node *) (&this->statements)->head_sentinel .next)->link) - ((char *) (&this->statements)->head_sentinel .next)))) : __null); (ast) != __null; (ast) = (!exec_node_is_tail_sentinel ((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)-> link.next) - (((char *) &((ast_node *) (ast)->link.next )->link) - ((char *) (ast)->link.next)))) : __null)) |
2267 | ast->hir(instructions, state); |
2268 | |
2269 | if (new_scope) |
2270 | state->symbols->pop_scope(); |
2271 | |
2272 | /* Compound statements do not have r-values. |
2273 | */ |
2274 | return NULL__null; |
2275 | } |
2276 | |
2277 | /** |
2278 | * Evaluate the given exec_node (which should be an ast_node representing |
2279 | * a single array dimension) and return its integer value. |
2280 | */ |
2281 | static unsigned |
2282 | process_array_size(exec_node *node, |
2283 | struct _mesa_glsl_parse_state *state) |
2284 | { |
2285 | void *mem_ctx = state; |
2286 | |
2287 | exec_list dummy_instructions; |
2288 | |
2289 | ast_node *array_size = exec_node_data(ast_node, node, link)((ast_node *) (((uintptr_t) node) - (((char *) &((ast_node *) node)->link) - ((char *) node)))); |
2290 | |
2291 | /** |
2292 | * Dimensions other than the outermost dimension can by unsized if they |
2293 | * are immediately sized by a constructor or initializer. |
2294 | */ |
2295 | if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) |
2296 | return 0; |
2297 | |
2298 | ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); |
2299 | YYLTYPE loc = array_size->get_location(); |
2300 | |
2301 | if (ir == NULL__null) { |
2302 | _mesa_glsl_error(& loc, state, |
2303 | "array size could not be resolved"); |
2304 | return 0; |
2305 | } |
2306 | |
2307 | if (!ir->type->is_integer_32()) { |
2308 | _mesa_glsl_error(& loc, state, |
2309 | "array size must be integer type"); |
2310 | return 0; |
2311 | } |
2312 | |
2313 | if (!ir->type->is_scalar()) { |
2314 | _mesa_glsl_error(& loc, state, |
2315 | "array size must be scalar type"); |
2316 | return 0; |
2317 | } |
2318 | |
2319 | ir_constant *const size = ir->constant_expression_value(mem_ctx); |
2320 | if (size == NULL__null || |
2321 | (state->is_version(120, 300) && |
2322 | array_size->has_sequence_subexpression())) { |
2323 | _mesa_glsl_error(& loc, state, "array size must be a " |
2324 | "constant valued expression"); |
2325 | return 0; |
2326 | } |
2327 | |
2328 | if (size->value.i[0] <= 0) { |
2329 | _mesa_glsl_error(& loc, state, "array size must be > 0"); |
2330 | return 0; |
2331 | } |
2332 | |
2333 | assert(size->type == ir->type)(static_cast <bool> (size->type == ir->type) ? void (0) : __assert_fail ("size->type == ir->type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2334 | |
2335 | /* If the array size is const (and we've verified that |
2336 | * it is) then no instructions should have been emitted |
2337 | * when we converted it to HIR. If they were emitted, |
2338 | * then either the array size isn't const after all, or |
2339 | * we are emitting unnecessary instructions. |
2340 | */ |
2341 | assert(dummy_instructions.is_empty())(static_cast <bool> (dummy_instructions.is_empty()) ? void (0) : __assert_fail ("dummy_instructions.is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2342 | |
2343 | return size->value.u[0]; |
2344 | } |
2345 | |
2346 | static const glsl_type * |
2347 | process_array_type(YYLTYPE *loc, const glsl_type *base, |
2348 | ast_array_specifier *array_specifier, |
2349 | struct _mesa_glsl_parse_state *state) |
2350 | { |
2351 | const glsl_type *array_type = base; |
2352 | |
2353 | if (array_specifier != NULL__null) { |
2354 | if (base->is_array()) { |
2355 | |
2356 | /* From page 19 (page 25) of the GLSL 1.20 spec: |
2357 | * |
2358 | * "Only one-dimensional arrays may be declared." |
2359 | */ |
2360 | if (!state->check_arrays_of_arrays_allowed(loc)) { |
2361 | return glsl_type::error_type; |
2362 | } |
2363 | } |
2364 | |
2365 | for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); |
2366 | !node->is_head_sentinel(); node = node->prev) { |
2367 | unsigned array_size = process_array_size(node, state); |
2368 | array_type = glsl_type::get_array_instance(array_type, array_size); |
2369 | } |
2370 | } |
2371 | |
2372 | return array_type; |
2373 | } |
2374 | |
2375 | static bool |
2376 | precision_qualifier_allowed(const glsl_type *type) |
2377 | { |
2378 | /* Precision qualifiers apply to floating point, integer and opaque |
2379 | * types. |
2380 | * |
2381 | * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: |
2382 | * "Any floating point or any integer declaration can have the type |
2383 | * preceded by one of these precision qualifiers [...] Literal |
2384 | * constants do not have precision qualifiers. Neither do Boolean |
2385 | * variables. |
2386 | * |
2387 | * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 |
2388 | * spec also says: |
2389 | * |
2390 | * "Precision qualifiers are added for code portability with OpenGL |
2391 | * ES, not for functionality. They have the same syntax as in OpenGL |
2392 | * ES." |
2393 | * |
2394 | * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: |
2395 | * |
2396 | * "uniform lowp sampler2D sampler; |
2397 | * highp vec2 coord; |
2398 | * ... |
2399 | * lowp vec4 col = texture2D (sampler, coord); |
2400 | * // texture2D returns lowp" |
2401 | * |
2402 | * From this, we infer that GLSL 1.30 (and later) should allow precision |
2403 | * qualifiers on sampler types just like float and integer types. |
2404 | */ |
2405 | const glsl_type *const t = type->without_array(); |
2406 | |
2407 | return (t->is_float() || t->is_integer_32() || t->contains_opaque()) && |
2408 | !t->is_struct(); |
2409 | } |
2410 | |
2411 | const glsl_type * |
2412 | ast_type_specifier::glsl_type(const char **name, |
2413 | struct _mesa_glsl_parse_state *state) const |
2414 | { |
2415 | const struct glsl_type *type; |
2416 | |
2417 | if (this->type != NULL__null) |
2418 | type = this->type; |
2419 | else if (structure) |
2420 | type = structure->type; |
2421 | else |
2422 | type = state->symbols->get_type(this->type_name); |
2423 | *name = this->type_name; |
2424 | |
2425 | YYLTYPE loc = this->get_location(); |
2426 | type = process_array_type(&loc, type, this->array_specifier, state); |
2427 | |
2428 | return type; |
2429 | } |
2430 | |
2431 | /** |
2432 | * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: |
2433 | * |
2434 | * "The precision statement |
2435 | * |
2436 | * precision precision-qualifier type; |
2437 | * |
2438 | * can be used to establish a default precision qualifier. The type field can |
2439 | * be either int or float or any of the sampler types, (...) If type is float, |
2440 | * the directive applies to non-precision-qualified floating point type |
2441 | * (scalar, vector, and matrix) declarations. If type is int, the directive |
2442 | * applies to all non-precision-qualified integer type (scalar, vector, signed, |
2443 | * and unsigned) declarations." |
2444 | * |
2445 | * We use the symbol table to keep the values of the default precisions for |
2446 | * each 'type' in each scope and we use the 'type' string from the precision |
2447 | * statement as key in the symbol table. When we want to retrieve the default |
2448 | * precision associated with a given glsl_type we need to know the type string |
2449 | * associated with it. This is what this function returns. |
2450 | */ |
2451 | static const char * |
2452 | get_type_name_for_precision_qualifier(const glsl_type *type) |
2453 | { |
2454 | switch (type->base_type) { |
2455 | case GLSL_TYPE_FLOAT: |
2456 | return "float"; |
2457 | case GLSL_TYPE_UINT: |
2458 | case GLSL_TYPE_INT: |
2459 | return "int"; |
2460 | case GLSL_TYPE_ATOMIC_UINT: |
2461 | return "atomic_uint"; |
2462 | case GLSL_TYPE_IMAGE: |
2463 | /* fallthrough */ |
2464 | case GLSL_TYPE_SAMPLER: { |
2465 | const unsigned type_idx = |
2466 | type->sampler_array + 2 * type->sampler_shadow; |
2467 | const unsigned offset = type->is_sampler() ? 0 : 4; |
2468 | assert(type_idx < 4)(static_cast <bool> (type_idx < 4) ? void (0) : __assert_fail ("type_idx < 4", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2469 | switch (type->sampled_type) { |
2470 | case GLSL_TYPE_FLOAT: |
2471 | switch (type->sampler_dimensionality) { |
2472 | case GLSL_SAMPLER_DIM_1D: { |
2473 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2474 | static const char *const names[4] = { |
2475 | "sampler1D", "sampler1DArray", |
2476 | "sampler1DShadow", "sampler1DArrayShadow" |
2477 | }; |
2478 | return names[type_idx]; |
2479 | } |
2480 | case GLSL_SAMPLER_DIM_2D: { |
2481 | static const char *const names[8] = { |
2482 | "sampler2D", "sampler2DArray", |
2483 | "sampler2DShadow", "sampler2DArrayShadow", |
2484 | "image2D", "image2DArray", NULL__null, NULL__null |
2485 | }; |
2486 | return names[offset + type_idx]; |
2487 | } |
2488 | case GLSL_SAMPLER_DIM_3D: { |
2489 | static const char *const names[8] = { |
2490 | "sampler3D", NULL__null, NULL__null, NULL__null, |
2491 | "image3D", NULL__null, NULL__null, NULL__null |
2492 | }; |
2493 | return names[offset + type_idx]; |
2494 | } |
2495 | case GLSL_SAMPLER_DIM_CUBE: { |
2496 | static const char *const names[8] = { |
2497 | "samplerCube", "samplerCubeArray", |
2498 | "samplerCubeShadow", "samplerCubeArrayShadow", |
2499 | "imageCube", NULL__null, NULL__null, NULL__null |
2500 | }; |
2501 | return names[offset + type_idx]; |
2502 | } |
2503 | case GLSL_SAMPLER_DIM_MS: { |
2504 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2505 | static const char *const names[4] = { |
2506 | "sampler2DMS", "sampler2DMSArray", NULL__null, NULL__null |
2507 | }; |
2508 | return names[type_idx]; |
2509 | } |
2510 | case GLSL_SAMPLER_DIM_RECT: { |
2511 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2512 | static const char *const names[4] = { |
2513 | "samplerRect", NULL__null, "samplerRectShadow", NULL__null |
2514 | }; |
2515 | return names[type_idx]; |
2516 | } |
2517 | case GLSL_SAMPLER_DIM_BUF: { |
2518 | static const char *const names[8] = { |
2519 | "samplerBuffer", NULL__null, NULL__null, NULL__null, |
2520 | "imageBuffer", NULL__null, NULL__null, NULL__null |
2521 | }; |
2522 | return names[offset + type_idx]; |
2523 | } |
2524 | case GLSL_SAMPLER_DIM_EXTERNAL: { |
2525 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2526 | static const char *const names[4] = { |
2527 | "samplerExternalOES", NULL__null, NULL__null, NULL__null |
2528 | }; |
2529 | return names[type_idx]; |
2530 | } |
2531 | default: |
2532 | unreachable("Unsupported sampler/image dimensionality")do { (static_cast <bool> (!"Unsupported sampler/image dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported sampler/image dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2533 | } /* sampler/image float dimensionality */ |
2534 | break; |
2535 | case GLSL_TYPE_INT: |
2536 | switch (type->sampler_dimensionality) { |
2537 | case GLSL_SAMPLER_DIM_1D: { |
2538 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2539 | static const char *const names[4] = { |
2540 | "isampler1D", "isampler1DArray", NULL__null, NULL__null |
2541 | }; |
2542 | return names[type_idx]; |
2543 | } |
2544 | case GLSL_SAMPLER_DIM_2D: { |
2545 | static const char *const names[8] = { |
2546 | "isampler2D", "isampler2DArray", NULL__null, NULL__null, |
2547 | "iimage2D", "iimage2DArray", NULL__null, NULL__null |
2548 | }; |
2549 | return names[offset + type_idx]; |
2550 | } |
2551 | case GLSL_SAMPLER_DIM_3D: { |
2552 | static const char *const names[8] = { |
2553 | "isampler3D", NULL__null, NULL__null, NULL__null, |
2554 | "iimage3D", NULL__null, NULL__null, NULL__null |
2555 | }; |
2556 | return names[offset + type_idx]; |
2557 | } |
2558 | case GLSL_SAMPLER_DIM_CUBE: { |
2559 | static const char *const names[8] = { |
2560 | "isamplerCube", "isamplerCubeArray", NULL__null, NULL__null, |
2561 | "iimageCube", NULL__null, NULL__null, NULL__null |
2562 | }; |
2563 | return names[offset + type_idx]; |
2564 | } |
2565 | case GLSL_SAMPLER_DIM_MS: { |
2566 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2567 | static const char *const names[4] = { |
2568 | "isampler2DMS", "isampler2DMSArray", NULL__null, NULL__null |
2569 | }; |
2570 | return names[type_idx]; |
2571 | } |
2572 | case GLSL_SAMPLER_DIM_RECT: { |
2573 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2574 | static const char *const names[4] = { |
2575 | "isamplerRect", NULL__null, "isamplerRectShadow", NULL__null |
2576 | }; |
2577 | return names[type_idx]; |
2578 | } |
2579 | case GLSL_SAMPLER_DIM_BUF: { |
2580 | static const char *const names[8] = { |
2581 | "isamplerBuffer", NULL__null, NULL__null, NULL__null, |
2582 | "iimageBuffer", NULL__null, NULL__null, NULL__null |
2583 | }; |
2584 | return names[offset + type_idx]; |
2585 | } |
2586 | default: |
2587 | unreachable("Unsupported isampler/iimage dimensionality")do { (static_cast <bool> (!"Unsupported isampler/iimage dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported isampler/iimage dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2588 | } /* sampler/image int dimensionality */ |
2589 | break; |
2590 | case GLSL_TYPE_UINT: |
2591 | switch (type->sampler_dimensionality) { |
2592 | case GLSL_SAMPLER_DIM_1D: { |
2593 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2594 | static const char *const names[4] = { |
2595 | "usampler1D", "usampler1DArray", NULL__null, NULL__null |
2596 | }; |
2597 | return names[type_idx]; |
2598 | } |
2599 | case GLSL_SAMPLER_DIM_2D: { |
2600 | static const char *const names[8] = { |
2601 | "usampler2D", "usampler2DArray", NULL__null, NULL__null, |
2602 | "uimage2D", "uimage2DArray", NULL__null, NULL__null |
2603 | }; |
2604 | return names[offset + type_idx]; |
2605 | } |
2606 | case GLSL_SAMPLER_DIM_3D: { |
2607 | static const char *const names[8] = { |
2608 | "usampler3D", NULL__null, NULL__null, NULL__null, |
2609 | "uimage3D", NULL__null, NULL__null, NULL__null |
2610 | }; |
2611 | return names[offset + type_idx]; |
2612 | } |
2613 | case GLSL_SAMPLER_DIM_CUBE: { |
2614 | static const char *const names[8] = { |
2615 | "usamplerCube", "usamplerCubeArray", NULL__null, NULL__null, |
2616 | "uimageCube", NULL__null, NULL__null, NULL__null |
2617 | }; |
2618 | return names[offset + type_idx]; |
2619 | } |
2620 | case GLSL_SAMPLER_DIM_MS: { |
2621 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2622 | static const char *const names[4] = { |
2623 | "usampler2DMS", "usampler2DMSArray", NULL__null, NULL__null |
2624 | }; |
2625 | return names[type_idx]; |
2626 | } |
2627 | case GLSL_SAMPLER_DIM_RECT: { |
2628 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2629 | static const char *const names[4] = { |
2630 | "usamplerRect", NULL__null, "usamplerRectShadow", NULL__null |
2631 | }; |
2632 | return names[type_idx]; |
2633 | } |
2634 | case GLSL_SAMPLER_DIM_BUF: { |
2635 | static const char *const names[8] = { |
2636 | "usamplerBuffer", NULL__null, NULL__null, NULL__null, |
2637 | "uimageBuffer", NULL__null, NULL__null, NULL__null |
2638 | }; |
2639 | return names[offset + type_idx]; |
2640 | } |
2641 | default: |
2642 | unreachable("Unsupported usampler/uimage dimensionality")do { (static_cast <bool> (!"Unsupported usampler/uimage dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported usampler/uimage dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2643 | } /* sampler/image uint dimensionality */ |
2644 | break; |
2645 | default: |
2646 | unreachable("Unsupported sampler/image type")do { (static_cast <bool> (!"Unsupported sampler/image type" ) ? void (0) : __assert_fail ("!\"Unsupported sampler/image type\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); |
2647 | } /* sampler/image type */ |
2648 | break; |
2649 | } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ |
2650 | break; |
2651 | default: |
2652 | unreachable("Unsupported type")do { (static_cast <bool> (!"Unsupported type") ? void ( 0) : __assert_fail ("!\"Unsupported type\"", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); |
2653 | } /* base type */ |
2654 | } |
2655 | |
2656 | static unsigned |
2657 | select_gles_precision(unsigned qual_precision, |
2658 | const glsl_type *type, |
2659 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) |
2660 | { |
2661 | /* Precision qualifiers do not have any meaning in Desktop GLSL. |
2662 | * In GLES we take the precision from the type qualifier if present, |
2663 | * otherwise, if the type of the variable allows precision qualifiers at |
2664 | * all, we look for the default precision qualifier for that type in the |
2665 | * current scope. |
2666 | */ |
2667 | assert(state->es_shader)(static_cast <bool> (state->es_shader) ? void (0) : __assert_fail ("state->es_shader", __builtin_FILE (), __builtin_LINE () , __extension__ __PRETTY_FUNCTION__)); |
2668 | |
2669 | unsigned precision = GLSL_PRECISION_NONE; |
2670 | if (qual_precision) { |
2671 | precision = qual_precision; |
2672 | } else if (precision_qualifier_allowed(type)) { |
2673 | const char *type_name = |
2674 | get_type_name_for_precision_qualifier(type->without_array()); |
2675 | assert(type_name != NULL)(static_cast <bool> (type_name != __null) ? void (0) : __assert_fail ("type_name != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
2676 | |
2677 | precision = |
2678 | state->symbols->get_default_precision_qualifier(type_name); |
2679 | if (precision == ast_precision_none) { |
2680 | _mesa_glsl_error(loc, state, |
2681 | "No precision specified in this scope for type `%s'", |
2682 | type->name); |
2683 | } |
2684 | } |
2685 | |
2686 | |
2687 | /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: |
2688 | * |
2689 | * "The default precision of all atomic types is highp. It is an error to |
2690 | * declare an atomic type with a different precision or to specify the |
2691 | * default precision for an atomic type to be lowp or mediump." |
2692 | */ |
2693 | if (type->is_atomic_uint() && precision != ast_precision_high) { |
2694 | _mesa_glsl_error(loc, state, |
2695 | "atomic_uint can only have highp precision qualifier"); |
2696 | } |
2697 | |
2698 | return precision; |
2699 | } |
2700 | |
2701 | const glsl_type * |
2702 | ast_fully_specified_type::glsl_type(const char **name, |
2703 | struct _mesa_glsl_parse_state *state) const |
2704 | { |
2705 | return this->specifier->glsl_type(name, state); |
2706 | } |
2707 | |
2708 | /** |
2709 | * Determine whether a toplevel variable declaration declares a varying. This |
2710 | * function operates by examining the variable's mode and the shader target, |
2711 | * so it correctly identifies linkage variables regardless of whether they are |
2712 | * declared using the deprecated "varying" syntax or the new "in/out" syntax. |
2713 | * |
2714 | * Passing a non-toplevel variable declaration (e.g. a function parameter) to |
2715 | * this function will produce undefined results. |
2716 | */ |
2717 | static bool |
2718 | is_varying_var(ir_variable *var, gl_shader_stage target) |
2719 | { |
2720 | switch (target) { |
2721 | case MESA_SHADER_VERTEX: |
2722 | return var->data.mode == ir_var_shader_out; |
2723 | case MESA_SHADER_FRAGMENT: |
2724 | return var->data.mode == ir_var_shader_in || |
2725 | (var->data.mode == ir_var_system_value && |
2726 | var->data.location == SYSTEM_VALUE_FRAG_COORD); |
2727 | default: |
2728 | return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; |
2729 | } |
2730 | } |
2731 | |
2732 | static bool |
2733 | is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) |
2734 | { |
2735 | if (is_varying_var(var, state->stage)) |
2736 | return true; |
2737 | |
2738 | /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: |
2739 | * "Only variables output from a vertex shader can be candidates |
2740 | * for invariance". |
2741 | */ |
2742 | if (!state->is_version(130, 100)) |
2743 | return false; |
2744 | |
2745 | /* |
2746 | * Later specs remove this language - so allowed invariant |
2747 | * on fragment shader outputs as well. |
2748 | */ |
2749 | if (state->stage == MESA_SHADER_FRAGMENT && |
2750 | var->data.mode == ir_var_shader_out) |
2751 | return true; |
2752 | return false; |
2753 | } |
2754 | |
2755 | /** |
2756 | * Matrix layout qualifiers are only allowed on certain types |
2757 | */ |
2758 | static void |
2759 | validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, |
2760 | YYLTYPE *loc, |
2761 | const glsl_type *type, |
2762 | ir_variable *var) |
2763 | { |
2764 | if (var && !var->is_in_buffer_block()) { |
2765 | /* Layout qualifiers may only apply to interface blocks and fields in |
2766 | * them. |
2767 | */ |
2768 | _mesa_glsl_error(loc, state, |
2769 | "uniform block layout qualifiers row_major and " |
2770 | "column_major may not be applied to variables " |
2771 | "outside of uniform blocks"); |
2772 | } else if (!type->without_array()->is_matrix()) { |
2773 | /* The OpenGL ES 3.0 conformance tests did not originally allow |
2774 | * matrix layout qualifiers on non-matrices. However, the OpenGL |
2775 | * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were |
2776 | * amended to specifically allow these layouts on all types. Emit |
2777 | * a warning so that people know their code may not be portable. |
2778 | */ |
2779 | _mesa_glsl_warning(loc, state, |
2780 | "uniform block layout qualifiers row_major and " |
2781 | "column_major applied to non-matrix types may " |
2782 | "be rejected by older compilers"); |
2783 | } |
2784 | } |
2785 | |
2786 | static bool |
2787 | validate_xfb_buffer_qualifier(YYLTYPE *loc, |
2788 | struct _mesa_glsl_parse_state *state, |
2789 | unsigned xfb_buffer) { |
2790 | if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { |
2791 | _mesa_glsl_error(loc, state, |
2792 | "invalid xfb_buffer specified %d is larger than " |
2793 | "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", |
2794 | xfb_buffer, |
2795 | state->Const.MaxTransformFeedbackBuffers - 1); |
2796 | return false; |
2797 | } |
2798 | |
2799 | return true; |
2800 | } |
2801 | |
2802 | /* From the ARB_enhanced_layouts spec: |
2803 | * |
2804 | * "Variables and block members qualified with *xfb_offset* can be |
2805 | * scalars, vectors, matrices, structures, and (sized) arrays of these. |
2806 | * The offset must be a multiple of the size of the first component of |
2807 | * the first qualified variable or block member, or a compile-time error |
2808 | * results. Further, if applied to an aggregate containing a double, |
2809 | * the offset must also be a multiple of 8, and the space taken in the |
2810 | * buffer will be a multiple of 8. |
2811 | */ |
2812 | static bool |
2813 | validate_xfb_offset_qualifier(YYLTYPE *loc, |
2814 | struct _mesa_glsl_parse_state *state, |
2815 | int xfb_offset, const glsl_type *type, |
2816 | unsigned component_size) { |
2817 | const glsl_type *t_without_array = type->without_array(); |
2818 | |
2819 | if (xfb_offset != -1 && type->is_unsized_array()) { |
2820 | _mesa_glsl_error(loc, state, |
2821 | "xfb_offset can't be used with unsized arrays."); |
2822 | return false; |
2823 | } |
2824 | |
2825 | /* Make sure nested structs don't contain unsized arrays, and validate |
2826 | * any xfb_offsets on interface members. |
2827 | */ |
2828 | if (t_without_array->is_struct() || t_without_array->is_interface()) |
2829 | for (unsigned int i = 0; i < t_without_array->length; i++) { |
2830 | const glsl_type *member_t = t_without_array->fields.structure[i].type; |
2831 | |
2832 | /* When the interface block doesn't have an xfb_offset qualifier then |
2833 | * we apply the component size rules at the member level. |
2834 | */ |
2835 | if (xfb_offset == -1) |
2836 | component_size = member_t->contains_double() ? 8 : 4; |
2837 | |
2838 | int xfb_offset = t_without_array->fields.structure[i].offset; |
2839 | validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, |
2840 | component_size); |
2841 | } |
2842 | |
2843 | /* Nested structs or interface block without offset may not have had an |
2844 | * offset applied yet so return. |
2845 | */ |
2846 | if (xfb_offset == -1) { |
2847 | return true; |
2848 | } |
2849 | |
2850 | if (xfb_offset % component_size) { |
2851 | _mesa_glsl_error(loc, state, |
2852 | "invalid qualifier xfb_offset=%d must be a multiple " |
2853 | "of the first component size of the first qualified " |
2854 | "variable or block member. Or double if an aggregate " |
2855 | "that contains a double (%d).", |
2856 | xfb_offset, component_size); |
2857 | return false; |
2858 | } |
2859 | |
2860 | return true; |
2861 | } |
2862 | |
2863 | static bool |
2864 | validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, |
2865 | unsigned stream) |
2866 | { |
2867 | if (stream >= state->ctx->Const.MaxVertexStreams) { |
2868 | _mesa_glsl_error(loc, state, |
2869 | "invalid stream specified %d is larger than " |
2870 | "MAX_VERTEX_STREAMS - 1 (%d).", |
2871 | stream, state->ctx->Const.MaxVertexStreams - 1); |
2872 | return false; |
2873 | } |
2874 | |
2875 | return true; |
2876 | } |
2877 | |
2878 | static void |
2879 | apply_explicit_binding(struct _mesa_glsl_parse_state *state, |
2880 | YYLTYPE *loc, |
2881 | ir_variable *var, |
2882 | const glsl_type *type, |
2883 | const ast_type_qualifier *qual) |
2884 | { |
2885 | if (!qual->flags.q.uniform && !qual->flags.q.buffer) { |
2886 | _mesa_glsl_error(loc, state, |
2887 | "the \"binding\" qualifier only applies to uniforms and " |
2888 | "shader storage buffer objects"); |
2889 | return; |
2890 | } |
2891 | |
2892 | unsigned qual_binding; |
2893 | if (!process_qualifier_constant(state, loc, "binding", qual->binding, |
2894 | &qual_binding)) { |
2895 | return; |
2896 | } |
2897 | |
2898 | const struct gl_context *const ctx = state->ctx; |
2899 | unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; |
2900 | unsigned max_index = qual_binding + elements - 1; |
2901 | const glsl_type *base_type = type->without_array(); |
2902 | |
2903 | if (base_type->is_interface()) { |
2904 | /* UBOs. From page 60 of the GLSL 4.20 specification: |
2905 | * "If the binding point for any uniform block instance is less than zero, |
2906 | * or greater than or equal to the implementation-dependent maximum |
2907 | * number of uniform buffer bindings, a compilation error will occur. |
2908 | * When the binding identifier is used with a uniform block instanced as |
2909 | * an array of size N, all elements of the array from binding through |
2910 | * binding + N – 1 must be within this range." |
2911 | * |
2912 | * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. |
2913 | */ |
2914 | if (qual->flags.q.uniform && |
2915 | max_index >= ctx->Const.MaxUniformBufferBindings) { |
2916 | _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " |
2917 | "the maximum number of UBO binding points (%d)", |
2918 | qual_binding, elements, |
2919 | ctx->Const.MaxUniformBufferBindings); |
2920 | return; |
2921 | } |
2922 | |
2923 | /* SSBOs. From page 67 of the GLSL 4.30 specification: |
2924 | * "If the binding point for any uniform or shader storage block instance |
2925 | * is less than zero, or greater than or equal to the |
2926 | * implementation-dependent maximum number of uniform buffer bindings, a |
2927 | * compile-time error will occur. When the binding identifier is used |
2928 | * with a uniform or shader storage block instanced as an array of size |
2929 | * N, all elements of the array from binding through binding + N – 1 must |
2930 | * be within this range." |
2931 | */ |
2932 | if (qual->flags.q.buffer && |
2933 | max_index >= ctx->Const.MaxShaderStorageBufferBindings) { |
2934 | _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " |
2935 | "the maximum number of SSBO binding points (%d)", |
2936 | qual_binding, elements, |
2937 | ctx->Const.MaxShaderStorageBufferBindings); |
2938 | return; |
2939 | } |
2940 | } else if (base_type->is_sampler()) { |
2941 | /* Samplers. From page 63 of the GLSL 4.20 specification: |
2942 | * "If the binding is less than zero, or greater than or equal to the |
2943 | * implementation-dependent maximum supported number of units, a |
2944 | * compilation error will occur. When the binding identifier is used |
2945 | * with an array of size N, all elements of the array from binding |
2946 | * through binding + N - 1 must be within this range." |
2947 | */ |
2948 | unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; |
2949 | |
2950 | if (max_index >= limit) { |
2951 | _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " |
2952 | "exceeds the maximum number of texture image units " |
2953 | "(%u)", qual_binding, elements, limit); |
2954 | |
2955 | return; |
2956 | } |
2957 | } else if (base_type->contains_atomic()) { |
2958 | assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS)(static_cast <bool> (ctx->Const.MaxAtomicBufferBindings <= (15 * 6)) ? void (0) : __assert_fail ("ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
2959 | if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { |
2960 | _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " |
2961 | "maximum number of atomic counter buffer bindings " |
2962 | "(%u)", qual_binding, |
2963 | ctx->Const.MaxAtomicBufferBindings); |
2964 | |
2965 | return; |
2966 | } |
2967 | } else if ((state->is_version(420, 310) || |
2968 | state->ARB_shading_language_420pack_enable) && |
2969 | base_type->is_image()) { |
2970 | assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS)(static_cast <bool> (ctx->Const.MaxImageUnits <= ( 32 * 6)) ? void (0) : __assert_fail ("ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
2971 | if (max_index >= ctx->Const.MaxImageUnits) { |
2972 | _mesa_glsl_error(loc, state, "Image binding %d exceeds the " |
2973 | "maximum number of image units (%d)", max_index, |
2974 | ctx->Const.MaxImageUnits); |
2975 | return; |
2976 | } |
2977 | |
2978 | } else { |
2979 | _mesa_glsl_error(loc, state, |
2980 | "the \"binding\" qualifier only applies to uniform " |
2981 | "blocks, storage blocks, opaque variables, or arrays " |
2982 | "thereof"); |
2983 | return; |
2984 | } |
2985 | |
2986 | var->data.explicit_binding = true; |
2987 | var->data.binding = qual_binding; |
2988 | |
2989 | return; |
2990 | } |
2991 | |
2992 | static void |
2993 | validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, |
2994 | YYLTYPE *loc, |
2995 | const glsl_interp_mode interpolation, |
2996 | const struct glsl_type *var_type, |
2997 | ir_variable_mode mode) |
2998 | { |
2999 | if (state->stage != MESA_SHADER_FRAGMENT || |
3000 | interpolation == INTERP_MODE_FLAT || |
3001 | mode != ir_var_shader_in) |
3002 | return; |
3003 | |
3004 | /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, |
3005 | * so must integer vertex outputs. |
3006 | * |
3007 | * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: |
3008 | * "Fragment shader inputs that are signed or unsigned integers or |
3009 | * integer vectors must be qualified with the interpolation qualifier |
3010 | * flat." |
3011 | * |
3012 | * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: |
3013 | * "Fragment shader inputs that are, or contain, signed or unsigned |
3014 | * integers or integer vectors must be qualified with the |
3015 | * interpolation qualifier flat." |
3016 | * |
3017 | * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: |
3018 | * "Vertex shader outputs that are, or contain, signed or unsigned |
3019 | * integers or integer vectors must be qualified with the |
3020 | * interpolation qualifier flat." |
3021 | * |
3022 | * Note that prior to GLSL 1.50, this requirement applied to vertex |
3023 | * outputs rather than fragment inputs. That creates problems in the |
3024 | * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all |
3025 | * desktop GL shaders. For GLSL ES shaders, we follow the spec and |
3026 | * apply the restriction to both vertex outputs and fragment inputs. |
3027 | * |
3028 | * Note also that the desktop GLSL specs are missing the text "or |
3029 | * contain"; this is presumably an oversight, since there is no |
3030 | * reasonable way to interpolate a fragment shader input that contains |
3031 | * an integer. See Khronos bug #15671. |
3032 | */ |
3033 | if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) |
3034 | && var_type->contains_integer()) { |
3035 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " |
3036 | "an integer, then it must be qualified with 'flat'"); |
3037 | } |
3038 | |
3039 | /* Double fragment inputs must be qualified with 'flat'. |
3040 | * |
3041 | * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: |
3042 | * "This extension does not support interpolation of double-precision |
3043 | * values; doubles used as fragment shader inputs must be qualified as |
3044 | * "flat"." |
3045 | * |
3046 | * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: |
3047 | * "Fragment shader inputs that are signed or unsigned integers, integer |
3048 | * vectors, or any double-precision floating-point type must be |
3049 | * qualified with the interpolation qualifier flat." |
3050 | * |
3051 | * Note that the GLSL specs are missing the text "or contain"; this is |
3052 | * presumably an oversight. See Khronos bug #15671. |
3053 | * |
3054 | * The 'double' type does not exist in GLSL ES so far. |
3055 | */ |
3056 | if (state->has_double() |
3057 | && var_type->contains_double()) { |
3058 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " |
3059 | "a double, then it must be qualified with 'flat'"); |
3060 | } |
3061 | |
3062 | /* Bindless sampler/image fragment inputs must be qualified with 'flat'. |
3063 | * |
3064 | * From section 4.3.4 of the ARB_bindless_texture spec: |
3065 | * |
3066 | * "(modify last paragraph, p. 35, allowing samplers and images as |
3067 | * fragment shader inputs) ... Fragment inputs can only be signed and |
3068 | * unsigned integers and integer vectors, floating point scalars, |
3069 | * floating-point vectors, matrices, sampler and image types, or arrays |
3070 | * or structures of these. Fragment shader inputs that are signed or |
3071 | * unsigned integers, integer vectors, or any double-precision floating- |
3072 | * point type, or any sampler or image type must be qualified with the |
3073 | * interpolation qualifier "flat"." |
3074 | */ |
3075 | if (state->has_bindless() |
3076 | && (var_type->contains_sampler() || var_type->contains_image())) { |
3077 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " |
3078 | "a bindless sampler (or image), then it must be " |
3079 | "qualified with 'flat'"); |
3080 | } |
3081 | } |
3082 | |
3083 | static void |
3084 | validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, |
3085 | YYLTYPE *loc, |
3086 | const glsl_interp_mode interpolation, |
3087 | const struct ast_type_qualifier *qual, |
3088 | const struct glsl_type *var_type, |
3089 | ir_variable_mode mode) |
3090 | { |
3091 | /* Interpolation qualifiers can only apply to shader inputs or outputs, but |
3092 | * not to vertex shader inputs nor fragment shader outputs. |
3093 | * |
3094 | * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: |
3095 | * "Outputs from a vertex shader (out) and inputs to a fragment |
3096 | * shader (in) can be further qualified with one or more of these |
3097 | * interpolation qualifiers" |
3098 | * ... |
3099 | * "These interpolation qualifiers may only precede the qualifiers in, |
3100 | * centroid in, out, or centroid out in a declaration. They do not apply |
3101 | * to the deprecated storage qualifiers varying or centroid |
3102 | * varying. They also do not apply to inputs into a vertex shader or |
3103 | * outputs from a fragment shader." |
3104 | * |
3105 | * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: |
3106 | * "Outputs from a shader (out) and inputs to a shader (in) can be |
3107 | * further qualified with one of these interpolation qualifiers." |
3108 | * ... |
3109 | * "These interpolation qualifiers may only precede the qualifiers |
3110 | * in, centroid in, out, or centroid out in a declaration. They do |
3111 | * not apply to inputs into a vertex shader or outputs from a |
3112 | * fragment shader." |
3113 | */ |
3114 | if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) |
3115 | && interpolation != INTERP_MODE_NONE) { |
3116 | const char *i = interpolation_string(interpolation); |
3117 | if (mode != ir_var_shader_in && mode != ir_var_shader_out) |
3118 | _mesa_glsl_error(loc, state, |
3119 | "interpolation qualifier `%s' can only be applied to " |
3120 | "shader inputs or outputs.", i); |
3121 | |
3122 | switch (state->stage) { |
3123 | case MESA_SHADER_VERTEX: |
3124 | if (mode == ir_var_shader_in) { |
3125 | _mesa_glsl_error(loc, state, |
3126 | "interpolation qualifier '%s' cannot be applied to " |
3127 | "vertex shader inputs", i); |
3128 | } |
3129 | break; |
3130 | case MESA_SHADER_FRAGMENT: |
3131 | if (mode == ir_var_shader_out) { |
3132 | _mesa_glsl_error(loc, state, |
3133 | "interpolation qualifier '%s' cannot be applied to " |
3134 | "fragment shader outputs", i); |
3135 | } |
3136 | break; |
3137 | default: |
3138 | break; |
3139 | } |
3140 | } |
3141 | |
3142 | /* Interpolation qualifiers cannot be applied to 'centroid' and |
3143 | * 'centroid varying'. |
3144 | * |
3145 | * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: |
3146 | * "interpolation qualifiers may only precede the qualifiers in, |
3147 | * centroid in, out, or centroid out in a declaration. They do not apply |
3148 | * to the deprecated storage qualifiers varying or centroid varying." |
3149 | * |
3150 | * These deprecated storage qualifiers do not exist in GLSL ES 3.00. |
3151 | * |
3152 | * GL_EXT_gpu_shader4 allows this. |
3153 | */ |
3154 | if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable |
3155 | && interpolation != INTERP_MODE_NONE |
3156 | && qual->flags.q.varying) { |
3157 | |
3158 | const char *i = interpolation_string(interpolation); |
3159 | const char *s; |
3160 | if (qual->flags.q.centroid) |
3161 | s = "centroid varying"; |
3162 | else |
3163 | s = "varying"; |
3164 | |
3165 | _mesa_glsl_error(loc, state, |
3166 | "qualifier '%s' cannot be applied to the " |
3167 | "deprecated storage qualifier '%s'", i, s); |
3168 | } |
3169 | |
3170 | validate_fragment_flat_interpolation_input(state, loc, interpolation, |
3171 | var_type, mode); |
3172 | } |
3173 | |
3174 | static glsl_interp_mode |
3175 | interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, |
3176 | const struct glsl_type *var_type, |
3177 | ir_variable_mode mode, |
3178 | struct _mesa_glsl_parse_state *state, |
3179 | YYLTYPE *loc) |
3180 | { |
3181 | glsl_interp_mode interpolation; |
3182 | if (qual->flags.q.flat) |
3183 | interpolation = INTERP_MODE_FLAT; |
3184 | else if (qual->flags.q.noperspective) |
3185 | interpolation = INTERP_MODE_NOPERSPECTIVE; |
3186 | else if (qual->flags.q.smooth) |
3187 | interpolation = INTERP_MODE_SMOOTH; |
3188 | else |
3189 | interpolation = INTERP_MODE_NONE; |
3190 | |
3191 | validate_interpolation_qualifier(state, loc, |
3192 | interpolation, |
3193 | qual, var_type, mode); |
3194 | |
3195 | return interpolation; |
3196 | } |
3197 | |
3198 | |
3199 | static void |
3200 | apply_explicit_location(const struct ast_type_qualifier *qual, |
3201 | ir_variable *var, |
3202 | struct _mesa_glsl_parse_state *state, |
3203 | YYLTYPE *loc) |
3204 | { |
3205 | bool fail = false; |
3206 | |
3207 | unsigned qual_location; |
3208 | if (!process_qualifier_constant(state, loc, "location", qual->location, |
3209 | &qual_location)) { |
3210 | return; |
3211 | } |
3212 | |
3213 | /* Checks for GL_ARB_explicit_uniform_location. */ |
3214 | if (qual->flags.q.uniform) { |
3215 | if (!state->check_explicit_uniform_location_allowed(loc, var)) |
3216 | return; |
3217 | |
3218 | const struct gl_context *const ctx = state->ctx; |
3219 | unsigned max_loc = qual_location + var->type->uniform_locations() - 1; |
3220 | |
3221 | if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { |
3222 | _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " |
3223 | ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, |
3224 | ctx->Const.MaxUserAssignableUniformLocations); |
3225 | return; |
3226 | } |
3227 | |
3228 | var->data.explicit_location = true; |
3229 | var->data.location = qual_location; |
3230 | return; |
3231 | } |
3232 | |
3233 | /* Between GL_ARB_explicit_attrib_location an |
3234 | * GL_ARB_separate_shader_objects, the inputs and outputs of any shader |
3235 | * stage can be assigned explicit locations. The checking here associates |
3236 | * the correct extension with the correct stage's input / output: |
3237 | * |
3238 | * input output |
3239 | * ----- ------ |
3240 | * vertex explicit_loc sso |
3241 | * tess control sso sso |
3242 | * tess eval sso sso |
3243 | * geometry sso sso |
3244 | * fragment sso explicit_loc |
3245 | */ |
3246 | switch (state->stage) { |
3247 | case MESA_SHADER_VERTEX: |
3248 | if (var->data.mode == ir_var_shader_in) { |
3249 | if (!state->check_explicit_attrib_location_allowed(loc, var)) |
3250 | return; |
3251 | |
3252 | break; |
3253 | } |
3254 | |
3255 | if (var->data.mode == ir_var_shader_out) { |
3256 | if (!state->check_separate_shader_objects_allowed(loc, var)) |
3257 | return; |
3258 | |
3259 | break; |
3260 | } |
3261 | |
3262 | fail = true; |
3263 | break; |
3264 | |
3265 | case MESA_SHADER_TESS_CTRL: |
3266 | case MESA_SHADER_TESS_EVAL: |
3267 | case MESA_SHADER_GEOMETRY: |
3268 | if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { |
3269 | if (!state->check_separate_shader_objects_allowed(loc, var)) |
3270 | return; |
3271 | |
3272 | break; |
3273 | } |
3274 | |
3275 | fail = true; |
3276 | break; |
3277 | |
3278 | case MESA_SHADER_FRAGMENT: |
3279 | if (var->data.mode == ir_var_shader_in) { |
3280 | if (!state->check_separate_shader_objects_allowed(loc, var)) |
3281 | return; |
3282 | |
3283 | break; |
3284 | } |
3285 | |
3286 | if (var->data.mode == ir_var_shader_out) { |
3287 | if (!state->check_explicit_attrib_location_allowed(loc, var)) |
3288 | return; |
3289 | |
3290 | break; |
3291 | } |
3292 | |
3293 | fail = true; |
3294 | break; |
3295 | |
3296 | case MESA_SHADER_COMPUTE: |
3297 | _mesa_glsl_error(loc, state, |
3298 | "compute shader variables cannot be given " |
3299 | "explicit locations"); |
3300 | return; |
3301 | default: |
3302 | fail = true; |
3303 | break; |
3304 | }; |
3305 | |
3306 | if (fail) { |
3307 | _mesa_glsl_error(loc, state, |
3308 | "%s cannot be given an explicit location in %s shader", |
3309 | mode_string(var), |
3310 | _mesa_shader_stage_to_string(state->stage)); |
3311 | } else { |
3312 | var->data.explicit_location = true; |
3313 | |
3314 | switch (state->stage) { |
3315 | case MESA_SHADER_VERTEX: |
3316 | var->data.location = (var->data.mode == ir_var_shader_in) |
3317 | ? (qual_location + VERT_ATTRIB_GENERIC0) |
3318 | : (qual_location + VARYING_SLOT_VAR0); |
3319 | break; |
3320 | |
3321 | case MESA_SHADER_TESS_CTRL: |
3322 | case MESA_SHADER_TESS_EVAL: |
3323 | case MESA_SHADER_GEOMETRY: |
3324 | if (var->data.patch) |
3325 | var->data.location = qual_location + VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)); |
3326 | else |
3327 | var->data.location = qual_location + VARYING_SLOT_VAR0; |
3328 | break; |
3329 | |
3330 | case MESA_SHADER_FRAGMENT: |
3331 | var->data.location = (var->data.mode == ir_var_shader_out) |
3332 | ? (qual_location + FRAG_RESULT_DATA0) |
3333 | : (qual_location + VARYING_SLOT_VAR0); |
3334 | break; |
3335 | default: |
3336 | assert(!"Unexpected shader type")(static_cast <bool> (!"Unexpected shader type") ? void ( 0) : __assert_fail ("!\"Unexpected shader type\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
3337 | break; |
3338 | } |
3339 | |
3340 | /* Check if index was set for the uniform instead of the function */ |
3341 | if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { |
3342 | _mesa_glsl_error(loc, state, "an index qualifier can only be " |
3343 | "used with subroutine functions"); |
3344 | return; |
3345 | } |
3346 | |
3347 | unsigned qual_index; |
3348 | if (qual->flags.q.explicit_index && |
3349 | process_qualifier_constant(state, loc, "index", qual->index, |
3350 | &qual_index)) { |
3351 | /* From the GLSL 4.30 specification, section 4.4.2 (Output |
3352 | * Layout Qualifiers): |
3353 | * |
3354 | * "It is also a compile-time error if a fragment shader |
3355 | * sets a layout index to less than 0 or greater than 1." |
3356 | * |
3357 | * Older specifications don't mandate a behavior; we take |
3358 | * this as a clarification and always generate the error. |
3359 | */ |
3360 | if (qual_index > 1) { |
3361 | _mesa_glsl_error(loc, state, |
3362 | "explicit index may only be 0 or 1"); |
3363 | } else { |
3364 | var->data.explicit_index = true; |
3365 | var->data.index = qual_index; |
3366 | } |
3367 | } |
3368 | } |
3369 | } |
3370 | |
3371 | static bool |
3372 | validate_storage_for_sampler_image_types(ir_variable *var, |
3373 | struct _mesa_glsl_parse_state *state, |
3374 | YYLTYPE *loc) |
3375 | { |
3376 | /* From section 4.1.7 of the GLSL 4.40 spec: |
3377 | * |
3378 | * "[Opaque types] can only be declared as function |
3379 | * parameters or uniform-qualified variables." |
3380 | * |
3381 | * From section 4.1.7 of the ARB_bindless_texture spec: |
3382 | * |
3383 | * "Samplers may be declared as shader inputs and outputs, as uniform |
3384 | * variables, as temporary variables, and as function parameters." |
3385 | * |
3386 | * From section 4.1.X of the ARB_bindless_texture spec: |
3387 | * |
3388 | * "Images may be declared as shader inputs and outputs, as uniform |
3389 | * variables, as temporary variables, and as function parameters." |
3390 | */ |
3391 | if (state->has_bindless()) { |
3392 | if (var->data.mode != ir_var_auto && |
3393 | var->data.mode != ir_var_uniform && |
3394 | var->data.mode != ir_var_shader_in && |
3395 | var->data.mode != ir_var_shader_out && |
3396 | var->data.mode != ir_var_function_in && |
3397 | var->data.mode != ir_var_function_out && |
3398 | var->data.mode != ir_var_function_inout) { |
3399 | _mesa_glsl_error(loc, state, "bindless image/sampler variables may " |
3400 | "only be declared as shader inputs and outputs, as " |
3401 | "uniform variables, as temporary variables and as " |
3402 | "function parameters"); |
3403 | return false; |
3404 | } |
3405 | } else { |
3406 | if (var->data.mode != ir_var_uniform && |
3407 | var->data.mode != ir_var_function_in) { |
3408 | _mesa_glsl_error(loc, state, "image/sampler variables may only be " |
3409 | "declared as function parameters or " |
3410 | "uniform-qualified global variables"); |
3411 | return false; |
3412 | } |
3413 | } |
3414 | return true; |
3415 | } |
3416 | |
3417 | static bool |
3418 | validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, |
3419 | YYLTYPE *loc, |
3420 | const struct ast_type_qualifier *qual, |
3421 | const glsl_type *type) |
3422 | { |
3423 | /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: |
3424 | * |
3425 | * "Memory qualifiers are only supported in the declarations of image |
3426 | * variables, buffer variables, and shader storage blocks; it is an error |
3427 | * to use such qualifiers in any other declarations. |
3428 | */ |
3429 | if (!type->is_image() && !qual->flags.q.buffer) { |
3430 | if (qual->flags.q.read_only || |
3431 | qual->flags.q.write_only || |
3432 | qual->flags.q.coherent || |
3433 | qual->flags.q._volatile || |
3434 | qual->flags.q.restrict_flag) { |
3435 | _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " |
3436 | "in the declarations of image variables, buffer " |
3437 | "variables, and shader storage blocks"); |
3438 | return false; |
3439 | } |
3440 | } |
3441 | return true; |
3442 | } |
3443 | |
3444 | static bool |
3445 | validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, |
3446 | YYLTYPE *loc, |
3447 | const struct ast_type_qualifier *qual, |
3448 | const glsl_type *type) |
3449 | { |
3450 | /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: |
3451 | * |
3452 | * "Format layout qualifiers can be used on image variable declarations |
3453 | * (those declared with a basic type having “image ” in its keyword)." |
3454 | */ |
3455 | if (!type->is_image() && qual->flags.q.explicit_image_format) { |
3456 | _mesa_glsl_error(loc, state, "format layout qualifiers may only be " |
3457 | "applied to images"); |
3458 | return false; |
3459 | } |
3460 | return true; |
3461 | } |
3462 | |
3463 | static void |
3464 | apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, |
3465 | ir_variable *var, |
3466 | struct _mesa_glsl_parse_state *state, |
3467 | YYLTYPE *loc) |
3468 | { |
3469 | const glsl_type *base_type = var->type->without_array(); |
3470 | |
3471 | if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || |
3472 | !validate_memory_qualifier_for_type(state, loc, qual, base_type)) |
3473 | return; |
3474 | |
3475 | if (!base_type->is_image()) |
3476 | return; |
3477 | |
3478 | if (!validate_storage_for_sampler_image_types(var, state, loc)) |
3479 | return; |
3480 | |
3481 | var->data.memory_read_only |= qual->flags.q.read_only; |
3482 | var->data.memory_write_only |= qual->flags.q.write_only; |
3483 | var->data.memory_coherent |= qual->flags.q.coherent; |
3484 | var->data.memory_volatile |= qual->flags.q._volatile; |
3485 | var->data.memory_restrict |= qual->flags.q.restrict_flag; |
3486 | |
3487 | if (qual->flags.q.explicit_image_format) { |
3488 | if (var->data.mode == ir_var_function_in) { |
3489 | _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " |
3490 | "image function parameters"); |
3491 | } |
3492 | |
3493 | if (qual->image_base_type != base_type->sampled_type) { |
3494 | _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " |
3495 | "data type of the image"); |
3496 | } |
3497 | |
3498 | var->data.image_format = qual->image_format; |
3499 | } else if (state->has_image_load_formatted()) { |
3500 | if (var->data.mode == ir_var_uniform && |
3501 | state->EXT_shader_image_load_formatted_warn) { |
3502 | _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used"); |
3503 | } |
3504 | } else { |
3505 | if (var->data.mode == ir_var_uniform) { |
3506 | if (state->es_shader || |
3507 | !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) { |
3508 | _mesa_glsl_error(loc, state, "all image uniforms must have a " |
3509 | "format layout qualifier"); |
3510 | } else if (!qual->flags.q.write_only) { |
3511 | _mesa_glsl_error(loc, state, "image uniforms not qualified with " |
3512 | "`writeonly' must have a format layout qualifier"); |
3513 | } |
3514 | } |
3515 | var->data.image_format = PIPE_FORMAT_NONE; |
3516 | } |
3517 | |
3518 | /* From page 70 of the GLSL ES 3.1 specification: |
3519 | * |
3520 | * "Except for image variables qualified with the format qualifiers r32f, |
3521 | * r32i, and r32ui, image variables must specify either memory qualifier |
3522 | * readonly or the memory qualifier writeonly." |
3523 | */ |
3524 | if (state->es_shader && |
3525 | var->data.image_format != PIPE_FORMAT_R32_FLOAT && |
3526 | var->data.image_format != PIPE_FORMAT_R32_SINT && |
3527 | var->data.image_format != PIPE_FORMAT_R32_UINT && |
3528 | !var->data.memory_read_only && |
3529 | !var->data.memory_write_only) { |
3530 | _mesa_glsl_error(loc, state, "image variables of format other than r32f, " |
3531 | "r32i or r32ui must be qualified `readonly' or " |
3532 | "`writeonly'"); |
3533 | } |
3534 | } |
3535 | |
3536 | static inline const char* |
3537 | get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) |
3538 | { |
3539 | if (origin_upper_left && pixel_center_integer) |
3540 | return "origin_upper_left, pixel_center_integer"; |
3541 | else if (origin_upper_left) |
3542 | return "origin_upper_left"; |
3543 | else if (pixel_center_integer) |
3544 | return "pixel_center_integer"; |
3545 | else |
3546 | return " "; |
3547 | } |
3548 | |
3549 | static inline bool |
3550 | is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, |
3551 | const struct ast_type_qualifier *qual) |
3552 | { |
3553 | /* If gl_FragCoord was previously declared, and the qualifiers were |
3554 | * different in any way, return true. |
3555 | */ |
3556 | if (state->fs_redeclares_gl_fragcoord) { |
3557 | return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer |
3558 | || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); |
3559 | } |
3560 | |
3561 | return false; |
3562 | } |
3563 | |
3564 | static inline bool |
3565 | is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state, |
3566 | const struct ast_type_qualifier *qual) |
3567 | { |
3568 | if (state->redeclares_gl_layer) { |
3569 | return state->layer_viewport_relative != qual->flags.q.viewport_relative; |
3570 | } |
3571 | return false; |
3572 | } |
3573 | |
3574 | static inline void |
3575 | validate_array_dimensions(const glsl_type *t, |
3576 | struct _mesa_glsl_parse_state *state, |
3577 | YYLTYPE *loc) { |
3578 | if (t->is_array()) { |
3579 | t = t->fields.array; |
3580 | while (t->is_array()) { |
3581 | if (t->is_unsized_array()) { |
3582 | _mesa_glsl_error(loc, state, |
3583 | "only the outermost array dimension can " |
3584 | "be unsized", |
3585 | t->name); |
3586 | break; |
3587 | } |
3588 | t = t->fields.array; |
3589 | } |
3590 | } |
3591 | } |
3592 | |
3593 | static void |
3594 | apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, |
3595 | ir_variable *var, |
3596 | struct _mesa_glsl_parse_state *state, |
3597 | YYLTYPE *loc) |
3598 | { |
3599 | bool has_local_qualifiers = qual->flags.q.bindless_sampler || |
3600 | qual->flags.q.bindless_image || |
3601 | qual->flags.q.bound_sampler || |
3602 | qual->flags.q.bound_image; |
3603 | |
3604 | /* The ARB_bindless_texture spec says: |
3605 | * |
3606 | * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 |
3607 | * spec" |
3608 | * |
3609 | * "If these layout qualifiers are applied to other types of default block |
3610 | * uniforms, or variables with non-uniform storage, a compile-time error |
3611 | * will be generated." |
3612 | */ |
3613 | if (has_local_qualifiers && !qual->flags.q.uniform) { |
3614 | _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " |
3615 | "can only be applied to default block uniforms or " |
3616 | "variables with uniform storage"); |
3617 | return; |
3618 | } |
3619 | |
3620 | /* The ARB_bindless_texture spec doesn't state anything in this situation, |
3621 | * but it makes sense to only allow bindless_sampler/bound_sampler for |
3622 | * sampler types, and respectively bindless_image/bound_image for image |
3623 | * types. |
3624 | */ |
3625 | if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && |
3626 | !var->type->contains_sampler()) { |
3627 | _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " |
3628 | "be applied to sampler types"); |
3629 | return; |
3630 | } |
3631 | |
3632 | if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && |
3633 | !var->type->contains_image()) { |
3634 | _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " |
3635 | "applied to image types"); |
3636 | return; |
3637 | } |
3638 | |
3639 | /* The bindless_sampler/bindless_image (and respectively |
3640 | * bound_sampler/bound_image) layout qualifiers can be set at global and at |
3641 | * local scope. |
3642 | */ |
3643 | if (var->type->contains_sampler() || var->type->contains_image()) { |
3644 | var->data.bindless = qual->flags.q.bindless_sampler || |
3645 | qual->flags.q.bindless_image || |
3646 | state->bindless_sampler_specified || |
3647 | state->bindless_image_specified; |
3648 | |
3649 | var->data.bound = qual->flags.q.bound_sampler || |
3650 | qual->flags.q.bound_image || |
3651 | state->bound_sampler_specified || |
3652 | state->bound_image_specified; |
3653 | } |
3654 | } |
3655 | |
3656 | static void |
3657 | apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, |
3658 | ir_variable *var, |
3659 | struct _mesa_glsl_parse_state *state, |
3660 | YYLTYPE *loc) |
3661 | { |
3662 | if (var->name != NULL__null && strcmp(var->name, "gl_FragCoord") == 0) { |
3663 | |
3664 | /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: |
3665 | * |
3666 | * "Within any shader, the first redeclarations of gl_FragCoord |
3667 | * must appear before any use of gl_FragCoord." |
3668 | * |
3669 | * Generate a compiler error if above condition is not met by the |
3670 | * fragment shader. |
3671 | */ |
3672 | ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); |
3673 | if (earlier != NULL__null && |
3674 | earlier->data.used && |
3675 | !state->fs_redeclares_gl_fragcoord) { |
3676 | _mesa_glsl_error(loc, state, |
3677 | "gl_FragCoord used before its first redeclaration " |
3678 | "in fragment shader"); |
3679 | } |
3680 | |
3681 | /* Make sure all gl_FragCoord redeclarations specify the same layout |
3682 | * qualifiers. |
3683 | */ |
3684 | if (is_conflicting_fragcoord_redeclaration(state, qual)) { |
3685 | const char *const qual_string = |
3686 | get_layout_qualifier_string(qual->flags.q.origin_upper_left, |
3687 | qual->flags.q.pixel_center_integer); |
3688 | |
3689 | const char *const state_string = |
3690 | get_layout_qualifier_string(state->fs_origin_upper_left, |
3691 | state->fs_pixel_center_integer); |
3692 | |
3693 | _mesa_glsl_error(loc, state, |
3694 | "gl_FragCoord redeclared with different layout " |
3695 | "qualifiers (%s) and (%s) ", |
3696 | state_string, |
3697 | qual_string); |
3698 | } |
3699 | state->fs_origin_upper_left = qual->flags.q.origin_upper_left; |
3700 | state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; |
3701 | state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = |
3702 | !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; |
3703 | state->fs_redeclares_gl_fragcoord = |
3704 | state->fs_origin_upper_left || |
3705 | state->fs_pixel_center_integer || |
3706 | state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; |
3707 | } |
3708 | |
3709 | if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) |
3710 | && (strcmp(var->name, "gl_FragCoord") != 0)) { |
3711 | const char *const qual_string = (qual->flags.q.origin_upper_left) |
3712 | ? "origin_upper_left" : "pixel_center_integer"; |
3713 | |
3714 | _mesa_glsl_error(loc, state, |
3715 | "layout qualifier `%s' can only be applied to " |
3716 | "fragment shader input `gl_FragCoord'", |
3717 | qual_string); |
3718 | } |
3719 | |
3720 | if (qual->flags.q.explicit_location) { |
3721 | apply_explicit_location(qual, var, state, loc); |
3722 | |
3723 | if (qual->flags.q.explicit_component) { |
3724 | unsigned qual_component; |
3725 | if (process_qualifier_constant(state, loc, "component", |
3726 | qual->component, &qual_component)) { |
3727 | const glsl_type *type = var->type->without_array(); |
3728 | unsigned components = type->component_slots(); |
3729 | |
3730 | if (type->is_matrix() || type->is_struct()) { |
3731 | _mesa_glsl_error(loc, state, "component layout qualifier " |
3732 | "cannot be applied to a matrix, a structure, " |
3733 | "a block, or an array containing any of " |
3734 | "these."); |
3735 | } else if (components > 4 && type->is_64bit()) { |
3736 | _mesa_glsl_error(loc, state, "component layout qualifier " |
3737 | "cannot be applied to dvec%u.", |
3738 | components / 2); |
3739 | } else if (qual_component != 0 && |
3740 | (qual_component + components - 1) > 3) { |
3741 | _mesa_glsl_error(loc, state, "component overflow (%u > 3)", |
3742 | (qual_component + components - 1)); |
3743 | } else if (qual_component == 1 && type->is_64bit()) { |
3744 | /* We don't bother checking for 3 as it should be caught by the |
3745 | * overflow check above. |
3746 | */ |
3747 | _mesa_glsl_error(loc, state, "doubles cannot begin at " |
3748 | "component 1 or 3"); |
3749 | } else { |
3750 | var->data.explicit_component = true; |
3751 | var->data.location_frac = qual_component; |
3752 | } |
3753 | } |
3754 | } |
3755 | } else if (qual->flags.q.explicit_index) { |
3756 | if (!qual->subroutine_list) |
3757 | _mesa_glsl_error(loc, state, |
3758 | "explicit index requires explicit location"); |
3759 | } else if (qual->flags.q.explicit_component) { |
3760 | _mesa_glsl_error(loc, state, |
3761 | "explicit component requires explicit location"); |
3762 | } |
3763 | |
3764 | if (qual->flags.q.explicit_binding) { |
3765 | apply_explicit_binding(state, loc, var, var->type, qual); |
3766 | } |
3767 | |
3768 | if (state->stage == MESA_SHADER_GEOMETRY && |
3769 | qual->flags.q.out && qual->flags.q.stream) { |
3770 | unsigned qual_stream; |
3771 | if (process_qualifier_constant(state, loc, "stream", qual->stream, |
3772 | &qual_stream) && |
3773 | validate_stream_qualifier(loc, state, qual_stream)) { |
3774 | var->data.stream = qual_stream; |
3775 | } |
3776 | } |
3777 | |
3778 | if (qual->flags.q.out && qual->flags.q.xfb_buffer) { |
3779 | unsigned qual_xfb_buffer; |
3780 | if (process_qualifier_constant(state, loc, "xfb_buffer", |
3781 | qual->xfb_buffer, &qual_xfb_buffer) && |
3782 | validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { |
3783 | var->data.xfb_buffer = qual_xfb_buffer; |
3784 | if (qual->flags.q.explicit_xfb_buffer) |
3785 | var->data.explicit_xfb_buffer = true; |
3786 | } |
3787 | } |
3788 | |
3789 | if (qual->flags.q.explicit_xfb_offset) { |
3790 | unsigned qual_xfb_offset; |
3791 | unsigned component_size = var->type->contains_double() ? 8 : 4; |
3792 | |
3793 | if (process_qualifier_constant(state, loc, "xfb_offset", |
3794 | qual->offset, &qual_xfb_offset) && |
3795 | validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, |
3796 | var->type, component_size)) { |
3797 | var->data.offset = qual_xfb_offset; |
3798 | var->data.explicit_xfb_offset = true; |
3799 | } |
3800 | } |
3801 | |
3802 | if (qual->flags.q.explicit_xfb_stride) { |
3803 | unsigned qual_xfb_stride; |
3804 | if (process_qualifier_constant(state, loc, "xfb_stride", |
3805 | qual->xfb_stride, &qual_xfb_stride)) { |
3806 | var->data.xfb_stride = qual_xfb_stride; |
3807 | var->data.explicit_xfb_stride = true; |
3808 | } |
3809 | } |
3810 | |
3811 | if (var->type->contains_atomic()) { |
3812 | if (var->data.mode == ir_var_uniform) { |
3813 | if (var->data.explicit_binding) { |
3814 | unsigned *offset = |
3815 | &state->atomic_counter_offsets[var->data.binding]; |
3816 | |
3817 | if (*offset % ATOMIC_COUNTER_SIZE4) |
3818 | _mesa_glsl_error(loc, state, |
3819 | "misaligned atomic counter offset"); |
3820 | |
3821 | var->data.offset = *offset; |
3822 | *offset += var->type->atomic_size(); |
3823 | |
3824 | } else { |
3825 | _mesa_glsl_error(loc, state, |
3826 | "atomic counters require explicit binding point"); |
3827 | } |
3828 | } else if (var->data.mode != ir_var_function_in) { |
3829 | _mesa_glsl_error(loc, state, "atomic counters may only be declared as " |
3830 | "function parameters or uniform-qualified " |
3831 | "global variables"); |
3832 | } |
3833 | } |
3834 | |
3835 | if (var->type->contains_sampler() && |
3836 | !validate_storage_for_sampler_image_types(var, state, loc)) |
3837 | return; |
3838 | |
3839 | /* Is the 'layout' keyword used with parameters that allow relaxed checking. |
3840 | * Many implementations of GL_ARB_fragment_coord_conventions_enable and some |
3841 | * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable |
3842 | * allowed the layout qualifier to be used with 'varying' and 'attribute'. |
3843 | * These extensions and all following extensions that add the 'layout' |
3844 | * keyword have been modified to require the use of 'in' or 'out'. |
3845 | * |
3846 | * The following extension do not allow the deprecated keywords: |
3847 | * |
3848 | * GL_AMD_conservative_depth |
3849 | * GL_ARB_conservative_depth |
3850 | * GL_ARB_gpu_shader5 |
3851 | * GL_ARB_separate_shader_objects |
3852 | * GL_ARB_tessellation_shader |
3853 | * GL_ARB_transform_feedback3 |
3854 | * GL_ARB_uniform_buffer_object |
3855 | * |
3856 | * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 |
3857 | * allow layout with the deprecated keywords. |
3858 | */ |
3859 | const bool relaxed_layout_qualifier_checking = |
3860 | state->ARB_fragment_coord_conventions_enable; |
3861 | |
3862 | const bool uses_deprecated_qualifier = qual->flags.q.attribute |
3863 | || qual->flags.q.varying; |
3864 | if (qual->has_layout() && uses_deprecated_qualifier) { |
3865 | if (relaxed_layout_qualifier_checking) { |
3866 | _mesa_glsl_warning(loc, state, |
3867 | "`layout' qualifier may not be used with " |
3868 | "`attribute' or `varying'"); |
3869 | } else { |
3870 | _mesa_glsl_error(loc, state, |
3871 | "`layout' qualifier may not be used with " |
3872 | "`attribute' or `varying'"); |
3873 | } |
3874 | } |
3875 | |
3876 | /* Layout qualifiers for gl_FragDepth, which are enabled by extension |
3877 | * AMD_conservative_depth. |
3878 | */ |
3879 | if (qual->flags.q.depth_type |
3880 | && !state->is_version(420, 0) |
3881 | && !state->AMD_conservative_depth_enable |
3882 | && !state->ARB_conservative_depth_enable) { |
3883 | _mesa_glsl_error(loc, state, |
3884 | "extension GL_AMD_conservative_depth or " |
3885 | "GL_ARB_conservative_depth must be enabled " |
3886 | "to use depth layout qualifiers"); |
3887 | } else if (qual->flags.q.depth_type |
3888 | && strcmp(var->name, "gl_FragDepth") != 0) { |
3889 | _mesa_glsl_error(loc, state, |
3890 | "depth layout qualifiers can be applied only to " |
3891 | "gl_FragDepth"); |
3892 | } |
3893 | |
3894 | switch (qual->depth_type) { |
3895 | case ast_depth_any: |
3896 | var->data.depth_layout = ir_depth_layout_any; |
3897 | break; |
3898 | case ast_depth_greater: |
3899 | var->data.depth_layout = ir_depth_layout_greater; |
3900 | break; |
3901 | case ast_depth_less: |
3902 | var->data.depth_layout = ir_depth_layout_less; |
3903 | break; |
3904 | case ast_depth_unchanged: |
3905 | var->data.depth_layout = ir_depth_layout_unchanged; |
3906 | break; |
3907 | default: |
3908 | var->data.depth_layout = ir_depth_layout_none; |
3909 | break; |
3910 | } |
3911 | |
3912 | if (qual->flags.q.std140 || |
3913 | qual->flags.q.std430 || |
3914 | qual->flags.q.packed || |
3915 | qual->flags.q.shared) { |
3916 | _mesa_glsl_error(loc, state, |
3917 | "uniform and shader storage block layout qualifiers " |
3918 | "std140, std430, packed, and shared can only be " |
3919 | "applied to uniform or shader storage blocks, not " |
3920 | "members"); |
3921 | } |
3922 | |
3923 | if (qual->flags.q.row_major || qual->flags.q.column_major) { |
3924 | validate_matrix_layout_for_type(state, loc, var->type, var); |
3925 | } |
3926 | |
3927 | /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader |
3928 | * Inputs): |
3929 | * |
3930 | * "Fragment shaders also allow the following layout qualifier on in only |
3931 | * (not with variable declarations) |
3932 | * layout-qualifier-id |
3933 | * early_fragment_tests |
3934 | * [...]" |
3935 | */ |
3936 | if (qual->flags.q.early_fragment_tests) { |
3937 | _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only " |
3938 | "valid in fragment shader input layout declaration."); |
3939 | } |
3940 | |
3941 | if (qual->flags.q.inner_coverage) { |
3942 | _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only " |
3943 | "valid in fragment shader input layout declaration."); |
3944 | } |
3945 | |
3946 | if (qual->flags.q.post_depth_coverage) { |
3947 | _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only " |
3948 | "valid in fragment shader input layout declaration."); |
3949 | } |
3950 | |
3951 | if (state->has_bindless()) |
3952 | apply_bindless_qualifier_to_variable(qual, var, state, loc); |
3953 | |
3954 | if (qual->flags.q.pixel_interlock_ordered || |
3955 | qual->flags.q.pixel_interlock_unordered || |
3956 | qual->flags.q.sample_interlock_ordered || |
3957 | qual->flags.q.sample_interlock_unordered) { |
3958 | _mesa_glsl_error(loc, state, "interlock layout qualifiers: " |
3959 | "pixel_interlock_ordered, pixel_interlock_unordered, " |
3960 | "sample_interlock_ordered and sample_interlock_unordered, " |
3961 | "only valid in fragment shader input layout declaration."); |
3962 | } |
3963 | |
3964 | if (var->name != NULL__null && strcmp(var->name, "gl_Layer") == 0) { |
3965 | if (is_conflicting_layer_redeclaration(state, qual)) { |
3966 | _mesa_glsl_error(loc, state, "gl_Layer redeclaration with " |
3967 | "different viewport_relative setting than earlier"); |
3968 | } |
3969 | state->redeclares_gl_layer = 1; |
3970 | if (qual->flags.q.viewport_relative) { |
3971 | state->layer_viewport_relative = 1; |
3972 | } |
3973 | } else if (qual->flags.q.viewport_relative) { |
3974 | _mesa_glsl_error(loc, state, |
3975 | "viewport_relative qualifier " |
3976 | "can only be applied to gl_Layer."); |
3977 | } |
3978 | } |
3979 | |
3980 | static void |
3981 | apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, |
3982 | ir_variable *var, |
3983 | struct _mesa_glsl_parse_state *state, |
3984 | YYLTYPE *loc, |
3985 | bool is_parameter) |
3986 | { |
3987 | STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i))do { (void) sizeof(char [1 - 2*!(sizeof(qual->flags.q) <= sizeof(qual->flags.i))]); } while (0); |
3988 | |
3989 | if (qual->flags.q.invariant) { |
3990 | if (var->data.used) { |
3991 | _mesa_glsl_error(loc, state, |
3992 | "variable `%s' may not be redeclared " |
3993 | "`invariant' after being used", |
3994 | var->name); |
3995 | } else { |
3996 | var->data.explicit_invariant = true; |
3997 | var->data.invariant = true; |
3998 | } |
3999 | } |
4000 | |
4001 | if (qual->flags.q.precise) { |
4002 | if (var->data.used) { |
4003 | _mesa_glsl_error(loc, state, |
4004 | "variable `%s' may not be redeclared " |
4005 | "`precise' after being used", |
4006 | var->name); |
4007 | } else { |
4008 | var->data.precise = 1; |
4009 | } |
4010 | } |
4011 | |
4012 | if (qual->is_subroutine_decl() && !qual->flags.q.uniform) { |
4013 | _mesa_glsl_error(loc, state, |
4014 | "`subroutine' may only be applied to uniforms, " |
4015 | "subroutine type declarations, or function definitions"); |
4016 | } |
4017 | |
4018 | if (qual->flags.q.constant || qual->flags.q.attribute |
4019 | || qual->flags.q.uniform |
4020 | || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) |
4021 | var->data.read_only = 1; |
4022 | |
4023 | if (qual->flags.q.centroid) |
4024 | var->data.centroid = 1; |
4025 | |
4026 | if (qual->flags.q.sample) |
4027 | var->data.sample = 1; |
4028 | |
4029 | /* Precision qualifiers do not hold any meaning in Desktop GLSL */ |
4030 | if (state->es_shader) { |
4031 | var->data.precision = |
4032 | select_gles_precision(qual->precision, var->type, state, loc); |
4033 | } |
4034 | |
4035 | if (qual->flags.q.patch) |
4036 | var->data.patch = 1; |
4037 | |
4038 | if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) { |
4039 | var->type = glsl_type::error_type; |
4040 | _mesa_glsl_error(loc, state, |
4041 | "`attribute' variables may not be declared in the " |
4042 | "%s shader", |
4043 | _mesa_shader_stage_to_string(state->stage)); |
4044 | } |
4045 | |
4046 | /* Disallow layout qualifiers which may only appear on layout declarations. */ |
4047 | if (qual->flags.q.prim_type) { |
4048 | _mesa_glsl_error(loc, state, |
4049 | "Primitive type may only be specified on GS input or output " |
4050 | "layout declaration, not on variables."); |
4051 | } |
4052 | |
4053 | /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says: |
4054 | * |
4055 | * "However, the const qualifier cannot be used with out or inout." |
4056 | * |
4057 | * The same section of the GLSL 4.40 spec further clarifies this saying: |
4058 | * |
4059 | * "The const qualifier cannot be used with out or inout, or a |
4060 | * compile-time error results." |
4061 | */ |
4062 | if (is_parameter && qual->flags.q.constant && qual->flags.q.out) { |
4063 | _mesa_glsl_error(loc, state, |
4064 | "`const' may not be applied to `out' or `inout' " |
4065 | "function parameters"); |
4066 | } |
4067 | |
4068 | /* If there is no qualifier that changes the mode of the variable, leave |
4069 | * the setting alone. |
4070 | */ |
4071 | assert(var->data.mode != ir_var_temporary)(static_cast <bool> (var->data.mode != ir_var_temporary ) ? void (0) : __assert_fail ("var->data.mode != ir_var_temporary" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
4072 | if (qual->flags.q.in && qual->flags.q.out) |
4073 | var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out; |
4074 | else if (qual->flags.q.in) |
4075 | var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in; |
4076 | else if (qual->flags.q.attribute |
4077 | || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) |
4078 | var->data.mode = ir_var_shader_in; |
4079 | else if (qual->flags.q.out) |
4080 | var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out; |
4081 | else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX)) |
4082 | var->data.mode = ir_var_shader_out; |
4083 | else if (qual->flags.q.uniform) |
4084 | var->data.mode = ir_var_uniform; |
4085 | else if (qual->flags.q.buffer) |
4086 | var->data.mode = ir_var_shader_storage; |
4087 | else if (qual->flags.q.shared_storage) |
4088 | var->data.mode = ir_var_shader_shared; |
4089 | |
4090 | if (!is_parameter && state->has_framebuffer_fetch() && |
4091 | state->stage == MESA_SHADER_FRAGMENT) { |
4092 | if (state->is_version(130, 300)) |
4093 | var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out; |
4094 | else |
4095 | var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0); |
4096 | } |
4097 | |
4098 | if (var->data.fb_fetch_output) { |
4099 | var->data.assigned = true; |
4100 | var->data.memory_coherent = !qual->flags.q.non_coherent; |
4101 | |
4102 | /* From the EXT_shader_framebuffer_fetch spec: |
4103 | * |
4104 | * "It is an error to declare an inout fragment output not qualified |
4105 | * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch |
4106 | * extension hasn't been enabled." |
4107 | */ |
4108 | if (var->data.memory_coherent && |
4109 | !state->EXT_shader_framebuffer_fetch_enable) |
4110 | _mesa_glsl_error(loc, state, |
4111 | "invalid declaration of framebuffer fetch output not " |
4112 | "qualified with layout(noncoherent)"); |
4113 | |
4114 | } else { |
4115 | /* From the EXT_shader_framebuffer_fetch spec: |
4116 | * |
4117 | * "Fragment outputs declared inout may specify the following layout |
4118 | * qualifier: [...] noncoherent" |
4119 | */ |
4120 | if (qual->flags.q.non_coherent) |
4121 | _mesa_glsl_error(loc, state, |
4122 | "invalid layout(noncoherent) qualifier not part of " |
4123 | "framebuffer fetch output declaration"); |
4124 | } |
4125 | |
4126 | if (!is_parameter && is_varying_var(var, state->stage)) { |
4127 | /* User-defined ins/outs are not permitted in compute shaders. */ |
4128 | if (state->stage == MESA_SHADER_COMPUTE) { |
4129 | _mesa_glsl_error(loc, state, |
4130 | "user-defined input and output variables are not " |
4131 | "permitted in compute shaders"); |
4132 | } |
4133 | |
4134 | /* This variable is being used to link data between shader stages (in |
4135 | * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type |
4136 | * that is allowed for such purposes. |
4137 | * |
4138 | * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: |
4139 | * |
4140 | * "The varying qualifier can be used only with the data types |
4141 | * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of |
4142 | * these." |
4143 | * |
4144 | * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From |
4145 | * page 31 (page 37 of the PDF) of the GLSL 1.30 spec: |
4146 | * |
4147 | * "Fragment inputs can only be signed and unsigned integers and |
4148 | * integer vectors, float, floating-point vectors, matrices, or |
4149 | * arrays of these. Structures cannot be input. |
4150 | * |
4151 | * Similar text exists in the section on vertex shader outputs. |
4152 | * |
4153 | * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES |
4154 | * 3.00 spec allows structs as well. Varying structs are also allowed |
4155 | * in GLSL 1.50. |
4156 | * |
4157 | * From section 4.3.4 of the ARB_bindless_texture spec: |
4158 | * |
4159 | * "(modify third paragraph of the section to allow sampler and image |
4160 | * types) ... Vertex shader inputs can only be float, |
4161 | * single-precision floating-point scalars, single-precision |
4162 | * floating-point vectors, matrices, signed and unsigned integers |
4163 | * and integer vectors, sampler and image types." |
4164 | * |
4165 | * From section 4.3.6 of the ARB_bindless_texture spec: |
4166 | * |
4167 | * "Output variables can only be floating-point scalars, |
4168 | * floating-point vectors, matrices, signed or unsigned integers or |
4169 | * integer vectors, sampler or image types, or arrays or structures |
4170 | * of any these." |
4171 | */ |
4172 | switch (var->type->without_array()->base_type) { |
4173 | case GLSL_TYPE_FLOAT: |
4174 | /* Ok in all GLSL versions */ |
4175 | break; |
4176 | case GLSL_TYPE_UINT: |
4177 | case GLSL_TYPE_INT: |
4178 | if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable) |
4179 | break; |
4180 | _mesa_glsl_error(loc, state, |
4181 | "varying variables must be of base type float in %s", |
4182 | state->get_version_string()); |
4183 | break; |
4184 | case GLSL_TYPE_STRUCT: |
4185 | if (state->is_version(150, 300)) |
4186 | break; |
4187 | _mesa_glsl_error(loc, state, |
4188 | "varying variables may not be of type struct"); |
4189 | break; |
4190 | case GLSL_TYPE_DOUBLE: |
4191 | case GLSL_TYPE_UINT64: |
4192 | case GLSL_TYPE_INT64: |
4193 | break; |
4194 | case GLSL_TYPE_SAMPLER: |
4195 | case GLSL_TYPE_IMAGE: |
4196 | if (state->has_bindless()) |
4197 | break; |
4198 | /* fallthrough */ |
4199 | default: |
4200 | _mesa_glsl_error(loc, state, "illegal type for a varying variable"); |
4201 | break; |
4202 | } |
4203 | } |
4204 | |
4205 | if (state->all_invariant && var->data.mode == ir_var_shader_out) { |
4206 | var->data.explicit_invariant = true; |
4207 | var->data.invariant = true; |
4208 | } |
4209 | |
4210 | var->data.interpolation = |
4211 | interpret_interpolation_qualifier(qual, var->type, |
4212 | (ir_variable_mode) var->data.mode, |
4213 | state, loc); |
4214 | |
4215 | /* Does the declaration use the deprecated 'attribute' or 'varying' |
4216 | * keywords? |
4217 | */ |
4218 | const bool uses_deprecated_qualifier = qual->flags.q.attribute |
4219 | || qual->flags.q.varying; |
4220 | |
4221 | |
4222 | /* Validate auxiliary storage qualifiers */ |
4223 | |
4224 | /* From section 4.3.4 of the GLSL 1.30 spec: |
4225 | * "It is an error to use centroid in in a vertex shader." |
4226 | * |
4227 | * From section 4.3.4 of the GLSL ES 3.00 spec: |
4228 | * "It is an error to use centroid in or interpolation qualifiers in |
4229 | * a vertex shader input." |
4230 | */ |
4231 | |
4232 | /* Section 4.3.6 of the GLSL 1.30 specification states: |
4233 | * "It is an error to use centroid out in a fragment shader." |
4234 | * |
4235 | * The GL_ARB_shading_language_420pack extension specification states: |
4236 | * "It is an error to use auxiliary storage qualifiers or interpolation |
4237 | * qualifiers on an output in a fragment shader." |
4238 | */ |
4239 | if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) { |
4240 | _mesa_glsl_error(loc, state, |
4241 | "sample qualifier may only be used on `in` or `out` " |
4242 | "variables between shader stages"); |
4243 | } |
4244 | if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) { |
4245 | _mesa_glsl_error(loc, state, |
4246 | "centroid qualifier may only be used with `in', " |
4247 | "`out' or `varying' variables between shader stages"); |
4248 | } |
4249 | |
4250 | if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) { |
4251 | _mesa_glsl_error(loc, state, |
4252 | "the shared storage qualifiers can only be used with " |
4253 | "compute shaders"); |
4254 | } |
4255 | |
4256 | apply_image_qualifier_to_variable(qual, var, state, loc); |
4257 | } |
4258 | |
4259 | /** |
4260 | * Get the variable that is being redeclared by this declaration or if it |
4261 | * does not exist, the current declared variable. |
4262 | * |
4263 | * Semantic checks to verify the validity of the redeclaration are also |
4264 | * performed. If semantic checks fail, compilation error will be emitted via |
4265 | * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned. |
4266 | * |
4267 | * \returns |
4268 | * A pointer to an existing variable in the current scope if the declaration |
4269 | * is a redeclaration, current variable otherwise. \c is_declared boolean |
4270 | * will return \c true if the declaration is a redeclaration, \c false |
4271 | * otherwise. |
4272 | */ |
4273 | static ir_variable * |
4274 | get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc, |
4275 | struct _mesa_glsl_parse_state *state, |
4276 | bool allow_all_redeclarations, |
4277 | bool *is_redeclaration) |
4278 | { |
4279 | ir_variable *var = *var_ptr; |
4280 | |
4281 | /* Check if this declaration is actually a re-declaration, either to |
4282 | * resize an array or add qualifiers to an existing variable. |
4283 | * |
4284 | * This is allowed for variables in the current scope, or when at |
4285 | * global scope (for built-ins in the implicit outer scope). |
4286 | */ |
4287 | ir_variable *earlier = state->symbols->get_variable(var->name); |
4288 | if (earlier == NULL__null || |
4289 | (state->current_function != NULL__null && |
4290 | !state->symbols->name_declared_this_scope(var->name))) { |
4291 | *is_redeclaration = false; |
4292 | return var; |
4293 | } |
4294 | |
4295 | *is_redeclaration = true; |
4296 | |
4297 | if (earlier->data.how_declared == ir_var_declared_implicitly) { |
4298 | /* Verify that the redeclaration of a built-in does not change the |
4299 | * storage qualifier. There are a couple special cases. |
4300 | * |
4301 | * 1. Some built-in variables that are defined as 'in' in the |
4302 | * specification are implemented as system values. Allow |
4303 | * ir_var_system_value -> ir_var_shader_in. |
4304 | * |
4305 | * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the |
4306 | * specification requires that redeclarations omit any qualifier. |
4307 | * Allow ir_var_shader_out -> ir_var_auto for this one variable. |
4308 | */ |
4309 | if (earlier->data.mode != var->data.mode && |
4310 | !(earlier->data.mode == ir_var_system_value && |
4311 | var->data.mode == ir_var_shader_in) && |
4312 | !(strcmp(var->name, "gl_LastFragData") == 0 && |
4313 | var->data.mode == ir_var_auto)) { |
4314 | _mesa_glsl_error(&loc, state, |
4315 | "redeclaration cannot change qualification of `%s'", |
4316 | var->name); |
4317 | } |
4318 | } |
4319 | |
4320 | /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, |
4321 | * |
4322 | * "It is legal to declare an array without a size and then |
4323 | * later re-declare the same name as an array of the same |
4324 | * type and specify a size." |
4325 | */ |
4326 | if (earlier->type->is_unsized_array() && var->type->is_array() |
4327 | && (var->type->fields.array == earlier->type->fields.array)) { |
4328 | const int size = var->type->array_size(); |
4329 | check_builtin_array_max_size(var->name, size, loc, state); |
4330 | if ((size > 0) && (size <= earlier->data.max_array_access)) { |
4331 | _mesa_glsl_error(& loc, state, "array size must be > %u due to " |
4332 | "previous access", |
4333 | earlier->data.max_array_access); |
4334 | } |
4335 | |
4336 | earlier->type = var->type; |
4337 | delete var; |
4338 | var = NULL__null; |
4339 | *var_ptr = NULL__null; |
4340 | } else if (earlier->type != var->type) { |
4341 | _mesa_glsl_error(&loc, state, |
4342 | "redeclaration of `%s' has incorrect type", |
4343 | var->name); |
4344 | } else if ((state->ARB_fragment_coord_conventions_enable || |
4345 | state->is_version(150, 0)) |
4346 | && strcmp(var->name, "gl_FragCoord") == 0) { |
4347 | /* Allow redeclaration of gl_FragCoord for ARB_fcc layout |
4348 | * qualifiers. |
4349 | * |
4350 | * We don't really need to do anything here, just allow the |
4351 | * redeclaration. Any error on the gl_FragCoord is handled on the ast |
4352 | * level at apply_layout_qualifier_to_variable using the |
4353 | * ast_type_qualifier and _mesa_glsl_parse_state, or later at |
4354 | * linker.cpp. |
4355 | */ |
4356 | /* According to section 4.3.7 of the GLSL 1.30 spec, |
4357 | * the following built-in varaibles can be redeclared with an |
4358 | * interpolation qualifier: |
4359 | * * gl_FrontColor |
4360 | * * gl_BackColor |
4361 | * * gl_FrontSecondaryColor |
4362 | * * gl_BackSecondaryColor |
4363 | * * gl_Color |
4364 | * * gl_SecondaryColor |
4365 | */ |
4366 | } else if (state->is_version(130, 0) |
4367 | && (strcmp(var->name, "gl_FrontColor") == 0 |
4368 | || strcmp(var->name, "gl_BackColor") == 0 |
4369 | || strcmp(var->name, "gl_FrontSecondaryColor") == 0 |
4370 | || strcmp(var->name, "gl_BackSecondaryColor") == 0 |
4371 | || strcmp(var->name, "gl_Color") == 0 |
4372 | || strcmp(var->name, "gl_SecondaryColor") == 0)) { |
4373 | earlier->data.interpolation = var->data.interpolation; |
4374 | |
4375 | /* Layout qualifiers for gl_FragDepth. */ |
4376 | } else if ((state->is_version(420, 0) || |
4377 | state->AMD_conservative_depth_enable || |
4378 | state->ARB_conservative_depth_enable) |
4379 | && strcmp(var->name, "gl_FragDepth") == 0) { |
4380 | |
4381 | /** From the AMD_conservative_depth spec: |
4382 | * Within any shader, the first redeclarations of gl_FragDepth |
4383 | * must appear before any use of gl_FragDepth. |
4384 | */ |
4385 | if (earlier->data.used) { |
4386 | _mesa_glsl_error(&loc, state, |
4387 | "the first redeclaration of gl_FragDepth " |
4388 | "must appear before any use of gl_FragDepth"); |
4389 | } |
4390 | |
4391 | /* Prevent inconsistent redeclaration of depth layout qualifier. */ |
4392 | if (earlier->data.depth_layout != ir_depth_layout_none |
4393 | && earlier->data.depth_layout != var->data.depth_layout) { |
4394 | _mesa_glsl_error(&loc, state, |
4395 | "gl_FragDepth: depth layout is declared here " |
4396 | "as '%s, but it was previously declared as " |
4397 | "'%s'", |
4398 | depth_layout_string(var->data.depth_layout), |
4399 | depth_layout_string(earlier->data.depth_layout)); |
4400 | } |
4401 | |
4402 | earlier->data.depth_layout = var->data.depth_layout; |
4403 | |
4404 | } else if (state->has_framebuffer_fetch() && |
4405 | strcmp(var->name, "gl_LastFragData") == 0 && |
4406 | var->data.mode == ir_var_auto) { |
4407 | /* According to the EXT_shader_framebuffer_fetch spec: |
4408 | * |
4409 | * "By default, gl_LastFragData is declared with the mediump precision |
4410 | * qualifier. This can be changed by redeclaring the corresponding |
4411 | * variables with the desired precision qualifier." |
4412 | * |
4413 | * "Fragment shaders may specify the following layout qualifier only for |
4414 | * redeclaring the built-in gl_LastFragData array [...]: noncoherent" |
4415 | */ |
4416 | earlier->data.precision = var->data.precision; |
4417 | earlier->data.memory_coherent = var->data.memory_coherent; |
4418 | |
4419 | } else if (state->NV_viewport_array2_enable && |
4420 | strcmp(var->name, "gl_Layer") == 0 && |
4421 | earlier->data.how_declared == ir_var_declared_implicitly) { |
4422 | /* No need to do anything, just allow it. Qualifier is stored in state */ |
4423 | |
4424 | } else if ((earlier->data.how_declared == ir_var_declared_implicitly && |
4425 | state->allow_builtin_variable_redeclaration) || |
4426 | allow_all_redeclarations) { |
4427 | /* Allow verbatim redeclarations of built-in variables. Not explicitly |
4428 | * valid, but some applications do it. |
4429 | */ |
4430 | } else { |
4431 | _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); |
4432 | } |
4433 | |
4434 | return earlier; |
4435 | } |
4436 | |
4437 | /** |
4438 | * Generate the IR for an initializer in a variable declaration |
4439 | */ |
4440 | static ir_rvalue * |
4441 | process_initializer(ir_variable *var, ast_declaration *decl, |
4442 | ast_fully_specified_type *type, |
4443 | exec_list *initializer_instructions, |
4444 | struct _mesa_glsl_parse_state *state) |
4445 | { |
4446 | void *mem_ctx = state; |
4447 | ir_rvalue *result = NULL__null; |
4448 | |
4449 | YYLTYPE initializer_loc = decl->initializer->get_location(); |
4450 | |
4451 | /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: |
4452 | * |
4453 | * "All uniform variables are read-only and are initialized either |
4454 | * directly by an application via API commands, or indirectly by |
4455 | * OpenGL." |
4456 | */ |
4457 | if (var->data.mode == ir_var_uniform) { |
4458 | state->check_version(120, 0, &initializer_loc, |
4459 | "cannot initialize uniform %s", |
4460 | var->name); |
4461 | } |
4462 | |
4463 | /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: |
4464 | * |
4465 | * "Buffer variables cannot have initializers." |
4466 | */ |
4467 | if (var->data.mode == ir_var_shader_storage) { |
4468 | _mesa_glsl_error(&initializer_loc, state, |
4469 | "cannot initialize buffer variable %s", |
4470 | var->name); |
4471 | } |
4472 | |
4473 | /* From section 4.1.7 of the GLSL 4.40 spec: |
4474 | * |
4475 | * "Opaque variables [...] are initialized only through the |
4476 | * OpenGL API; they cannot be declared with an initializer in a |
4477 | * shader." |
4478 | * |
4479 | * From section 4.1.7 of the ARB_bindless_texture spec: |
4480 | * |
4481 | * "Samplers may be declared as shader inputs and outputs, as uniform |
4482 | * variables, as temporary variables, and as function parameters." |
4483 | * |
4484 | * From section 4.1.X of the ARB_bindless_texture spec: |
4485 | * |
4486 | * "Images may be declared as shader inputs and outputs, as uniform |
4487 | * variables, as temporary variables, and as function parameters." |
4488 | */ |
4489 | if (var->type->contains_atomic() || |
4490 | (!state->has_bindless() && var->type->contains_opaque())) { |
4491 | _mesa_glsl_error(&initializer_loc, state, |
4492 | "cannot initialize %s variable %s", |
4493 | var->name, state->has_bindless() ? "atomic" : "opaque"); |
4494 | } |
4495 | |
4496 | if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL__null)) { |
4497 | _mesa_glsl_error(&initializer_loc, state, |
4498 | "cannot initialize %s shader input / %s %s", |
4499 | _mesa_shader_stage_to_string(state->stage), |
4500 | (state->stage == MESA_SHADER_VERTEX) |
4501 | ? "attribute" : "varying", |
4502 | var->name); |
4503 | } |
4504 | |
4505 | if (var->data.mode == ir_var_shader_out && state->current_function == NULL__null) { |
4506 | _mesa_glsl_error(&initializer_loc, state, |
4507 | "cannot initialize %s shader output %s", |
4508 | _mesa_shader_stage_to_string(state->stage), |
4509 | var->name); |
4510 | } |
4511 | |
4512 | /* If the initializer is an ast_aggregate_initializer, recursively store |
4513 | * type information from the LHS into it, so that its hir() function can do |
4514 | * type checking. |
4515 | */ |
4516 | if (decl->initializer->oper == ast_aggregate) |
4517 | _mesa_ast_set_aggregate_type(var->type, decl->initializer); |
4518 | |
4519 | ir_dereference *const lhs = new(state) ir_dereference_variable(var); |
4520 | ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state); |
4521 | |
4522 | /* Calculate the constant value if this is a const or uniform |
4523 | * declaration. |
4524 | * |
4525 | * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says: |
4526 | * |
4527 | * "Declarations of globals without a storage qualifier, or with |
4528 | * just the const qualifier, may include initializers, in which case |
4529 | * they will be initialized before the first line of main() is |
4530 | * executed. Such initializers must be a constant expression." |
4531 | * |
4532 | * The same section of the GLSL ES 3.00.4 spec has similar language. |
4533 | */ |
4534 | if (type->qualifier.flags.q.constant |
4535 | || type->qualifier.flags.q.uniform |
4536 | || (state->es_shader && state->current_function == NULL__null)) { |
4537 | ir_rvalue *new_rhs = validate_assignment(state, initializer_loc, |
4538 | lhs, rhs, true); |
4539 | if (new_rhs != NULL__null) { |
4540 | rhs = new_rhs; |
4541 | |
4542 | /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec |
4543 | * says: |
4544 | * |
4545 | * "A constant expression is one of |
4546 | * |
4547 | * ... |
4548 | * |
4549 | * - an expression formed by an operator on operands that are |
4550 | * all constant expressions, including getting an element of |
4551 | * a constant array, or a field of a constant structure, or |
4552 | * components of a constant vector. However, the sequence |
4553 | * operator ( , ) and the assignment operators ( =, +=, ...) |
4554 | * are not included in the operators that can create a |
4555 | * constant expression." |
4556 | * |
4557 | * Section 12.43 (Sequence operator and constant expressions) says: |
4558 | * |
4559 | * "Should the following construct be allowed? |
4560 | * |
4561 | * float a[2,3]; |
4562 | * |
4563 | * The expression within the brackets uses the sequence operator |
4564 | * (',') and returns the integer 3 so the construct is declaring |
4565 | * a single-dimensional array of size 3. In some languages, the |
4566 | * construct declares a two-dimensional array. It would be |
4567 | * preferable to make this construct illegal to avoid confusion. |
4568 | * |
4569 | * One possibility is to change the definition of the sequence |
4570 | * operator so that it does not return a constant-expression and |
4571 | * hence cannot be used to declare an array size. |
4572 | * |
4573 | * RESOLUTION: The result of a sequence operator is not a |
4574 | * constant-expression." |
4575 | * |
4576 | * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec |
4577 | * contains language almost identical to the section 4.3.3 in the |
4578 | * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL |
4579 | * versions. |
4580 | */ |
4581 | ir_constant *constant_value = |
4582 | rhs->constant_expression_value(mem_ctx); |
4583 | |
4584 | if (!constant_value || |
4585 | (state->is_version(430, 300) && |
4586 | decl->initializer->has_sequence_subexpression())) { |
4587 | const char *const variable_mode = |
4588 | (type->qualifier.flags.q.constant) |
4589 | ? "const" |
4590 | : ((type->qualifier.flags.q.uniform) ? "uniform" : "global"); |
4591 | |
4592 | /* If ARB_shading_language_420pack is enabled, initializers of |
4593 | * const-qualified local variables do not have to be constant |
4594 | * expressions. Const-qualified global variables must still be |
4595 | * initialized with constant expressions. |
4596 | */ |
4597 | if (!state->has_420pack() |
4598 | || state->current_function == NULL__null) { |
4599 | _mesa_glsl_error(& initializer_loc, state, |
4600 | "initializer of %s variable `%s' must be a " |
4601 | "constant expression", |
4602 | variable_mode, |
4603 | decl->identifier); |
4604 | if (var->type->is_numeric()) { |
4605 | /* Reduce cascading errors. */ |
4606 | var->constant_value = type->qualifier.flags.q.constant |
4607 | ? ir_constant::zero(state, var->type) : NULL__null; |
4608 | } |
4609 | } |
4610 | } else { |
4611 | rhs = constant_value; |
4612 | var->constant_value = type->qualifier.flags.q.constant |
4613 | ? constant_value : NULL__null; |
4614 | } |
4615 | } else { |
4616 | if (var->type->is_numeric()) { |
4617 | /* Reduce cascading errors. */ |
4618 | rhs = var->constant_value = type->qualifier.flags.q.constant |
4619 | ? ir_constant::zero(state, var->type) : NULL__null; |
4620 | } |
4621 | } |
4622 | } |
4623 | |
4624 | if (rhs && !rhs->type->is_error()) { |
4625 | bool temp = var->data.read_only; |
4626 | if (type->qualifier.flags.q.constant) |
4627 | var->data.read_only = false; |
4628 | |
4629 | /* Never emit code to initialize a uniform. |
4630 | */ |
4631 | const glsl_type *initializer_type; |
4632 | bool error_emitted = false; |
4633 | if (!type->qualifier.flags.q.uniform) { |
4634 | error_emitted = |
4635 | do_assignment(initializer_instructions, state, |
4636 | NULL__null, lhs, rhs, |
4637 | &result, true, true, |
4638 | type->get_location()); |
4639 | initializer_type = result->type; |
4640 | } else |
4641 | initializer_type = rhs->type; |
4642 | |
4643 | if (!error_emitted) { |
4644 | var->constant_initializer = rhs->constant_expression_value(mem_ctx); |
4645 | var->data.has_initializer = true; |
4646 | |
4647 | /* If the declared variable is an unsized array, it must inherrit |
4648 | * its full type from the initializer. A declaration such as |
4649 | * |
4650 | * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); |
4651 | * |
4652 | * becomes |
4653 | * |
4654 | * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); |
4655 | * |
4656 | * The assignment generated in the if-statement (below) will also |
4657 | * automatically handle this case for non-uniforms. |
4658 | * |
4659 | * If the declared variable is not an array, the types must |
4660 | * already match exactly. As a result, the type assignment |
4661 | * here can be done unconditionally. For non-uniforms the call |
4662 | * to do_assignment can change the type of the initializer (via |
4663 | * the implicit conversion rules). For uniforms the initializer |
4664 | * must be a constant expression, and the type of that expression |
4665 | * was validated above. |
4666 | */ |
4667 | var->type = initializer_type; |
4668 | } |
4669 | |
4670 | var->data.read_only = temp; |
4671 | } |
4672 | |
4673 | return result; |
4674 | } |
4675 | |
4676 | static void |
4677 | validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state, |
4678 | YYLTYPE loc, ir_variable *var, |
4679 | unsigned num_vertices, |
4680 | unsigned *size, |
4681 | const char *var_category) |
4682 | { |
4683 | if (var->type->is_unsized_array()) { |
4684 | /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says: |
4685 | * |
4686 | * All geometry shader input unsized array declarations will be |
4687 | * sized by an earlier input layout qualifier, when present, as per |
4688 | * the following table. |
4689 | * |
4690 | * Followed by a table mapping each allowed input layout qualifier to |
4691 | * the corresponding input length. |
4692 | * |
4693 | * Similarly for tessellation control shader outputs. |
4694 | */ |
4695 | if (num_vertices != 0) |
4696 | var->type = glsl_type::get_array_instance(var->type->fields.array, |
4697 | num_vertices); |
4698 | } else { |
4699 | /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec |
4700 | * includes the following examples of compile-time errors: |
4701 | * |
4702 | * // code sequence within one shader... |
4703 | * in vec4 Color1[]; // size unknown |
4704 | * ...Color1.length()...// illegal, length() unknown |
4705 | * in vec4 Color2[2]; // size is 2 |
4706 | * ...Color1.length()...// illegal, Color1 still has no size |
4707 | * in vec4 Color3[3]; // illegal, input sizes are inconsistent |
4708 | * layout(lines) in; // legal, input size is 2, matching |
4709 | * in vec4 Color4[3]; // illegal, contradicts layout |
4710 | * ... |
4711 | * |
4712 | * To detect the case illustrated by Color3, we verify that the size of |
4713 | * an explicitly-sized array matches the size of any previously declared |
4714 | * explicitly-sized array. To detect the case illustrated by Color4, we |
4715 | * verify that the size of an explicitly-sized array is consistent with |
4716 | * any previously declared input layout. |
4717 | */ |
4718 | if (num_vertices != 0 && var->type->length != num_vertices) { |
4719 | _mesa_glsl_error(&loc, state, |
4720 | "%s size contradicts previously declared layout " |
4721 | "(size is %u, but layout requires a size of %u)", |
4722 | var_category, var->type->length, num_vertices); |
4723 | } else if (*size != 0 && var->type->length != *size) { |
4724 | _mesa_glsl_error(&loc, state, |
4725 | "%s sizes are inconsistent (size is %u, but a " |
4726 | "previous declaration has size %u)", |
4727 | var_category, var->type->length, *size); |
4728 | } else { |
4729 | *size = var->type->length; |
4730 | } |
4731 | } |
4732 | } |
4733 | |
4734 | static void |
4735 | handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state, |
4736 | YYLTYPE loc, ir_variable *var) |
4737 | { |
4738 | unsigned num_vertices = 0; |
4739 | |
4740 | if (state->tcs_output_vertices_specified) { |
4741 | if (!state->out_qualifier->vertices-> |
4742 | process_qualifier_constant(state, "vertices", |
4743 | &num_vertices, false)) { |
4744 | return; |
4745 | } |
4746 | |
4747 | if (num_vertices > state->Const.MaxPatchVertices) { |
4748 | _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " |
4749 | "GL_MAX_PATCH_VERTICES", num_vertices); |
4750 | return; |
4751 | } |
4752 | } |
4753 | |
4754 | if (!var->type->is_array() && !var->data.patch) { |
4755 | _mesa_glsl_error(&loc, state, |
4756 | "tessellation control shader outputs must be arrays"); |
4757 | |
4758 | /* To avoid cascading failures, short circuit the checks below. */ |
4759 | return; |
4760 | } |
4761 | |
4762 | if (var->data.patch) |
4763 | return; |
4764 | |
4765 | validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, |
4766 | &state->tcs_output_size, |
4767 | "tessellation control shader output"); |
4768 | } |
4769 | |
4770 | /** |
4771 | * Do additional processing necessary for tessellation control/evaluation shader |
4772 | * input declarations. This covers both interface block arrays and bare input |
4773 | * variables. |
4774 | */ |
4775 | static void |
4776 | handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state, |
4777 | YYLTYPE loc, ir_variable *var) |
4778 | { |
4779 | if (!var->type->is_array() && !var->data.patch) { |
4780 | _mesa_glsl_error(&loc, state, |
4781 | "per-vertex tessellation shader inputs must be arrays"); |
4782 | /* Avoid cascading failures. */ |
4783 | return; |
4784 | } |
4785 | |
4786 | if (var->data.patch) |
4787 | return; |
4788 | |
4789 | /* The ARB_tessellation_shader spec says: |
4790 | * |
4791 | * "Declaring an array size is optional. If no size is specified, it |
4792 | * will be taken from the implementation-dependent maximum patch size |
4793 | * (gl_MaxPatchVertices). If a size is specified, it must match the |
4794 | * maximum patch size; otherwise, a compile or link error will occur." |
4795 | * |
4796 | * This text appears twice, once for TCS inputs, and again for TES inputs. |
4797 | */ |
4798 | if (var->type->is_unsized_array()) { |
4799 | var->type = glsl_type::get_array_instance(var->type->fields.array, |
4800 | state->Const.MaxPatchVertices); |
4801 | } else if (var->type->length != state->Const.MaxPatchVertices) { |
4802 | _mesa_glsl_error(&loc, state, |
4803 | "per-vertex tessellation shader input arrays must be " |
4804 | "sized to gl_MaxPatchVertices (%d).", |
4805 | state->Const.MaxPatchVertices); |
4806 | } |
4807 | } |
4808 | |
4809 | |
4810 | /** |
4811 | * Do additional processing necessary for geometry shader input declarations |
4812 | * (this covers both interface blocks arrays and bare input variables). |
4813 | */ |
4814 | static void |
4815 | handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state, |
4816 | YYLTYPE loc, ir_variable *var) |
4817 | { |
4818 | unsigned num_vertices = 0; |
4819 | |
4820 | if (state->gs_input_prim_type_specified) { |
4821 | num_vertices = vertices_per_prim(state->in_qualifier->prim_type); |
4822 | } |
4823 | |
4824 | /* Geometry shader input variables must be arrays. Caller should have |
4825 | * reported an error for this. |
4826 | */ |
4827 | if (!var->type->is_array()) { |
4828 | assert(state->error)(static_cast <bool> (state->error) ? void (0) : __assert_fail ("state->error", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4829 | |
4830 | /* To avoid cascading failures, short circuit the checks below. */ |
4831 | return; |
4832 | } |
4833 | |
4834 | validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, |
4835 | &state->gs_input_size, |
4836 | "geometry shader input"); |
4837 | } |
4838 | |
4839 | static void |
4840 | validate_identifier(const char *identifier, YYLTYPE loc, |
4841 | struct _mesa_glsl_parse_state *state) |
4842 | { |
4843 | /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, |
4844 | * |
4845 | * "Identifiers starting with "gl_" are reserved for use by |
4846 | * OpenGL, and may not be declared in a shader as either a |
4847 | * variable or a function." |
4848 | */ |
4849 | if (is_gl_identifier(identifier)) { |
4850 | _mesa_glsl_error(&loc, state, |
4851 | "identifier `%s' uses reserved `gl_' prefix", |
4852 | identifier); |
4853 | } else if (strstr(identifier, "__")) { |
4854 | /* From page 14 (page 20 of the PDF) of the GLSL 1.10 |
4855 | * spec: |
4856 | * |
4857 | * "In addition, all identifiers containing two |
4858 | * consecutive underscores (__) are reserved as |
4859 | * possible future keywords." |
4860 | * |
4861 | * The intention is that names containing __ are reserved for internal |
4862 | * use by the implementation, and names prefixed with GL_ are reserved |
4863 | * for use by Khronos. Names simply containing __ are dangerous to use, |
4864 | * but should be allowed. |
4865 | * |
4866 | * A future version of the GLSL specification will clarify this. |
4867 | */ |
4868 | _mesa_glsl_warning(&loc, state, |
4869 | "identifier `%s' uses reserved `__' string", |
4870 | identifier); |
4871 | } |
4872 | } |
4873 | |
4874 | ir_rvalue * |
4875 | ast_declarator_list::hir(exec_list *instructions, |
4876 | struct _mesa_glsl_parse_state *state) |
4877 | { |
4878 | void *ctx = state; |
4879 | const struct glsl_type *decl_type; |
4880 | const char *type_name = NULL__null; |
4881 | ir_rvalue *result = NULL__null; |
4882 | YYLTYPE loc = this->get_location(); |
4883 | |
4884 | /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: |
4885 | * |
4886 | * "To ensure that a particular output variable is invariant, it is |
4887 | * necessary to use the invariant qualifier. It can either be used to |
4888 | * qualify a previously declared variable as being invariant |
4889 | * |
4890 | * invariant gl_Position; // make existing gl_Position be invariant" |
4891 | * |
4892 | * In these cases the parser will set the 'invariant' flag in the declarator |
4893 | * list, and the type will be NULL. |
4894 | */ |
4895 | if (this->invariant) { |
4896 | assert(this->type == NULL)(static_cast <bool> (this->type == __null) ? void (0 ) : __assert_fail ("this->type == NULL", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4897 | |
4898 | if (state->current_function != NULL__null) { |
4899 | _mesa_glsl_error(& loc, state, |
4900 | "all uses of `invariant' keyword must be at global " |
4901 | "scope"); |
4902 | } |
4903 | |
4904 | foreach_list_typed (ast_declaration, decl, link, &this->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&this->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&this-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->declarations)->head_sentinel.next)))) : __null ); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel((decl )->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)-> link.next) - (((char *) &((ast_declaration *) (decl)-> link.next)->link) - ((char *) (decl)->link.next)))) : __null )) { |
4905 | assert(decl->array_specifier == NULL)(static_cast <bool> (decl->array_specifier == __null ) ? void (0) : __assert_fail ("decl->array_specifier == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
4906 | assert(decl->initializer == NULL)(static_cast <bool> (decl->initializer == __null) ? void (0) : __assert_fail ("decl->initializer == NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4907 | |
4908 | ir_variable *const earlier = |
4909 | state->symbols->get_variable(decl->identifier); |
4910 | if (earlier == NULL__null) { |
4911 | _mesa_glsl_error(& loc, state, |
4912 | "undeclared variable `%s' cannot be marked " |
4913 | "invariant", decl->identifier); |
4914 | } else if (!is_allowed_invariant(earlier, state)) { |
4915 | _mesa_glsl_error(&loc, state, |
4916 | "`%s' cannot be marked invariant; interfaces between " |
4917 | "shader stages only.", decl->identifier); |
4918 | } else if (earlier->data.used) { |
4919 | _mesa_glsl_error(& loc, state, |
4920 | "variable `%s' may not be redeclared " |
4921 | "`invariant' after being used", |
4922 | earlier->name); |
4923 | } else { |
4924 | earlier->data.explicit_invariant = true; |
4925 | earlier->data.invariant = true; |
4926 | } |
4927 | } |
4928 | |
4929 | /* Invariant redeclarations do not have r-values. |
4930 | */ |
4931 | return NULL__null; |
4932 | } |
4933 | |
4934 | if (this->precise) { |
4935 | assert(this->type == NULL)(static_cast <bool> (this->type == __null) ? void (0 ) : __assert_fail ("this->type == NULL", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4936 | |
4937 | foreach_list_typed (ast_declaration, decl, link, &this->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&this->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&this-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->declarations)->head_sentinel.next)))) : __null ); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel((decl )->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)-> link.next) - (((char *) &((ast_declaration *) (decl)-> link.next)->link) - ((char *) (decl)->link.next)))) : __null )) { |
4938 | assert(decl->array_specifier == NULL)(static_cast <bool> (decl->array_specifier == __null ) ? void (0) : __assert_fail ("decl->array_specifier == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
4939 | assert(decl->initializer == NULL)(static_cast <bool> (decl->initializer == __null) ? void (0) : __assert_fail ("decl->initializer == NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4940 | |
4941 | ir_variable *const earlier = |
4942 | state->symbols->get_variable(decl->identifier); |
4943 | if (earlier == NULL__null) { |
4944 | _mesa_glsl_error(& loc, state, |
4945 | "undeclared variable `%s' cannot be marked " |
4946 | "precise", decl->identifier); |
4947 | } else if (state->current_function != NULL__null && |
4948 | !state->symbols->name_declared_this_scope(decl->identifier)) { |
4949 | /* Note: we have to check if we're in a function, since |
4950 | * builtins are treated as having come from another scope. |
4951 | */ |
4952 | _mesa_glsl_error(& loc, state, |
4953 | "variable `%s' from an outer scope may not be " |
4954 | "redeclared `precise' in this scope", |
4955 | earlier->name); |
4956 | } else if (earlier->data.used) { |
4957 | _mesa_glsl_error(& loc, state, |
4958 | "variable `%s' may not be redeclared " |
4959 | "`precise' after being used", |
4960 | earlier->name); |
4961 | } else { |
4962 | earlier->data.precise = true; |
4963 | } |
4964 | } |
4965 | |
4966 | /* Precise redeclarations do not have r-values either. */ |
4967 | return NULL__null; |
4968 | } |
4969 | |
4970 | assert(this->type != NULL)(static_cast <bool> (this->type != __null) ? void (0 ) : __assert_fail ("this->type != NULL", __builtin_FILE () , __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4971 | assert(!this->invariant)(static_cast <bool> (!this->invariant) ? void (0) : __assert_fail ("!this->invariant", __builtin_FILE (), __builtin_LINE () , __extension__ __PRETTY_FUNCTION__)); |
4972 | assert(!this->precise)(static_cast <bool> (!this->precise) ? void (0) : __assert_fail ("!this->precise", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
4973 | |
4974 | /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to |
4975 | * indicate that it needs to be updated later (see glsl_parser.yy). |
4976 | * This is done here, based on the layout qualifier and the type of the image var |
4977 | */ |
4978 | if (this->type->qualifier.flags.q.explicit_image_format && |
4979 | this->type->specifier->type->is_image() && |
4980 | this->type->qualifier.image_base_type == GLSL_TYPE_VOID) { |
4981 | /* "The ARB_shader_image_load_store says: |
4982 | * If both extensions are enabled in the shading language, the "size*" layout |
4983 | * qualifiers are treated as format qualifiers, and are mapped to equivalent |
4984 | * format qualifiers in the table below, according to the type of image |
4985 | * variable. |
4986 | * image* iimage* uimage* |
4987 | * -------- -------- -------- |
4988 | * size1x8 n/a r8i r8ui |
4989 | * size1x16 r16f r16i r16ui |
4990 | * size1x32 r32f r32i r32ui |
4991 | * size2x32 rg32f rg32i rg32ui |
4992 | * size4x32 rgba32f rgba32i rgba32ui" |
4993 | */ |
4994 | if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) { |
4995 | switch (this->type->qualifier.image_format) { |
4996 | case PIPE_FORMAT_R8_SINT: |
4997 | /* No valid qualifier in this case, driver will need to look at |
4998 | * the underlying image's format (just like no qualifier being |
4999 | * present). |
5000 | */ |
5001 | this->type->qualifier.image_format = PIPE_FORMAT_NONE; |
5002 | break; |
5003 | case PIPE_FORMAT_R16_SINT: |
5004 | this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT; |
5005 | break; |
5006 | case PIPE_FORMAT_R32_SINT: |
5007 | this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT; |
5008 | break; |
5009 | case PIPE_FORMAT_R32G32_SINT: |
5010 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT; |
5011 | break; |
5012 | case PIPE_FORMAT_R32G32B32A32_SINT: |
5013 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT; |
5014 | break; |
5015 | default: |
5016 | unreachable("Unknown image format")do { (static_cast <bool> (!"Unknown image format") ? void (0) : __assert_fail ("!\"Unknown image format\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); |
5017 | } |
5018 | this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT; |
5019 | } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) { |
5020 | switch (this->type->qualifier.image_format) { |
5021 | case PIPE_FORMAT_R8_SINT: |
5022 | this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT; |
5023 | break; |
5024 | case PIPE_FORMAT_R16_SINT: |
5025 | this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT; |
5026 | break; |
5027 | case PIPE_FORMAT_R32_SINT: |
5028 | this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT; |
5029 | break; |
5030 | case PIPE_FORMAT_R32G32_SINT: |
5031 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT; |
5032 | break; |
5033 | case PIPE_FORMAT_R32G32B32A32_SINT: |
5034 | this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT; |
5035 | break; |
5036 | default: |
5037 | unreachable("Unknown image format")do { (static_cast <bool> (!"Unknown image format") ? void (0) : __assert_fail ("!\"Unknown image format\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); |
5038 | } |
5039 | this->type->qualifier.image_base_type = GLSL_TYPE_UINT; |
5040 | } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) { |
5041 | this->type->qualifier.image_base_type = GLSL_TYPE_INT; |
5042 | } else { |
5043 | assert(false)(static_cast <bool> (false) ? void (0) : __assert_fail ( "false", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
5044 | } |
5045 | } |
5046 | |
5047 | /* The type specifier may contain a structure definition. Process that |
5048 | * before any of the variable declarations. |
5049 | */ |
5050 | (void) this->type->specifier->hir(instructions, state); |
5051 | |
5052 | decl_type = this->type->glsl_type(& type_name, state); |
5053 | |
5054 | /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: |
5055 | * "Buffer variables may only be declared inside interface blocks |
5056 | * (section 4.3.9 “Interface Blocks”), which are then referred to as |
5057 | * shader storage blocks. It is a compile-time error to declare buffer |
5058 | * variables at global scope (outside a block)." |
5059 | */ |
5060 | if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) { |
5061 | _mesa_glsl_error(&loc, state, |
5062 | "buffer variables cannot be declared outside " |
5063 | "interface blocks"); |
5064 | } |
5065 | |
5066 | /* An offset-qualified atomic counter declaration sets the default |
5067 | * offset for the next declaration within the same atomic counter |
5068 | * buffer. |
5069 | */ |
5070 | if (decl_type && decl_type->contains_atomic()) { |
5071 | if (type->qualifier.flags.q.explicit_binding && |
5072 | type->qualifier.flags.q.explicit_offset) { |
5073 | unsigned qual_binding; |
5074 | unsigned qual_offset; |
5075 | if (process_qualifier_constant(state, &loc, "binding", |
5076 | type->qualifier.binding, |
5077 | &qual_binding) |
5078 | && process_qualifier_constant(state, &loc, "offset", |
5079 | type->qualifier.offset, |
5080 | &qual_offset)) { |
5081 | if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets)(sizeof(state->atomic_counter_offsets) / sizeof((state-> atomic_counter_offsets)[0]))) |
5082 | state->atomic_counter_offsets[qual_binding] = qual_offset; |
5083 | } |
5084 | } |
5085 | |
5086 | ast_type_qualifier allowed_atomic_qual_mask; |
5087 | allowed_atomic_qual_mask.flags.i = 0; |
5088 | allowed_atomic_qual_mask.flags.q.explicit_binding = 1; |
5089 | allowed_atomic_qual_mask.flags.q.explicit_offset = 1; |
5090 | allowed_atomic_qual_mask.flags.q.uniform = 1; |
5091 | |
5092 | type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask, |
5093 | "invalid layout qualifier for", |
5094 | "atomic_uint"); |
5095 | } |
5096 | |
5097 | if (this->declarations.is_empty()) { |
5098 | /* If there is no structure involved in the program text, there are two |
5099 | * possible scenarios: |
5100 | * |
5101 | * - The program text contained something like 'vec4;'. This is an |
5102 | * empty declaration. It is valid but weird. Emit a warning. |
5103 | * |
5104 | * - The program text contained something like 'S;' and 'S' is not the |
5105 | * name of a known structure type. This is both invalid and weird. |
5106 | * Emit an error. |
5107 | * |
5108 | * - The program text contained something like 'mediump float;' |
5109 | * when the programmer probably meant 'precision mediump |
5110 | * float;' Emit a warning with a description of what they |
5111 | * probably meant to do. |
5112 | * |
5113 | * Note that if decl_type is NULL and there is a structure involved, |
5114 | * there must have been some sort of error with the structure. In this |
5115 | * case we assume that an error was already generated on this line of |
5116 | * code for the structure. There is no need to generate an additional, |
5117 | * confusing error. |
5118 | */ |
5119 | assert(this->type->specifier->structure == NULL || decl_type != NULL(static_cast <bool> (this->type->specifier->structure == __null || decl_type != __null || state->error) ? void ( 0) : __assert_fail ("this->type->specifier->structure == NULL || decl_type != NULL || state->error" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) |
5120 | || state->error)(static_cast <bool> (this->type->specifier->structure == __null || decl_type != __null || state->error) ? void ( 0) : __assert_fail ("this->type->specifier->structure == NULL || decl_type != NULL || state->error" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
5121 | |
5122 | if (decl_type == NULL__null) { |
5123 | _mesa_glsl_error(&loc, state, |
5124 | "invalid type `%s' in empty declaration", |
5125 | type_name); |
5126 | } else { |
5127 | if (decl_type->is_array()) { |
5128 | /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2 |
5129 | * spec: |
5130 | * |
5131 | * "... any declaration that leaves the size undefined is |
5132 | * disallowed as this would add complexity and there are no |
5133 | * use-cases." |
5134 | */ |
5135 | if (state->es_shader && decl_type->is_unsized_array()) { |
5136 | _mesa_glsl_error(&loc, state, "array size must be explicitly " |
5137 | "or implicitly defined"); |
5138 | } |
5139 | |
5140 | /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec: |
5141 | * |
5142 | * "The combinations of types and qualifiers that cause |
5143 | * compile-time or link-time errors are the same whether or not |
5144 | * the declaration is empty." |
5145 | */ |
5146 | validate_array_dimensions(decl_type, state, &loc); |
5147 | } |
5148 | |
5149 | if (decl_type->is_atomic_uint()) { |
5150 | /* Empty atomic counter declarations are allowed and useful |
5151 | * to set the default offset qualifier. |
5152 | */ |
5153 | return NULL__null; |
5154 | } else if (this->type->qualifier.precision != ast_precision_none) { |
5155 | if (this->type->specifier->structure != NULL__null) { |
5156 | _mesa_glsl_error(&loc, state, |
5157 | "precision qualifiers can't be applied " |
5158 | "to structures"); |
5159 | } else { |
5160 | static const char *const precision_names[] = { |
5161 | "highp", |
5162 | "highp", |
5163 | "mediump", |
5164 | "lowp" |
5165 | }; |
5166 | |
5167 | _mesa_glsl_warning(&loc, state, |
5168 | "empty declaration with precision " |
5169 | "qualifier, to set the default precision, " |
5170 | "use `precision %s %s;'", |
5171 | precision_names[this->type-> |
5172 | qualifier.precision], |
5173 | type_name); |
5174 | } |
5175 | } else if (this->type->specifier->structure == NULL__null) { |
5176 | _mesa_glsl_warning(&loc, state, "empty declaration"); |
5177 | } |
5178 | } |
5179 | } |
5180 | |
5181 | foreach_list_typed (ast_declaration, decl, link, &this->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&this->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&this-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->declarations)->head_sentinel.next)))) : __null ); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel((decl )->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)-> link.next) - (((char *) &((ast_declaration *) (decl)-> link.next)->link) - ((char *) (decl)->link.next)))) : __null )) { |
5182 | const struct glsl_type *var_type; |
5183 | ir_variable *var; |
5184 | const char *identifier = decl->identifier; |
5185 | /* FINISHME: Emit a warning if a variable declaration shadows a |
5186 | * FINISHME: declaration at a higher scope. |
5187 | */ |
5188 | |
5189 | if ((decl_type == NULL__null) || decl_type->is_void()) { |
5190 | if (type_name != NULL__null) { |
5191 | _mesa_glsl_error(& loc, state, |
5192 | "invalid type `%s' in declaration of `%s'", |
5193 | type_name, decl->identifier); |
5194 | } else { |
5195 | _mesa_glsl_error(& loc, state, |
5196 | "invalid type in declaration of `%s'", |
5197 | decl->identifier); |
5198 | } |
5199 | continue; |
5200 | } |
5201 | |
5202 | if (this->type->qualifier.is_subroutine_decl()) { |
5203 | const glsl_type *t; |
5204 | const char *name; |
5205 | |
5206 | t = state->symbols->get_type(this->type->specifier->type_name); |
5207 | if (!t) |
5208 | _mesa_glsl_error(& loc, state, |
5209 | "invalid type in declaration of `%s'", |
5210 | decl->identifier); |
5211 | name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier); |
5212 | |
5213 | identifier = name; |
5214 | |
5215 | } |
5216 | var_type = process_array_type(&loc, decl_type, decl->array_specifier, |
5217 | state); |
5218 | |
5219 | var = new(ctx) ir_variable(var_type, identifier, ir_var_auto); |
5220 | |
5221 | /* The 'varying in' and 'varying out' qualifiers can only be used with |
5222 | * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support |
5223 | * yet. |
5224 | */ |
5225 | if (this->type->qualifier.flags.q.varying) { |
5226 | if (this->type->qualifier.flags.q.in) { |
5227 | _mesa_glsl_error(& loc, state, |
5228 | "`varying in' qualifier in declaration of " |
5229 | "`%s' only valid for geometry shaders using " |
5230 | "ARB_geometry_shader4 or EXT_geometry_shader4", |
5231 | decl->identifier); |
5232 | } else if (this->type->qualifier.flags.q.out) { |
5233 | _mesa_glsl_error(& loc, state, |
5234 | "`varying out' qualifier in declaration of " |
5235 | "`%s' only valid for geometry shaders using " |
5236 | "ARB_geometry_shader4 or EXT_geometry_shader4", |
5237 | decl->identifier); |
5238 | } |
5239 | } |
5240 | |
5241 | /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; |
5242 | * |
5243 | * "Global variables can only use the qualifiers const, |
5244 | * attribute, uniform, or varying. Only one may be |
5245 | * specified. |
5246 | * |
5247 | * Local variables can only use the qualifier const." |
5248 | * |
5249 | * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by |
5250 | * any extension that adds the 'layout' keyword. |
5251 | */ |
5252 | if (!state->is_version(130, 300) |
5253 | && !state->has_explicit_attrib_location() |
5254 | && !state->has_separate_shader_objects() |
5255 | && !state->ARB_fragment_coord_conventions_enable) { |
5256 | /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader |
5257 | * outputs. (the varying flag is not set by the parser) |
5258 | */ |
5259 | if (this->type->qualifier.flags.q.out && |
5260 | (!state->EXT_gpu_shader4_enable || |
5261 | state->stage != MESA_SHADER_FRAGMENT)) { |
5262 | _mesa_glsl_error(& loc, state, |
5263 | "`out' qualifier in declaration of `%s' " |
5264 | "only valid for function parameters in %s", |
5265 | decl->identifier, state->get_version_string()); |
5266 | } |
5267 | if (this->type->qualifier.flags.q.in) { |
5268 | _mesa_glsl_error(& loc, state, |
5269 | "`in' qualifier in declaration of `%s' " |
5270 | "only valid for function parameters in %s", |
5271 | decl->identifier, state->get_version_string()); |
5272 | } |
5273 | /* FINISHME: Test for other invalid qualifiers. */ |
5274 | } |
5275 | |
5276 | apply_type_qualifier_to_variable(& this->type->qualifier, var, state, |
5277 | & loc, false); |
5278 | apply_layout_qualifier_to_variable(&this->type->qualifier, var, state, |
5279 | &loc); |
5280 | |
5281 | if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary |
5282 | || var->data.mode == ir_var_shader_out) |
5283 | && (var->type->is_numeric() || var->type->is_boolean()) |
5284 | && state->zero_init) { |
5285 | const ir_constant_data data = { { 0 } }; |
5286 | var->data.has_initializer = true; |
5287 | var->constant_initializer = new(var) ir_constant(var->type, &data); |
5288 | } |
5289 | |
5290 | if (this->type->qualifier.flags.q.invariant) { |
5291 | if (!is_allowed_invariant(var, state)) { |
5292 | _mesa_glsl_error(&loc, state, |
5293 | "`%s' cannot be marked invariant; interfaces between " |
5294 | "shader stages only", var->name); |
5295 | } |
5296 | } |
5297 | |
5298 | if (state->current_function != NULL__null) { |
5299 | const char *mode = NULL__null; |
5300 | const char *extra = ""; |
5301 | |
5302 | /* There is no need to check for 'inout' here because the parser will |
5303 | * only allow that in function parameter lists. |
5304 | */ |
5305 | if (this->type->qualifier.flags.q.attribute) { |
5306 | mode = "attribute"; |
5307 | } else if (this->type->qualifier.is_subroutine_decl()) { |
5308 | mode = "subroutine uniform"; |
5309 | } else if (this->type->qualifier.flags.q.uniform) { |
5310 | mode = "uniform"; |
5311 | } else if (this->type->qualifier.flags.q.varying) { |
5312 | mode = "varying"; |
5313 | } else if (this->type->qualifier.flags.q.in) { |
5314 | mode = "in"; |
5315 | extra = " or in function parameter list"; |
5316 | } else if (this->type->qualifier.flags.q.out) { |
5317 | mode = "out"; |
5318 | extra = " or in function parameter list"; |
5319 | } |
5320 | |
5321 | if (mode) { |
5322 | _mesa_glsl_error(& loc, state, |
5323 | "%s variable `%s' must be declared at " |
5324 | "global scope%s", |
5325 | mode, var->name, extra); |
5326 | } |
5327 | } else if (var->data.mode == ir_var_shader_in) { |
5328 | var->data.read_only = true; |
5329 | |
5330 | if (state->stage == MESA_SHADER_VERTEX) { |
5331 | bool error_emitted = false; |
5332 | |
5333 | /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: |
5334 | * |
5335 | * "Vertex shader inputs can only be float, floating-point |
5336 | * vectors, matrices, signed and unsigned integers and integer |
5337 | * vectors. Vertex shader inputs can also form arrays of these |
5338 | * types, but not structures." |
5339 | * |
5340 | * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: |
5341 | * |
5342 | * "Vertex shader inputs can only be float, floating-point |
5343 | * vectors, matrices, signed and unsigned integers and integer |
5344 | * vectors. They cannot be arrays or structures." |
5345 | * |
5346 | * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: |
5347 | * |
5348 | * "The attribute qualifier can be used only with float, |
5349 | * floating-point vectors, and matrices. Attribute variables |
5350 | * cannot be declared as arrays or structures." |
5351 | * |
5352 | * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec: |
5353 | * |
5354 | * "Vertex shader inputs can only be float, floating-point |
5355 | * vectors, matrices, signed and unsigned integers and integer |
5356 | * vectors. Vertex shader inputs cannot be arrays or |
5357 | * structures." |
5358 | * |
5359 | * From section 4.3.4 of the ARB_bindless_texture spec: |
5360 | * |
5361 | * "(modify third paragraph of the section to allow sampler and |
5362 | * image types) ... Vertex shader inputs can only be float, |
5363 | * single-precision floating-point scalars, single-precision |
5364 | * floating-point vectors, matrices, signed and unsigned |
5365 | * integers and integer vectors, sampler and image types." |
5366 | */ |
5367 | const glsl_type *check_type = var->type->without_array(); |
5368 | |
5369 | switch (check_type->base_type) { |
5370 | case GLSL_TYPE_FLOAT: |
5371 | break; |
5372 | case GLSL_TYPE_UINT64: |
5373 | case GLSL_TYPE_INT64: |
5374 | break; |
5375 | case GLSL_TYPE_UINT: |
5376 | case GLSL_TYPE_INT: |
5377 | if (state->is_version(120, 300) || state->EXT_gpu_shader4_enable) |
5378 | break; |
5379 | case GLSL_TYPE_DOUBLE: |
5380 | if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable)) |
5381 | break; |
5382 | case GLSL_TYPE_SAMPLER: |
5383 | if (check_type->is_sampler() && state->has_bindless()) |
5384 | break; |
5385 | case GLSL_TYPE_IMAGE: |
5386 | if (check_type->is_image() && state->has_bindless()) |
5387 | break; |
5388 | /* FALLTHROUGH */ |
5389 | default: |
5390 | _mesa_glsl_error(& loc, state, |
5391 | "vertex shader input / attribute cannot have " |
5392 | "type %s`%s'", |
5393 | var->type->is_array() ? "array of " : "", |
5394 | check_type->name); |
5395 | error_emitted = true; |
5396 | } |
5397 | |
5398 | if (!error_emitted && var->type->is_array() && |
5399 | !state->check_version(150, 0, &loc, |
5400 | "vertex shader input / attribute " |
5401 | "cannot have array type")) { |
5402 | error_emitted = true; |
Value stored to 'error_emitted' is never read | |
5403 | } |
5404 | } else if (state->stage == MESA_SHADER_GEOMETRY) { |
5405 | /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: |
5406 | * |
5407 | * Geometry shader input variables get the per-vertex values |
5408 | * written out by vertex shader output variables of the same |
5409 | * names. Since a geometry shader operates on a set of |
5410 | * vertices, each input varying variable (or input block, see |
5411 | * interface blocks below) needs to be declared as an array. |
5412 | */ |
5413 | if (!var->type->is_array()) { |
5414 | _mesa_glsl_error(&loc, state, |
5415 | "geometry shader inputs must be arrays"); |
5416 | } |
5417 | |
5418 | handle_geometry_shader_input_decl(state, loc, var); |
5419 | } else if (state->stage == MESA_SHADER_FRAGMENT) { |
5420 | /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec: |
5421 | * |
5422 | * It is a compile-time error to declare a fragment shader |
5423 | * input with, or that contains, any of the following types: |
5424 | * |
5425 | * * A boolean type |
5426 | * * An opaque type |
5427 | * * An array of arrays |
5428 | * * An array of structures |
5429 | * * A structure containing an array |
5430 | * * A structure containing a structure |
5431 | */ |
5432 | if (state->es_shader) { |
5433 | const glsl_type *check_type = var->type->without_array(); |
5434 | if (check_type->is_boolean() || |
5435 | check_type->contains_opaque()) { |
5436 | _mesa_glsl_error(&loc, state, |
5437 | "fragment shader input cannot have type %s", |
5438 | check_type->name); |
5439 | } |
5440 | if (var->type->is_array() && |
5441 | var->type->fields.array->is_array()) { |
5442 | _mesa_glsl_error(&loc, state, |
5443 | "%s shader output " |
5444 | "cannot have an array of arrays", |
5445 | _mesa_shader_stage_to_string(state->stage)); |
5446 | } |
5447 | if (var->type->is_array() && |
5448 | var->type->fields.array->is_struct()) { |
5449 | _mesa_glsl_error(&loc, state, |
5450 | "fragment shader input " |
5451 | "cannot have an array of structs"); |
5452 | } |
5453 | if (var->type->is_struct()) { |
5454 | for (unsigned i = 0; i < var->type->length; i++) { |
5455 | if (var->type->fields.structure[i].type->is_array() || |
5456 | var->type->fields.structure[i].type->is_struct()) |
5457 | _mesa_glsl_error(&loc, state, |
5458 | "fragment shader input cannot have " |
5459 | "a struct that contains an " |
5460 | "array or struct"); |
5461 | } |
5462 | } |
5463 | } |
5464 | } else if (state->stage == MESA_SHADER_TESS_CTRL || |
5465 | state->stage == MESA_SHADER_TESS_EVAL) { |
5466 | handle_tess_shader_input_decl(state, loc, var); |
5467 | } |
5468 | } else if (var->data.mode == ir_var_shader_out) { |
5469 | const glsl_type *check_type = var->type->without_array(); |
5470 | |
5471 | /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec: |
5472 | * |
5473 | * It is a compile-time error to declare a fragment shader output |
5474 | * that contains any of the following: |
5475 | * |
5476 | * * A Boolean type (bool, bvec2 ...) |
5477 | * * A double-precision scalar or vector (double, dvec2 ...) |
5478 | * * An opaque type |
5479 | * * Any matrix type |
5480 | * * A structure |
5481 | */ |
5482 | if (state->stage == MESA_SHADER_FRAGMENT) { |
5483 | if (check_type->is_struct() || check_type->is_matrix()) |
5484 | _mesa_glsl_error(&loc, state, |
5485 | "fragment shader output " |
5486 | "cannot have struct or matrix type"); |
5487 | switch (check_type->base_type) { |
5488 | case GLSL_TYPE_UINT: |
5489 | case GLSL_TYPE_INT: |
5490 | case GLSL_TYPE_FLOAT: |
5491 | break; |
5492 | default: |
5493 | _mesa_glsl_error(&loc, state, |
5494 | "fragment shader output cannot have " |
5495 | "type %s", check_type->name); |
5496 | } |
5497 | } |
5498 | |
5499 | /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec: |
5500 | * |
5501 | * It is a compile-time error to declare a vertex shader output |
5502 | * with, or that contains, any of the following types: |
5503 | * |
5504 | * * A boolean type |
5505 | * * An opaque type |
5506 | * * An array of arrays |
5507 | * * An array of structures |
5508 | * * A structure containing an array |
5509 | * * A structure containing a structure |
5510 | * |
5511 | * It is a compile-time error to declare a fragment shader output |
5512 | * with, or that contains, any of the following types: |
5513 | * |
5514 | * * A boolean type |
5515 | * * An opaque type |
5516 | * * A matrix |
5517 | * * A structure |
5518 | * * An array of array |
5519 | * |
5520 | * ES 3.20 updates this to apply to tessellation and geometry shaders |
5521 | * as well. Because there are per-vertex arrays in the new stages, |
5522 | * it strikes the "array of..." rules and replaces them with these: |
5523 | * |
5524 | * * For per-vertex-arrayed variables (applies to tessellation |
5525 | * control, tessellation evaluation and geometry shaders): |
5526 | * |
5527 | * * Per-vertex-arrayed arrays of arrays |
5528 | * * Per-vertex-arrayed arrays of structures |
5529 | * |
5530 | * * For non-per-vertex-arrayed variables: |
5531 | * |
5532 | * * An array of arrays |
5533 | * * An array of structures |
5534 | * |
5535 | * which basically says to unwrap the per-vertex aspect and apply |
5536 | * the old rules. |
5537 | */ |
5538 | if (state->es_shader) { |
5539 | if (var->type->is_array() && |
5540 | var->type->fields.array->is_array()) { |
5541 | _mesa_glsl_error(&loc, state, |
5542 | "%s shader output " |
5543 | "cannot have an array of arrays", |
5544 | _mesa_shader_stage_to_string(state->stage)); |
5545 | } |
5546 | if (state->stage <= MESA_SHADER_GEOMETRY) { |
5547 | const glsl_type *type = var->type; |
5548 | |
5549 | if (state->stage == MESA_SHADER_TESS_CTRL && |
5550 | !var->data.patch && var->type->is_array()) { |
5551 | type = var->type->fields.array; |
5552 | } |
5553 | |
5554 | if (type->is_array() && type->fields.array->is_struct()) { |
5555 | _mesa_glsl_error(&loc, state, |
5556 | "%s shader output cannot have " |
5557 | "an array of structs", |
5558 | _mesa_shader_stage_to_string(state->stage)); |
5559 | } |
5560 | if (type->is_struct()) { |
5561 | for (unsigned i = 0; i < type->length; i++) { |
5562 | if (type->fields.structure[i].type->is_array() || |
5563 | type->fields.structure[i].type->is_struct()) |
5564 | _mesa_glsl_error(&loc, state, |
5565 | "%s shader output cannot have a " |
5566 | "struct that contains an " |
5567 | "array or struct", |
5568 | _mesa_shader_stage_to_string(state->stage)); |
5569 | } |
5570 | } |
5571 | } |
5572 | } |
5573 | |
5574 | if (state->stage == MESA_SHADER_TESS_CTRL) { |
5575 | handle_tess_ctrl_shader_output_decl(state, loc, var); |
5576 | } |
5577 | } else if (var->type->contains_subroutine()) { |
5578 | /* declare subroutine uniforms as hidden */ |
5579 | var->data.how_declared = ir_var_hidden; |
5580 | } |
5581 | |
5582 | /* From section 4.3.4 of the GLSL 4.00 spec: |
5583 | * "Input variables may not be declared using the patch in qualifier |
5584 | * in tessellation control or geometry shaders." |
5585 | * |
5586 | * From section 4.3.6 of the GLSL 4.00 spec: |
5587 | * "It is an error to use patch out in a vertex, tessellation |
5588 | * evaluation, or geometry shader." |
5589 | * |
5590 | * This doesn't explicitly forbid using them in a fragment shader, but |
5591 | * that's probably just an oversight. |
5592 | */ |
5593 | if (state->stage != MESA_SHADER_TESS_EVAL |
5594 | && this->type->qualifier.flags.q.patch |
5595 | && this->type->qualifier.flags.q.in) { |
5596 | |
5597 | _mesa_glsl_error(&loc, state, "'patch in' can only be used in a " |
5598 | "tessellation evaluation shader"); |
5599 | } |
5600 | |
5601 | if (state->stage != MESA_SHADER_TESS_CTRL |
5602 | && this->type->qualifier.flags.q.patch |
5603 | && this->type->qualifier.flags.q.out) { |
5604 | |
5605 | _mesa_glsl_error(&loc, state, "'patch out' can only be used in a " |
5606 | "tessellation control shader"); |
5607 | } |
5608 | |
5609 | /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30. |
5610 | */ |
5611 | if (this->type->qualifier.precision != ast_precision_none) { |
5612 | state->check_precision_qualifiers_allowed(&loc); |
5613 | } |
5614 | |
5615 | if (this->type->qualifier.precision != ast_precision_none && |
5616 | !precision_qualifier_allowed(var->type)) { |
5617 | _mesa_glsl_error(&loc, state, |
5618 | "precision qualifiers apply only to floating point" |
5619 | ", integer and opaque types"); |
5620 | } |
5621 | |
5622 | /* From section 4.1.7 of the GLSL 4.40 spec: |
5623 | * |
5624 | * "[Opaque types] can only be declared as function |
5625 | * parameters or uniform-qualified variables." |
5626 | * |
5627 | * From section 4.1.7 of the ARB_bindless_texture spec: |
5628 | * |
5629 | * "Samplers may be declared as shader inputs and outputs, as uniform |
5630 | * variables, as temporary variables, and as function parameters." |
5631 | * |
5632 | * From section 4.1.X of the ARB_bindless_texture spec: |
5633 | * |
5634 | * "Images may be declared as shader inputs and outputs, as uniform |
5635 | * variables, as temporary variables, and as function parameters." |
5636 | */ |
5637 | if (!this->type->qualifier.flags.q.uniform && |
5638 | (var_type->contains_atomic() || |
5639 | (!state->has_bindless() && var_type->contains_opaque()))) { |
5640 | _mesa_glsl_error(&loc, state, |
5641 | "%s variables must be declared uniform", |
5642 | state->has_bindless() ? "atomic" : "opaque"); |
5643 | } |
5644 | |
5645 | /* Process the initializer and add its instructions to a temporary |
5646 | * list. This list will be added to the instruction stream (below) after |
5647 | * the declaration is added. This is done because in some cases (such as |
5648 | * redeclarations) the declaration may not actually be added to the |
5649 | * instruction stream. |
5650 | */ |
5651 | exec_list initializer_instructions; |
5652 | |
5653 | /* Examine var name here since var may get deleted in the next call */ |
5654 | bool var_is_gl_id = is_gl_identifier(var->name); |
5655 | |
5656 | bool is_redeclaration; |
5657 | var = get_variable_being_redeclared(&var, decl->get_location(), state, |
5658 | false /* allow_all_redeclarations */, |
5659 | &is_redeclaration); |
5660 | if (is_redeclaration) { |
5661 | if (var_is_gl_id && |
5662 | var->data.how_declared == ir_var_declared_in_block) { |
5663 | _mesa_glsl_error(&loc, state, |
5664 | "`%s' has already been redeclared using " |
5665 | "gl_PerVertex", var->name); |
5666 | } |
5667 | var->data.how_declared = ir_var_declared_normally; |
5668 | } |
5669 | |
5670 | if (decl->initializer != NULL__null) { |
5671 | result = process_initializer(var, |
5672 | decl, this->type, |
5673 | &initializer_instructions, state); |
5674 | } else { |
5675 | validate_array_dimensions(var_type, state, &loc); |
5676 | } |
5677 | |
5678 | /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: |
5679 | * |
5680 | * "It is an error to write to a const variable outside of |
5681 | * its declaration, so they must be initialized when |
5682 | * declared." |
5683 | */ |
5684 | if (this->type->qualifier.flags.q.constant && decl->initializer == NULL__null) { |
5685 | _mesa_glsl_error(& loc, state, |
5686 | "const declaration of `%s' must be initialized", |
5687 | decl->identifier); |
5688 | } |
5689 | |
5690 | if (state->es_shader) { |
5691 | const glsl_type *const t = var->type; |
5692 | |
5693 | /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs. |
5694 | * |
5695 | * The GL_OES_tessellation_shader spec says about inputs: |
5696 | * |
5697 | * "Declaring an array size is optional. If no size is specified, |
5698 | * it will be taken from the implementation-dependent maximum |
5699 | * patch size (gl_MaxPatchVertices)." |
5700 | * |
5701 | * and about TCS outputs: |
5702 | * |
5703 | * "If no size is specified, it will be taken from output patch |
5704 | * size declared in the shader." |
5705 | * |
5706 | * The GL_OES_geometry_shader spec says: |
5707 | * |
5708 | * "All geometry shader input unsized array declarations will be |
5709 | * sized by an earlier input primitive layout qualifier, when |
5710 | * present, as per the following table." |
5711 | */ |
5712 | const bool implicitly_sized = |
5713 | (var->data.mode == ir_var_shader_in && |
5714 | state->stage >= MESA_SHADER_TESS_CTRL && |
5715 | state->stage <= MESA_SHADER_GEOMETRY) || |
5716 | (var->data.mode == ir_var_shader_out && |
5717 | state->stage == MESA_SHADER_TESS_CTRL); |
5718 | |
5719 | if (t->is_unsized_array() && !implicitly_sized) |
5720 | /* Section 10.17 of the GLSL ES 1.00 specification states that |
5721 | * unsized array declarations have been removed from the language. |
5722 | * Arrays that are sized using an initializer are still explicitly |
5723 | * sized. However, GLSL ES 1.00 does not allow array |
5724 | * initializers. That is only allowed in GLSL ES 3.00. |
5725 | * |
5726 | * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says: |
5727 | * |
5728 | * "An array type can also be formed without specifying a size |
5729 | * if the definition includes an initializer: |
5730 | * |
5731 | * float x[] = float[2] (1.0, 2.0); // declares an array of size 2 |
5732 | * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3 |
5733 | * |
5734 | * float a[5]; |
5735 | * float b[] = a;" |
5736 | */ |
5737 | _mesa_glsl_error(& loc, state, |
5738 | "unsized array declarations are not allowed in " |
5739 | "GLSL ES"); |
5740 | } |
5741 | |
5742 | /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec: |
5743 | * |
5744 | * "It is a compile-time error to declare an unsized array of |
5745 | * atomic_uint" |
5746 | */ |
5747 | if (var->type->is_unsized_array() && |
5748 | var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) { |
5749 | _mesa_glsl_error(& loc, state, |
5750 | "Unsized array of atomic_uint is not allowed"); |
5751 | } |
5752 | |
5753 | /* If the declaration is not a redeclaration, there are a few additional |
5754 | * semantic checks that must be applied. In addition, variable that was |
5755 | * created for the declaration should be added to the IR stream. |
5756 | */ |
5757 | if (!is_redeclaration) { |
5758 | validate_identifier(decl->identifier, loc, state); |
5759 | |
5760 | /* Add the variable to the symbol table. Note that the initializer's |
5761 | * IR was already processed earlier (though it hasn't been emitted |
5762 | * yet), without the variable in scope. |
5763 | * |
5764 | * This differs from most C-like languages, but it follows the GLSL |
5765 | * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 |
5766 | * spec: |
5767 | * |
5768 | * "Within a declaration, the scope of a name starts immediately |
5769 | * after the initializer if present or immediately after the name |
5770 | * being declared if not." |
5771 | */ |
5772 | if (!state->symbols->add_variable(var)) { |
5773 | YYLTYPE loc = this->get_location(); |
5774 | _mesa_glsl_error(&loc, state, "name `%s' already taken in the " |
5775 | "current scope", decl->identifier); |
5776 | continue; |
5777 | } |
5778 | |
5779 | /* Push the variable declaration to the top. It means that all the |
5780 | * variable declarations will appear in a funny last-to-first order, |
5781 | * but otherwise we run into trouble if a function is prototyped, a |
5782 | * global var is decled, then the function is defined with usage of |
5783 | * the global var. See glslparsertest's CorrectModule.frag. |
5784 | * However, do not insert declarations before default precision statements |
5785 | * or type declarations. |
5786 | */ |
5787 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); |
5788 | while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl)) |
5789 | before_node = (ir_instruction*)before_node->next; |
5790 | if (before_node) |
5791 | before_node->insert_before(var); |
5792 | else |
5793 | instructions->push_head(var); |
5794 | } |
5795 | |
5796 | instructions->append_list(&initializer_instructions); |
5797 | } |
5798 | |
5799 | |
5800 | /* Generally, variable declarations do not have r-values. However, |
5801 | * one is used for the declaration in |
5802 | * |
5803 | * while (bool b = some_condition()) { |
5804 | * ... |
5805 | * } |
5806 | * |
5807 | * so we return the rvalue from the last seen declaration here. |
5808 | */ |
5809 | return result; |
5810 | } |
5811 | |
5812 | |
5813 | ir_rvalue * |
5814 | ast_parameter_declarator::hir(exec_list *instructions, |
5815 | struct _mesa_glsl_parse_state *state) |
5816 | { |
5817 | void *ctx = state; |
5818 | const struct glsl_type *type; |
5819 | const char *name = NULL__null; |
5820 | YYLTYPE loc = this->get_location(); |
5821 | |
5822 | type = this->type->glsl_type(& name, state); |
5823 | |
5824 | if (type == NULL__null) { |
5825 | if (name != NULL__null) { |
5826 | _mesa_glsl_error(& loc, state, |
5827 | "invalid type `%s' in declaration of `%s'", |
5828 | name, this->identifier); |
5829 | } else { |
5830 | _mesa_glsl_error(& loc, state, |
5831 | "invalid type in declaration of `%s'", |
5832 | this->identifier); |
5833 | } |
5834 | |
5835 | type = glsl_type::error_type; |
5836 | } |
5837 | |
5838 | /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: |
5839 | * |
5840 | * "Functions that accept no input arguments need not use void in the |
5841 | * argument list because prototypes (or definitions) are required and |
5842 | * therefore there is no ambiguity when an empty argument list "( )" is |
5843 | * declared. The idiom "(void)" as a parameter list is provided for |
5844 | * convenience." |
5845 | * |
5846 | * Placing this check here prevents a void parameter being set up |
5847 | * for a function, which avoids tripping up checks for main taking |
5848 | * parameters and lookups of an unnamed symbol. |
5849 | */ |
5850 | if (type->is_void()) { |
5851 | if (this->identifier != NULL__null) |
5852 | _mesa_glsl_error(& loc, state, |
5853 | "named parameter cannot have type `void'"); |
5854 | |
5855 | is_void = true; |
5856 | return NULL__null; |
5857 | } |
5858 | |
5859 | if (formal_parameter && (this->identifier == NULL__null)) { |
5860 | _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); |
5861 | return NULL__null; |
5862 | } |
5863 | |
5864 | /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) |
5865 | * call already handled the "vec4[..] foo" case. |
5866 | */ |
5867 | type = process_array_type(&loc, type, this->array_specifier, state); |
5868 | |
5869 | if (!type->is_error() && type->is_unsized_array()) { |
5870 | _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " |
5871 | "a declared size"); |
5872 | type = glsl_type::error_type; |
5873 | } |
5874 | |
5875 | is_void = false; |
5876 | ir_variable *var = new(ctx) |
5877 | ir_variable(type, this->identifier, ir_var_function_in); |
5878 | |
5879 | /* Apply any specified qualifiers to the parameter declaration. Note that |
5880 | * for function parameters the default mode is 'in'. |
5881 | */ |
5882 | apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc, |
5883 | true); |
5884 | |
5885 | /* From section 4.1.7 of the GLSL 4.40 spec: |
5886 | * |
5887 | * "Opaque variables cannot be treated as l-values; hence cannot |
5888 | * be used as out or inout function parameters, nor can they be |
5889 | * assigned into." |
5890 | * |
5891 | * From section 4.1.7 of the ARB_bindless_texture spec: |
5892 | * |
5893 | * "Samplers can be used as l-values, so can be assigned into and used |
5894 | * as "out" and "inout" function parameters." |
5895 | * |
5896 | * From section 4.1.X of the ARB_bindless_texture spec: |
5897 | * |
5898 | * "Images can be used as l-values, so can be assigned into and used as |
5899 | * "out" and "inout" function parameters." |
5900 | */ |
5901 | if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) |
5902 | && (type->contains_atomic() || |
5903 | (!state->has_bindless() && type->contains_opaque()))) { |
5904 | _mesa_glsl_error(&loc, state, "out and inout parameters cannot " |
5905 | "contain %s variables", |
5906 | state->has_bindless() ? "atomic" : "opaque"); |
5907 | type = glsl_type::error_type; |
5908 | } |
5909 | |
5910 | /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec: |
5911 | * |
5912 | * "When calling a function, expressions that do not evaluate to |
5913 | * l-values cannot be passed to parameters declared as out or inout." |
5914 | * |
5915 | * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: |
5916 | * |
5917 | * "Other binary or unary expressions, non-dereferenced arrays, |
5918 | * function names, swizzles with repeated fields, and constants |
5919 | * cannot be l-values." |
5920 | * |
5921 | * So for GLSL 1.10, passing an array as an out or inout parameter is not |
5922 | * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES. |
5923 | */ |
5924 | if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) |
5925 | && type->is_array() |
5926 | && !state->check_version(120, 100, &loc, |
5927 | "arrays cannot be out or inout parameters")) { |
5928 | type = glsl_type::error_type; |
5929 | } |
5930 | |
5931 | instructions->push_tail(var); |
5932 | |
5933 | /* Parameter declarations do not have r-values. |
5934 | */ |
5935 | return NULL__null; |
5936 | } |
5937 | |
5938 | |
5939 | void |
5940 | ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, |
5941 | bool formal, |
5942 | exec_list *ir_parameters, |
5943 | _mesa_glsl_parse_state *state) |
5944 | { |
5945 | ast_parameter_declarator *void_param = NULL__null; |
5946 | unsigned count = 0; |
5947 | |
5948 | foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters)for (ast_parameter_declarator * param = (!exec_node_is_tail_sentinel ((ast_parameters)->head_sentinel.next) ? ((ast_parameter_declarator *) (((uintptr_t) (ast_parameters)->head_sentinel.next) - ( ((char *) &((ast_parameter_declarator *) (ast_parameters) ->head_sentinel.next)->link) - ((char *) (ast_parameters )->head_sentinel.next)))) : __null); (param) != __null; (param ) = (!exec_node_is_tail_sentinel((param)->link.next) ? ((ast_parameter_declarator *) (((uintptr_t) (param)->link.next) - (((char *) &(( ast_parameter_declarator *) (param)->link.next)->link) - ((char *) (param)->link.next)))) : __null)) { |
5949 | param->formal_parameter = formal; |
5950 | param->hir(ir_parameters, state); |
5951 | |
5952 | if (param->is_void) |
5953 | void_param = param; |
5954 | |
5955 | count++; |
5956 | } |
5957 | |
5958 | if ((void_param != NULL__null) && (count > 1)) { |
5959 | YYLTYPE loc = void_param->get_location(); |
5960 | |
5961 | _mesa_glsl_error(& loc, state, |
5962 | "`void' parameter must be only parameter"); |
5963 | } |
5964 | } |
5965 | |
5966 | |
5967 | void |
5968 | emit_function(_mesa_glsl_parse_state *state, ir_function *f) |
5969 | { |
5970 | /* IR invariants disallow function declarations or definitions |
5971 | * nested within other function definitions. But there is no |
5972 | * requirement about the relative order of function declarations |
5973 | * and definitions with respect to one another. So simply insert |
5974 | * the new ir_function block at the end of the toplevel instruction |
5975 | * list. |
5976 | */ |
5977 | state->toplevel_ir->push_tail(f); |
5978 | } |
5979 | |
5980 | |
5981 | ir_rvalue * |
5982 | ast_function::hir(exec_list *instructions, |
5983 | struct _mesa_glsl_parse_state *state) |
5984 | { |
5985 | void *ctx = state; |
5986 | ir_function *f = NULL__null; |
5987 | ir_function_signature *sig = NULL__null; |
5988 | exec_list hir_parameters; |
5989 | YYLTYPE loc = this->get_location(); |
5990 | |
5991 | const char *const name = identifier; |
5992 | |
5993 | /* New functions are always added to the top-level IR instruction stream, |
5994 | * so this instruction list pointer is ignored. See also emit_function |
5995 | * (called below). |
5996 | */ |
5997 | (void) instructions; |
5998 | |
5999 | /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, |
6000 | * |
6001 | * "Function declarations (prototypes) cannot occur inside of functions; |
6002 | * they must be at global scope, or for the built-in functions, outside |
6003 | * the global scope." |
6004 | * |
6005 | * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, |
6006 | * |
6007 | * "User defined functions may only be defined within the global scope." |
6008 | * |
6009 | * Note that this language does not appear in GLSL 1.10. |
6010 | */ |
6011 | if ((state->current_function != NULL__null) && |
6012 | state->is_version(120, 100)) { |
6013 | YYLTYPE loc = this->get_location(); |
6014 | _mesa_glsl_error(&loc, state, |
6015 | "declaration of function `%s' not allowed within " |
6016 | "function body", name); |
6017 | } |
6018 | |
6019 | validate_identifier(name, this->get_location(), state); |
6020 | |
6021 | /* Convert the list of function parameters to HIR now so that they can be |
6022 | * used below to compare this function's signature with previously seen |
6023 | * signatures for functions with the same name. |
6024 | */ |
6025 | ast_parameter_declarator::parameters_to_hir(& this->parameters, |
6026 | is_definition, |
6027 | & hir_parameters, state); |
6028 | |
6029 | const char *return_type_name; |
6030 | const glsl_type *return_type = |
6031 | this->return_type->glsl_type(& return_type_name, state); |
6032 | |
6033 | if (!return_type) { |
6034 | YYLTYPE loc = this->get_location(); |
6035 | _mesa_glsl_error(&loc, state, |
6036 | "function `%s' has undeclared return type `%s'", |
6037 | name, return_type_name); |
6038 | return_type = glsl_type::error_type; |
6039 | } |
6040 | |
6041 | /* ARB_shader_subroutine states: |
6042 | * "Subroutine declarations cannot be prototyped. It is an error to prepend |
6043 | * subroutine(...) to a function declaration." |
6044 | */ |
6045 | if (this->return_type->qualifier.subroutine_list && !is_definition) { |
6046 | YYLTYPE loc = this->get_location(); |
6047 | _mesa_glsl_error(&loc, state, |
6048 | "function declaration `%s' cannot have subroutine prepended", |
6049 | name); |
6050 | } |
6051 | |
6052 | /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: |
6053 | * "No qualifier is allowed on the return type of a function." |
6054 | */ |
6055 | if (this->return_type->has_qualifiers(state)) { |
6056 | YYLTYPE loc = this->get_location(); |
6057 | _mesa_glsl_error(& loc, state, |
6058 | "function `%s' return type has qualifiers", name); |
6059 | } |
6060 | |
6061 | /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says: |
6062 | * |
6063 | * "Arrays are allowed as arguments and as the return type. In both |
6064 | * cases, the array must be explicitly sized." |
6065 | */ |
6066 | if (return_type->is_unsized_array()) { |
6067 | YYLTYPE loc = this->get_location(); |
6068 | _mesa_glsl_error(& loc, state, |
6069 | "function `%s' return type array must be explicitly " |
6070 | "sized", name); |
6071 | } |
6072 | |
6073 | /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec: |
6074 | * |
6075 | * "Arrays are allowed as arguments, but not as the return type. [...] |
6076 | * The return type can also be a structure if the structure does not |
6077 | * contain an array." |
6078 | */ |
6079 | if (state->language_version == 100 && return_type->contains_array()) { |
6080 | YYLTYPE loc = this->get_location(); |
6081 | _mesa_glsl_error(& loc, state, |
6082 | "function `%s' return type contains an array", name); |
6083 | } |
6084 | |
6085 | /* From section 4.1.7 of the GLSL 4.40 spec: |
6086 | * |
6087 | * "[Opaque types] can only be declared as function parameters |
6088 | * or uniform-qualified variables." |
6089 | * |
6090 | * The ARB_bindless_texture spec doesn't clearly state this, but as it says |
6091 | * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X, |
6092 | * (Images)", this should be allowed. |
6093 | */ |
6094 | if (return_type->contains_atomic() || |
6095 | (!state->has_bindless() && return_type->contains_opaque())) { |
6096 | YYLTYPE loc = this->get_location(); |
6097 | _mesa_glsl_error(&loc, state, |
6098 | "function `%s' return type can't contain an %s type", |
6099 | name, state->has_bindless() ? "atomic" : "opaque"); |
6100 | } |
6101 | |
6102 | /**/ |
6103 | if (return_type->is_subroutine()) { |
6104 | YYLTYPE loc = this->get_location(); |
6105 | _mesa_glsl_error(&loc, state, |
6106 | "function `%s' return type can't be a subroutine type", |
6107 | name); |
6108 | } |
6109 | |
6110 | /* Get the precision for the return type */ |
6111 | unsigned return_precision; |
6112 | |
6113 | if (state->es_shader) { |
6114 | YYLTYPE loc = this->get_location(); |
6115 | return_precision = |
6116 | select_gles_precision(this->return_type->qualifier.precision, |
6117 | return_type, |
6118 | state, |
6119 | &loc); |
6120 | } else { |
6121 | return_precision = GLSL_PRECISION_NONE; |
6122 | } |
6123 | |
6124 | /* Create an ir_function if one doesn't already exist. */ |
6125 | f = state->symbols->get_function(name); |
6126 | if (f == NULL__null) { |
6127 | f = new(ctx) ir_function(name); |
6128 | if (!this->return_type->qualifier.is_subroutine_decl()) { |
6129 | if (!state->symbols->add_function(f)) { |
6130 | /* This function name shadows a non-function use of the same name. */ |
6131 | YYLTYPE loc = this->get_location(); |
6132 | _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " |
6133 | "non-function", name); |
6134 | return NULL__null; |
6135 | } |
6136 | } |
6137 | emit_function(state, f); |
6138 | } |
6139 | |
6140 | /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71: |
6141 | * |
6142 | * "A shader cannot redefine or overload built-in functions." |
6143 | * |
6144 | * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions": |
6145 | * |
6146 | * "User code can overload the built-in functions but cannot redefine |
6147 | * them." |
6148 | */ |
6149 | if (state->es_shader) { |
6150 | /* Local shader has no exact candidates; check the built-ins. */ |
6151 | if (state->language_version >= 300 && |
6152 | _mesa_glsl_has_builtin_function(state, name)) { |
6153 | YYLTYPE loc = this->get_location(); |
6154 | _mesa_glsl_error(& loc, state, |
6155 | "A shader cannot redefine or overload built-in " |
6156 | "function `%s' in GLSL ES 3.00", name); |
6157 | return NULL__null; |
6158 | } |
6159 | |
6160 | if (state->language_version == 100) { |
6161 | ir_function_signature *sig = |
6162 | _mesa_glsl_find_builtin_function(state, name, &hir_parameters); |
6163 | if (sig && sig->is_builtin()) { |
6164 | _mesa_glsl_error(& loc, state, |
6165 | "A shader cannot redefine built-in " |
6166 | "function `%s' in GLSL ES 1.00", name); |
6167 | } |
6168 | } |
6169 | } |
6170 | |
6171 | /* Verify that this function's signature either doesn't match a previously |
6172 | * seen signature for a function with the same name, or, if a match is found, |
6173 | * that the previously seen signature does not have an associated definition. |
6174 | */ |
6175 | if (state->es_shader || f->has_user_signature()) { |
6176 | sig = f->exact_matching_signature(state, &hir_parameters); |
6177 | if (sig != NULL__null) { |
6178 | const char *badvar = sig->qualifiers_match(&hir_parameters); |
6179 | if (badvar != NULL__null) { |
6180 | YYLTYPE loc = this->get_location(); |
6181 | |
6182 | _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " |
6183 | "qualifiers don't match prototype", name, badvar); |
6184 | } |
6185 | |
6186 | if (sig->return_type != return_type) { |
6187 | YYLTYPE loc = this->get_location(); |
6188 | |
6189 | _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " |
6190 | "match prototype", name); |
6191 | } |
6192 | |
6193 | if (sig->return_precision != return_precision) { |
6194 | YYLTYPE loc = this->get_location(); |
6195 | |
6196 | _mesa_glsl_error(&loc, state, "function `%s' return type precision " |
6197 | "doesn't match prototype", name); |
6198 | } |
6199 | |
6200 | if (sig->is_defined) { |
6201 | if (is_definition) { |
6202 | YYLTYPE loc = this->get_location(); |
6203 | _mesa_glsl_error(& loc, state, "function `%s' redefined", name); |
6204 | } else { |
6205 | /* We just encountered a prototype that exactly matches a |
6206 | * function that's already been defined. This is redundant, |
6207 | * and we should ignore it. |
6208 | */ |
6209 | return NULL__null; |
6210 | } |
6211 | } else if (state->language_version == 100 && !is_definition) { |
6212 | /* From the GLSL 1.00 spec, section 4.2.7: |
6213 | * |
6214 | * "A particular variable, structure or function declaration |
6215 | * may occur at most once within a scope with the exception |
6216 | * that a single function prototype plus the corresponding |
6217 | * function definition are allowed." |
6218 | */ |
6219 | YYLTYPE loc = this->get_location(); |
6220 | _mesa_glsl_error(&loc, state, "function `%s' redeclared", name); |
6221 | } |
6222 | } |
6223 | } |
6224 | |
6225 | /* Verify the return type of main() */ |
6226 | if (strcmp(name, "main") == 0) { |
6227 | if (! return_type->is_void()) { |
6228 | YYLTYPE loc = this->get_location(); |
6229 | |
6230 | _mesa_glsl_error(& loc, state, "main() must return void"); |
6231 | } |
6232 | |
6233 | if (!hir_parameters.is_empty()) { |
6234 | YYLTYPE loc = this->get_location(); |
6235 | |
6236 | _mesa_glsl_error(& loc, state, "main() must not take any parameters"); |
6237 | } |
6238 | } |
6239 | |
6240 | /* Finish storing the information about this new function in its signature. |
6241 | */ |
6242 | if (sig == NULL__null) { |
6243 | sig = new(ctx) ir_function_signature(return_type); |
6244 | sig->return_precision = return_precision; |
6245 | f->add_signature(sig); |
6246 | } |
6247 | |
6248 | sig->replace_parameters(&hir_parameters); |
6249 | signature = sig; |
6250 | |
6251 | if (this->return_type->qualifier.subroutine_list) { |
6252 | int idx; |
6253 | |
6254 | if (this->return_type->qualifier.flags.q.explicit_index) { |
6255 | unsigned qual_index; |
6256 | if (process_qualifier_constant(state, &loc, "index", |
6257 | this->return_type->qualifier.index, |
6258 | &qual_index)) { |
6259 | if (!state->has_explicit_uniform_location()) { |
6260 | _mesa_glsl_error(&loc, state, "subroutine index requires " |
6261 | "GL_ARB_explicit_uniform_location or " |
6262 | "GLSL 4.30"); |
6263 | } else if (qual_index >= MAX_SUBROUTINES256) { |
6264 | _mesa_glsl_error(&loc, state, |
6265 | "invalid subroutine index (%d) index must " |
6266 | "be a number between 0 and " |
6267 | "GL_MAX_SUBROUTINES - 1 (%d)", qual_index, |
6268 | MAX_SUBROUTINES256 - 1); |
6269 | } else { |
6270 | f->subroutine_index = qual_index; |
6271 | } |
6272 | } |
6273 | } |
6274 | |
6275 | f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length(); |
6276 | f->subroutine_types = ralloc_array(state, const struct glsl_type *,((const struct glsl_type * *) ralloc_array_size(state, sizeof (const struct glsl_type *), f->num_subroutine_types)) |
6277 | f->num_subroutine_types)((const struct glsl_type * *) ralloc_array_size(state, sizeof (const struct glsl_type *), f->num_subroutine_types)); |
6278 | idx = 0; |
6279 | foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& this->return_type->qualifier.subroutine_list->declarations )->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t ) (&this->return_type->qualifier.subroutine_list-> declarations)->head_sentinel.next) - (((char *) &((ast_declaration *) (&this->return_type->qualifier.subroutine_list-> declarations)->head_sentinel.next)->link) - ((char *) ( &this->return_type->qualifier.subroutine_list->declarations )->head_sentinel.next)))) : __null); (decl) != __null; (decl ) = (!exec_node_is_tail_sentinel((decl)->link.next) ? ((ast_declaration *) (((uintptr_t) (decl)->link.next) - (((char *) &((ast_declaration *) (decl)->link.next)->link) - ((char *) (decl)->link .next)))) : __null)) { |
6280 | const struct glsl_type *type; |
6281 | /* the subroutine type must be already declared */ |
6282 | type = state->symbols->get_type(decl->identifier); |
6283 | if (!type) { |
6284 | _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier); |
6285 | } |
6286 | |
6287 | for (int i = 0; i < state->num_subroutine_types; i++) { |
6288 | ir_function *fn = state->subroutine_types[i]; |
6289 | ir_function_signature *tsig = NULL__null; |
6290 | |
6291 | if (strcmp(fn->name, decl->identifier)) |
6292 | continue; |
6293 | |
6294 | tsig = fn->matching_signature(state, &sig->parameters, |
6295 | false); |
6296 | if (!tsig) { |
6297 | _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier); |
6298 | } else { |
6299 | if (tsig->return_type != sig->return_type) { |
6300 | _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier); |
6301 | } |
6302 | } |
6303 | } |
6304 | f->subroutine_types[idx++] = type; |
6305 | } |
6306 | state->subroutines = (ir_function **)reralloc(state, state->subroutines,((ir_function * *) reralloc_array_size(state, state->subroutines , sizeof(ir_function *), state->num_subroutines + 1)) |
6307 | ir_function *,((ir_function * *) reralloc_array_size(state, state->subroutines , sizeof(ir_function *), state->num_subroutines + 1)) |
6308 | state->num_subroutines + 1)((ir_function * *) reralloc_array_size(state, state->subroutines , sizeof(ir_function *), state->num_subroutines + 1)); |
6309 | state->subroutines[state->num_subroutines] = f; |
6310 | state->num_subroutines++; |
6311 | |
6312 | } |
6313 | |
6314 | if (this->return_type->qualifier.is_subroutine_decl()) { |
6315 | if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) { |
6316 | _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier); |
6317 | return NULL__null; |
6318 | } |
6319 | state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,((ir_function * *) reralloc_array_size(state, state->subroutine_types , sizeof(ir_function *), state->num_subroutine_types + 1)) |
6320 | ir_function *,((ir_function * *) reralloc_array_size(state, state->subroutine_types , sizeof(ir_function *), state->num_subroutine_types + 1)) |
6321 | state->num_subroutine_types + 1)((ir_function * *) reralloc_array_size(state, state->subroutine_types , sizeof(ir_function *), state->num_subroutine_types + 1)); |
6322 | state->subroutine_types[state->num_subroutine_types] = f; |
6323 | state->num_subroutine_types++; |
6324 | |
6325 | f->is_subroutine = true; |
6326 | } |
6327 | |
6328 | /* Function declarations (prototypes) do not have r-values. |
6329 | */ |
6330 | return NULL__null; |
6331 | } |
6332 | |
6333 | |
6334 | ir_rvalue * |
6335 | ast_function_definition::hir(exec_list *instructions, |
6336 | struct _mesa_glsl_parse_state *state) |
6337 | { |
6338 | prototype->is_definition = true; |
6339 | prototype->hir(instructions, state); |
6340 | |
6341 | ir_function_signature *signature = prototype->signature; |
6342 | if (signature == NULL__null) |
6343 | return NULL__null; |
6344 | |
6345 | assert(state->current_function == NULL)(static_cast <bool> (state->current_function == __null ) ? void (0) : __assert_fail ("state->current_function == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
6346 | state->current_function = signature; |
6347 | state->found_return = false; |
6348 | state->found_begin_interlock = false; |
6349 | state->found_end_interlock = false; |
6350 | |
6351 | /* Duplicate parameters declared in the prototype as concrete variables. |
6352 | * Add these to the symbol table. |
6353 | */ |
6354 | state->symbols->push_scope(); |
6355 | foreach_in_list(ir_variable, var, &signature->parameters)for (ir_variable *var = (!exec_node_is_tail_sentinel((&signature ->parameters)->head_sentinel.next) ? (ir_variable *) (( &signature->parameters)->head_sentinel.next) : __null ); (var) != __null; (var) = (!exec_node_is_tail_sentinel((var )->next) ? (ir_variable *) ((var)->next) : __null)) { |
6356 | assert(var->as_variable() != NULL)(static_cast <bool> (var->as_variable() != __null) ? void (0) : __assert_fail ("var->as_variable() != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
6357 | |
6358 | /* The only way a parameter would "exist" is if two parameters have |
6359 | * the same name. |
6360 | */ |
6361 | if (state->symbols->name_declared_this_scope(var->name)) { |
6362 | YYLTYPE loc = this->get_location(); |
6363 | |
6364 | _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); |
6365 | } else { |
6366 | state->symbols->add_variable(var); |
6367 | } |
6368 | } |
6369 | |
6370 | /* Convert the body of the function to HIR. */ |
6371 | this->body->hir(&signature->body, state); |
6372 | signature->is_defined = true; |
6373 | |
6374 | state->symbols->pop_scope(); |
6375 | |
6376 | assert(state->current_function == signature)(static_cast <bool> (state->current_function == signature ) ? void (0) : __assert_fail ("state->current_function == signature" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
6377 | state->current_function = NULL__null; |
6378 | |
6379 | if (!signature->return_type->is_void() && !state->found_return) { |
6380 | YYLTYPE loc = this->get_location(); |
6381 | _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " |
6382 | "%s, but no return statement", |
6383 | signature->function_name(), |
6384 | signature->return_type->name); |
6385 | } |
6386 | |
6387 | /* Function definitions do not have r-values. |
6388 | */ |
6389 | return NULL__null; |
6390 | } |
6391 | |
6392 | |
6393 | ir_rvalue * |
6394 | ast_jump_statement::hir(exec_list *instructions, |
6395 | struct _mesa_glsl_parse_state *state) |
6396 | { |
6397 | void *ctx = state; |
6398 | |
6399 | switch (mode) { |
6400 | case ast_return: { |
6401 | ir_return *inst; |
6402 | assert(state->current_function)(static_cast <bool> (state->current_function) ? void (0) : __assert_fail ("state->current_function", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
6403 | |
6404 | if (opt_return_value) { |
6405 | ir_rvalue *ret = opt_return_value->hir(instructions, state); |
6406 | |
6407 | /* The value of the return type can be NULL if the shader says |
6408 | * 'return foo();' and foo() is a function that returns void. |
6409 | * |
6410 | * NOTE: The GLSL spec doesn't say that this is an error. The type |
6411 | * of the return value is void. If the return type of the function is |
6412 | * also void, then this should compile without error. Seriously. |
6413 | */ |
6414 | const glsl_type *const ret_type = |
6415 | (ret == NULL__null) ? glsl_type::void_type : ret->type; |
6416 | |
6417 | /* Implicit conversions are not allowed for return values prior to |
6418 | * ARB_shading_language_420pack. |
6419 | */ |
6420 | if (state->current_function->return_type != ret_type) { |
6421 | YYLTYPE loc = this->get_location(); |
6422 | |
6423 | if (state->has_420pack()) { |
6424 | if (!apply_implicit_conversion(state->current_function->return_type, |
6425 | ret, state) |
6426 | || (ret->type != state->current_function->return_type)) { |
6427 | _mesa_glsl_error(& loc, state, |
6428 | "could not implicitly convert return value " |
6429 | "to %s, in function `%s'", |
6430 | state->current_function->return_type->name, |
6431 | state->current_function->function_name()); |
6432 | } |
6433 | } else { |
6434 | _mesa_glsl_error(& loc, state, |
6435 | "`return' with wrong type %s, in function `%s' " |
6436 | "returning %s", |
6437 | ret_type->name, |
6438 | state->current_function->function_name(), |
6439 | state->current_function->return_type->name); |
6440 | } |
6441 | } else if (state->current_function->return_type->base_type == |
6442 | GLSL_TYPE_VOID) { |
6443 | YYLTYPE loc = this->get_location(); |
6444 | |
6445 | /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20 |
6446 | * specs add a clarification: |
6447 | * |
6448 | * "A void function can only use return without a return argument, even if |
6449 | * the return argument has void type. Return statements only accept values: |
6450 | * |
6451 | * void func1() { } |
6452 | * void func2() { return func1(); } // illegal return statement" |
6453 | */ |
6454 | _mesa_glsl_error(& loc, state, |
6455 | "void functions can only use `return' without a " |
6456 | "return argument"); |
6457 | } |
6458 | |
6459 | inst = new(ctx) ir_return(ret); |
6460 | } else { |
6461 | if (state->current_function->return_type->base_type != |
6462 | GLSL_TYPE_VOID) { |
6463 | YYLTYPE loc = this->get_location(); |
6464 | |
6465 | _mesa_glsl_error(& loc, state, |
6466 | "`return' with no value, in function %s returning " |
6467 | "non-void", |
6468 | state->current_function->function_name()); |
6469 | } |
6470 | inst = new(ctx) ir_return; |
6471 | } |
6472 | |
6473 | state->found_return = true; |
6474 | instructions->push_tail(inst); |
6475 | break; |
6476 | } |
6477 | |
6478 | case ast_discard: |
6479 | if (state->stage != MESA_SHADER_FRAGMENT) { |
6480 | YYLTYPE loc = this->get_location(); |
6481 | |
6482 | _mesa_glsl_error(& loc, state, |
6483 | "`discard' may only appear in a fragment shader"); |
6484 | } |
6485 | instructions->push_tail(new(ctx) ir_discard); |
6486 | break; |
6487 | |
6488 | case ast_break: |
6489 | case ast_continue: |
6490 | if (mode == ast_continue && |
6491 | state->loop_nesting_ast == NULL__null) { |
6492 | YYLTYPE loc = this->get_location(); |
6493 | |
6494 | _mesa_glsl_error(& loc, state, "continue may only appear in a loop"); |
6495 | } else if (mode == ast_break && |
6496 | state->loop_nesting_ast == NULL__null && |
6497 | state->switch_state.switch_nesting_ast == NULL__null) { |
6498 | YYLTYPE loc = this->get_location(); |
6499 | |
6500 | _mesa_glsl_error(& loc, state, |
6501 | "break may only appear in a loop or a switch"); |
6502 | } else { |
6503 | /* For a loop, inline the for loop expression again, since we don't |
6504 | * know where near the end of the loop body the normal copy of it is |
6505 | * going to be placed. Same goes for the condition for a do-while |
6506 | * loop. |
6507 | */ |
6508 | if (state->loop_nesting_ast != NULL__null && |
6509 | mode == ast_continue) { |
6510 | if (state->loop_nesting_ast->rest_expression) { |
6511 | state->loop_nesting_ast->rest_expression->hir(instructions, |
6512 | state); |
6513 | } |
6514 | if (state->loop_nesting_ast->mode == |
6515 | ast_iteration_statement::ast_do_while) { |
6516 | state->loop_nesting_ast->condition_to_hir(instructions, state); |
6517 | } |
6518 | } |
6519 | |
6520 | if (state->switch_state.is_switch_innermost && |
6521 | mode == ast_break) { |
6522 | /* Force break out of switch by setting is_break switch state. |
6523 | */ |
6524 | ir_variable *const is_break_var = state->switch_state.is_break_var; |
6525 | ir_dereference_variable *const deref_is_break_var = |
6526 | new(ctx) ir_dereference_variable(is_break_var); |
6527 | ir_constant *const true_val = new(ctx) ir_constant(true); |
6528 | ir_assignment *const set_break_var = |
6529 | new(ctx) ir_assignment(deref_is_break_var, true_val); |
6530 | |
6531 | instructions->push_tail(set_break_var); |
6532 | } else { |
6533 | ir_loop_jump *const jump = |
6534 | new(ctx) ir_loop_jump((mode == ast_break) |
6535 | ? ir_loop_jump::jump_break |
6536 | : ir_loop_jump::jump_continue); |
6537 | instructions->push_tail(jump); |
6538 | } |
6539 | } |
6540 | |
6541 | break; |
6542 | } |
6543 | |
6544 | /* Jump instructions do not have r-values. |
6545 | */ |
6546 | return NULL__null; |
6547 | } |
6548 | |
6549 | |
6550 | ir_rvalue * |
6551 | ast_demote_statement::hir(exec_list *instructions, |
6552 | struct _mesa_glsl_parse_state *state) |
6553 | { |
6554 | void *ctx = state; |
6555 | |
6556 | if (state->stage != MESA_SHADER_FRAGMENT) { |
6557 | YYLTYPE loc = this->get_location(); |
6558 | |
6559 | _mesa_glsl_error(& loc, state, |
6560 | "`demote' may only appear in a fragment shader"); |
6561 | } |
6562 | |
6563 | instructions->push_tail(new(ctx) ir_demote); |
6564 | |
6565 | return NULL__null; |
6566 | } |
6567 | |
6568 | |
6569 | ir_rvalue * |
6570 | ast_selection_statement::hir(exec_list *instructions, |
6571 | struct _mesa_glsl_parse_state *state) |
6572 | { |
6573 | void *ctx = state; |
6574 | |
6575 | ir_rvalue *const condition = this->condition->hir(instructions, state); |
6576 | |
6577 | /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: |
6578 | * |
6579 | * "Any expression whose type evaluates to a Boolean can be used as the |
6580 | * conditional expression bool-expression. Vector types are not accepted |
6581 | * as the expression to if." |
6582 | * |
6583 | * The checks are separated so that higher quality diagnostics can be |
6584 | * generated for cases where both rules are violated. |
6585 | */ |
6586 | if (!condition->type->is_boolean() || !condition->type->is_scalar()) { |
6587 | YYLTYPE loc = this->condition->get_location(); |
6588 | |
6589 | _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " |
6590 | "boolean"); |
6591 | } |
6592 | |
6593 | ir_if *const stmt = new(ctx) ir_if(condition); |
6594 | |
6595 | if (then_statement != NULL__null) { |
6596 | state->symbols->push_scope(); |
6597 | then_statement->hir(& stmt->then_instructions, state); |
6598 | state->symbols->pop_scope(); |
6599 | } |
6600 | |
6601 | if (else_statement != NULL__null) { |
6602 | state->symbols->push_scope(); |
6603 | else_statement->hir(& stmt->else_instructions, state); |
6604 | state->symbols->pop_scope(); |
6605 | } |
6606 | |
6607 | instructions->push_tail(stmt); |
6608 | |
6609 | /* if-statements do not have r-values. |
6610 | */ |
6611 | return NULL__null; |
6612 | } |
6613 | |
6614 | |
6615 | struct case_label { |
6616 | /** Value of the case label. */ |
6617 | unsigned value; |
6618 | |
6619 | /** Does this label occur after the default? */ |
6620 | bool after_default; |
6621 | |
6622 | /** |
6623 | * AST for the case label. |
6624 | * |
6625 | * This is only used to generate error messages for duplicate labels. |
6626 | */ |
6627 | ast_expression *ast; |
6628 | }; |
6629 | |
6630 | /* Used for detection of duplicate case values, compare |
6631 | * given contents directly. |
6632 | */ |
6633 | static bool |
6634 | compare_case_value(const void *a, const void *b) |
6635 | { |
6636 | return ((struct case_label *) a)->value == ((struct case_label *) b)->value; |
6637 | } |
6638 | |
6639 | |
6640 | /* Used for detection of duplicate case values, just |
6641 | * returns key contents as is. |
6642 | */ |
6643 | static unsigned |
6644 | key_contents(const void *key) |
6645 | { |
6646 | return ((struct case_label *) key)->value; |
6647 | } |
6648 | |
6649 | |
6650 | ir_rvalue * |
6651 | ast_switch_statement::hir(exec_list *instructions, |
6652 | struct _mesa_glsl_parse_state *state) |
6653 | { |
6654 | void *ctx = state; |
6655 | |
6656 | ir_rvalue *const test_expression = |
6657 | this->test_expression->hir(instructions, state); |
6658 | |
6659 | /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec: |
6660 | * |
6661 | * "The type of init-expression in a switch statement must be a |
6662 | * scalar integer." |
6663 | */ |
6664 | if (!test_expression->type->is_scalar() || |
6665 | !test_expression->type->is_integer_32()) { |
6666 | YYLTYPE loc = this->test_expression->get_location(); |
6667 | |
6668 | _mesa_glsl_error(& loc, |
6669 | state, |
6670 | "switch-statement expression must be scalar " |
6671 | "integer"); |
6672 | return NULL__null; |
6673 | } |
6674 | |
6675 | /* Track the switch-statement nesting in a stack-like manner. |
6676 | */ |
6677 | struct glsl_switch_state saved = state->switch_state; |
6678 | |
6679 | state->switch_state.is_switch_innermost = true; |
6680 | state->switch_state.switch_nesting_ast = this; |
6681 | state->switch_state.labels_ht = |
6682 | _mesa_hash_table_create(NULL__null, key_contents, |
6683 | compare_case_value); |
6684 | state->switch_state.previous_default = NULL__null; |
6685 | |
6686 | /* Initalize is_fallthru state to false. |
6687 | */ |
6688 | ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false); |
6689 | state->switch_state.is_fallthru_var = |
6690 | new(ctx) ir_variable(glsl_type::bool_type, |
6691 | "switch_is_fallthru_tmp", |
6692 | ir_var_temporary); |
6693 | instructions->push_tail(state->switch_state.is_fallthru_var); |
6694 | |
6695 | ir_dereference_variable *deref_is_fallthru_var = |
6696 | new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var); |
6697 | instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var, |
6698 | is_fallthru_val)); |
6699 | |
6700 | /* Initialize is_break state to false. |
6701 | */ |
6702 | ir_rvalue *const is_break_val = new (ctx) ir_constant(false); |
6703 | state->switch_state.is_break_var = |
6704 | new(ctx) ir_variable(glsl_type::bool_type, |
6705 | "switch_is_break_tmp", |
6706 | ir_var_temporary); |
6707 | instructions->push_tail(state->switch_state.is_break_var); |
6708 | |
6709 | ir_dereference_variable *deref_is_break_var = |
6710 | new(ctx) ir_dereference_variable(state->switch_state.is_break_var); |
6711 | instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var, |
6712 | is_break_val)); |
6713 | |
6714 | state->switch_state.run_default = |
6715 | new(ctx) ir_variable(glsl_type::bool_type, |
6716 | "run_default_tmp", |
6717 | ir_var_temporary); |
6718 | instructions->push_tail(state->switch_state.run_default); |
6719 | |
6720 | /* Cache test expression. |
6721 | */ |
6722 | test_to_hir(instructions, state); |
6723 | |
6724 | /* Emit code for body of switch stmt. |
6725 | */ |
6726 | body->hir(instructions, state); |
6727 | |
6728 | _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL__null); |
6729 | |
6730 | state->switch_state = saved; |
6731 | |
6732 | /* Switch statements do not have r-values. */ |
6733 | return NULL__null; |
6734 | } |
6735 | |
6736 | |
6737 | void |
6738 | ast_switch_statement::test_to_hir(exec_list *instructions, |
6739 | struct _mesa_glsl_parse_state *state) |
6740 | { |
6741 | void *ctx = state; |
6742 | |
6743 | /* set to true to avoid a duplicate "use of uninitialized variable" warning |
6744 | * on the switch test case. The first one would be already raised when |
6745 | * getting the test_expression at ast_switch_statement::hir |
6746 | */ |
6747 | test_expression->set_is_lhs(true); |
6748 | /* Cache value of test expression. */ |
6749 | ir_rvalue *const test_val = test_expression->hir(instructions, state); |
6750 | |
6751 | state->switch_state.test_var = new(ctx) ir_variable(test_val->type, |
6752 | "switch_test_tmp", |
6753 | ir_var_temporary); |
6754 | ir_dereference_variable *deref_test_var = |
6755 | new(ctx) ir_dereference_variable(state->switch_state.test_var); |
6756 | |
6757 | instructions->push_tail(state->switch_state.test_var); |
6758 | instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val)); |
6759 | } |
6760 | |
6761 | |
6762 | ir_rvalue * |
6763 | ast_switch_body::hir(exec_list *instructions, |
6764 | struct _mesa_glsl_parse_state *state) |
6765 | { |
6766 | if (stmts != NULL__null) |
6767 | stmts->hir(instructions, state); |
6768 | |
6769 | /* Switch bodies do not have r-values. */ |
6770 | return NULL__null; |
6771 | } |
6772 | |
6773 | ir_rvalue * |
6774 | ast_case_statement_list::hir(exec_list *instructions, |
6775 | struct _mesa_glsl_parse_state *state) |
6776 | { |
6777 | exec_list default_case, after_default, tmp; |
6778 | |
6779 | foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)for (ast_case_statement * case_stmt = (!exec_node_is_tail_sentinel ((& this->cases)->head_sentinel.next) ? ((ast_case_statement *) (((uintptr_t) (& this->cases)->head_sentinel.next ) - (((char *) &((ast_case_statement *) (& this->cases )->head_sentinel.next)->link) - ((char *) (& this-> cases)->head_sentinel.next)))) : __null); (case_stmt) != __null ; (case_stmt) = (!exec_node_is_tail_sentinel((case_stmt)-> link.next) ? ((ast_case_statement *) (((uintptr_t) (case_stmt )->link.next) - (((char *) &((ast_case_statement *) (case_stmt )->link.next)->link) - ((char *) (case_stmt)->link.next )))) : __null)) { |
6780 | case_stmt->hir(&tmp, state); |
6781 | |
6782 | /* Default case. */ |
6783 | if (state->switch_state.previous_default && default_case.is_empty()) { |
6784 | default_case.append_list(&tmp); |
6785 | continue; |
6786 | } |
6787 | |
6788 | /* If default case found, append 'after_default' list. */ |
6789 | if (!default_case.is_empty()) |
6790 | after_default.append_list(&tmp); |
6791 | else |
6792 | instructions->append_list(&tmp); |
6793 | } |
6794 | |
6795 | /* Handle the default case. This is done here because default might not be |
6796 | * the last case. We need to add checks against following cases first to see |
6797 | * if default should be chosen or not. |
6798 | */ |
6799 | if (!default_case.is_empty()) { |
6800 | ir_factory body(instructions, state); |
6801 | |
6802 | ir_expression *cmp = NULL__null; |
6803 | |
6804 | hash_table_foreach(state->switch_state.labels_ht, entry)for (struct hash_entry *entry = _mesa_hash_table_next_entry(state ->switch_state.labels_ht, __null); entry != __null; entry = _mesa_hash_table_next_entry(state->switch_state.labels_ht , entry)) { |
6805 | const struct case_label *const l = (struct case_label *) entry->data; |
6806 | |
6807 | /* If the switch init-value is the value of one of the labels that |
6808 | * occurs after the default case, disable execution of the default |
6809 | * case. |
6810 | */ |
6811 | if (l->after_default) { |
6812 | ir_constant *const cnst = |
6813 | state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT |
6814 | ? body.constant(unsigned(l->value)) |
6815 | : body.constant(int(l->value)); |
6816 | |
6817 | cmp = cmp == NULL__null |
6818 | ? equal(cnst, state->switch_state.test_var) |
6819 | : logic_or(cmp, equal(cnst, state->switch_state.test_var)); |
6820 | } |
6821 | } |
6822 | |
6823 | if (cmp != NULL__null) |
6824 | body.emit(assign(state->switch_state.run_default, logic_not(cmp))); |
6825 | else |
6826 | body.emit(assign(state->switch_state.run_default, body.constant(true))); |
6827 | |
6828 | /* Append default case and all cases after it. */ |
6829 | instructions->append_list(&default_case); |
6830 | instructions->append_list(&after_default); |
6831 | } |
6832 | |
6833 | /* Case statements do not have r-values. */ |
6834 | return NULL__null; |
6835 | } |
6836 | |
6837 | ir_rvalue * |
6838 | ast_case_statement::hir(exec_list *instructions, |
6839 | struct _mesa_glsl_parse_state *state) |
6840 | { |
6841 | labels->hir(instructions, state); |
6842 | |
6843 | /* Conditionally set fallthru state based on break state. */ |
6844 | ir_factory reset_fallthru(instructions, state); |
6845 | reset_fallthru.emit(assign(state->switch_state.is_fallthru_var, |
6846 | logic_and(state->switch_state.is_fallthru_var, |
6847 | logic_not(state->switch_state.is_break_var)))); |
6848 | |
6849 | /* Guard case statements depending on fallthru state. */ |
6850 | ir_dereference_variable *const deref_fallthru_guard = |
6851 | new(state) ir_dereference_variable(state->switch_state.is_fallthru_var); |
6852 | ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard); |
6853 | |
6854 | foreach_list_typed (ast_node, stmt, link, & this->stmts)for (ast_node * stmt = (!exec_node_is_tail_sentinel((& this ->stmts)->head_sentinel.next) ? ((ast_node *) (((uintptr_t ) (& this->stmts)->head_sentinel.next) - (((char *) &((ast_node *) (& this->stmts)->head_sentinel. next)->link) - ((char *) (& this->stmts)->head_sentinel .next)))) : __null); (stmt) != __null; (stmt) = (!exec_node_is_tail_sentinel ((stmt)->link.next) ? ((ast_node *) (((uintptr_t) (stmt)-> link.next) - (((char *) &((ast_node *) (stmt)->link.next )->link) - ((char *) (stmt)->link.next)))) : __null)) |
6855 | stmt->hir(& test_fallthru->then_instructions, state); |
6856 | |
6857 | instructions->push_tail(test_fallthru); |
6858 | |
6859 | /* Case statements do not have r-values. */ |
6860 | return NULL__null; |
6861 | } |
6862 | |
6863 | |
6864 | ir_rvalue * |
6865 | ast_case_label_list::hir(exec_list *instructions, |
6866 | struct _mesa_glsl_parse_state *state) |
6867 | { |
6868 | foreach_list_typed (ast_case_label, label, link, & this->labels)for (ast_case_label * label = (!exec_node_is_tail_sentinel((& this->labels)->head_sentinel.next) ? ((ast_case_label * ) (((uintptr_t) (& this->labels)->head_sentinel.next ) - (((char *) &((ast_case_label *) (& this->labels )->head_sentinel.next)->link) - ((char *) (& this-> labels)->head_sentinel.next)))) : __null); (label) != __null ; (label) = (!exec_node_is_tail_sentinel((label)->link.next ) ? ((ast_case_label *) (((uintptr_t) (label)->link.next) - (((char *) &((ast_case_label *) (label)->link.next)-> link) - ((char *) (label)->link.next)))) : __null)) |
6869 | label->hir(instructions, state); |
6870 | |
6871 | /* Case labels do not have r-values. */ |
6872 | return NULL__null; |
6873 | } |
6874 | |
6875 | ir_rvalue * |
6876 | ast_case_label::hir(exec_list *instructions, |
6877 | struct _mesa_glsl_parse_state *state) |
6878 | { |
6879 | ir_factory body(instructions, state); |
6880 | |
6881 | ir_variable *const fallthru_var = state->switch_state.is_fallthru_var; |
6882 | |
6883 | /* If not default case, ... */ |
6884 | if (this->test_value != NULL__null) { |
6885 | /* Conditionally set fallthru state based on |
6886 | * comparison of cached test expression value to case label. |
6887 | */ |
6888 | ir_rvalue *const label_rval = this->test_value->hir(instructions, state); |
6889 | ir_constant *label_const = |
6890 | label_rval->constant_expression_value(body.mem_ctx); |
6891 | |
6892 | if (!label_const) { |
6893 | YYLTYPE loc = this->test_value->get_location(); |
6894 | |
6895 | _mesa_glsl_error(& loc, state, |
6896 | "switch statement case label must be a " |
6897 | "constant expression"); |
6898 | |
6899 | /* Stuff a dummy value in to allow processing to continue. */ |
6900 | label_const = body.constant(0); |
6901 | } else { |
6902 | hash_entry *entry = |
6903 | _mesa_hash_table_search(state->switch_state.labels_ht, |
6904 | &label_const->value.u[0]); |
6905 | |
6906 | if (entry) { |
6907 | const struct case_label *const l = |
6908 | (struct case_label *) entry->data; |
6909 | const ast_expression *const previous_label = l->ast; |
6910 | YYLTYPE loc = this->test_value->get_location(); |
6911 | |
6912 | _mesa_glsl_error(& loc, state, "duplicate case value"); |
6913 | |
6914 | loc = previous_label->get_location(); |
6915 | _mesa_glsl_error(& loc, state, "this is the previous case label"); |
6916 | } else { |
6917 | struct case_label *l = ralloc(state->switch_state.labels_ht,((struct case_label *) ralloc_size(state->switch_state.labels_ht , sizeof(struct case_label))) |
6918 | struct case_label)((struct case_label *) ralloc_size(state->switch_state.labels_ht , sizeof(struct case_label))); |
6919 | |
6920 | l->value = label_const->value.u[0]; |
6921 | l->after_default = state->switch_state.previous_default != NULL__null; |
6922 | l->ast = this->test_value; |
6923 | |
6924 | _mesa_hash_table_insert(state->switch_state.labels_ht, |
6925 | &label_const->value.u[0], |
6926 | l); |
6927 | } |
6928 | } |
6929 | |
6930 | /* Create an r-value version of the ir_constant label here (after we may |
6931 | * have created a fake one in error cases) that can be passed to |
6932 | * apply_implicit_conversion below. |
6933 | */ |
6934 | ir_rvalue *label = label_const; |
6935 | |
6936 | ir_rvalue *deref_test_var = |
6937 | new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var); |
6938 | |
6939 | /* |
6940 | * From GLSL 4.40 specification section 6.2 ("Selection"): |
6941 | * |
6942 | * "The type of the init-expression value in a switch statement must |
6943 | * be a scalar int or uint. The type of the constant-expression value |
6944 | * in a case label also must be a scalar int or uint. When any pair |
6945 | * of these values is tested for "equal value" and the types do not |
6946 | * match, an implicit conversion will be done to convert the int to a |
6947 | * uint (see section 4.1.10 “Implicit Conversions”) before the compare |
6948 | * is done." |
6949 | */ |
6950 | if (label->type != state->switch_state.test_var->type) { |
6951 | YYLTYPE loc = this->test_value->get_location(); |
6952 | |
6953 | const glsl_type *type_a = label->type; |
6954 | const glsl_type *type_b = state->switch_state.test_var->type; |
6955 | |
6956 | /* Check if int->uint implicit conversion is supported. */ |
6957 | bool integer_conversion_supported = |
6958 | glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type, |
6959 | state); |
6960 | |
6961 | if ((!type_a->is_integer_32() || !type_b->is_integer_32()) || |
6962 | !integer_conversion_supported) { |
6963 | _mesa_glsl_error(&loc, state, "type mismatch with switch " |
6964 | "init-expression and case label (%s != %s)", |
6965 | type_a->name, type_b->name); |
6966 | } else { |
6967 | /* Conversion of the case label. */ |
6968 | if (type_a->base_type == GLSL_TYPE_INT) { |
6969 | if (!apply_implicit_conversion(glsl_type::uint_type, |
6970 | label, state)) |
6971 | _mesa_glsl_error(&loc, state, "implicit type conversion error"); |
6972 | } else { |
6973 | /* Conversion of the init-expression value. */ |
6974 | if (!apply_implicit_conversion(glsl_type::uint_type, |
6975 | deref_test_var, state)) |
6976 | _mesa_glsl_error(&loc, state, "implicit type conversion error"); |
6977 | } |
6978 | } |
6979 | |
6980 | /* If the implicit conversion was allowed, the types will already be |
6981 | * the same. If the implicit conversion wasn't allowed, smash the |
6982 | * type of the label anyway. This will prevent the expression |
6983 | * constructor (below) from failing an assertion. |
6984 | */ |
6985 | label->type = deref_test_var->type; |
6986 | } |
6987 | |
6988 | body.emit(assign(fallthru_var, |
6989 | logic_or(fallthru_var, equal(label, deref_test_var)))); |
6990 | } else { /* default case */ |
6991 | if (state->switch_state.previous_default) { |
6992 | YYLTYPE loc = this->get_location(); |
6993 | _mesa_glsl_error(& loc, state, |
6994 | "multiple default labels in one switch"); |
6995 | |
6996 | loc = state->switch_state.previous_default->get_location(); |
6997 | _mesa_glsl_error(& loc, state, "this is the first default label"); |
6998 | } |
6999 | state->switch_state.previous_default = this; |
7000 | |
7001 | /* Set fallthru condition on 'run_default' bool. */ |
7002 | body.emit(assign(fallthru_var, |
7003 | logic_or(fallthru_var, |
7004 | state->switch_state.run_default))); |
7005 | } |
7006 | |
7007 | /* Case statements do not have r-values. */ |
7008 | return NULL__null; |
7009 | } |
7010 | |
7011 | void |
7012 | ast_iteration_statement::condition_to_hir(exec_list *instructions, |
7013 | struct _mesa_glsl_parse_state *state) |
7014 | { |
7015 | void *ctx = state; |
7016 | |
7017 | if (condition != NULL__null) { |
7018 | ir_rvalue *const cond = |
7019 | condition->hir(instructions, state); |
7020 | |
7021 | if ((cond == NULL__null) |
7022 | || !cond->type->is_boolean() || !cond->type->is_scalar()) { |
7023 | YYLTYPE loc = condition->get_location(); |
7024 | |
7025 | _mesa_glsl_error(& loc, state, |
7026 | "loop condition must be scalar boolean"); |
7027 | } else { |
7028 | /* As the first code in the loop body, generate a block that looks |
7029 | * like 'if (!condition) break;' as the loop termination condition. |
7030 | */ |
7031 | ir_rvalue *const not_cond = |
7032 | new(ctx) ir_expression(ir_unop_logic_not, cond); |
7033 | |
7034 | ir_if *const if_stmt = new(ctx) ir_if(not_cond); |
7035 | |
7036 | ir_jump *const break_stmt = |
7037 | new(ctx) ir_loop_jump(ir_loop_jump::jump_break); |
7038 | |
7039 | if_stmt->then_instructions.push_tail(break_stmt); |
7040 | instructions->push_tail(if_stmt); |
7041 | } |
7042 | } |
7043 | } |
7044 | |
7045 | |
7046 | ir_rvalue * |
7047 | ast_iteration_statement::hir(exec_list *instructions, |
7048 | struct _mesa_glsl_parse_state *state) |
7049 | { |
7050 | void *ctx = state; |
7051 | |
7052 | /* For-loops and while-loops start a new scope, but do-while loops do not. |
7053 | */ |
7054 | if (mode != ast_do_while) |
7055 | state->symbols->push_scope(); |
7056 | |
7057 | if (init_statement != NULL__null) |
7058 | init_statement->hir(instructions, state); |
7059 | |
7060 | ir_loop *const stmt = new(ctx) ir_loop(); |
7061 | instructions->push_tail(stmt); |
7062 | |
7063 | /* Track the current loop nesting. */ |
7064 | ast_iteration_statement *nesting_ast = state->loop_nesting_ast; |
7065 | |
7066 | state->loop_nesting_ast = this; |
7067 | |
7068 | /* Likewise, indicate that following code is closest to a loop, |
7069 | * NOT closest to a switch. |
7070 | */ |
7071 | bool saved_is_switch_innermost = state->switch_state.is_switch_innermost; |
7072 | state->switch_state.is_switch_innermost = false; |
7073 | |
7074 | if (mode != ast_do_while) |
7075 | condition_to_hir(&stmt->body_instructions, state); |
7076 | |
7077 | if (body != NULL__null) |
7078 | body->hir(& stmt->body_instructions, state); |
7079 | |
7080 | if (rest_expression != NULL__null) |
7081 | rest_expression->hir(& stmt->body_instructions, state); |
7082 | |
7083 | if (mode == ast_do_while) |
7084 | condition_to_hir(&stmt->body_instructions, state); |
7085 | |
7086 | if (mode != ast_do_while) |
7087 | state->symbols->pop_scope(); |
7088 | |
7089 | /* Restore previous nesting before returning. */ |
7090 | state->loop_nesting_ast = nesting_ast; |
7091 | state->switch_state.is_switch_innermost = saved_is_switch_innermost; |
7092 | |
7093 | /* Loops do not have r-values. |
7094 | */ |
7095 | return NULL__null; |
7096 | } |
7097 | |
7098 | |
7099 | /** |
7100 | * Determine if the given type is valid for establishing a default precision |
7101 | * qualifier. |
7102 | * |
7103 | * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"): |
7104 | * |
7105 | * "The precision statement |
7106 | * |
7107 | * precision precision-qualifier type; |
7108 | * |
7109 | * can be used to establish a default precision qualifier. The type field |
7110 | * can be either int or float or any of the sampler types, and the |
7111 | * precision-qualifier can be lowp, mediump, or highp." |
7112 | * |
7113 | * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision |
7114 | * qualifiers on sampler types, but this seems like an oversight (since the |
7115 | * intention of including these in GLSL 1.30 is to allow compatibility with ES |
7116 | * shaders). So we allow int, float, and all sampler types regardless of GLSL |
7117 | * version. |
7118 | */ |
7119 | static bool |
7120 | is_valid_default_precision_type(const struct glsl_type *const type) |
7121 | { |
7122 | if (type == NULL__null) |
7123 | return false; |
7124 | |
7125 | switch (type->base_type) { |
7126 | case GLSL_TYPE_INT: |
7127 | case GLSL_TYPE_FLOAT: |
7128 | /* "int" and "float" are valid, but vectors and matrices are not. */ |
7129 | return type->vector_elements == 1 && type->matrix_columns == 1; |
7130 | case GLSL_TYPE_SAMPLER: |
7131 | case GLSL_TYPE_IMAGE: |
7132 | case GLSL_TYPE_ATOMIC_UINT: |
7133 | return true; |
7134 | default: |
7135 | return false; |
7136 | } |
7137 | } |
7138 | |
7139 | |
7140 | ir_rvalue * |
7141 | ast_type_specifier::hir(exec_list *instructions, |
7142 | struct _mesa_glsl_parse_state *state) |
7143 | { |
7144 | if (this->default_precision == ast_precision_none && this->structure == NULL__null) |
7145 | return NULL__null; |
7146 | |
7147 | YYLTYPE loc = this->get_location(); |
7148 | |
7149 | /* If this is a precision statement, check that the type to which it is |
7150 | * applied is either float or int. |
7151 | * |
7152 | * From section 4.5.3 of the GLSL 1.30 spec: |
7153 | * "The precision statement |
7154 | * precision precision-qualifier type; |
7155 | * can be used to establish a default precision qualifier. The type |
7156 | * field can be either int or float [...]. Any other types or |
7157 | * qualifiers will result in an error. |
7158 | */ |
7159 | if (this->default_precision != ast_precision_none) { |
7160 | if (!state->check_precision_qualifiers_allowed(&loc)) |
7161 | return NULL__null; |
7162 | |
7163 | if (this->structure != NULL__null) { |
7164 | _mesa_glsl_error(&loc, state, |
7165 | "precision qualifiers do not apply to structures"); |
7166 | return NULL__null; |
7167 | } |
7168 | |
7169 | if (this->array_specifier != NULL__null) { |
7170 | _mesa_glsl_error(&loc, state, |
7171 | "default precision statements do not apply to " |
7172 | "arrays"); |
7173 | return NULL__null; |
7174 | } |
7175 | |
7176 | const struct glsl_type *const type = |
7177 | state->symbols->get_type(this->type_name); |
7178 | if (!is_valid_default_precision_type(type)) { |
7179 | _mesa_glsl_error(&loc, state, |
7180 | "default precision statements apply only to " |
7181 | "float, int, and opaque types"); |
7182 | return NULL__null; |
7183 | } |
7184 | |
7185 | if (state->es_shader) { |
7186 | /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00 |
7187 | * spec says: |
7188 | * |
7189 | * "Non-precision qualified declarations will use the precision |
7190 | * qualifier specified in the most recent precision statement |
7191 | * that is still in scope. The precision statement has the same |
7192 | * scoping rules as variable declarations. If it is declared |
7193 | * inside a compound statement, its effect stops at the end of |
7194 | * the innermost statement it was declared in. Precision |
7195 | * statements in nested scopes override precision statements in |
7196 | * outer scopes. Multiple precision statements for the same basic |
7197 | * type can appear inside the same scope, with later statements |
7198 | * overriding earlier statements within that scope." |
7199 | * |
7200 | * Default precision specifications follow the same scope rules as |
7201 | * variables. So, we can track the state of the default precision |
7202 | * qualifiers in the symbol table, and the rules will just work. This |
7203 | * is a slight abuse of the symbol table, but it has the semantics |
7204 | * that we want. |
7205 | */ |
7206 | state->symbols->add_default_precision_qualifier(this->type_name, |
7207 | this->default_precision); |
7208 | } |
7209 | |
7210 | { |
7211 | void *ctx = state; |
7212 | |
7213 | const char* precision_type = NULL__null; |
7214 | switch (this->default_precision) { |
7215 | case GLSL_PRECISION_HIGH: |
7216 | precision_type = "highp"; |
7217 | break; |
7218 | case GLSL_PRECISION_MEDIUM: |
7219 | precision_type = "mediump"; |
7220 | break; |
7221 | case GLSL_PRECISION_LOW: |
7222 | precision_type = "lowp"; |
7223 | break; |
7224 | case GLSL_PRECISION_NONE: |
7225 | precision_type = ""; |
7226 | break; |
7227 | } |
7228 | |
7229 | char* precision_statement = ralloc_asprintf(ctx, "precision %s %s", precision_type, this->type_name); |
7230 | ir_precision_statement *const stmt = new(ctx) ir_precision_statement(precision_statement); |
7231 | |
7232 | instructions->push_head(stmt); |
7233 | } |
7234 | |
7235 | return NULL__null; |
7236 | } |
7237 | |
7238 | /* _mesa_ast_set_aggregate_type() sets the <structure> field so that |
7239 | * process_record_constructor() can do type-checking on C-style initializer |
7240 | * expressions of structs, but ast_struct_specifier should only be translated |
7241 | * to HIR if it is declaring the type of a structure. |
7242 | * |
7243 | * The ->is_declaration field is false for initializers of variables |
7244 | * declared separately from the struct's type definition. |
7245 | * |
7246 | * struct S { ... }; (is_declaration = true) |
7247 | * struct T { ... } t = { ... }; (is_declaration = true) |
7248 | * S s = { ... }; (is_declaration = false) |
7249 | */ |
7250 | if (this->structure != NULL__null && this->structure->is_declaration) |
7251 | return this->structure->hir(instructions, state); |
7252 | |
7253 | return NULL__null; |
7254 | } |
7255 | |
7256 | |
7257 | /** |
7258 | * Process a structure or interface block tree into an array of structure fields |
7259 | * |
7260 | * After parsing, where there are some syntax differnces, structures and |
7261 | * interface blocks are almost identical. They are similar enough that the |
7262 | * AST for each can be processed the same way into a set of |
7263 | * \c glsl_struct_field to describe the members. |
7264 | * |
7265 | * If we're processing an interface block, var_mode should be the type of the |
7266 | * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or |
7267 | * ir_var_shader_storage). If we're processing a structure, var_mode should be |
7268 | * ir_var_auto. |
7269 | * |
7270 | * \return |
7271 | * The number of fields processed. A pointer to the array structure fields is |
7272 | * stored in \c *fields_ret. |
7273 | */ |
7274 | static unsigned |
7275 | ast_process_struct_or_iface_block_members(exec_list *instructions, |
7276 | struct _mesa_glsl_parse_state *state, |
7277 | exec_list *declarations, |
7278 | glsl_struct_field **fields_ret, |
7279 | bool is_interface, |
7280 | enum glsl_matrix_layout matrix_layout, |
7281 | bool allow_reserved_names, |
7282 | ir_variable_mode var_mode, |
7283 | ast_type_qualifier *layout, |
7284 | unsigned block_stream, |
7285 | unsigned block_xfb_buffer, |
7286 | unsigned block_xfb_offset, |
7287 | unsigned expl_location, |
7288 | unsigned expl_align) |
7289 | { |
7290 | unsigned decl_count = 0; |
7291 | unsigned next_offset = 0; |
7292 | |
7293 | /* Make an initial pass over the list of fields to determine how |
7294 | * many there are. Each element in this list is an ast_declarator_list. |
7295 | * This means that we actually need to count the number of elements in the |
7296 | * 'declarations' list in each of the elements. |
7297 | */ |
7298 | foreach_list_typed (ast_declarator_list, decl_list, link, declarations)for (ast_declarator_list * decl_list = (!exec_node_is_tail_sentinel ((declarations)->head_sentinel.next) ? ((ast_declarator_list *) (((uintptr_t) (declarations)->head_sentinel.next) - (( (char *) &((ast_declarator_list *) (declarations)->head_sentinel .next)->link) - ((char *) (declarations)->head_sentinel .next)))) : __null); (decl_list) != __null; (decl_list) = (!exec_node_is_tail_sentinel ((decl_list)->link.next) ? ((ast_declarator_list *) (((uintptr_t ) (decl_list)->link.next) - (((char *) &((ast_declarator_list *) (decl_list)->link.next)->link) - ((char *) (decl_list )->link.next)))) : __null)) { |
7299 | decl_count += decl_list->declarations.length(); |
7300 | } |
7301 | |
7302 | /* Allocate storage for the fields and process the field |
7303 | * declarations. As the declarations are processed, try to also convert |
7304 | * the types to HIR. This ensures that structure definitions embedded in |
7305 | * other structure definitions or in interface blocks are processed. |
7306 | */ |
7307 | glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,((glsl_struct_field *) rzalloc_array_size(state, sizeof(glsl_struct_field ), decl_count)) |
7308 | decl_count)((glsl_struct_field *) rzalloc_array_size(state, sizeof(glsl_struct_field ), decl_count)); |
7309 | |
7310 | bool first_member = true; |
7311 | bool first_member_has_explicit_location = false; |
7312 | |
7313 | unsigned i = 0; |
7314 | foreach_list_typed (ast_declarator_list, decl_list, link, declarations)for (ast_declarator_list * decl_list = (!exec_node_is_tail_sentinel ((declarations)->head_sentinel.next) ? ((ast_declarator_list *) (((uintptr_t) (declarations)->head_sentinel.next) - (( (char *) &((ast_declarator_list *) (declarations)->head_sentinel .next)->link) - ((char *) (declarations)->head_sentinel .next)))) : __null); (decl_list) != __null; (decl_list) = (!exec_node_is_tail_sentinel ((decl_list)->link.next) ? ((ast_declarator_list *) (((uintptr_t ) (decl_list)->link.next) - (((char *) &((ast_declarator_list *) (decl_list)->link.next)->link) - ((char *) (decl_list )->link.next)))) : __null)) { |
7315 | const char *type_name; |
7316 | YYLTYPE loc = decl_list->get_location(); |
7317 | |
7318 | decl_list->type->specifier->hir(instructions, state); |
7319 | |
7320 | /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says: |
7321 | * |
7322 | * "Anonymous structures are not supported; so embedded structures |
7323 | * must have a declarator. A name given to an embedded struct is |
7324 | * scoped at the same level as the struct it is embedded in." |
7325 | * |
7326 | * The same section of the GLSL 1.20 spec says: |
7327 | * |
7328 | * "Anonymous structures are not supported. Embedded structures are |
7329 | * not supported." |
7330 | * |
7331 | * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow |
7332 | * embedded structures in 1.10 only. |
7333 | */ |
7334 | if (state->language_version != 110 && |
7335 | decl_list->type->specifier->structure != NULL__null) |
7336 | _mesa_glsl_error(&loc, state, |
7337 | "embedded structure declarations are not allowed"); |
7338 | |
7339 | const glsl_type *decl_type = |
7340 | decl_list->type->glsl_type(& type_name, state); |
7341 | |
7342 | const struct ast_type_qualifier *const qual = |
7343 | &decl_list->type->qualifier; |
7344 | |
7345 | /* From section 4.3.9 of the GLSL 4.40 spec: |
7346 | * |
7347 | * "[In interface blocks] opaque types are not allowed." |
7348 | * |
7349 | * It should be impossible for decl_type to be NULL here. Cases that |
7350 | * might naturally lead to decl_type being NULL, especially for the |
7351 | * is_interface case, will have resulted in compilation having |
7352 | * already halted due to a syntax error. |
7353 | */ |
7354 | assert(decl_type)(static_cast <bool> (decl_type) ? void (0) : __assert_fail ("decl_type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
7355 | |
7356 | if (is_interface) { |
7357 | /* From section 4.3.7 of the ARB_bindless_texture spec: |
7358 | * |
7359 | * "(remove the following bullet from the last list on p. 39, |
7360 | * thereby permitting sampler types in interface blocks; image |
7361 | * types are also permitted in blocks by this extension)" |
7362 | * |
7363 | * * sampler types are not allowed |
7364 | */ |
7365 | if (decl_type->contains_atomic() || |
7366 | (!state->has_bindless() && decl_type->contains_opaque())) { |
7367 | _mesa_glsl_error(&loc, state, "uniform/buffer in non-default " |
7368 | "interface block contains %s variable", |
7369 | state->has_bindless() ? "atomic" : "opaque"); |
7370 | } |
7371 | } else { |
7372 | if (decl_type->contains_atomic()) { |
7373 | /* From section 4.1.7.3 of the GLSL 4.40 spec: |
7374 | * |
7375 | * "Members of structures cannot be declared as atomic counter |
7376 | * types." |
7377 | */ |
7378 | _mesa_glsl_error(&loc, state, "atomic counter in structure"); |
7379 | } |
7380 | |
7381 | if (!state->has_bindless() && decl_type->contains_image()) { |
7382 | /* FINISHME: Same problem as with atomic counters. |
7383 | * FINISHME: Request clarification from Khronos and add |
7384 | * FINISHME: spec quotation here. |
7385 | */ |
7386 | _mesa_glsl_error(&loc, state, "image in structure"); |
7387 | } |
7388 | } |
7389 | |
7390 | if (qual->flags.q.explicit_binding) { |
7391 | _mesa_glsl_error(&loc, state, |
7392 | "binding layout qualifier cannot be applied " |
7393 | "to struct or interface block members"); |
7394 | } |
7395 | |
7396 | if (is_interface) { |
7397 | if (!first_member) { |
7398 | if (!layout->flags.q.explicit_location && |
7399 | ((first_member_has_explicit_location && |
7400 | !qual->flags.q.explicit_location) || |
7401 | (!first_member_has_explicit_location && |
7402 | qual->flags.q.explicit_location))) { |
7403 | _mesa_glsl_error(&loc, state, |
7404 | "when block-level location layout qualifier " |
7405 | "is not supplied either all members must " |
7406 | "have a location layout qualifier or all " |
7407 | "members must not have a location layout " |
7408 | "qualifier"); |
7409 | } |
7410 | } else { |
7411 | first_member = false; |
7412 | first_member_has_explicit_location = |
7413 | qual->flags.q.explicit_location; |
7414 | } |
7415 | } |
7416 | |
7417 | if (qual->flags.q.std140 || |
7418 | qual->flags.q.std430 || |
7419 | qual->flags.q.packed || |
7420 | qual->flags.q.shared) { |
7421 | _mesa_glsl_error(&loc, state, |
7422 | "uniform/shader storage block layout qualifiers " |
7423 | "std140, std430, packed, and shared can only be " |
7424 | "applied to uniform/shader storage blocks, not " |
7425 | "members"); |
7426 | } |
7427 | |
7428 | if (qual->flags.q.constant) { |
7429 | _mesa_glsl_error(&loc, state, |
7430 | "const storage qualifier cannot be applied " |
7431 | "to struct or interface block members"); |
7432 | } |
7433 | |
7434 | validate_memory_qualifier_for_type(state, &loc, qual, decl_type); |
7435 | validate_image_format_qualifier_for_type(state, &loc, qual, decl_type); |
7436 | |
7437 | /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec: |
7438 | * |
7439 | * "A block member may be declared with a stream identifier, but |
7440 | * the specified stream must match the stream associated with the |
7441 | * containing block." |
7442 | */ |
7443 | if (qual->flags.q.explicit_stream) { |
7444 | unsigned qual_stream; |
7445 | if (process_qualifier_constant(state, &loc, "stream", |
7446 | qual->stream, &qual_stream) && |
7447 | qual_stream != block_stream) { |
7448 | _mesa_glsl_error(&loc, state, "stream layout qualifier on " |
7449 | "interface block member does not match " |
7450 | "the interface block (%u vs %u)", qual_stream, |
7451 | block_stream); |
7452 | } |
7453 | } |
7454 | |
7455 | int xfb_buffer; |
7456 | unsigned explicit_xfb_buffer = 0; |
7457 | if (qual->flags.q.explicit_xfb_buffer) { |
7458 | unsigned qual_xfb_buffer; |
7459 | if (process_qualifier_constant(state, &loc, "xfb_buffer", |
7460 | qual->xfb_buffer, &qual_xfb_buffer)) { |
7461 | explicit_xfb_buffer = 1; |
7462 | if (qual_xfb_buffer != block_xfb_buffer) |
7463 | _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on " |
7464 | "interface block member does not match " |
7465 | "the interface block (%u vs %u)", |
7466 | qual_xfb_buffer, block_xfb_buffer); |
7467 | } |
7468 | xfb_buffer = (int) qual_xfb_buffer; |
7469 | } else { |
7470 | if (layout) |
7471 | explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer; |
7472 | xfb_buffer = (int) block_xfb_buffer; |
7473 | } |
7474 | |
7475 | int xfb_stride = -1; |
7476 | if (qual->flags.q.explicit_xfb_stride) { |
7477 | unsigned qual_xfb_stride; |
7478 | if (process_qualifier_constant(state, &loc, "xfb_stride", |
7479 | qual->xfb_stride, &qual_xfb_stride)) { |
7480 | xfb_stride = (int) qual_xfb_stride; |
7481 | } |
7482 | } |
7483 | |
7484 | if (qual->flags.q.uniform && qual->has_interpolation()) { |
7485 | _mesa_glsl_error(&loc, state, |
7486 | "interpolation qualifiers cannot be used " |
7487 | "with uniform interface blocks"); |
7488 | } |
7489 | |
7490 | if ((qual->flags.q.uniform || !is_interface) && |
7491 | qual->has_auxiliary_storage()) { |
7492 | _mesa_glsl_error(&loc, state, |
7493 | "auxiliary storage qualifiers cannot be used " |
7494 | "in uniform blocks or structures."); |
7495 | } |
7496 | |
7497 | if (qual->flags.q.row_major || qual->flags.q.column_major) { |
7498 | if (!qual->flags.q.uniform && !qual->flags.q.buffer) { |
7499 | _mesa_glsl_error(&loc, state, |
7500 | "row_major and column_major can only be " |
7501 | "applied to interface blocks"); |
7502 | } else |
7503 | validate_matrix_layout_for_type(state, &loc, decl_type, NULL__null); |
7504 | } |
7505 | |
7506 | foreach_list_typed (ast_declaration, decl, link,for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& decl_list->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&decl_list->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&decl_list ->declarations)->head_sentinel.next)->link) - ((char *) (&decl_list->declarations)->head_sentinel.next) ))) : __null); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel ((decl)->link.next) ? ((ast_declaration *) (((uintptr_t) ( decl)->link.next) - (((char *) &((ast_declaration *) ( decl)->link.next)->link) - ((char *) (decl)->link.next )))) : __null)) |
7507 | &decl_list->declarations)for (ast_declaration * decl = (!exec_node_is_tail_sentinel((& decl_list->declarations)->head_sentinel.next) ? ((ast_declaration *) (((uintptr_t) (&decl_list->declarations)->head_sentinel .next) - (((char *) &((ast_declaration *) (&decl_list ->declarations)->head_sentinel.next)->link) - ((char *) (&decl_list->declarations)->head_sentinel.next) ))) : __null); (decl) != __null; (decl) = (!exec_node_is_tail_sentinel ((decl)->link.next) ? ((ast_declaration *) (((uintptr_t) ( decl)->link.next) - (((char *) &((ast_declaration *) ( decl)->link.next)->link) - ((char *) (decl)->link.next )))) : __null)) { |
7508 | YYLTYPE loc = decl->get_location(); |
7509 | |
7510 | if (!allow_reserved_names) |
7511 | validate_identifier(decl->identifier, loc, state); |
7512 | |
7513 | const struct glsl_type *field_type = |
7514 | process_array_type(&loc, decl_type, decl->array_specifier, state); |
7515 | validate_array_dimensions(field_type, state, &loc); |
7516 | fields[i].type = field_type; |
7517 | fields[i].name = decl->identifier; |
7518 | fields[i].interpolation = |
7519 | interpret_interpolation_qualifier(qual, field_type, |
7520 | var_mode, state, &loc); |
7521 | fields[i].centroid = qual->flags.q.centroid ? 1 : 0; |
7522 | fields[i].sample = qual->flags.q.sample ? 1 : 0; |
7523 | fields[i].patch = qual->flags.q.patch ? 1 : 0; |
7524 | fields[i].offset = -1; |
7525 | fields[i].explicit_xfb_buffer = explicit_xfb_buffer; |
7526 | fields[i].xfb_buffer = xfb_buffer; |
7527 | fields[i].xfb_stride = xfb_stride; |
7528 | |
7529 | if (qual->flags.q.explicit_location) { |
7530 | unsigned qual_location; |
7531 | if (process_qualifier_constant(state, &loc, "location", |
7532 | qual->location, &qual_location)) { |
7533 | fields[i].location = qual_location + |
7534 | (fields[i].patch ? VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)) : VARYING_SLOT_VAR0); |
7535 | expl_location = fields[i].location + |
7536 | fields[i].type->count_attribute_slots(false); |
7537 | } |
7538 | } else { |
7539 | if (layout && layout->flags.q.explicit_location) { |
7540 | fields[i].location = expl_location; |
7541 | expl_location += fields[i].type->count_attribute_slots(false); |
7542 | } else { |
7543 | fields[i].location = -1; |
7544 | } |
7545 | } |
7546 | |
7547 | /* Offset can only be used with std430 and std140 layouts an initial |
7548 | * value of 0 is used for error detection. |
7549 | */ |
7550 | unsigned align = 0; |
7551 | unsigned size = 0; |
7552 | if (layout) { |
7553 | bool row_major; |
7554 | if (qual->flags.q.row_major || |
7555 | matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { |
7556 | row_major = true; |
7557 | } else { |
7558 | row_major = false; |
7559 | } |
7560 | |
7561 | if(layout->flags.q.std140) { |
7562 | align = field_type->std140_base_alignment(row_major); |
7563 | size = field_type->std140_size(row_major); |
7564 | } else if (layout->flags.q.std430) { |
7565 | align = field_type->std430_base_alignment(row_major); |
7566 | size = field_type->std430_size(row_major); |
7567 | } |
7568 | } |
7569 | |
7570 | if (qual->flags.q.explicit_offset) { |
7571 | unsigned qual_offset; |
7572 | if (process_qualifier_constant(state, &loc, "offset", |
7573 | qual->offset, &qual_offset)) { |
7574 | if (align != 0 && size != 0) { |
7575 | if (next_offset > qual_offset) |
7576 | _mesa_glsl_error(&loc, state, "layout qualifier " |
7577 | "offset overlaps previous member"); |
7578 | |
7579 | if (qual_offset % align) { |
7580 | _mesa_glsl_error(&loc, state, "layout qualifier offset " |
7581 | "must be a multiple of the base " |
7582 | "alignment of %s", field_type->name); |
7583 | } |
7584 | fields[i].offset = qual_offset; |
7585 | next_offset = qual_offset + size; |
7586 | } else { |
7587 | _mesa_glsl_error(&loc, state, "offset can only be used " |
7588 | "with std430 and std140 layouts"); |
7589 | } |
7590 | } |
7591 | } |
7592 | |
7593 | if (qual->flags.q.explicit_align || expl_align != 0) { |
7594 | unsigned offset = fields[i].offset != -1 ? fields[i].offset : |
7595 | next_offset; |
7596 | if (align == 0 || size == 0) { |
7597 | _mesa_glsl_error(&loc, state, "align can only be used with " |
7598 | "std430 and std140 layouts"); |
7599 | } else if (qual->flags.q.explicit_align) { |
7600 | unsigned member_align; |
7601 | if (process_qualifier_constant(state, &loc, "align", |
7602 | qual->align, &member_align)) { |
7603 | if (member_align == 0 || |
7604 | member_align & (member_align - 1)) { |
7605 | _mesa_glsl_error(&loc, state, "align layout qualifier " |
7606 | "is not a power of 2"); |
7607 | } else { |
7608 | fields[i].offset = glsl_align(offset, member_align); |
7609 | next_offset = fields[i].offset + size; |
7610 | } |
7611 | } |
7612 | } else { |
7613 | fields[i].offset = glsl_align(offset, expl_align); |
7614 | next_offset = fields[i].offset + size; |
7615 | } |
7616 | } else if (!qual->flags.q.explicit_offset) { |
7617 | if (align != 0 && size != 0) |
7618 | next_offset = glsl_align(next_offset, align) + size; |
7619 | } |
7620 | |
7621 | /* From the ARB_enhanced_layouts spec: |
7622 | * |
7623 | * "The given offset applies to the first component of the first |
7624 | * member of the qualified entity. Then, within the qualified |
7625 | * entity, subsequent components are each assigned, in order, to |
7626 | * the next available offset aligned to a multiple of that |
7627 | * component's size. Aggregate types are flattened down to the |
7628 | * component level to get this sequence of components." |
7629 | */ |
7630 | if (qual->flags.q.explicit_xfb_offset) { |
7631 | unsigned xfb_offset; |
7632 | if (process_qualifier_constant(state, &loc, "xfb_offset", |
7633 | qual->offset, &xfb_offset)) { |
7634 | fields[i].offset = xfb_offset; |
7635 | block_xfb_offset = fields[i].offset + |
7636 | 4 * field_type->component_slots(); |
7637 | } |
7638 | } else { |
7639 | if (layout && layout->flags.q.explicit_xfb_offset) { |
7640 | unsigned align = field_type->is_64bit() ? 8 : 4; |
7641 | fields[i].offset = glsl_align(block_xfb_offset, align); |
7642 | block_xfb_offset += 4 * field_type->component_slots(); |
7643 | } |
7644 | } |
7645 | |
7646 | /* Propogate row- / column-major information down the fields of the |
7647 | * structure or interface block. Structures need this data because |
7648 | * the structure may contain a structure that contains ... a matrix |
7649 | * that need the proper layout. |
7650 | */ |
7651 | if (is_interface && layout && |
7652 | (layout->flags.q.uniform || layout->flags.q.buffer) && |
7653 | (field_type->without_array()->is_matrix() |
7654 | || field_type->without_array()->is_struct())) { |
7655 | /* If no layout is specified for the field, inherit the layout |
7656 | * from the block. |
7657 | */ |
7658 | fields[i].matrix_layout = matrix_layout; |
7659 | |
7660 | if (qual->flags.q.row_major) |
7661 | fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; |
7662 | else if (qual->flags.q.column_major) |
7663 | fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; |
7664 | |
7665 | /* If we're processing an uniform or buffer block, the matrix |
7666 | * layout must be decided by this point. |
7667 | */ |
7668 | assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR(static_cast <bool> (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR ) ? void (0) : __assert_fail ("fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) |
7669 | || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR)(static_cast <bool> (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR ) ? void (0) : __assert_fail ("fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
7670 | } |
7671 | |
7672 | /* Memory qualifiers are allowed on buffer and image variables, while |
7673 | * the format qualifier is only accepted for images. |
7674 | */ |
7675 | if (var_mode == ir_var_shader_storage || |
7676 | field_type->without_array()->is_image()) { |
7677 | /* For readonly and writeonly qualifiers the field definition, |
7678 | * if set, overwrites the layout qualifier. |
7679 | */ |
7680 | if (qual->flags.q.read_only || qual->flags.q.write_only) { |
7681 | fields[i].memory_read_only = qual->flags.q.read_only; |
7682 | fields[i].memory_write_only = qual->flags.q.write_only; |
7683 | } else { |
7684 | fields[i].memory_read_only = |
7685 | layout ? layout->flags.q.read_only : 0; |
7686 | fields[i].memory_write_only = |
7687 | layout ? layout->flags.q.write_only : 0; |
7688 | } |
7689 | |
7690 | /* For other qualifiers, we set the flag if either the layout |
7691 | * qualifier or the field qualifier are set |
7692 | */ |
7693 | fields[i].memory_coherent = qual->flags.q.coherent || |
7694 | (layout && layout->flags.q.coherent); |
7695 | fields[i].memory_volatile = qual->flags.q._volatile || |
7696 | (layout && layout->flags.q._volatile); |
7697 | fields[i].memory_restrict = qual->flags.q.restrict_flag || |
7698 | (layout && layout->flags.q.restrict_flag); |
7699 | |
7700 | if (field_type->without_array()->is_image()) { |
7701 | if (qual->flags.q.explicit_image_format) { |
7702 | if (qual->image_base_type != |
7703 | field_type->without_array()->sampled_type) { |
7704 | _mesa_glsl_error(&loc, state, "format qualifier doesn't " |
7705 | "match the base data type of the image"); |
7706 | } |
7707 | |
7708 | fields[i].image_format = qual->image_format; |
7709 | } else { |
7710 | if (!qual->flags.q.write_only) { |
7711 | _mesa_glsl_error(&loc, state, "image not qualified with " |
7712 | "`writeonly' must have a format layout " |
7713 | "qualifier"); |
7714 | } |
7715 | |
7716 | fields[i].image_format = PIPE_FORMAT_NONE; |
7717 | } |
7718 | } |
7719 | } |
7720 | |
7721 | /* Precision qualifiers do not hold any meaning in Desktop GLSL */ |
7722 | if (state->es_shader) { |
7723 | fields[i].precision = select_gles_precision(qual->precision, |
7724 | field_type, |
7725 | state, |
7726 | &loc); |
7727 | } else { |
7728 | fields[i].precision = qual->precision; |
7729 | } |
7730 | |
7731 | i++; |
7732 | } |
7733 | } |
7734 | |
7735 | assert(i == decl_count)(static_cast <bool> (i == decl_count) ? void (0) : __assert_fail ("i == decl_count", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
7736 | |
7737 | *fields_ret = fields; |
7738 | return decl_count; |
7739 | } |
7740 | |
7741 | |
7742 | ir_rvalue * |
7743 | ast_struct_specifier::hir(exec_list *instructions, |
7744 | struct _mesa_glsl_parse_state *state) |
7745 | { |
7746 | YYLTYPE loc = this->get_location(); |
7747 | |
7748 | unsigned expl_location = 0; |
7749 | if (layout && layout->flags.q.explicit_location) { |
7750 | if (!process_qualifier_constant(state, &loc, "location", |
7751 | layout->location, &expl_location)) { |
7752 | return NULL__null; |
7753 | } else { |
7754 | expl_location = VARYING_SLOT_VAR0 + expl_location; |
7755 | } |
7756 | } |
7757 | |
7758 | glsl_struct_field *fields; |
7759 | unsigned decl_count = |
7760 | ast_process_struct_or_iface_block_members(instructions, |
7761 | state, |
7762 | &this->declarations, |
7763 | &fields, |
7764 | false, |
7765 | GLSL_MATRIX_LAYOUT_INHERITED, |
7766 | false /* allow_reserved_names */, |
7767 | ir_var_auto, |
7768 | layout, |
7769 | 0, /* for interface only */ |
7770 | 0, /* for interface only */ |
7771 | 0, /* for interface only */ |
7772 | expl_location, |
7773 | 0 /* for interface only */); |
7774 | |
7775 | validate_identifier(this->name, loc, state); |
7776 | |
7777 | type = glsl_type::get_struct_instance(fields, decl_count, this->name); |
7778 | |
7779 | if (!type->is_anonymous() && !state->symbols->add_type(name, type)) { |
7780 | const glsl_type *match = state->symbols->get_type(name); |
7781 | /* allow struct matching for desktop GL - older UE4 does this */ |
7782 | if (match != NULL__null && state->is_version(130, 0) && match->record_compare(type, true, false)) |
7783 | _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name); |
7784 | else |
7785 | _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); |
7786 | } else { |
7787 | const glsl_type **s = reralloc(state, state->user_structures,((const glsl_type * *) reralloc_array_size(state, state->user_structures , sizeof(const glsl_type *), state->num_user_structures + 1 )) |
7788 | const glsl_type *,((const glsl_type * *) reralloc_array_size(state, state->user_structures , sizeof(const glsl_type *), state->num_user_structures + 1 )) |
7789 | state->num_user_structures + 1)((const glsl_type * *) reralloc_array_size(state, state->user_structures , sizeof(const glsl_type *), state->num_user_structures + 1 )); |
7790 | if (s != NULL__null) { |
7791 | s[state->num_user_structures] = type; |
7792 | state->user_structures = s; |
7793 | state->num_user_structures++; |
7794 | |
7795 | ir_typedecl_statement* stmt = new(state) ir_typedecl_statement(type); |
7796 | /* Push the struct declarations to the top. |
7797 | * However, do not insert declarations before default precision |
7798 | * statements or other declarations |
7799 | */ |
7800 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); |
7801 | while (before_node && |
7802 | (before_node->ir_type == ir_type_precision || |
7803 | before_node->ir_type == ir_type_typedecl)) |
7804 | before_node = (ir_instruction*)before_node->next; |
7805 | if (before_node) |
7806 | before_node->insert_before(stmt); |
7807 | else |
7808 | instructions->push_head(stmt); |
7809 | } |
7810 | } |
7811 | |
7812 | /* Structure type definitions do not have r-values. |
7813 | */ |
7814 | return NULL__null; |
7815 | } |
7816 | |
7817 | |
7818 | /** |
7819 | * Visitor class which detects whether a given interface block has been used. |
7820 | */ |
7821 | class interface_block_usage_visitor : public ir_hierarchical_visitor |
7822 | { |
7823 | public: |
7824 | interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block) |
7825 | : mode(mode), block(block), found(false) |
7826 | { |
7827 | } |
7828 | |
7829 | virtual ir_visitor_status visit(ir_dereference_variable *ir) |
7830 | { |
7831 | if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) { |
7832 | found = true; |
7833 | return visit_stop; |
7834 | } |
7835 | return visit_continue; |
7836 | } |
7837 | |
7838 | bool usage_found() const |
7839 | { |
7840 | return this->found; |
7841 | } |
7842 | |
7843 | private: |
7844 | ir_variable_mode mode; |
7845 | const glsl_type *block; |
7846 | bool found; |
7847 | }; |
7848 | |
7849 | static bool |
7850 | is_unsized_array_last_element(ir_variable *v) |
7851 | { |
7852 | const glsl_type *interface_type = v->get_interface_type(); |
7853 | int length = interface_type->length; |
7854 | |
7855 | assert(v->type->is_unsized_array())(static_cast <bool> (v->type->is_unsized_array()) ? void (0) : __assert_fail ("v->type->is_unsized_array()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
7856 | |
7857 | /* Check if it is the last element of the interface */ |
7858 | if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0) |
7859 | return true; |
7860 | return false; |
7861 | } |
7862 | |
7863 | static void |
7864 | apply_memory_qualifiers(ir_variable *var, glsl_struct_field field) |
7865 | { |
7866 | var->data.memory_read_only = field.memory_read_only; |
7867 | var->data.memory_write_only = field.memory_write_only; |
7868 | var->data.memory_coherent = field.memory_coherent; |
7869 | var->data.memory_volatile = field.memory_volatile; |
7870 | var->data.memory_restrict = field.memory_restrict; |
7871 | } |
7872 | |
7873 | ir_rvalue * |
7874 | ast_interface_block::hir(exec_list *instructions, |
7875 | struct _mesa_glsl_parse_state *state) |
7876 | { |
7877 | YYLTYPE loc = this->get_location(); |
7878 | |
7879 | /* Interface blocks must be declared at global scope */ |
7880 | if (state->current_function != NULL__null) { |
7881 | _mesa_glsl_error(&loc, state, |
7882 | "Interface block `%s' must be declared " |
7883 | "at global scope", |
7884 | this->block_name); |
7885 | } |
7886 | |
7887 | /* Validate qualifiers: |
7888 | * |
7889 | * - Layout Qualifiers as per the table in Section 4.4 |
7890 | * ("Layout Qualifiers") of the GLSL 4.50 spec. |
7891 | * |
7892 | * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the |
7893 | * GLSL 4.50 spec: |
7894 | * |
7895 | * "Additionally, memory qualifiers may also be used in the declaration |
7896 | * of shader storage blocks" |
7897 | * |
7898 | * Note the table in Section 4.4 says std430 is allowed on both uniform and |
7899 | * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block |
7900 | * Layout Qualifiers) of the GLSL 4.50 spec says: |
7901 | * |
7902 | * "The std430 qualifier is supported only for shader storage blocks; |
7903 | * using std430 on a uniform block will result in a compile-time error." |
7904 | */ |
7905 | ast_type_qualifier allowed_blk_qualifiers; |
7906 | allowed_blk_qualifiers.flags.i = 0; |
7907 | if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) { |
7908 | allowed_blk_qualifiers.flags.q.shared = 1; |
7909 | allowed_blk_qualifiers.flags.q.packed = 1; |
7910 | allowed_blk_qualifiers.flags.q.std140 = 1; |
7911 | allowed_blk_qualifiers.flags.q.row_major = 1; |
7912 | allowed_blk_qualifiers.flags.q.column_major = 1; |
7913 | allowed_blk_qualifiers.flags.q.explicit_align = 1; |
7914 | allowed_blk_qualifiers.flags.q.explicit_binding = 1; |
7915 | if (this->layout.flags.q.buffer) { |
7916 | allowed_blk_qualifiers.flags.q.buffer = 1; |
7917 | allowed_blk_qualifiers.flags.q.std430 = 1; |
7918 | allowed_blk_qualifiers.flags.q.coherent = 1; |
7919 | allowed_blk_qualifiers.flags.q._volatile = 1; |
7920 | allowed_blk_qualifiers.flags.q.restrict_flag = 1; |
7921 | allowed_blk_qualifiers.flags.q.read_only = 1; |
7922 | allowed_blk_qualifiers.flags.q.write_only = 1; |
7923 | } else { |
7924 | allowed_blk_qualifiers.flags.q.uniform = 1; |
7925 | } |
7926 | } else { |
7927 | /* Interface block */ |
7928 | assert(this->layout.flags.q.in || this->layout.flags.q.out)(static_cast <bool> (this->layout.flags.q.in || this ->layout.flags.q.out) ? void (0) : __assert_fail ("this->layout.flags.q.in || this->layout.flags.q.out" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
7929 | |
7930 | allowed_blk_qualifiers.flags.q.explicit_location = 1; |
7931 | if (this->layout.flags.q.out) { |
7932 | allowed_blk_qualifiers.flags.q.out = 1; |
7933 | if (state->stage == MESA_SHADER_GEOMETRY || |
7934 | state->stage == MESA_SHADER_TESS_CTRL || |
7935 | state->stage == MESA_SHADER_TESS_EVAL || |
7936 | state->stage == MESA_SHADER_VERTEX ) { |
7937 | allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1; |
7938 | allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1; |
7939 | allowed_blk_qualifiers.flags.q.xfb_buffer = 1; |
7940 | allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1; |
7941 | allowed_blk_qualifiers.flags.q.xfb_stride = 1; |
7942 | if (state->stage == MESA_SHADER_GEOMETRY) { |
7943 | allowed_blk_qualifiers.flags.q.stream = 1; |
7944 | allowed_blk_qualifiers.flags.q.explicit_stream = 1; |
7945 | } |
7946 | if (state->stage == MESA_SHADER_TESS_CTRL) { |
7947 | allowed_blk_qualifiers.flags.q.patch = 1; |
7948 | } |
7949 | } |
7950 | } else { |
7951 | allowed_blk_qualifiers.flags.q.in = 1; |
7952 | if (state->stage == MESA_SHADER_TESS_EVAL) { |
7953 | allowed_blk_qualifiers.flags.q.patch = 1; |
7954 | } |
7955 | } |
7956 | } |
7957 | |
7958 | this->layout.validate_flags(&loc, state, allowed_blk_qualifiers, |
7959 | "invalid qualifier for block", |
7960 | this->block_name); |
7961 | |
7962 | enum glsl_interface_packing packing; |
7963 | if (this->layout.flags.q.std140) { |
7964 | packing = GLSL_INTERFACE_PACKING_STD140; |
7965 | } else if (this->layout.flags.q.packed) { |
7966 | packing = GLSL_INTERFACE_PACKING_PACKED; |
7967 | } else if (this->layout.flags.q.std430) { |
7968 | packing = GLSL_INTERFACE_PACKING_STD430; |
7969 | } else { |
7970 | /* The default layout is shared. |
7971 | */ |
7972 | packing = GLSL_INTERFACE_PACKING_SHARED; |
7973 | } |
7974 | |
7975 | ir_variable_mode var_mode; |
7976 | const char *iface_type_name; |
7977 | if (this->layout.flags.q.in) { |
7978 | var_mode = ir_var_shader_in; |
7979 | iface_type_name = "in"; |
7980 | } else if (this->layout.flags.q.out) { |
7981 | var_mode = ir_var_shader_out; |
7982 | iface_type_name = "out"; |
7983 | } else if (this->layout.flags.q.uniform) { |
7984 | var_mode = ir_var_uniform; |
7985 | iface_type_name = "uniform"; |
7986 | } else if (this->layout.flags.q.buffer) { |
7987 | var_mode = ir_var_shader_storage; |
7988 | iface_type_name = "buffer"; |
7989 | } else { |
7990 | var_mode = ir_var_auto; |
7991 | iface_type_name = "UNKNOWN"; |
7992 | assert(!"interface block layout qualifier not found!")(static_cast <bool> (!"interface block layout qualifier not found!" ) ? void (0) : __assert_fail ("!\"interface block layout qualifier not found!\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
7993 | } |
7994 | |
7995 | enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; |
7996 | if (this->layout.flags.q.row_major) |
7997 | matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; |
7998 | else if (this->layout.flags.q.column_major) |
7999 | matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; |
8000 | |
8001 | bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0; |
8002 | exec_list declared_variables; |
8003 | glsl_struct_field *fields; |
8004 | |
8005 | /* For blocks that accept memory qualifiers (i.e. shader storage), verify |
8006 | * that we don't have incompatible qualifiers |
8007 | */ |
8008 | if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) { |
8009 | _mesa_glsl_error(&loc, state, |
8010 | "Interface block sets both readonly and writeonly"); |
8011 | } |
8012 | |
8013 | unsigned qual_stream; |
8014 | if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream, |
8015 | &qual_stream) || |
8016 | !validate_stream_qualifier(&loc, state, qual_stream)) { |
8017 | /* If the stream qualifier is invalid it doesn't make sense to continue |
8018 | * on and try to compare stream layouts on member variables against it |
8019 | * so just return early. |
8020 | */ |
8021 | return NULL__null; |
8022 | } |
8023 | |
8024 | unsigned qual_xfb_buffer; |
8025 | if (!process_qualifier_constant(state, &loc, "xfb_buffer", |
8026 | layout.xfb_buffer, &qual_xfb_buffer) || |
8027 | !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) { |
8028 | return NULL__null; |
8029 | } |
8030 | |
8031 | unsigned qual_xfb_offset; |
8032 | if (layout.flags.q.explicit_xfb_offset) { |
8033 | if (!process_qualifier_constant(state, &loc, "xfb_offset", |
8034 | layout.offset, &qual_xfb_offset)) { |
8035 | return NULL__null; |
8036 | } |
8037 | } |
8038 | |
8039 | unsigned qual_xfb_stride; |
8040 | if (layout.flags.q.explicit_xfb_stride) { |
8041 | if (!process_qualifier_constant(state, &loc, "xfb_stride", |
8042 | layout.xfb_stride, &qual_xfb_stride)) { |
8043 | return NULL__null; |
8044 | } |
8045 | } |
8046 | |
8047 | unsigned expl_location = 0; |
8048 | if (layout.flags.q.explicit_location) { |
8049 | if (!process_qualifier_constant(state, &loc, "location", |
8050 | layout.location, &expl_location)) { |
8051 | return NULL__null; |
8052 | } else { |
8053 | expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)) |
8054 | : VARYING_SLOT_VAR0; |
8055 | } |
8056 | } |
8057 | |
8058 | unsigned expl_align = 0; |
8059 | if (layout.flags.q.explicit_align) { |
8060 | if (!process_qualifier_constant(state, &loc, "align", |
8061 | layout.align, &expl_align)) { |
8062 | return NULL__null; |
8063 | } else { |
8064 | if (expl_align == 0 || expl_align & (expl_align - 1)) { |
8065 | _mesa_glsl_error(&loc, state, "align layout qualifier is not a " |
8066 | "power of 2."); |
8067 | return NULL__null; |
8068 | } |
8069 | } |
8070 | } |
8071 | |
8072 | unsigned int num_variables = |
8073 | ast_process_struct_or_iface_block_members(&declared_variables, |
8074 | state, |
8075 | &this->declarations, |
8076 | &fields, |
8077 | true, |
8078 | matrix_layout, |
8079 | redeclaring_per_vertex, |
8080 | var_mode, |
8081 | &this->layout, |
8082 | qual_stream, |
8083 | qual_xfb_buffer, |
8084 | qual_xfb_offset, |
8085 | expl_location, |
8086 | expl_align); |
8087 | |
8088 | if (!redeclaring_per_vertex) { |
8089 | validate_identifier(this->block_name, loc, state); |
8090 | |
8091 | /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec: |
8092 | * |
8093 | * "Block names have no other use within a shader beyond interface |
8094 | * matching; it is a compile-time error to use a block name at global |
8095 | * scope for anything other than as a block name." |
8096 | */ |
8097 | ir_variable *var = state->symbols->get_variable(this->block_name); |
8098 | if (var && !var->type->is_interface()) { |
8099 | _mesa_glsl_error(&loc, state, "Block name `%s' is " |
8100 | "already used in the scope.", |
8101 | this->block_name); |
8102 | } |
8103 | } |
8104 | |
8105 | const glsl_type *earlier_per_vertex = NULL__null; |
8106 | if (redeclaring_per_vertex) { |
8107 | /* Find the previous declaration of gl_PerVertex. If we're redeclaring |
8108 | * the named interface block gl_in, we can find it by looking at the |
8109 | * previous declaration of gl_in. Otherwise we can find it by looking |
8110 | * at the previous decalartion of any of the built-in outputs, |
8111 | * e.g. gl_Position. |
8112 | * |
8113 | * Also check that the instance name and array-ness of the redeclaration |
8114 | * are correct. |
8115 | */ |
8116 | switch (var_mode) { |
8117 | case ir_var_shader_in: |
8118 | if (ir_variable *earlier_gl_in = |
8119 | state->symbols->get_variable("gl_in")) { |
8120 | earlier_per_vertex = earlier_gl_in->get_interface_type(); |
8121 | } else { |
8122 | _mesa_glsl_error(&loc, state, |
8123 | "redeclaration of gl_PerVertex input not allowed " |
8124 | "in the %s shader", |
8125 | _mesa_shader_stage_to_string(state->stage)); |
8126 | } |
8127 | if (this->instance_name == NULL__null || |
8128 | strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL__null || |
8129 | !this->array_specifier->is_single_dimension()) { |
8130 | _mesa_glsl_error(&loc, state, |
8131 | "gl_PerVertex input must be redeclared as " |
8132 | "gl_in[]"); |
8133 | } |
8134 | break; |
8135 | case ir_var_shader_out: |
8136 | if (ir_variable *earlier_gl_Position = |
8137 | state->symbols->get_variable("gl_Position")) { |
8138 | earlier_per_vertex = earlier_gl_Position->get_interface_type(); |
8139 | } else if (ir_variable *earlier_gl_out = |
8140 | state->symbols->get_variable("gl_out")) { |
8141 | earlier_per_vertex = earlier_gl_out->get_interface_type(); |
8142 | } else { |
8143 | _mesa_glsl_error(&loc, state, |
8144 | "redeclaration of gl_PerVertex output not " |
8145 | "allowed in the %s shader", |
8146 | _mesa_shader_stage_to_string(state->stage)); |
8147 | } |
8148 | if (state->stage == MESA_SHADER_TESS_CTRL) { |
8149 | if (this->instance_name == NULL__null || |
8150 | strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL__null) { |
8151 | _mesa_glsl_error(&loc, state, |
8152 | "gl_PerVertex output must be redeclared as " |
8153 | "gl_out[]"); |
8154 | } |
8155 | } else { |
8156 | if (this->instance_name != NULL__null) { |
8157 | _mesa_glsl_error(&loc, state, |
8158 | "gl_PerVertex output may not be redeclared with " |
8159 | "an instance name"); |
8160 | } |
8161 | } |
8162 | break; |
8163 | default: |
8164 | _mesa_glsl_error(&loc, state, |
8165 | "gl_PerVertex must be declared as an input or an " |
8166 | "output"); |
8167 | break; |
8168 | } |
8169 | |
8170 | if (earlier_per_vertex == NULL__null) { |
8171 | /* An error has already been reported. Bail out to avoid null |
8172 | * dereferences later in this function. |
8173 | */ |
8174 | return NULL__null; |
8175 | } |
8176 | |
8177 | /* Copy locations from the old gl_PerVertex interface block. */ |
8178 | for (unsigned i = 0; i < num_variables; i++) { |
8179 | int j = earlier_per_vertex->field_index(fields[i].name); |
8180 | if (j == -1) { |
8181 | _mesa_glsl_error(&loc, state, |
8182 | "redeclaration of gl_PerVertex must be a subset " |
8183 | "of the built-in members of gl_PerVertex"); |
8184 | } else { |
8185 | fields[i].location = |
8186 | earlier_per_vertex->fields.structure[j].location; |
8187 | fields[i].offset = |
8188 | earlier_per_vertex->fields.structure[j].offset; |
8189 | fields[i].interpolation = |
8190 | earlier_per_vertex->fields.structure[j].interpolation; |
8191 | fields[i].centroid = |
8192 | earlier_per_vertex->fields.structure[j].centroid; |
8193 | fields[i].sample = |
8194 | earlier_per_vertex->fields.structure[j].sample; |
8195 | fields[i].patch = |
8196 | earlier_per_vertex->fields.structure[j].patch; |
8197 | fields[i].precision = |
8198 | earlier_per_vertex->fields.structure[j].precision; |
8199 | fields[i].explicit_xfb_buffer = |
8200 | earlier_per_vertex->fields.structure[j].explicit_xfb_buffer; |
8201 | fields[i].xfb_buffer = |
8202 | earlier_per_vertex->fields.structure[j].xfb_buffer; |
8203 | fields[i].xfb_stride = |
8204 | earlier_per_vertex->fields.structure[j].xfb_stride; |
8205 | } |
8206 | } |
8207 | |
8208 | /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 |
8209 | * spec: |
8210 | * |
8211 | * If a built-in interface block is redeclared, it must appear in |
8212 | * the shader before any use of any member included in the built-in |
8213 | * declaration, or a compilation error will result. |
8214 | * |
8215 | * This appears to be a clarification to the behaviour established for |
8216 | * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour |
8217 | * regardless of GLSL version. |
8218 | */ |
8219 | interface_block_usage_visitor v(var_mode, earlier_per_vertex); |
8220 | v.run(instructions); |
8221 | if (v.usage_found()) { |
8222 | _mesa_glsl_error(&loc, state, |
8223 | "redeclaration of a built-in interface block must " |
8224 | "appear before any use of any member of the " |
8225 | "interface block"); |
8226 | } |
8227 | } |
8228 | |
8229 | const glsl_type *block_type = |
8230 | glsl_type::get_interface_instance(fields, |
8231 | num_variables, |
8232 | packing, |
8233 | matrix_layout == |
8234 | GLSL_MATRIX_LAYOUT_ROW_MAJOR, |
8235 | this->block_name); |
8236 | |
8237 | unsigned component_size = block_type->contains_double() ? 8 : 4; |
8238 | int xfb_offset = |
8239 | layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1; |
8240 | validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type, |
8241 | component_size); |
8242 | |
8243 | if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) { |
8244 | YYLTYPE loc = this->get_location(); |
8245 | _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' " |
8246 | "already taken in the current scope", |
8247 | this->block_name, iface_type_name); |
8248 | } |
8249 | |
8250 | /* Since interface blocks cannot contain statements, it should be |
8251 | * impossible for the block to generate any instructions. |
8252 | */ |
8253 | assert(declared_variables.is_empty())(static_cast <bool> (declared_variables.is_empty()) ? void (0) : __assert_fail ("declared_variables.is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
8254 | |
8255 | /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: |
8256 | * |
8257 | * Geometry shader input variables get the per-vertex values written |
8258 | * out by vertex shader output variables of the same names. Since a |
8259 | * geometry shader operates on a set of vertices, each input varying |
8260 | * variable (or input block, see interface blocks below) needs to be |
8261 | * declared as an array. |
8262 | */ |
8263 | if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL__null && |
8264 | var_mode == ir_var_shader_in) { |
8265 | _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays"); |
8266 | } else if ((state->stage == MESA_SHADER_TESS_CTRL || |
8267 | state->stage == MESA_SHADER_TESS_EVAL) && |
8268 | !this->layout.flags.q.patch && |
8269 | this->array_specifier == NULL__null && |
8270 | var_mode == ir_var_shader_in) { |
8271 | _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays"); |
8272 | } else if (state->stage == MESA_SHADER_TESS_CTRL && |
8273 | !this->layout.flags.q.patch && |
8274 | this->array_specifier == NULL__null && |
8275 | var_mode == ir_var_shader_out) { |
8276 | _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays"); |
8277 | } |
8278 | |
8279 | |
8280 | ir_typedecl_statement* stmt = new(state) ir_typedecl_statement(block_type); |
8281 | /* Push the interface declarations to the top. |
8282 | * However, do not insert declarations before default precision |
8283 | * statements or other declarations |
8284 | */ |
8285 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); |
8286 | while (before_node && |
8287 | (before_node->ir_type == ir_type_precision || |
8288 | before_node->ir_type == ir_type_typedecl)) |
8289 | before_node = (ir_instruction*)before_node->next; |
8290 | if (before_node) |
8291 | before_node->insert_before(stmt); |
8292 | else |
8293 | instructions->push_head(stmt); |
8294 | |
8295 | /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec |
8296 | * says: |
8297 | * |
8298 | * "If an instance name (instance-name) is used, then it puts all the |
8299 | * members inside a scope within its own name space, accessed with the |
8300 | * field selector ( . ) operator (analogously to structures)." |
8301 | */ |
8302 | if (this->instance_name) { |
8303 | if (redeclaring_per_vertex) { |
8304 | /* When a built-in in an unnamed interface block is redeclared, |
8305 | * get_variable_being_redeclared() calls |
8306 | * check_builtin_array_max_size() to make sure that built-in array |
8307 | * variables aren't redeclared to illegal sizes. But we're looking |
8308 | * at a redeclaration of a named built-in interface block. So we |
8309 | * have to manually call check_builtin_array_max_size() for all parts |
8310 | * of the interface that are arrays. |
8311 | */ |
8312 | for (unsigned i = 0; i < num_variables; i++) { |
8313 | if (fields[i].type->is_array()) { |
8314 | const unsigned size = fields[i].type->array_size(); |
8315 | check_builtin_array_max_size(fields[i].name, size, loc, state); |
8316 | } |
8317 | } |
8318 | } else { |
8319 | validate_identifier(this->instance_name, loc, state); |
8320 | } |
8321 | |
8322 | ir_variable *var; |
8323 | |
8324 | if (this->array_specifier != NULL__null) { |
8325 | const glsl_type *block_array_type = |
8326 | process_array_type(&loc, block_type, this->array_specifier, state); |
8327 | |
8328 | /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says: |
8329 | * |
8330 | * For uniform blocks declared an array, each individual array |
8331 | * element corresponds to a separate buffer object backing one |
8332 | * instance of the block. As the array size indicates the number |
8333 | * of buffer objects needed, uniform block array declarations |
8334 | * must specify an array size. |
8335 | * |
8336 | * And a few paragraphs later: |
8337 | * |
8338 | * Geometry shader input blocks must be declared as arrays and |
8339 | * follow the array declaration and linking rules for all |
8340 | * geometry shader inputs. All other input and output block |
8341 | * arrays must specify an array size. |
8342 | * |
8343 | * The same applies to tessellation shaders. |
8344 | * |
8345 | * The upshot of this is that the only circumstance where an |
8346 | * interface array size *doesn't* need to be specified is on a |
8347 | * geometry shader input, tessellation control shader input, |
8348 | * tessellation control shader output, and tessellation evaluation |
8349 | * shader input. |
8350 | */ |
8351 | if (block_array_type->is_unsized_array()) { |
8352 | bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY || |
8353 | state->stage == MESA_SHADER_TESS_CTRL || |
8354 | state->stage == MESA_SHADER_TESS_EVAL; |
8355 | bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL; |
8356 | |
8357 | if (this->layout.flags.q.in) { |
8358 | if (!allow_inputs) |
8359 | _mesa_glsl_error(&loc, state, |
8360 | "unsized input block arrays not allowed in " |
8361 | "%s shader", |
8362 | _mesa_shader_stage_to_string(state->stage)); |
8363 | } else if (this->layout.flags.q.out) { |
8364 | if (!allow_outputs) |
8365 | _mesa_glsl_error(&loc, state, |
8366 | "unsized output block arrays not allowed in " |
8367 | "%s shader", |
8368 | _mesa_shader_stage_to_string(state->stage)); |
8369 | } else { |
8370 | /* by elimination, this is a uniform block array */ |
8371 | _mesa_glsl_error(&loc, state, |
8372 | "unsized uniform block arrays not allowed in " |
8373 | "%s shader", |
8374 | _mesa_shader_stage_to_string(state->stage)); |
8375 | } |
8376 | } |
8377 | |
8378 | /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec: |
8379 | * |
8380 | * * Arrays of arrays of blocks are not allowed |
8381 | */ |
8382 | if (state->es_shader && block_array_type->is_array() && |
8383 | block_array_type->fields.array->is_array()) { |
8384 | _mesa_glsl_error(&loc, state, |
8385 | "arrays of arrays interface blocks are " |
8386 | "not allowed"); |
8387 | } |
8388 | |
8389 | var = new(state) ir_variable(block_array_type, |
8390 | this->instance_name, |
8391 | var_mode); |
8392 | } else { |
8393 | var = new(state) ir_variable(block_type, |
8394 | this->instance_name, |
8395 | var_mode); |
8396 | } |
8397 | |
8398 | var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED |
8399 | ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; |
8400 | |
8401 | if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) |
8402 | var->data.read_only = true; |
8403 | |
8404 | var->data.patch = this->layout.flags.q.patch; |
8405 | |
8406 | if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in) |
8407 | handle_geometry_shader_input_decl(state, loc, var); |
8408 | else if ((state->stage == MESA_SHADER_TESS_CTRL || |
8409 | state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in) |
8410 | handle_tess_shader_input_decl(state, loc, var); |
8411 | else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out) |
8412 | handle_tess_ctrl_shader_output_decl(state, loc, var); |
8413 | |
8414 | for (unsigned i = 0; i < num_variables; i++) { |
8415 | if (var->data.mode == ir_var_shader_storage) |
8416 | apply_memory_qualifiers(var, fields[i]); |
8417 | } |
8418 | |
8419 | if (ir_variable *earlier = |
8420 | state->symbols->get_variable(this->instance_name)) { |
8421 | if (!redeclaring_per_vertex) { |
8422 | _mesa_glsl_error(&loc, state, "`%s' redeclared", |
8423 | this->instance_name); |
8424 | } |
8425 | earlier->data.how_declared = ir_var_declared_normally; |
8426 | earlier->type = var->type; |
8427 | earlier->reinit_interface_type(block_type); |
8428 | delete var; |
8429 | } else { |
8430 | if (this->layout.flags.q.explicit_binding) { |
8431 | apply_explicit_binding(state, &loc, var, var->type, |
8432 | &this->layout); |
8433 | } |
8434 | |
8435 | var->data.stream = qual_stream; |
8436 | if (layout.flags.q.explicit_location) { |
8437 | var->data.location = expl_location; |
8438 | var->data.explicit_location = true; |
8439 | } |
8440 | |
8441 | state->symbols->add_variable(var); |
8442 | instructions->push_tail(var); |
8443 | } |
8444 | } else { |
8445 | /* In order to have an array size, the block must also be declared with |
8446 | * an instance name. |
8447 | */ |
8448 | assert(this->array_specifier == NULL)(static_cast <bool> (this->array_specifier == __null ) ? void (0) : __assert_fail ("this->array_specifier == NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
8449 | |
8450 | for (unsigned i = 0; i < num_variables; i++) { |
8451 | ir_variable *var = |
8452 | new(state) ir_variable(fields[i].type, |
8453 | ralloc_strdup(state, fields[i].name), |
8454 | var_mode); |
8455 | var->data.interpolation = fields[i].interpolation; |
8456 | var->data.centroid = fields[i].centroid; |
8457 | var->data.sample = fields[i].sample; |
8458 | var->data.patch = fields[i].patch; |
8459 | var->data.stream = qual_stream; |
8460 | var->data.location = fields[i].location; |
8461 | |
8462 | if (fields[i].location != -1) |
8463 | var->data.explicit_location = true; |
8464 | |
8465 | var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer; |
8466 | var->data.xfb_buffer = fields[i].xfb_buffer; |
8467 | |
8468 | if (fields[i].offset != -1) |
8469 | var->data.explicit_xfb_offset = true; |
8470 | var->data.offset = fields[i].offset; |
8471 | |
8472 | var->init_interface_type(block_type); |
8473 | |
8474 | if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) |
8475 | var->data.read_only = true; |
8476 | |
8477 | /* Precision qualifiers do not have any meaning in Desktop GLSL */ |
8478 | if (state->es_shader) { |
8479 | var->data.precision = |
8480 | select_gles_precision(fields[i].precision, fields[i].type, |
8481 | state, &loc); |
8482 | } |
8483 | |
8484 | if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) { |
8485 | var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED |
8486 | ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; |
8487 | } else { |
8488 | var->data.matrix_layout = fields[i].matrix_layout; |
8489 | } |
8490 | |
8491 | if (var->data.mode == ir_var_shader_storage) |
8492 | apply_memory_qualifiers(var, fields[i]); |
8493 | |
8494 | /* Examine var name here since var may get deleted in the next call */ |
8495 | bool var_is_gl_id = is_gl_identifier(var->name); |
8496 | |
8497 | if (redeclaring_per_vertex) { |
8498 | bool is_redeclaration; |
8499 | var = |
8500 | get_variable_being_redeclared(&var, loc, state, |
8501 | true /* allow_all_redeclarations */, |
8502 | &is_redeclaration); |
8503 | if (!var_is_gl_id || !is_redeclaration) { |
8504 | _mesa_glsl_error(&loc, state, |
8505 | "redeclaration of gl_PerVertex can only " |
8506 | "include built-in variables"); |
8507 | } else if (var->data.how_declared == ir_var_declared_normally) { |
8508 | _mesa_glsl_error(&loc, state, |
8509 | "`%s' has already been redeclared", |
8510 | var->name); |
8511 | } else { |
8512 | var->data.how_declared = ir_var_declared_in_block; |
8513 | var->reinit_interface_type(block_type); |
8514 | } |
8515 | continue; |
8516 | } |
8517 | |
8518 | if (state->symbols->get_variable(var->name) != NULL__null) |
8519 | _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); |
8520 | |
8521 | /* Propagate the "binding" keyword into this UBO/SSBO's fields. |
8522 | * The UBO declaration itself doesn't get an ir_variable unless it |
8523 | * has an instance name. This is ugly. |
8524 | */ |
8525 | if (this->layout.flags.q.explicit_binding) { |
8526 | apply_explicit_binding(state, &loc, var, |
8527 | var->get_interface_type(), &this->layout); |
8528 | } |
8529 | |
8530 | if (var->type->is_unsized_array()) { |
8531 | if (var->is_in_shader_storage_block() && |
8532 | is_unsized_array_last_element(var)) { |
8533 | var->data.from_ssbo_unsized_array = true; |
8534 | } else { |
8535 | /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays": |
8536 | * |
8537 | * "If an array is declared as the last member of a shader storage |
8538 | * block and the size is not specified at compile-time, it is |
8539 | * sized at run-time. In all other cases, arrays are sized only |
8540 | * at compile-time." |
8541 | * |
8542 | * In desktop GLSL it is allowed to have unsized-arrays that are |
8543 | * not last, as long as we can determine that they are implicitly |
8544 | * sized. |
8545 | */ |
8546 | if (state->es_shader) { |
8547 | _mesa_glsl_error(&loc, state, "unsized array `%s' " |
8548 | "definition: only last member of a shader " |
8549 | "storage block can be defined as unsized " |
8550 | "array", fields[i].name); |
8551 | } |
8552 | } |
8553 | } |
8554 | |
8555 | state->symbols->add_variable(var); |
8556 | instructions->push_tail(var); |
8557 | } |
8558 | |
8559 | if (redeclaring_per_vertex && block_type != earlier_per_vertex) { |
8560 | /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec: |
8561 | * |
8562 | * It is also a compilation error ... to redeclare a built-in |
8563 | * block and then use a member from that built-in block that was |
8564 | * not included in the redeclaration. |
8565 | * |
8566 | * This appears to be a clarification to the behaviour established |
8567 | * for gl_PerVertex by GLSL 1.50, therefore we implement this |
8568 | * behaviour regardless of GLSL version. |
8569 | * |
8570 | * To prevent the shader from using a member that was not included in |
8571 | * the redeclaration, we disable any ir_variables that are still |
8572 | * associated with the old declaration of gl_PerVertex (since we've |
8573 | * already updated all of the variables contained in the new |
8574 | * gl_PerVertex to point to it). |
8575 | * |
8576 | * As a side effect this will prevent |
8577 | * validate_intrastage_interface_blocks() from getting confused and |
8578 | * thinking there are conflicting definitions of gl_PerVertex in the |
8579 | * shader. |
8580 | */ |
8581 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { |
8582 | ir_variable *const var = node->as_variable(); |
8583 | if (var != NULL__null && |
8584 | var->get_interface_type() == earlier_per_vertex && |
8585 | var->data.mode == var_mode) { |
8586 | if (var->data.how_declared == ir_var_declared_normally) { |
8587 | _mesa_glsl_error(&loc, state, |
8588 | "redeclaration of gl_PerVertex cannot " |
8589 | "follow a redeclaration of `%s'", |
8590 | var->name); |
8591 | } |
8592 | state->symbols->disable_variable(var->name); |
8593 | var->remove(); |
8594 | } |
8595 | } |
8596 | } |
8597 | } |
8598 | |
8599 | return NULL__null; |
8600 | } |
8601 | |
8602 | |
8603 | ir_rvalue * |
8604 | ast_tcs_output_layout::hir(exec_list *instructions, |
8605 | struct _mesa_glsl_parse_state *state) |
8606 | { |
8607 | YYLTYPE loc = this->get_location(); |
8608 | |
8609 | unsigned num_vertices; |
8610 | if (!state->out_qualifier->vertices-> |
8611 | process_qualifier_constant(state, "vertices", &num_vertices, |
8612 | false)) { |
8613 | /* return here to stop cascading incorrect error messages */ |
8614 | return NULL__null; |
8615 | } |
8616 | |
8617 | /* If any shader outputs occurred before this declaration and specified an |
8618 | * array size, make sure the size they specified is consistent with the |
8619 | * primitive type. |
8620 | */ |
8621 | if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) { |
8622 | _mesa_glsl_error(&loc, state, |
8623 | "this tessellation control shader output layout " |
8624 | "specifies %u vertices, but a previous output " |
8625 | "is declared with size %u", |
8626 | num_vertices, state->tcs_output_size); |
8627 | return NULL__null; |
8628 | } |
8629 | |
8630 | state->tcs_output_vertices_specified = true; |
8631 | |
8632 | /* If any shader outputs occurred before this declaration and did not |
8633 | * specify an array size, their size is determined now. |
8634 | */ |
8635 | foreach_in_list (ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null); (node) != __null; (node) = (!exec_node_is_tail_sentinel((node)->next) ? (ir_instruction *) ((node)->next) : __null)) { |
8636 | ir_variable *var = node->as_variable(); |
8637 | if (var == NULL__null || var->data.mode != ir_var_shader_out) |
8638 | continue; |
8639 | |
8640 | /* Note: Not all tessellation control shader output are arrays. */ |
8641 | if (!var->type->is_unsized_array() || var->data.patch) |
8642 | continue; |
8643 | |
8644 | if (var->data.max_array_access >= (int)num_vertices) { |
8645 | _mesa_glsl_error(&loc, state, |
8646 | "this tessellation control shader output layout " |
8647 | "specifies %u vertices, but an access to element " |
8648 | "%u of output `%s' already exists", num_vertices, |
8649 | var->data.max_array_access, var->name); |
8650 | } else { |
8651 | var->type = glsl_type::get_array_instance(var->type->fields.array, |
8652 | num_vertices); |
8653 | } |
8654 | } |
8655 | |
8656 | return NULL__null; |
8657 | } |
8658 | |
8659 | |
8660 | ir_rvalue * |
8661 | ast_gs_input_layout::hir(exec_list *instructions, |
8662 | struct _mesa_glsl_parse_state *state) |
8663 | { |
8664 | YYLTYPE loc = this->get_location(); |
8665 | |
8666 | /* Should have been prevented by the parser. */ |
8667 | assert(!state->gs_input_prim_type_specified(static_cast <bool> (!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type ) ? void (0) : __assert_fail ("!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) |
8668 | || state->in_qualifier->prim_type == this->prim_type)(static_cast <bool> (!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type ) ? void (0) : __assert_fail ("!state->gs_input_prim_type_specified || state->in_qualifier->prim_type == this->prim_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
8669 | |
8670 | /* If any shader inputs occurred before this declaration and specified an |
8671 | * array size, make sure the size they specified is consistent with the |
8672 | * primitive type. |
8673 | */ |
8674 | unsigned num_vertices = vertices_per_prim(this->prim_type); |
8675 | if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) { |
8676 | _mesa_glsl_error(&loc, state, |
8677 | "this geometry shader input layout implies %u vertices" |
8678 | " per primitive, but a previous input is declared" |
8679 | " with size %u", num_vertices, state->gs_input_size); |
8680 | return NULL__null; |
8681 | } |
8682 | |
8683 | state->gs_input_prim_type_specified = true; |
8684 | |
8685 | /* If any shader inputs occurred before this declaration and did not |
8686 | * specify an array size, their size is determined now. |
8687 | */ |
8688 | foreach_in_list(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null); (node) != __null; (node) = (!exec_node_is_tail_sentinel((node)->next) ? (ir_instruction *) ((node)->next) : __null)) { |
8689 | ir_variable *var = node->as_variable(); |
8690 | if (var == NULL__null || var->data.mode != ir_var_shader_in) |
8691 | continue; |
8692 | |
8693 | /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an |
8694 | * array; skip it. |
8695 | */ |
8696 | |
8697 | if (var->type->is_unsized_array()) { |
8698 | if (var->data.max_array_access >= (int)num_vertices) { |
8699 | _mesa_glsl_error(&loc, state, |
8700 | "this geometry shader input layout implies %u" |
8701 | " vertices, but an access to element %u of input" |
8702 | " `%s' already exists", num_vertices, |
8703 | var->data.max_array_access, var->name); |
8704 | } else { |
8705 | var->type = glsl_type::get_array_instance(var->type->fields.array, |
8706 | num_vertices); |
8707 | } |
8708 | } |
8709 | } |
8710 | |
8711 | return NULL__null; |
8712 | } |
8713 | |
8714 | |
8715 | ir_rvalue * |
8716 | ast_cs_input_layout::hir(exec_list *instructions, |
8717 | struct _mesa_glsl_parse_state *state) |
8718 | { |
8719 | YYLTYPE loc = this->get_location(); |
8720 | |
8721 | /* From the ARB_compute_shader specification: |
8722 | * |
8723 | * If the local size of the shader in any dimension is greater |
8724 | * than the maximum size supported by the implementation for that |
8725 | * dimension, a compile-time error results. |
8726 | * |
8727 | * It is not clear from the spec how the error should be reported if |
8728 | * the total size of the work group exceeds |
8729 | * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to |
8730 | * report it at compile time as well. |
8731 | */ |
8732 | GLuint64 total_invocations = 1; |
8733 | unsigned qual_local_size[3]; |
8734 | for (int i = 0; i < 3; i++) { |
8735 | |
8736 | char *local_size_str = ralloc_asprintf(NULL__null, "invalid local_size_%c", |
8737 | 'x' + i); |
8738 | /* Infer a local_size of 1 for unspecified dimensions */ |
8739 | if (this->local_size[i] == NULL__null) { |
8740 | qual_local_size[i] = 1; |
8741 | } else if (!this->local_size[i]-> |
8742 | process_qualifier_constant(state, local_size_str, |
8743 | &qual_local_size[i], false)) { |
8744 | ralloc_free(local_size_str); |
8745 | return NULL__null; |
8746 | } |
8747 | ralloc_free(local_size_str); |
8748 | |
8749 | if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) { |
8750 | _mesa_glsl_error(&loc, state, |
8751 | "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE" |
8752 | " (%d)", 'x' + i, |
8753 | state->ctx->Const.MaxComputeWorkGroupSize[i]); |
8754 | break; |
8755 | } |
8756 | total_invocations *= qual_local_size[i]; |
8757 | if (total_invocations > |
8758 | state->ctx->Const.MaxComputeWorkGroupInvocations) { |
8759 | _mesa_glsl_error(&loc, state, |
8760 | "product of local_sizes exceeds " |
8761 | "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)", |
8762 | state->ctx->Const.MaxComputeWorkGroupInvocations); |
8763 | break; |
8764 | } |
8765 | } |
8766 | |
8767 | /* If any compute input layout declaration preceded this one, make sure it |
8768 | * was consistent with this one. |
8769 | */ |
8770 | if (state->cs_input_local_size_specified) { |
8771 | for (int i = 0; i < 3; i++) { |
8772 | if (state->cs_input_local_size[i] != qual_local_size[i]) { |
8773 | _mesa_glsl_error(&loc, state, |
8774 | "compute shader input layout does not match" |
8775 | " previous declaration"); |
8776 | return NULL__null; |
8777 | } |
8778 | } |
8779 | } |
8780 | |
8781 | /* The ARB_compute_variable_group_size spec says: |
8782 | * |
8783 | * If a compute shader including a *local_size_variable* qualifier also |
8784 | * declares a fixed local group size using the *local_size_x*, |
8785 | * *local_size_y*, or *local_size_z* qualifiers, a compile-time error |
8786 | * results |
8787 | */ |
8788 | if (state->cs_input_local_size_variable_specified) { |
8789 | _mesa_glsl_error(&loc, state, |
8790 | "compute shader can't include both a variable and a " |
8791 | "fixed local group size"); |
8792 | return NULL__null; |
8793 | } |
8794 | |
8795 | state->cs_input_local_size_specified = true; |
8796 | for (int i = 0; i < 3; i++) |
8797 | state->cs_input_local_size[i] = qual_local_size[i]; |
8798 | |
8799 | /* We may now declare the built-in constant gl_WorkGroupSize (see |
8800 | * builtin_variable_generator::generate_constants() for why we didn't |
8801 | * declare it earlier). |
8802 | */ |
8803 | ir_variable *var = new(state->symbols) |
8804 | ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); |
8805 | var->data.how_declared = ir_var_declared_implicitly; |
8806 | var->data.read_only = true; |
8807 | instructions->push_tail(var); |
8808 | state->symbols->add_variable(var); |
8809 | ir_constant_data data; |
8810 | memset(&data, 0, sizeof(data)); |
8811 | for (int i = 0; i < 3; i++) |
8812 | data.u[i] = qual_local_size[i]; |
8813 | var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data); |
8814 | var->constant_initializer = |
8815 | new(var) ir_constant(glsl_type::uvec3_type, &data); |
8816 | var->data.has_initializer = true; |
8817 | |
8818 | return NULL__null; |
8819 | } |
8820 | |
8821 | |
8822 | static void |
8823 | detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, |
8824 | exec_list *instructions) |
8825 | { |
8826 | bool gl_FragColor_assigned = false; |
8827 | bool gl_FragData_assigned = false; |
8828 | bool gl_FragSecondaryColor_assigned = false; |
8829 | bool gl_FragSecondaryData_assigned = false; |
8830 | bool user_defined_fs_output_assigned = false; |
8831 | ir_variable *user_defined_fs_output = NULL__null; |
8832 | |
8833 | /* It would be nice to have proper location information. */ |
8834 | YYLTYPE loc; |
8835 | memset(&loc, 0, sizeof(loc)); |
8836 | |
8837 | foreach_in_list(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null); (node) != __null; (node) = (!exec_node_is_tail_sentinel((node)->next) ? (ir_instruction *) ((node)->next) : __null)) { |
8838 | ir_variable *var = node->as_variable(); |
8839 | |
8840 | if (!var || !var->data.assigned) |
8841 | continue; |
8842 | |
8843 | if (strcmp(var->name, "gl_FragColor") == 0) |
8844 | gl_FragColor_assigned = true; |
8845 | else if (strcmp(var->name, "gl_FragData") == 0) |
8846 | gl_FragData_assigned = true; |
8847 | else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0) |
8848 | gl_FragSecondaryColor_assigned = true; |
8849 | else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0) |
8850 | gl_FragSecondaryData_assigned = true; |
8851 | else if (!is_gl_identifier(var->name)) { |
8852 | if (state->stage == MESA_SHADER_FRAGMENT && |
8853 | var->data.mode == ir_var_shader_out) { |
8854 | user_defined_fs_output_assigned = true; |
8855 | user_defined_fs_output = var; |
8856 | } |
8857 | } |
8858 | } |
8859 | |
8860 | /* From the GLSL 1.30 spec: |
8861 | * |
8862 | * "If a shader statically assigns a value to gl_FragColor, it |
8863 | * may not assign a value to any element of gl_FragData. If a |
8864 | * shader statically writes a value to any element of |
8865 | * gl_FragData, it may not assign a value to |
8866 | * gl_FragColor. That is, a shader may assign values to either |
8867 | * gl_FragColor or gl_FragData, but not both. Multiple shaders |
8868 | * linked together must also consistently write just one of |
8869 | * these variables. Similarly, if user declared output |
8870 | * variables are in use (statically assigned to), then the |
8871 | * built-in variables gl_FragColor and gl_FragData may not be |
8872 | * assigned to. These incorrect usages all generate compile |
8873 | * time errors." |
8874 | */ |
8875 | if (gl_FragColor_assigned && gl_FragData_assigned) { |
8876 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " |
8877 | "`gl_FragColor' and `gl_FragData'"); |
8878 | } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) { |
8879 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " |
8880 | "`gl_FragColor' and `%s'", |
8881 | user_defined_fs_output->name); |
8882 | } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) { |
8883 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " |
8884 | "`gl_FragSecondaryColorEXT' and" |
8885 | " `gl_FragSecondaryDataEXT'"); |
8886 | } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) { |
8887 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " |
8888 | "`gl_FragColor' and" |
8889 | " `gl_FragSecondaryDataEXT'"); |
8890 | } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) { |
8891 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " |
8892 | "`gl_FragData' and" |
8893 | " `gl_FragSecondaryColorEXT'"); |
8894 | } else if (gl_FragData_assigned && user_defined_fs_output_assigned) { |
8895 | _mesa_glsl_error(&loc, state, "fragment shader writes to both " |
8896 | "`gl_FragData' and `%s'", |
8897 | user_defined_fs_output->name); |
8898 | } |
8899 | |
8900 | if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) && |
8901 | !state->EXT_blend_func_extended_enable) { |
8902 | _mesa_glsl_error(&loc, state, |
8903 | "Dual source blending requires EXT_blend_func_extended"); |
8904 | } |
8905 | } |
8906 | |
8907 | static void |
8908 | verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state) |
8909 | { |
8910 | YYLTYPE loc; |
8911 | memset(&loc, 0, sizeof(loc)); |
8912 | |
8913 | /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: |
8914 | * |
8915 | * "A program will fail to compile or link if any shader |
8916 | * or stage contains two or more functions with the same |
8917 | * name if the name is associated with a subroutine type." |
8918 | */ |
8919 | |
8920 | for (int i = 0; i < state->num_subroutines; i++) { |
8921 | unsigned definitions = 0; |
8922 | ir_function *fn = state->subroutines[i]; |
8923 | /* Calculate number of function definitions with the same name */ |
8924 | foreach_in_list(ir_function_signature, sig, &fn->signatures)for (ir_function_signature *sig = (!exec_node_is_tail_sentinel ((&fn->signatures)->head_sentinel.next) ? (ir_function_signature *) ((&fn->signatures)->head_sentinel.next) : __null ); (sig) != __null; (sig) = (!exec_node_is_tail_sentinel((sig )->next) ? (ir_function_signature *) ((sig)->next) : __null )) { |
8925 | if (sig->is_defined) { |
8926 | if (++definitions > 1) { |
8927 | _mesa_glsl_error(&loc, state, |
8928 | "%s shader contains two or more function " |
8929 | "definitions with name `%s', which is " |
8930 | "associated with a subroutine type.\n", |
8931 | _mesa_shader_stage_to_string(state->stage), |
8932 | fn->name); |
8933 | return; |
8934 | } |
8935 | } |
8936 | } |
8937 | } |
8938 | } |
8939 | |
8940 | static void |
8941 | remove_per_vertex_blocks(exec_list *instructions, |
8942 | _mesa_glsl_parse_state *state, ir_variable_mode mode) |
8943 | { |
8944 | /* Find the gl_PerVertex interface block of the appropriate (in/out) mode, |
8945 | * if it exists in this shader type. |
8946 | */ |
8947 | const glsl_type *per_vertex = NULL__null; |
8948 | switch (mode) { |
8949 | case ir_var_shader_in: |
8950 | if (ir_variable *gl_in = state->symbols->get_variable("gl_in")) |
8951 | per_vertex = gl_in->get_interface_type(); |
8952 | break; |
8953 | case ir_var_shader_out: |
8954 | if (ir_variable *gl_Position = |
8955 | state->symbols->get_variable("gl_Position")) { |
8956 | per_vertex = gl_Position->get_interface_type(); |
8957 | } |
8958 | break; |
8959 | default: |
8960 | assert(!"Unexpected mode")(static_cast <bool> (!"Unexpected mode") ? void (0) : __assert_fail ("!\"Unexpected mode\"", __builtin_FILE (), __builtin_LINE ( ), __extension__ __PRETTY_FUNCTION__)); |
8961 | break; |
8962 | } |
8963 | |
8964 | /* If we didn't find a built-in gl_PerVertex interface block, then we don't |
8965 | * need to do anything. |
8966 | */ |
8967 | if (per_vertex == NULL__null) |
8968 | return; |
8969 | |
8970 | /* If the interface block is used by the shader, then we don't need to do |
8971 | * anything. |
8972 | */ |
8973 | interface_block_usage_visitor v(mode, per_vertex); |
8974 | v.run(instructions); |
8975 | if (v.usage_found()) |
8976 | return; |
8977 | |
8978 | /* Remove any ir_variable declarations that refer to the interface block |
8979 | * we're removing. |
8980 | */ |
8981 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { |
8982 | ir_variable *const var = node->as_variable(); |
8983 | if (var != NULL__null && var->get_interface_type() == per_vertex && |
8984 | var->data.mode == mode) { |
8985 | state->symbols->disable_variable(var->name); |
8986 | var->remove(); |
8987 | } |
8988 | } |
8989 | } |
8990 | |
8991 | ir_rvalue * |
8992 | ast_warnings_toggle::hir(exec_list *, |
8993 | struct _mesa_glsl_parse_state *state) |
8994 | { |
8995 | state->warnings_enabled = enable; |
8996 | return NULL__null; |
8997 | } |