| File: | root/firefox-clang/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/ast_to_hir.cpp |
| Warning: | line 3888, column 18 Null pointer passed to 1st parameter expecting 'nonnull' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * Copyright © 2010 Intel Corporation | |||
| 3 | * | |||
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a | |||
| 5 | * copy of this software and associated documentation files (the "Software"), | |||
| 6 | * to deal in the Software without restriction, including without limitation | |||
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | |||
| 8 | * and/or sell copies of the Software, and to permit persons to whom the | |||
| 9 | * Software is furnished to do so, subject to the following conditions: | |||
| 10 | * | |||
| 11 | * The above copyright notice and this permission notice (including the next | |||
| 12 | * paragraph) shall be included in all copies or substantial portions of the | |||
| 13 | * Software. | |||
| 14 | * | |||
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |||
| 18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
| 19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |||
| 20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |||
| 21 | * DEALINGS IN THE SOFTWARE. | |||
| 22 | */ | |||
| 23 | ||||
| 24 | /** | |||
| 25 | * \file ast_to_hir.c | |||
| 26 | * Convert abstract syntax to to high-level intermediate reprensentation (HIR). | |||
| 27 | * | |||
| 28 | * During the conversion to HIR, the majority of the symantic checking is | |||
| 29 | * preformed on the program. This includes: | |||
| 30 | * | |||
| 31 | * * Symbol table management | |||
| 32 | * * Type checking | |||
| 33 | * * Function binding | |||
| 34 | * | |||
| 35 | * The majority of this work could be done during parsing, and the parser could | |||
| 36 | * probably generate HIR directly. However, this results in frequent changes | |||
| 37 | * to the parser code. Since we do not assume that every system this complier | |||
| 38 | * is built on will have Flex and Bison installed, we have to store the code | |||
| 39 | * generated by these tools in our version control system. In other parts of | |||
| 40 | * the system we've seen problems where a parser was changed but the generated | |||
| 41 | * code was not committed, merge conflicts where created because two developers | |||
| 42 | * had slightly different versions of Bison installed, etc. | |||
| 43 | * | |||
| 44 | * I have also noticed that running Bison generated parsers in GDB is very | |||
| 45 | * irritating. When you get a segfault on '$$ = $1->foo', you can't very | |||
| 46 | * well 'print $1' in GDB. | |||
| 47 | * | |||
| 48 | * As a result, my preference is to put as little C code as possible in the | |||
| 49 | * parser (and lexer) sources. | |||
| 50 | */ | |||
| 51 | ||||
| 52 | #include "glsl_symbol_table.h" | |||
| 53 | #include "glsl_parser_extras.h" | |||
| 54 | #include "ast.h" | |||
| 55 | #include "compiler/glsl_types.h" | |||
| 56 | #include "util/hash_table.h" | |||
| 57 | #include "main/mtypes.h" | |||
| 58 | #include "main/macros.h" | |||
| 59 | #include "main/shaderobj.h" | |||
| 60 | #include "ir.h" | |||
| 61 | #include "ir_builder.h" | |||
| 62 | #include "builtin_functions.h" | |||
| 63 | ||||
| 64 | using namespace ir_builder; | |||
| 65 | ||||
| 66 | static void | |||
| 67 | detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, | |||
| 68 | exec_list *instructions); | |||
| 69 | static void | |||
| 70 | verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); | |||
| 71 | ||||
| 72 | static void | |||
| 73 | remove_per_vertex_blocks(exec_list *instructions, | |||
| 74 | _mesa_glsl_parse_state *state, ir_variable_mode mode); | |||
| 75 | ||||
| 76 | /** | |||
| 77 | * Visitor class that finds the first instance of any write-only variable that | |||
| 78 | * is ever read, if any | |||
| 79 | */ | |||
| 80 | class read_from_write_only_variable_visitor : public ir_hierarchical_visitor | |||
| 81 | { | |||
| 82 | public: | |||
| 83 | read_from_write_only_variable_visitor() : found(NULL__null) | |||
| 84 | { | |||
| 85 | } | |||
| 86 | ||||
| 87 | virtual ir_visitor_status visit(ir_dereference_variable *ir) | |||
| 88 | { | |||
| 89 | if (this->in_assignee) | |||
| 90 | return visit_continue; | |||
| 91 | ||||
| 92 | ir_variable *var = ir->variable_referenced(); | |||
| 93 | /* We can have memory_write_only set on both images and buffer variables, | |||
| 94 | * but in the former there is a distinction between reads from | |||
| 95 | * the variable itself (write_only) and from the memory they point to | |||
| 96 | * (memory_write_only), while in the case of buffer variables there is | |||
| 97 | * no such distinction, that is why this check here is limited to | |||
| 98 | * buffer variables alone. | |||
| 99 | */ | |||
| 100 | if (!var || var->data.mode != ir_var_shader_storage) | |||
| 101 | return visit_continue; | |||
| 102 | ||||
| 103 | if (var->data.memory_write_only) { | |||
| 104 | found = var; | |||
| 105 | return visit_stop; | |||
| 106 | } | |||
| 107 | ||||
| 108 | return visit_continue; | |||
| 109 | } | |||
| 110 | ||||
| 111 | ir_variable *get_variable() { | |||
| 112 | return found; | |||
| 113 | } | |||
| 114 | ||||
| 115 | virtual ir_visitor_status visit_enter(ir_expression *ir) | |||
| 116 | { | |||
| 117 | /* .length() doesn't actually read anything */ | |||
| 118 | if (ir->operation == ir_unop_ssbo_unsized_array_length) | |||
| 119 | return visit_continue_with_parent; | |||
| 120 | ||||
| 121 | return visit_continue; | |||
| 122 | } | |||
| 123 | ||||
| 124 | private: | |||
| 125 | ir_variable *found; | |||
| 126 | }; | |||
| 127 | ||||
| 128 | void | |||
| 129 | _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) | |||
| 130 | { | |||
| 131 | _mesa_glsl_initialize_variables(instructions, state); | |||
| 132 | ||||
| 133 | state->symbols->separate_function_namespace = state->language_version == 110; | |||
| 134 | ||||
| 135 | state->current_function = NULL__null; | |||
| 136 | ||||
| 137 | state->toplevel_ir = instructions; | |||
| 138 | ||||
| 139 | state->gs_input_prim_type_specified = false; | |||
| 140 | state->tcs_output_vertices_specified = false; | |||
| 141 | state->cs_input_local_size_specified = false; | |||
| 142 | ||||
| 143 | /* Section 4.2 of the GLSL 1.20 specification states: | |||
| 144 | * "The built-in functions are scoped in a scope outside the global scope | |||
| 145 | * users declare global variables in. That is, a shader's global scope, | |||
| 146 | * available for user-defined functions and global variables, is nested | |||
| 147 | * inside the scope containing the built-in functions." | |||
| 148 | * | |||
| 149 | * Since built-in functions like ftransform() access built-in variables, | |||
| 150 | * it follows that those must be in the outer scope as well. | |||
| 151 | * | |||
| 152 | * We push scope here to create this nesting effect...but don't pop. | |||
| 153 | * This way, a shader's globals are still in the symbol table for use | |||
| 154 | * by the linker. | |||
| 155 | */ | |||
| 156 | state->symbols->push_scope(); | |||
| 157 | ||||
| 158 | foreach_list_typed (ast_node, ast, link, & state->translation_unit)for (ast_node * ast = (!exec_node_is_tail_sentinel((& state ->translation_unit)->head_sentinel.next) ? ((ast_node * ) (((uintptr_t) (& state->translation_unit)->head_sentinel .next) - (((char *) &((ast_node *) (& state->translation_unit )->head_sentinel.next)->link) - ((char *) (& state-> translation_unit)->head_sentinel.next)))) : __null); (ast) != __null; (ast) = (!exec_node_is_tail_sentinel((ast)->link .next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - ( ((char *) &((ast_node *) (ast)->link.next)->link) - ((char *) (ast)->link.next)))) : __null)) | |||
| 159 | ast->hir(instructions, state); | |||
| 160 | ||||
| 161 | verify_subroutine_associated_funcs(state); | |||
| 162 | detect_recursion_unlinked(state, instructions); | |||
| 163 | detect_conflicting_assignments(state, instructions); | |||
| 164 | ||||
| 165 | state->toplevel_ir = NULL__null; | |||
| 166 | ||||
| 167 | /* Move all of the variable declarations to the front of the IR list, and | |||
| 168 | * reverse the order. This has the (intended!) side effect that vertex | |||
| 169 | * shader inputs and fragment shader outputs will appear in the IR in the | |||
| 170 | * same order that they appeared in the shader code. This results in the | |||
| 171 | * locations being assigned in the declared order. Many (arguably buggy) | |||
| 172 | * applications depend on this behavior, and it matches what nearly all | |||
| 173 | * other drivers do. | |||
| 174 | * However, do not push the declarations before struct decls or precision | |||
| 175 | * statements. | |||
| 176 | */ | |||
| 177 | ir_instruction* before_node = (ir_instruction*)instructions->get_head(); | |||
| 178 | ir_instruction* after_node = NULL__null; | |||
| 179 | while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl)) | |||
| 180 | { | |||
| 181 | after_node = before_node; | |||
| 182 | before_node = (ir_instruction*)before_node->next; | |||
| 183 | } | |||
| 184 | ||||
| 185 | foreach_in_list_safe(ir_instruction, node, instructions)for (ir_instruction *node = (!exec_node_is_tail_sentinel((instructions )->head_sentinel.next) ? (ir_instruction *) ((instructions )->head_sentinel.next) : __null), *__next = (node) ? (!exec_node_is_tail_sentinel ((instructions)->head_sentinel.next->next) ? (ir_instruction *) ((instructions)->head_sentinel.next->next) : __null ) : __null; (node) != __null; (node) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next) ? (ir_instruction *) (__next->next) : __null) : __null) { | |||
| 186 | ir_variable *const var = node->as_variable(); | |||
| 187 | ||||
| 188 | if (var == NULL__null) | |||
| 189 | continue; | |||
| 190 | ||||
| 191 | var->remove(); | |||
| 192 | if (after_node) | |||
| 193 | after_node->insert_after(var); | |||
| 194 | else | |||
| 195 | instructions->push_head(var); | |||
| 196 | } | |||
| 197 | ||||
| 198 | /* Figure out if gl_FragCoord is actually used in fragment shader */ | |||
| 199 | ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); | |||
| 200 | if (var != NULL__null) | |||
| 201 | state->fs_uses_gl_fragcoord = var->data.used; | |||
| 202 | ||||
| 203 | /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: | |||
| 204 | * | |||
| 205 | * If multiple shaders using members of a built-in block belonging to | |||
| 206 | * the same interface are linked together in the same program, they | |||
| 207 | * must all redeclare the built-in block in the same way, as described | |||
| 208 | * in section 4.3.7 "Interface Blocks" for interface block matching, or | |||
| 209 | * a link error will result. | |||
| 210 | * | |||
| 211 | * The phrase "using members of a built-in block" implies that if two | |||
| 212 | * shaders are linked together and one of them *does not use* any members | |||
| 213 | * of the built-in block, then that shader does not need to have a matching | |||
| 214 | * redeclaration of the built-in block. | |||
| 215 | * | |||
| 216 | * This appears to be a clarification to the behaviour established for | |||
| 217 | * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL | |||
| 218 | * version. | |||
| 219 | * | |||
| 220 | * The definition of "interface" in section 4.3.7 that applies here is as | |||
| 221 | * follows: | |||
| 222 | * | |||
| 223 | * The boundary between adjacent programmable pipeline stages: This | |||
| 224 | * spans all the outputs in all compilation units of the first stage | |||
| 225 | * and all the inputs in all compilation units of the second stage. | |||
| 226 | * | |||
| 227 | * Therefore this rule applies to both inter- and intra-stage linking. | |||
| 228 | * | |||
| 229 | * The easiest way to implement this is to check whether the shader uses | |||
| 230 | * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply | |||
| 231 | * remove all the relevant variable declaration from the IR, so that the | |||
| 232 | * linker won't see them and complain about mismatches. | |||
| 233 | */ | |||
| 234 | remove_per_vertex_blocks(instructions, state, ir_var_shader_in); | |||
| 235 | remove_per_vertex_blocks(instructions, state, ir_var_shader_out); | |||
| 236 | ||||
| 237 | /* Check that we don't have reads from write-only variables */ | |||
| 238 | read_from_write_only_variable_visitor v; | |||
| 239 | v.run(instructions); | |||
| 240 | ir_variable *error_var = v.get_variable(); | |||
| 241 | if (error_var) { | |||
| 242 | /* It would be nice to have proper location information, but for that | |||
| 243 | * we would need to check this as we process each kind of AST node | |||
| 244 | */ | |||
| 245 | YYLTYPE loc; | |||
| 246 | memset(&loc, 0, sizeof(loc)); | |||
| 247 | _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", | |||
| 248 | error_var->name); | |||
| 249 | } | |||
| 250 | } | |||
| 251 | ||||
| 252 | ||||
| 253 | static ir_expression_operation | |||
| 254 | get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, | |||
| 255 | struct _mesa_glsl_parse_state *state) | |||
| 256 | { | |||
| 257 | switch (to->base_type) { | |||
| 258 | case GLSL_TYPE_FLOAT: | |||
| 259 | switch (from->base_type) { | |||
| 260 | case GLSL_TYPE_INT: return ir_unop_i2f; | |||
| 261 | case GLSL_TYPE_UINT: return ir_unop_u2f; | |||
| 262 | default: return (ir_expression_operation)0; | |||
| 263 | } | |||
| 264 | ||||
| 265 | case GLSL_TYPE_UINT: | |||
| 266 | if (!state->has_implicit_uint_to_int_conversion()) | |||
| 267 | return (ir_expression_operation)0; | |||
| 268 | switch (from->base_type) { | |||
| 269 | case GLSL_TYPE_INT: return ir_unop_i2u; | |||
| 270 | default: return (ir_expression_operation)0; | |||
| 271 | } | |||
| 272 | ||||
| 273 | case GLSL_TYPE_DOUBLE: | |||
| 274 | if (!state->has_double()) | |||
| 275 | return (ir_expression_operation)0; | |||
| 276 | switch (from->base_type) { | |||
| 277 | case GLSL_TYPE_INT: return ir_unop_i2d; | |||
| 278 | case GLSL_TYPE_UINT: return ir_unop_u2d; | |||
| 279 | case GLSL_TYPE_FLOAT: return ir_unop_f2d; | |||
| 280 | case GLSL_TYPE_INT64: return ir_unop_i642d; | |||
| 281 | case GLSL_TYPE_UINT64: return ir_unop_u642d; | |||
| 282 | default: return (ir_expression_operation)0; | |||
| 283 | } | |||
| 284 | ||||
| 285 | case GLSL_TYPE_UINT64: | |||
| 286 | if (!state->has_int64()) | |||
| 287 | return (ir_expression_operation)0; | |||
| 288 | switch (from->base_type) { | |||
| 289 | case GLSL_TYPE_INT: return ir_unop_i2u64; | |||
| 290 | case GLSL_TYPE_UINT: return ir_unop_u2u64; | |||
| 291 | case GLSL_TYPE_INT64: return ir_unop_i642u64; | |||
| 292 | default: return (ir_expression_operation)0; | |||
| 293 | } | |||
| 294 | ||||
| 295 | case GLSL_TYPE_INT64: | |||
| 296 | if (!state->has_int64()) | |||
| 297 | return (ir_expression_operation)0; | |||
| 298 | switch (from->base_type) { | |||
| 299 | case GLSL_TYPE_INT: return ir_unop_i2i64; | |||
| 300 | default: return (ir_expression_operation)0; | |||
| 301 | } | |||
| 302 | ||||
| 303 | default: return (ir_expression_operation)0; | |||
| 304 | } | |||
| 305 | } | |||
| 306 | ||||
| 307 | ||||
| 308 | /** | |||
| 309 | * If a conversion is available, convert one operand to a different type | |||
| 310 | * | |||
| 311 | * The \c from \c ir_rvalue is converted "in place". | |||
| 312 | * | |||
| 313 | * \param to Type that the operand it to be converted to | |||
| 314 | * \param from Operand that is being converted | |||
| 315 | * \param state GLSL compiler state | |||
| 316 | * | |||
| 317 | * \return | |||
| 318 | * If a conversion is possible (or unnecessary), \c true is returned. | |||
| 319 | * Otherwise \c false is returned. | |||
| 320 | */ | |||
| 321 | static bool | |||
| 322 | apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, | |||
| 323 | struct _mesa_glsl_parse_state *state) | |||
| 324 | { | |||
| 325 | void *ctx = state; | |||
| 326 | if (to->base_type == from->type->base_type) | |||
| 327 | return true; | |||
| 328 | ||||
| 329 | /* Prior to GLSL 1.20, there are no implicit conversions */ | |||
| 330 | if (!state->has_implicit_conversions()) | |||
| 331 | return false; | |||
| 332 | ||||
| 333 | /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: | |||
| 334 | * | |||
| 335 | * "There are no implicit array or structure conversions. For | |||
| 336 | * example, an array of int cannot be implicitly converted to an | |||
| 337 | * array of float. | |||
| 338 | */ | |||
| 339 | if (!to->is_numeric() || !from->type->is_numeric()) | |||
| 340 | return false; | |||
| 341 | ||||
| 342 | /* We don't actually want the specific type `to`, we want a type | |||
| 343 | * with the same base type as `to`, but the same vector width as | |||
| 344 | * `from`. | |||
| 345 | */ | |||
| 346 | to = glsl_type::get_instance(to->base_type, from->type->vector_elements, | |||
| 347 | from->type->matrix_columns); | |||
| 348 | ||||
| 349 | ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); | |||
| 350 | if (op) { | |||
| 351 | from = new(ctx) ir_expression(op, to, from, NULL__null); | |||
| 352 | return true; | |||
| 353 | } else { | |||
| 354 | return false; | |||
| 355 | } | |||
| 356 | } | |||
| 357 | ||||
| 358 | ||||
| 359 | static const struct glsl_type * | |||
| 360 | arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
| 361 | bool multiply, | |||
| 362 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 363 | { | |||
| 364 | const glsl_type *type_a = value_a->type; | |||
| 365 | const glsl_type *type_b = value_b->type; | |||
| 366 | ||||
| 367 | /* From GLSL 1.50 spec, page 56: | |||
| 368 | * | |||
| 369 | * "The arithmetic binary operators add (+), subtract (-), | |||
| 370 | * multiply (*), and divide (/) operate on integer and | |||
| 371 | * floating-point scalars, vectors, and matrices." | |||
| 372 | */ | |||
| 373 | if (!type_a->is_numeric() || !type_b->is_numeric()) { | |||
| 374 | _mesa_glsl_error(loc, state, | |||
| 375 | "operands to arithmetic operators must be numeric"); | |||
| 376 | return glsl_type::error_type; | |||
| 377 | } | |||
| 378 | ||||
| 379 | ||||
| 380 | /* "If one operand is floating-point based and the other is | |||
| 381 | * not, then the conversions from Section 4.1.10 "Implicit | |||
| 382 | * Conversions" are applied to the non-floating-point-based operand." | |||
| 383 | */ | |||
| 384 | if (!apply_implicit_conversion(type_a, value_b, state) | |||
| 385 | && !apply_implicit_conversion(type_b, value_a, state)) { | |||
| 386 | _mesa_glsl_error(loc, state, | |||
| 387 | "could not implicitly convert operands to " | |||
| 388 | "arithmetic operator"); | |||
| 389 | return glsl_type::error_type; | |||
| 390 | } | |||
| 391 | type_a = value_a->type; | |||
| 392 | type_b = value_b->type; | |||
| 393 | ||||
| 394 | /* "If the operands are integer types, they must both be signed or | |||
| 395 | * both be unsigned." | |||
| 396 | * | |||
| 397 | * From this rule and the preceeding conversion it can be inferred that | |||
| 398 | * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. | |||
| 399 | * The is_numeric check above already filtered out the case where either | |||
| 400 | * type is not one of these, so now the base types need only be tested for | |||
| 401 | * equality. | |||
| 402 | */ | |||
| 403 | if (type_a->base_type != type_b->base_type) { | |||
| 404 | _mesa_glsl_error(loc, state, | |||
| 405 | "base type mismatch for arithmetic operator"); | |||
| 406 | return glsl_type::error_type; | |||
| 407 | } | |||
| 408 | ||||
| 409 | /* "All arithmetic binary operators result in the same fundamental type | |||
| 410 | * (signed integer, unsigned integer, or floating-point) as the | |||
| 411 | * operands they operate on, after operand type conversion. After | |||
| 412 | * conversion, the following cases are valid | |||
| 413 | * | |||
| 414 | * * The two operands are scalars. In this case the operation is | |||
| 415 | * applied, resulting in a scalar." | |||
| 416 | */ | |||
| 417 | if (type_a->is_scalar() && type_b->is_scalar()) | |||
| 418 | return type_a; | |||
| 419 | ||||
| 420 | /* "* One operand is a scalar, and the other is a vector or matrix. | |||
| 421 | * In this case, the scalar operation is applied independently to each | |||
| 422 | * component of the vector or matrix, resulting in the same size | |||
| 423 | * vector or matrix." | |||
| 424 | */ | |||
| 425 | if (type_a->is_scalar()) { | |||
| 426 | if (!type_b->is_scalar()) | |||
| 427 | return type_b; | |||
| 428 | } else if (type_b->is_scalar()) { | |||
| 429 | return type_a; | |||
| 430 | } | |||
| 431 | ||||
| 432 | /* All of the combinations of <scalar, scalar>, <vector, scalar>, | |||
| 433 | * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been | |||
| 434 | * handled. | |||
| 435 | */ | |||
| 436 | assert(!type_a->is_scalar())(static_cast <bool> (!type_a->is_scalar()) ? void (0 ) : __assert_fail ("!type_a->is_scalar()", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 437 | assert(!type_b->is_scalar())(static_cast <bool> (!type_b->is_scalar()) ? void (0 ) : __assert_fail ("!type_b->is_scalar()", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 438 | ||||
| 439 | /* "* The two operands are vectors of the same size. In this case, the | |||
| 440 | * operation is done component-wise resulting in the same size | |||
| 441 | * vector." | |||
| 442 | */ | |||
| 443 | if (type_a->is_vector() && type_b->is_vector()) { | |||
| 444 | if (type_a == type_b) { | |||
| 445 | return type_a; | |||
| 446 | } else { | |||
| 447 | _mesa_glsl_error(loc, state, | |||
| 448 | "vector size mismatch for arithmetic operator"); | |||
| 449 | return glsl_type::error_type; | |||
| 450 | } | |||
| 451 | } | |||
| 452 | ||||
| 453 | /* All of the combinations of <scalar, scalar>, <vector, scalar>, | |||
| 454 | * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and | |||
| 455 | * <vector, vector> have been handled. At least one of the operands must | |||
| 456 | * be matrix. Further, since there are no integer matrix types, the base | |||
| 457 | * type of both operands must be float. | |||
| 458 | */ | |||
| 459 | assert(type_a->is_matrix() || type_b->is_matrix())(static_cast <bool> (type_a->is_matrix() || type_b-> is_matrix()) ? void (0) : __assert_fail ("type_a->is_matrix() || type_b->is_matrix()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 460 | assert(type_a->is_float() || type_a->is_double())(static_cast <bool> (type_a->is_float() || type_a-> is_double()) ? void (0) : __assert_fail ("type_a->is_float() || type_a->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 461 | assert(type_b->is_float() || type_b->is_double())(static_cast <bool> (type_b->is_float() || type_b-> is_double()) ? void (0) : __assert_fail ("type_b->is_float() || type_b->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 462 | ||||
| 463 | /* "* The operator is add (+), subtract (-), or divide (/), and the | |||
| 464 | * operands are matrices with the same number of rows and the same | |||
| 465 | * number of columns. In this case, the operation is done component- | |||
| 466 | * wise resulting in the same size matrix." | |||
| 467 | * * The operator is multiply (*), where both operands are matrices or | |||
| 468 | * one operand is a vector and the other a matrix. A right vector | |||
| 469 | * operand is treated as a column vector and a left vector operand as a | |||
| 470 | * row vector. In all these cases, it is required that the number of | |||
| 471 | * columns of the left operand is equal to the number of rows of the | |||
| 472 | * right operand. Then, the multiply (*) operation does a linear | |||
| 473 | * algebraic multiply, yielding an object that has the same number of | |||
| 474 | * rows as the left operand and the same number of columns as the right | |||
| 475 | * operand. Section 5.10 "Vector and Matrix Operations" explains in | |||
| 476 | * more detail how vectors and matrices are operated on." | |||
| 477 | */ | |||
| 478 | if (! multiply) { | |||
| 479 | if (type_a == type_b) | |||
| 480 | return type_a; | |||
| 481 | } else { | |||
| 482 | const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); | |||
| 483 | ||||
| 484 | if (type == glsl_type::error_type) { | |||
| 485 | _mesa_glsl_error(loc, state, | |||
| 486 | "size mismatch for matrix multiplication"); | |||
| 487 | } | |||
| 488 | ||||
| 489 | return type; | |||
| 490 | } | |||
| 491 | ||||
| 492 | ||||
| 493 | /* "All other cases are illegal." | |||
| 494 | */ | |||
| 495 | _mesa_glsl_error(loc, state, "type mismatch"); | |||
| 496 | return glsl_type::error_type; | |||
| 497 | } | |||
| 498 | ||||
| 499 | ||||
| 500 | static const struct glsl_type * | |||
| 501 | unary_arithmetic_result_type(const struct glsl_type *type, | |||
| 502 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 503 | { | |||
| 504 | /* From GLSL 1.50 spec, page 57: | |||
| 505 | * | |||
| 506 | * "The arithmetic unary operators negate (-), post- and pre-increment | |||
| 507 | * and decrement (-- and ++) operate on integer or floating-point | |||
| 508 | * values (including vectors and matrices). All unary operators work | |||
| 509 | * component-wise on their operands. These result with the same type | |||
| 510 | * they operated on." | |||
| 511 | */ | |||
| 512 | if (!type->is_numeric()) { | |||
| 513 | _mesa_glsl_error(loc, state, | |||
| 514 | "operands to arithmetic operators must be numeric"); | |||
| 515 | return glsl_type::error_type; | |||
| 516 | } | |||
| 517 | ||||
| 518 | return type; | |||
| 519 | } | |||
| 520 | ||||
| 521 | /** | |||
| 522 | * \brief Return the result type of a bit-logic operation. | |||
| 523 | * | |||
| 524 | * If the given types to the bit-logic operator are invalid, return | |||
| 525 | * glsl_type::error_type. | |||
| 526 | * | |||
| 527 | * \param value_a LHS of bit-logic op | |||
| 528 | * \param value_b RHS of bit-logic op | |||
| 529 | */ | |||
| 530 | static const struct glsl_type * | |||
| 531 | bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
| 532 | ast_operators op, | |||
| 533 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 534 | { | |||
| 535 | const glsl_type *type_a = value_a->type; | |||
| 536 | const glsl_type *type_b = value_b->type; | |||
| 537 | ||||
| 538 | if (!state->check_bitwise_operations_allowed(loc)) { | |||
| 539 | return glsl_type::error_type; | |||
| 540 | } | |||
| 541 | ||||
| 542 | /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: | |||
| 543 | * | |||
| 544 | * "The bitwise operators and (&), exclusive-or (^), and inclusive-or | |||
| 545 | * (|). The operands must be of type signed or unsigned integers or | |||
| 546 | * integer vectors." | |||
| 547 | */ | |||
| 548 | if (!type_a->is_integer_32_64()) { | |||
| 549 | _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", | |||
| 550 | ast_expression::operator_string(op)); | |||
| 551 | return glsl_type::error_type; | |||
| 552 | } | |||
| 553 | if (!type_b->is_integer_32_64()) { | |||
| 554 | _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", | |||
| 555 | ast_expression::operator_string(op)); | |||
| 556 | return glsl_type::error_type; | |||
| 557 | } | |||
| 558 | ||||
| 559 | /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't | |||
| 560 | * make sense for bitwise operations, as they don't operate on floats. | |||
| 561 | * | |||
| 562 | * GLSL 4.0 added implicit int -> uint conversions, which are relevant | |||
| 563 | * here. It wasn't clear whether or not we should apply them to bitwise | |||
| 564 | * operations. However, Khronos has decided that they should in future | |||
| 565 | * language revisions. Applications also rely on this behavior. We opt | |||
| 566 | * to apply them in general, but issue a portability warning. | |||
| 567 | * | |||
| 568 | * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 | |||
| 569 | */ | |||
| 570 | if (type_a->base_type != type_b->base_type) { | |||
| 571 | if (!apply_implicit_conversion(type_a, value_b, state) | |||
| 572 | && !apply_implicit_conversion(type_b, value_a, state)) { | |||
| 573 | _mesa_glsl_error(loc, state, | |||
| 574 | "could not implicitly convert operands to " | |||
| 575 | "`%s` operator", | |||
| 576 | ast_expression::operator_string(op)); | |||
| 577 | return glsl_type::error_type; | |||
| 578 | } else { | |||
| 579 | _mesa_glsl_warning(loc, state, | |||
| 580 | "some implementations may not support implicit " | |||
| 581 | "int -> uint conversions for `%s' operators; " | |||
| 582 | "consider casting explicitly for portability", | |||
| 583 | ast_expression::operator_string(op)); | |||
| 584 | } | |||
| 585 | type_a = value_a->type; | |||
| 586 | type_b = value_b->type; | |||
| 587 | } | |||
| 588 | ||||
| 589 | /* "The fundamental types of the operands (signed or unsigned) must | |||
| 590 | * match," | |||
| 591 | */ | |||
| 592 | if (type_a->base_type != type_b->base_type) { | |||
| 593 | _mesa_glsl_error(loc, state, "operands of `%s' must have the same " | |||
| 594 | "base type", ast_expression::operator_string(op)); | |||
| 595 | return glsl_type::error_type; | |||
| 596 | } | |||
| 597 | ||||
| 598 | /* "The operands cannot be vectors of differing size." */ | |||
| 599 | if (type_a->is_vector() && | |||
| 600 | type_b->is_vector() && | |||
| 601 | type_a->vector_elements != type_b->vector_elements) { | |||
| 602 | _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " | |||
| 603 | "different sizes", ast_expression::operator_string(op)); | |||
| 604 | return glsl_type::error_type; | |||
| 605 | } | |||
| 606 | ||||
| 607 | /* "If one operand is a scalar and the other a vector, the scalar is | |||
| 608 | * applied component-wise to the vector, resulting in the same type as | |||
| 609 | * the vector. The fundamental types of the operands [...] will be the | |||
| 610 | * resulting fundamental type." | |||
| 611 | */ | |||
| 612 | if (type_a->is_scalar()) | |||
| 613 | return type_b; | |||
| 614 | else | |||
| 615 | return type_a; | |||
| 616 | } | |||
| 617 | ||||
| 618 | static const struct glsl_type * | |||
| 619 | modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
| 620 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 621 | { | |||
| 622 | const glsl_type *type_a = value_a->type; | |||
| 623 | const glsl_type *type_b = value_b->type; | |||
| 624 | ||||
| 625 | if (!state->EXT_gpu_shader4_enable && | |||
| 626 | !state->check_version(130, 300, loc, "operator '%%' is reserved")) { | |||
| 627 | return glsl_type::error_type; | |||
| 628 | } | |||
| 629 | ||||
| 630 | /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: | |||
| 631 | * | |||
| 632 | * "The operator modulus (%) operates on signed or unsigned integers or | |||
| 633 | * integer vectors." | |||
| 634 | */ | |||
| 635 | if (!type_a->is_integer_32_64()) { | |||
| 636 | _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); | |||
| 637 | return glsl_type::error_type; | |||
| 638 | } | |||
| 639 | if (!type_b->is_integer_32_64()) { | |||
| 640 | _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); | |||
| 641 | return glsl_type::error_type; | |||
| 642 | } | |||
| 643 | ||||
| 644 | /* "If the fundamental types in the operands do not match, then the | |||
| 645 | * conversions from section 4.1.10 "Implicit Conversions" are applied | |||
| 646 | * to create matching types." | |||
| 647 | * | |||
| 648 | * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit | |||
| 649 | * int -> uint conversion rules. Prior to that, there were no implicit | |||
| 650 | * conversions. So it's harmless to apply them universally - no implicit | |||
| 651 | * conversions will exist. If the types don't match, we'll receive false, | |||
| 652 | * and raise an error, satisfying the GLSL 1.50 spec, page 56: | |||
| 653 | * | |||
| 654 | * "The operand types must both be signed or unsigned." | |||
| 655 | */ | |||
| 656 | if (!apply_implicit_conversion(type_a, value_b, state) && | |||
| 657 | !apply_implicit_conversion(type_b, value_a, state)) { | |||
| 658 | _mesa_glsl_error(loc, state, | |||
| 659 | "could not implicitly convert operands to " | |||
| 660 | "modulus (%%) operator"); | |||
| 661 | return glsl_type::error_type; | |||
| 662 | } | |||
| 663 | type_a = value_a->type; | |||
| 664 | type_b = value_b->type; | |||
| 665 | ||||
| 666 | /* "The operands cannot be vectors of differing size. If one operand is | |||
| 667 | * a scalar and the other vector, then the scalar is applied component- | |||
| 668 | * wise to the vector, resulting in the same type as the vector. If both | |||
| 669 | * are vectors of the same size, the result is computed component-wise." | |||
| 670 | */ | |||
| 671 | if (type_a->is_vector()) { | |||
| 672 | if (!type_b->is_vector() | |||
| 673 | || (type_a->vector_elements == type_b->vector_elements)) | |||
| 674 | return type_a; | |||
| 675 | } else | |||
| 676 | return type_b; | |||
| 677 | ||||
| 678 | /* "The operator modulus (%) is not defined for any other data types | |||
| 679 | * (non-integer types)." | |||
| 680 | */ | |||
| 681 | _mesa_glsl_error(loc, state, "type mismatch"); | |||
| 682 | return glsl_type::error_type; | |||
| 683 | } | |||
| 684 | ||||
| 685 | ||||
| 686 | static const struct glsl_type * | |||
| 687 | relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, | |||
| 688 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 689 | { | |||
| 690 | const glsl_type *type_a = value_a->type; | |||
| 691 | const glsl_type *type_b = value_b->type; | |||
| 692 | ||||
| 693 | /* From GLSL 1.50 spec, page 56: | |||
| 694 | * "The relational operators greater than (>), less than (<), greater | |||
| 695 | * than or equal (>=), and less than or equal (<=) operate only on | |||
| 696 | * scalar integer and scalar floating-point expressions." | |||
| 697 | */ | |||
| 698 | if (!type_a->is_numeric() | |||
| 699 | || !type_b->is_numeric() | |||
| 700 | || !type_a->is_scalar() | |||
| 701 | || !type_b->is_scalar()) { | |||
| 702 | _mesa_glsl_error(loc, state, | |||
| 703 | "operands to relational operators must be scalar and " | |||
| 704 | "numeric"); | |||
| 705 | return glsl_type::error_type; | |||
| 706 | } | |||
| 707 | ||||
| 708 | /* "Either the operands' types must match, or the conversions from | |||
| 709 | * Section 4.1.10 "Implicit Conversions" will be applied to the integer | |||
| 710 | * operand, after which the types must match." | |||
| 711 | */ | |||
| 712 | if (!apply_implicit_conversion(type_a, value_b, state) | |||
| 713 | && !apply_implicit_conversion(type_b, value_a, state)) { | |||
| 714 | _mesa_glsl_error(loc, state, | |||
| 715 | "could not implicitly convert operands to " | |||
| 716 | "relational operator"); | |||
| 717 | return glsl_type::error_type; | |||
| 718 | } | |||
| 719 | type_a = value_a->type; | |||
| 720 | type_b = value_b->type; | |||
| 721 | ||||
| 722 | if (type_a->base_type != type_b->base_type) { | |||
| 723 | _mesa_glsl_error(loc, state, "base type mismatch"); | |||
| 724 | return glsl_type::error_type; | |||
| 725 | } | |||
| 726 | ||||
| 727 | /* "The result is scalar Boolean." | |||
| 728 | */ | |||
| 729 | return glsl_type::bool_type; | |||
| 730 | } | |||
| 731 | ||||
| 732 | /** | |||
| 733 | * \brief Return the result type of a bit-shift operation. | |||
| 734 | * | |||
| 735 | * If the given types to the bit-shift operator are invalid, return | |||
| 736 | * glsl_type::error_type. | |||
| 737 | * | |||
| 738 | * \param type_a Type of LHS of bit-shift op | |||
| 739 | * \param type_b Type of RHS of bit-shift op | |||
| 740 | */ | |||
| 741 | static const struct glsl_type * | |||
| 742 | shift_result_type(const struct glsl_type *type_a, | |||
| 743 | const struct glsl_type *type_b, | |||
| 744 | ast_operators op, | |||
| 745 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 746 | { | |||
| 747 | if (!state->check_bitwise_operations_allowed(loc)) { | |||
| 748 | return glsl_type::error_type; | |||
| 749 | } | |||
| 750 | ||||
| 751 | /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: | |||
| 752 | * | |||
| 753 | * "The shift operators (<<) and (>>). For both operators, the operands | |||
| 754 | * must be signed or unsigned integers or integer vectors. One operand | |||
| 755 | * can be signed while the other is unsigned." | |||
| 756 | */ | |||
| 757 | if (!type_a->is_integer_32_64()) { | |||
| 758 | _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " | |||
| 759 | "integer vector", ast_expression::operator_string(op)); | |||
| 760 | return glsl_type::error_type; | |||
| 761 | ||||
| 762 | } | |||
| 763 | if (!type_b->is_integer_32()) { | |||
| 764 | _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " | |||
| 765 | "integer vector", ast_expression::operator_string(op)); | |||
| 766 | return glsl_type::error_type; | |||
| 767 | } | |||
| 768 | ||||
| 769 | /* "If the first operand is a scalar, the second operand has to be | |||
| 770 | * a scalar as well." | |||
| 771 | */ | |||
| 772 | if (type_a->is_scalar() && !type_b->is_scalar()) { | |||
| 773 | _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " | |||
| 774 | "second must be scalar as well", | |||
| 775 | ast_expression::operator_string(op)); | |||
| 776 | return glsl_type::error_type; | |||
| 777 | } | |||
| 778 | ||||
| 779 | /* If both operands are vectors, check that they have same number of | |||
| 780 | * elements. | |||
| 781 | */ | |||
| 782 | if (type_a->is_vector() && | |||
| 783 | type_b->is_vector() && | |||
| 784 | type_a->vector_elements != type_b->vector_elements) { | |||
| 785 | _mesa_glsl_error(loc, state, "vector operands to operator %s must " | |||
| 786 | "have same number of elements", | |||
| 787 | ast_expression::operator_string(op)); | |||
| 788 | return glsl_type::error_type; | |||
| 789 | } | |||
| 790 | ||||
| 791 | /* "In all cases, the resulting type will be the same type as the left | |||
| 792 | * operand." | |||
| 793 | */ | |||
| 794 | return type_a; | |||
| 795 | } | |||
| 796 | ||||
| 797 | /** | |||
| 798 | * Returns the innermost array index expression in an rvalue tree. | |||
| 799 | * This is the largest indexing level -- if an array of blocks, then | |||
| 800 | * it is the block index rather than an indexing expression for an | |||
| 801 | * array-typed member of an array of blocks. | |||
| 802 | */ | |||
| 803 | static ir_rvalue * | |||
| 804 | find_innermost_array_index(ir_rvalue *rv) | |||
| 805 | { | |||
| 806 | ir_dereference_array *last = NULL__null; | |||
| 807 | while (rv) { | |||
| 808 | if (rv->as_dereference_array()) { | |||
| 809 | last = rv->as_dereference_array(); | |||
| 810 | rv = last->array; | |||
| 811 | } else if (rv->as_dereference_record()) | |||
| 812 | rv = rv->as_dereference_record()->record; | |||
| 813 | else if (rv->as_swizzle()) | |||
| 814 | rv = rv->as_swizzle()->val; | |||
| 815 | else | |||
| 816 | rv = NULL__null; | |||
| 817 | } | |||
| 818 | ||||
| 819 | if (last) | |||
| 820 | return last->array_index; | |||
| 821 | ||||
| 822 | return NULL__null; | |||
| 823 | } | |||
| 824 | ||||
| 825 | /** | |||
| 826 | * Validates that a value can be assigned to a location with a specified type | |||
| 827 | * | |||
| 828 | * Validates that \c rhs can be assigned to some location. If the types are | |||
| 829 | * not an exact match but an automatic conversion is possible, \c rhs will be | |||
| 830 | * converted. | |||
| 831 | * | |||
| 832 | * \return | |||
| 833 | * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. | |||
| 834 | * Otherwise the actual RHS to be assigned will be returned. This may be | |||
| 835 | * \c rhs, or it may be \c rhs after some type conversion. | |||
| 836 | * | |||
| 837 | * \note | |||
| 838 | * In addition to being used for assignments, this function is used to | |||
| 839 | * type-check return values. | |||
| 840 | */ | |||
| 841 | static ir_rvalue * | |||
| 842 | validate_assignment(struct _mesa_glsl_parse_state *state, | |||
| 843 | YYLTYPE loc, ir_rvalue *lhs, | |||
| 844 | ir_rvalue *rhs, bool is_initializer) | |||
| 845 | { | |||
| 846 | /* If there is already some error in the RHS, just return it. Anything | |||
| 847 | * else will lead to an avalanche of error message back to the user. | |||
| 848 | */ | |||
| 849 | if (rhs->type->is_error()) | |||
| 850 | return rhs; | |||
| 851 | ||||
| 852 | /* In the Tessellation Control Shader: | |||
| 853 | * If a per-vertex output variable is used as an l-value, it is an error | |||
| 854 | * if the expression indicating the vertex number is not the identifier | |||
| 855 | * `gl_InvocationID`. | |||
| 856 | */ | |||
| 857 | if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { | |||
| 858 | ir_variable *var = lhs->variable_referenced(); | |||
| 859 | if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { | |||
| 860 | ir_rvalue *index = find_innermost_array_index(lhs); | |||
| 861 | ir_variable *index_var = index ? index->variable_referenced() : NULL__null; | |||
| 862 | if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { | |||
| 863 | _mesa_glsl_error(&loc, state, | |||
| 864 | "Tessellation control shader outputs can only " | |||
| 865 | "be indexed by gl_InvocationID"); | |||
| 866 | return NULL__null; | |||
| 867 | } | |||
| 868 | } | |||
| 869 | } | |||
| 870 | ||||
| 871 | /* If the types are identical, the assignment can trivially proceed. | |||
| 872 | */ | |||
| 873 | if (rhs->type == lhs->type) | |||
| 874 | return rhs; | |||
| 875 | ||||
| 876 | /* If the array element types are the same and the LHS is unsized, | |||
| 877 | * the assignment is okay for initializers embedded in variable | |||
| 878 | * declarations. | |||
| 879 | * | |||
| 880 | * Note: Whole-array assignments are not permitted in GLSL 1.10, but this | |||
| 881 | * is handled by ir_dereference::is_lvalue. | |||
| 882 | */ | |||
| 883 | const glsl_type *lhs_t = lhs->type; | |||
| 884 | const glsl_type *rhs_t = rhs->type; | |||
| 885 | bool unsized_array = false; | |||
| 886 | while(lhs_t->is_array()) { | |||
| 887 | if (rhs_t == lhs_t) | |||
| 888 | break; /* the rest of the inner arrays match so break out early */ | |||
| 889 | if (!rhs_t->is_array()) { | |||
| 890 | unsized_array = false; | |||
| 891 | break; /* number of dimensions mismatch */ | |||
| 892 | } | |||
| 893 | if (lhs_t->length == rhs_t->length) { | |||
| 894 | lhs_t = lhs_t->fields.array; | |||
| 895 | rhs_t = rhs_t->fields.array; | |||
| 896 | continue; | |||
| 897 | } else if (lhs_t->is_unsized_array()) { | |||
| 898 | unsized_array = true; | |||
| 899 | } else { | |||
| 900 | unsized_array = false; | |||
| 901 | break; /* sized array mismatch */ | |||
| 902 | } | |||
| 903 | lhs_t = lhs_t->fields.array; | |||
| 904 | rhs_t = rhs_t->fields.array; | |||
| 905 | } | |||
| 906 | if (unsized_array) { | |||
| 907 | if (is_initializer) { | |||
| 908 | if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) | |||
| 909 | return rhs; | |||
| 910 | } else { | |||
| 911 | _mesa_glsl_error(&loc, state, | |||
| 912 | "implicitly sized arrays cannot be assigned"); | |||
| 913 | return NULL__null; | |||
| 914 | } | |||
| 915 | } | |||
| 916 | ||||
| 917 | /* Check for implicit conversion in GLSL 1.20 */ | |||
| 918 | if (apply_implicit_conversion(lhs->type, rhs, state)) { | |||
| 919 | if (rhs->type == lhs->type) | |||
| 920 | return rhs; | |||
| 921 | } | |||
| 922 | ||||
| 923 | _mesa_glsl_error(&loc, state, | |||
| 924 | "%s of type %s cannot be assigned to " | |||
| 925 | "variable of type %s", | |||
| 926 | is_initializer ? "initializer" : "value", | |||
| 927 | rhs->type->name, lhs->type->name); | |||
| 928 | ||||
| 929 | return NULL__null; | |||
| 930 | } | |||
| 931 | ||||
| 932 | static void | |||
| 933 | mark_whole_array_access(ir_rvalue *access) | |||
| 934 | { | |||
| 935 | ir_dereference_variable *deref = access->as_dereference_variable(); | |||
| 936 | ||||
| 937 | if (deref && deref->var) { | |||
| 938 | deref->var->data.max_array_access = deref->type->length - 1; | |||
| 939 | } | |||
| 940 | } | |||
| 941 | ||||
| 942 | static bool | |||
| 943 | do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, | |||
| 944 | const char *non_lvalue_description, | |||
| 945 | ir_rvalue *lhs, ir_rvalue *rhs, | |||
| 946 | ir_rvalue **out_rvalue, bool needs_rvalue, | |||
| 947 | bool is_initializer, | |||
| 948 | YYLTYPE lhs_loc) | |||
| 949 | { | |||
| 950 | void *ctx = state; | |||
| 951 | bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); | |||
| 952 | ||||
| 953 | ir_variable *lhs_var = lhs->variable_referenced(); | |||
| 954 | if (lhs_var) | |||
| 955 | lhs_var->data.assigned = true; | |||
| 956 | ||||
| 957 | if (!error_emitted) { | |||
| 958 | if (non_lvalue_description != NULL__null) { | |||
| 959 | _mesa_glsl_error(&lhs_loc, state, | |||
| 960 | "assignment to %s", | |||
| 961 | non_lvalue_description); | |||
| 962 | error_emitted = true; | |||
| 963 | } else if (lhs_var != NULL__null && (lhs_var->data.read_only || | |||
| 964 | (lhs_var->data.mode == ir_var_shader_storage && | |||
| 965 | lhs_var->data.memory_read_only))) { | |||
| 966 | /* We can have memory_read_only set on both images and buffer variables, | |||
| 967 | * but in the former there is a distinction between assignments to | |||
| 968 | * the variable itself (read_only) and to the memory they point to | |||
| 969 | * (memory_read_only), while in the case of buffer variables there is | |||
| 970 | * no such distinction, that is why this check here is limited to | |||
| 971 | * buffer variables alone. | |||
| 972 | */ | |||
| 973 | _mesa_glsl_error(&lhs_loc, state, | |||
| 974 | "assignment to read-only variable '%s'", | |||
| 975 | lhs_var->name); | |||
| 976 | error_emitted = true; | |||
| 977 | } else if (lhs->type->is_array() && | |||
| 978 | !state->check_version(120, 300, &lhs_loc, | |||
| 979 | "whole array assignment forbidden")) { | |||
| 980 | /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: | |||
| 981 | * | |||
| 982 | * "Other binary or unary expressions, non-dereferenced | |||
| 983 | * arrays, function names, swizzles with repeated fields, | |||
| 984 | * and constants cannot be l-values." | |||
| 985 | * | |||
| 986 | * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. | |||
| 987 | */ | |||
| 988 | error_emitted = true; | |||
| 989 | } else if (!lhs->is_lvalue(state)) { | |||
| 990 | _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); | |||
| 991 | error_emitted = true; | |||
| 992 | } | |||
| 993 | } | |||
| 994 | ||||
| 995 | ir_rvalue *new_rhs = | |||
| 996 | validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); | |||
| 997 | if (new_rhs != NULL__null) { | |||
| 998 | rhs = new_rhs; | |||
| 999 | ||||
| 1000 | /* If the LHS array was not declared with a size, it takes it size from | |||
| 1001 | * the RHS. If the LHS is an l-value and a whole array, it must be a | |||
| 1002 | * dereference of a variable. Any other case would require that the LHS | |||
| 1003 | * is either not an l-value or not a whole array. | |||
| 1004 | */ | |||
| 1005 | if (lhs->type->is_unsized_array()) { | |||
| 1006 | ir_dereference *const d = lhs->as_dereference(); | |||
| 1007 | ||||
| 1008 | assert(d != NULL)(static_cast <bool> (d != __null) ? void (0) : __assert_fail ("d != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 1009 | ||||
| 1010 | ir_variable *const var = d->variable_referenced(); | |||
| 1011 | ||||
| 1012 | assert(var != NULL)(static_cast <bool> (var != __null) ? void (0) : __assert_fail ("var != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 1013 | ||||
| 1014 | if (var->data.max_array_access >= rhs->type->array_size()) { | |||
| 1015 | /* FINISHME: This should actually log the location of the RHS. */ | |||
| 1016 | _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " | |||
| 1017 | "previous access", | |||
| 1018 | var->data.max_array_access); | |||
| 1019 | } | |||
| 1020 | ||||
| 1021 | var->type = glsl_type::get_array_instance(lhs->type->fields.array, | |||
| 1022 | rhs->type->array_size()); | |||
| 1023 | d->type = var->type; | |||
| 1024 | } | |||
| 1025 | if (lhs->type->is_array()) { | |||
| 1026 | mark_whole_array_access(rhs); | |||
| 1027 | mark_whole_array_access(lhs); | |||
| 1028 | } | |||
| 1029 | } else { | |||
| 1030 | error_emitted = true; | |||
| 1031 | } | |||
| 1032 | ||||
| 1033 | /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, | |||
| 1034 | * but not post_inc) need the converted assigned value as an rvalue | |||
| 1035 | * to handle things like: | |||
| 1036 | * | |||
| 1037 | * i = j += 1; | |||
| 1038 | */ | |||
| 1039 | if (needs_rvalue) { | |||
| 1040 | ir_rvalue *rvalue; | |||
| 1041 | if (!error_emitted) { | |||
| 1042 | ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", | |||
| 1043 | ir_var_temporary); | |||
| 1044 | instructions->push_tail(var); | |||
| 1045 | instructions->push_tail(assign(var, rhs)); | |||
| 1046 | ||||
| 1047 | ir_dereference_variable *deref_var = | |||
| 1048 | new(ctx) ir_dereference_variable(var); | |||
| 1049 | instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); | |||
| 1050 | rvalue = new(ctx) ir_dereference_variable(var); | |||
| 1051 | } else { | |||
| 1052 | rvalue = ir_rvalue::error_value(ctx); | |||
| 1053 | } | |||
| 1054 | *out_rvalue = rvalue; | |||
| 1055 | } else { | |||
| 1056 | if (!error_emitted) | |||
| 1057 | instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); | |||
| 1058 | *out_rvalue = NULL__null; | |||
| 1059 | } | |||
| 1060 | ||||
| 1061 | return error_emitted; | |||
| 1062 | } | |||
| 1063 | ||||
| 1064 | static ir_rvalue * | |||
| 1065 | get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) | |||
| 1066 | { | |||
| 1067 | void *ctx = ralloc_parent(lvalue); | |||
| 1068 | ir_variable *var; | |||
| 1069 | ||||
| 1070 | var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", | |||
| 1071 | ir_var_temporary); | |||
| 1072 | instructions->push_tail(var); | |||
| 1073 | ||||
| 1074 | instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), | |||
| 1075 | lvalue)); | |||
| 1076 | ||||
| 1077 | return new(ctx) ir_dereference_variable(var); | |||
| 1078 | } | |||
| 1079 | ||||
| 1080 | ||||
| 1081 | ir_rvalue * | |||
| 1082 | ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) | |||
| 1083 | { | |||
| 1084 | (void) instructions; | |||
| 1085 | (void) state; | |||
| 1086 | ||||
| 1087 | return NULL__null; | |||
| 1088 | } | |||
| 1089 | ||||
| 1090 | bool | |||
| 1091 | ast_node::has_sequence_subexpression() const | |||
| 1092 | { | |||
| 1093 | return false; | |||
| 1094 | } | |||
| 1095 | ||||
| 1096 | void | |||
| 1097 | ast_node::set_is_lhs(bool /* new_value */) | |||
| 1098 | { | |||
| 1099 | } | |||
| 1100 | ||||
| 1101 | void | |||
| 1102 | ast_function_expression::hir_no_rvalue(exec_list *instructions, | |||
| 1103 | struct _mesa_glsl_parse_state *state) | |||
| 1104 | { | |||
| 1105 | (void)hir(instructions, state); | |||
| 1106 | } | |||
| 1107 | ||||
| 1108 | void | |||
| 1109 | ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, | |||
| 1110 | struct _mesa_glsl_parse_state *state) | |||
| 1111 | { | |||
| 1112 | (void)hir(instructions, state); | |||
| 1113 | } | |||
| 1114 | ||||
| 1115 | static ir_rvalue * | |||
| 1116 | do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) | |||
| 1117 | { | |||
| 1118 | int join_op; | |||
| 1119 | ir_rvalue *cmp = NULL__null; | |||
| 1120 | ||||
| 1121 | if (operation == ir_binop_all_equal) | |||
| 1122 | join_op = ir_binop_logic_and; | |||
| 1123 | else | |||
| 1124 | join_op = ir_binop_logic_or; | |||
| 1125 | ||||
| 1126 | switch (op0->type->base_type) { | |||
| 1127 | case GLSL_TYPE_FLOAT: | |||
| 1128 | case GLSL_TYPE_FLOAT16: | |||
| 1129 | case GLSL_TYPE_UINT: | |||
| 1130 | case GLSL_TYPE_INT: | |||
| 1131 | case GLSL_TYPE_BOOL: | |||
| 1132 | case GLSL_TYPE_DOUBLE: | |||
| 1133 | case GLSL_TYPE_UINT64: | |||
| 1134 | case GLSL_TYPE_INT64: | |||
| 1135 | case GLSL_TYPE_UINT16: | |||
| 1136 | case GLSL_TYPE_INT16: | |||
| 1137 | case GLSL_TYPE_UINT8: | |||
| 1138 | case GLSL_TYPE_INT8: | |||
| 1139 | return new(mem_ctx) ir_expression(operation, op0, op1); | |||
| 1140 | ||||
| 1141 | case GLSL_TYPE_ARRAY: { | |||
| 1142 | for (unsigned int i = 0; i < op0->type->length; i++) { | |||
| 1143 | ir_rvalue *e0, *e1, *result; | |||
| 1144 | ||||
| 1145 | e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL__null), | |||
| 1146 | new(mem_ctx) ir_constant(i)); | |||
| 1147 | e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL__null), | |||
| 1148 | new(mem_ctx) ir_constant(i)); | |||
| 1149 | result = do_comparison(mem_ctx, operation, e0, e1); | |||
| 1150 | ||||
| 1151 | if (cmp) { | |||
| 1152 | cmp = new(mem_ctx) ir_expression(join_op, cmp, result); | |||
| 1153 | } else { | |||
| 1154 | cmp = result; | |||
| 1155 | } | |||
| 1156 | } | |||
| 1157 | ||||
| 1158 | mark_whole_array_access(op0); | |||
| 1159 | mark_whole_array_access(op1); | |||
| 1160 | break; | |||
| 1161 | } | |||
| 1162 | ||||
| 1163 | case GLSL_TYPE_STRUCT: { | |||
| 1164 | for (unsigned int i = 0; i < op0->type->length; i++) { | |||
| 1165 | ir_rvalue *e0, *e1, *result; | |||
| 1166 | const char *field_name = op0->type->fields.structure[i].name; | |||
| 1167 | ||||
| 1168 | e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL__null), | |||
| 1169 | field_name); | |||
| 1170 | e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL__null), | |||
| 1171 | field_name); | |||
| 1172 | result = do_comparison(mem_ctx, operation, e0, e1); | |||
| 1173 | ||||
| 1174 | if (cmp) { | |||
| 1175 | cmp = new(mem_ctx) ir_expression(join_op, cmp, result); | |||
| 1176 | } else { | |||
| 1177 | cmp = result; | |||
| 1178 | } | |||
| 1179 | } | |||
| 1180 | break; | |||
| 1181 | } | |||
| 1182 | ||||
| 1183 | case GLSL_TYPE_ERROR: | |||
| 1184 | case GLSL_TYPE_VOID: | |||
| 1185 | case GLSL_TYPE_SAMPLER: | |||
| 1186 | case GLSL_TYPE_IMAGE: | |||
| 1187 | case GLSL_TYPE_INTERFACE: | |||
| 1188 | case GLSL_TYPE_ATOMIC_UINT: | |||
| 1189 | case GLSL_TYPE_SUBROUTINE: | |||
| 1190 | case GLSL_TYPE_FUNCTION: | |||
| 1191 | /* I assume a comparison of a struct containing a sampler just | |||
| 1192 | * ignores the sampler present in the type. | |||
| 1193 | */ | |||
| 1194 | break; | |||
| 1195 | } | |||
| 1196 | ||||
| 1197 | if (cmp == NULL__null) | |||
| 1198 | cmp = new(mem_ctx) ir_constant(true); | |||
| 1199 | ||||
| 1200 | return cmp; | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | /* For logical operations, we want to ensure that the operands are | |||
| 1204 | * scalar booleans. If it isn't, emit an error and return a constant | |||
| 1205 | * boolean to avoid triggering cascading error messages. | |||
| 1206 | */ | |||
| 1207 | static ir_rvalue * | |||
| 1208 | get_scalar_boolean_operand(exec_list *instructions, | |||
| 1209 | struct _mesa_glsl_parse_state *state, | |||
| 1210 | ast_expression *parent_expr, | |||
| 1211 | int operand, | |||
| 1212 | const char *operand_name, | |||
| 1213 | bool *error_emitted) | |||
| 1214 | { | |||
| 1215 | ast_expression *expr = parent_expr->subexpressions[operand]; | |||
| 1216 | void *ctx = state; | |||
| 1217 | ir_rvalue *val = expr->hir(instructions, state); | |||
| 1218 | ||||
| 1219 | if (val->type->is_boolean() && val->type->is_scalar()) | |||
| 1220 | return val; | |||
| 1221 | ||||
| 1222 | if (!*error_emitted) { | |||
| 1223 | YYLTYPE loc = expr->get_location(); | |||
| 1224 | _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", | |||
| 1225 | operand_name, | |||
| 1226 | parent_expr->operator_string(parent_expr->oper)); | |||
| 1227 | *error_emitted = true; | |||
| 1228 | } | |||
| 1229 | ||||
| 1230 | return new(ctx) ir_constant(true); | |||
| 1231 | } | |||
| 1232 | ||||
| 1233 | /** | |||
| 1234 | * If name refers to a builtin array whose maximum allowed size is less than | |||
| 1235 | * size, report an error and return true. Otherwise return false. | |||
| 1236 | */ | |||
| 1237 | void | |||
| 1238 | check_builtin_array_max_size(const char *name, unsigned size, | |||
| 1239 | YYLTYPE loc, struct _mesa_glsl_parse_state *state) | |||
| 1240 | { | |||
| 1241 | if ((strcmp("gl_TexCoord", name) == 0) | |||
| 1242 | && (size > state->Const.MaxTextureCoords)) { | |||
| 1243 | /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: | |||
| 1244 | * | |||
| 1245 | * "The size [of gl_TexCoord] can be at most | |||
| 1246 | * gl_MaxTextureCoords." | |||
| 1247 | */ | |||
| 1248 | _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " | |||
| 1249 | "be larger than gl_MaxTextureCoords (%u)", | |||
| 1250 | state->Const.MaxTextureCoords); | |||
| 1251 | } else if (strcmp("gl_ClipDistance", name) == 0) { | |||
| 1252 | state->clip_dist_size = size; | |||
| 1253 | if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { | |||
| 1254 | /* From section 7.1 (Vertex Shader Special Variables) of the | |||
| 1255 | * GLSL 1.30 spec: | |||
| 1256 | * | |||
| 1257 | * "The gl_ClipDistance array is predeclared as unsized and | |||
| 1258 | * must be sized by the shader either redeclaring it with a | |||
| 1259 | * size or indexing it only with integral constant | |||
| 1260 | * expressions. ... The size can be at most | |||
| 1261 | * gl_MaxClipDistances." | |||
| 1262 | */ | |||
| 1263 | _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " | |||
| 1264 | "be larger than gl_MaxClipDistances (%u)", | |||
| 1265 | state->Const.MaxClipPlanes); | |||
| 1266 | } | |||
| 1267 | } else if (strcmp("gl_CullDistance", name) == 0) { | |||
| 1268 | state->cull_dist_size = size; | |||
| 1269 | if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { | |||
| 1270 | /* From the ARB_cull_distance spec: | |||
| 1271 | * | |||
| 1272 | * "The gl_CullDistance array is predeclared as unsized and | |||
| 1273 | * must be sized by the shader either redeclaring it with | |||
| 1274 | * a size or indexing it only with integral constant | |||
| 1275 | * expressions. The size determines the number and set of | |||
| 1276 | * enabled cull distances and can be at most | |||
| 1277 | * gl_MaxCullDistances." | |||
| 1278 | */ | |||
| 1279 | _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " | |||
| 1280 | "be larger than gl_MaxCullDistances (%u)", | |||
| 1281 | state->Const.MaxClipPlanes); | |||
| 1282 | } | |||
| 1283 | } | |||
| 1284 | } | |||
| 1285 | ||||
| 1286 | /** | |||
| 1287 | * Create the constant 1, of a which is appropriate for incrementing and | |||
| 1288 | * decrementing values of the given GLSL type. For example, if type is vec4, | |||
| 1289 | * this creates a constant value of 1.0 having type float. | |||
| 1290 | * | |||
| 1291 | * If the given type is invalid for increment and decrement operators, return | |||
| 1292 | * a floating point 1--the error will be detected later. | |||
| 1293 | */ | |||
| 1294 | static ir_rvalue * | |||
| 1295 | constant_one_for_inc_dec(void *ctx, const glsl_type *type) | |||
| 1296 | { | |||
| 1297 | switch (type->base_type) { | |||
| 1298 | case GLSL_TYPE_UINT: | |||
| 1299 | return new(ctx) ir_constant((unsigned) 1); | |||
| 1300 | case GLSL_TYPE_INT: | |||
| 1301 | return new(ctx) ir_constant(1); | |||
| 1302 | case GLSL_TYPE_UINT64: | |||
| 1303 | return new(ctx) ir_constant((uint64_t) 1); | |||
| 1304 | case GLSL_TYPE_INT64: | |||
| 1305 | return new(ctx) ir_constant((int64_t) 1); | |||
| 1306 | default: | |||
| 1307 | case GLSL_TYPE_FLOAT: | |||
| 1308 | return new(ctx) ir_constant(1.0f); | |||
| 1309 | } | |||
| 1310 | } | |||
| 1311 | ||||
| 1312 | ir_rvalue * | |||
| 1313 | ast_expression::hir(exec_list *instructions, | |||
| 1314 | struct _mesa_glsl_parse_state *state) | |||
| 1315 | { | |||
| 1316 | return do_hir(instructions, state, true); | |||
| 1317 | } | |||
| 1318 | ||||
| 1319 | void | |||
| 1320 | ast_expression::hir_no_rvalue(exec_list *instructions, | |||
| 1321 | struct _mesa_glsl_parse_state *state) | |||
| 1322 | { | |||
| 1323 | do_hir(instructions, state, false); | |||
| 1324 | } | |||
| 1325 | ||||
| 1326 | void | |||
| 1327 | ast_expression::set_is_lhs(bool new_value) | |||
| 1328 | { | |||
| 1329 | /* is_lhs is tracked only to print "variable used uninitialized" warnings, | |||
| 1330 | * if we lack an identifier we can just skip it. | |||
| 1331 | */ | |||
| 1332 | if (this->primary_expression.identifier == NULL__null) | |||
| 1333 | return; | |||
| 1334 | ||||
| 1335 | this->is_lhs = new_value; | |||
| 1336 | ||||
| 1337 | /* We need to go through the subexpressions tree to cover cases like | |||
| 1338 | * ast_field_selection | |||
| 1339 | */ | |||
| 1340 | if (this->subexpressions[0] != NULL__null) | |||
| 1341 | this->subexpressions[0]->set_is_lhs(new_value); | |||
| 1342 | } | |||
| 1343 | ||||
| 1344 | ir_rvalue * | |||
| 1345 | ast_expression::do_hir(exec_list *instructions, | |||
| 1346 | struct _mesa_glsl_parse_state *state, | |||
| 1347 | bool needs_rvalue) | |||
| 1348 | { | |||
| 1349 | void *ctx = state; | |||
| 1350 | static const int operations[AST_NUM_OPERATORS(ast_aggregate + 1)] = { | |||
| 1351 | -1, /* ast_assign doesn't convert to ir_expression. */ | |||
| 1352 | -1, /* ast_plus doesn't convert to ir_expression. */ | |||
| 1353 | ir_unop_neg, | |||
| 1354 | ir_binop_add, | |||
| 1355 | ir_binop_sub, | |||
| 1356 | ir_binop_mul, | |||
| 1357 | ir_binop_div, | |||
| 1358 | ir_binop_mod, | |||
| 1359 | ir_binop_lshift, | |||
| 1360 | ir_binop_rshift, | |||
| 1361 | ir_binop_less, | |||
| 1362 | ir_binop_less, /* This is correct. See the ast_greater case below. */ | |||
| 1363 | ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ | |||
| 1364 | ir_binop_gequal, | |||
| 1365 | ir_binop_all_equal, | |||
| 1366 | ir_binop_any_nequal, | |||
| 1367 | ir_binop_bit_and, | |||
| 1368 | ir_binop_bit_xor, | |||
| 1369 | ir_binop_bit_or, | |||
| 1370 | ir_unop_bit_not, | |||
| 1371 | ir_binop_logic_and, | |||
| 1372 | ir_binop_logic_xor, | |||
| 1373 | ir_binop_logic_or, | |||
| 1374 | ir_unop_logic_not, | |||
| 1375 | ||||
| 1376 | /* Note: The following block of expression types actually convert | |||
| 1377 | * to multiple IR instructions. | |||
| 1378 | */ | |||
| 1379 | ir_binop_mul, /* ast_mul_assign */ | |||
| 1380 | ir_binop_div, /* ast_div_assign */ | |||
| 1381 | ir_binop_mod, /* ast_mod_assign */ | |||
| 1382 | ir_binop_add, /* ast_add_assign */ | |||
| 1383 | ir_binop_sub, /* ast_sub_assign */ | |||
| 1384 | ir_binop_lshift, /* ast_ls_assign */ | |||
| 1385 | ir_binop_rshift, /* ast_rs_assign */ | |||
| 1386 | ir_binop_bit_and, /* ast_and_assign */ | |||
| 1387 | ir_binop_bit_xor, /* ast_xor_assign */ | |||
| 1388 | ir_binop_bit_or, /* ast_or_assign */ | |||
| 1389 | ||||
| 1390 | -1, /* ast_conditional doesn't convert to ir_expression. */ | |||
| 1391 | ir_binop_add, /* ast_pre_inc. */ | |||
| 1392 | ir_binop_sub, /* ast_pre_dec. */ | |||
| 1393 | ir_binop_add, /* ast_post_inc. */ | |||
| 1394 | ir_binop_sub, /* ast_post_dec. */ | |||
| 1395 | -1, /* ast_field_selection doesn't conv to ir_expression. */ | |||
| 1396 | -1, /* ast_array_index doesn't convert to ir_expression. */ | |||
| 1397 | -1, /* ast_function_call doesn't conv to ir_expression. */ | |||
| 1398 | -1, /* ast_identifier doesn't convert to ir_expression. */ | |||
| 1399 | -1, /* ast_int_constant doesn't convert to ir_expression. */ | |||
| 1400 | -1, /* ast_uint_constant doesn't conv to ir_expression. */ | |||
| 1401 | -1, /* ast_float_constant doesn't conv to ir_expression. */ | |||
| 1402 | -1, /* ast_bool_constant doesn't conv to ir_expression. */ | |||
| 1403 | -1, /* ast_sequence doesn't convert to ir_expression. */ | |||
| 1404 | -1, /* ast_aggregate shouldn't ever even get here. */ | |||
| 1405 | }; | |||
| 1406 | ir_rvalue *result = NULL__null; | |||
| 1407 | ir_rvalue *op[3]; | |||
| 1408 | const struct glsl_type *type, *orig_type; | |||
| 1409 | bool error_emitted = false; | |||
| 1410 | YYLTYPE loc; | |||
| 1411 | ||||
| 1412 | loc = this->get_location(); | |||
| 1413 | ||||
| 1414 | switch (this->oper) { | |||
| 1415 | case ast_aggregate: | |||
| 1416 | unreachable("ast_aggregate: Should never get here.")do { (static_cast <bool> (!"ast_aggregate: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_aggregate: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 1417 | ||||
| 1418 | case ast_assign: { | |||
| 1419 | this->subexpressions[0]->set_is_lhs(true); | |||
| 1420 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1421 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1422 | ||||
| 1423 | error_emitted = | |||
| 1424 | do_assignment(instructions, state, | |||
| 1425 | this->subexpressions[0]->non_lvalue_description, | |||
| 1426 | op[0], op[1], &result, needs_rvalue, false, | |||
| 1427 | this->subexpressions[0]->get_location()); | |||
| 1428 | break; | |||
| 1429 | } | |||
| 1430 | ||||
| 1431 | case ast_plus: | |||
| 1432 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1433 | ||||
| 1434 | type = unary_arithmetic_result_type(op[0]->type, state, & loc); | |||
| 1435 | ||||
| 1436 | error_emitted = type->is_error(); | |||
| 1437 | ||||
| 1438 | result = op[0]; | |||
| 1439 | break; | |||
| 1440 | ||||
| 1441 | case ast_neg: | |||
| 1442 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1443 | ||||
| 1444 | type = unary_arithmetic_result_type(op[0]->type, state, & loc); | |||
| 1445 | ||||
| 1446 | error_emitted = type->is_error(); | |||
| 1447 | ||||
| 1448 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1449 | op[0], NULL__null); | |||
| 1450 | break; | |||
| 1451 | ||||
| 1452 | case ast_add: | |||
| 1453 | case ast_sub: | |||
| 1454 | case ast_mul: | |||
| 1455 | case ast_div: | |||
| 1456 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1457 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1458 | ||||
| 1459 | type = arithmetic_result_type(op[0], op[1], | |||
| 1460 | (this->oper == ast_mul), | |||
| 1461 | state, & loc); | |||
| 1462 | error_emitted = type->is_error(); | |||
| 1463 | ||||
| 1464 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1465 | op[0], op[1]); | |||
| 1466 | break; | |||
| 1467 | ||||
| 1468 | case ast_mod: | |||
| 1469 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1470 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1471 | ||||
| 1472 | type = modulus_result_type(op[0], op[1], state, &loc); | |||
| 1473 | ||||
| 1474 | assert(operations[this->oper] == ir_binop_mod)(static_cast <bool> (operations[this->oper] == ir_binop_mod ) ? void (0) : __assert_fail ("operations[this->oper] == ir_binop_mod" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 1475 | ||||
| 1476 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1477 | op[0], op[1]); | |||
| 1478 | error_emitted = type->is_error(); | |||
| 1479 | break; | |||
| 1480 | ||||
| 1481 | case ast_lshift: | |||
| 1482 | case ast_rshift: | |||
| 1483 | if (!state->check_bitwise_operations_allowed(&loc)) { | |||
| 1484 | error_emitted = true; | |||
| 1485 | } | |||
| 1486 | ||||
| 1487 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1488 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1489 | type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, | |||
| 1490 | &loc); | |||
| 1491 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1492 | op[0], op[1]); | |||
| 1493 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); | |||
| 1494 | break; | |||
| 1495 | ||||
| 1496 | case ast_less: | |||
| 1497 | case ast_greater: | |||
| 1498 | case ast_lequal: | |||
| 1499 | case ast_gequal: | |||
| 1500 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1501 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1502 | ||||
| 1503 | type = relational_result_type(op[0], op[1], state, & loc); | |||
| 1504 | ||||
| 1505 | /* The relational operators must either generate an error or result | |||
| 1506 | * in a scalar boolean. See page 57 of the GLSL 1.50 spec. | |||
| 1507 | */ | |||
| 1508 | assert(type->is_error()(static_cast <bool> (type->is_error() || (type->is_boolean () && type->is_scalar())) ? void (0) : __assert_fail ("type->is_error() || (type->is_boolean() && type->is_scalar())" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) | |||
| 1509 | || (type->is_boolean() && type->is_scalar()))(static_cast <bool> (type->is_error() || (type->is_boolean () && type->is_scalar())) ? void (0) : __assert_fail ("type->is_error() || (type->is_boolean() && type->is_scalar())" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 1510 | ||||
| 1511 | /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap | |||
| 1512 | * the arguments and use < or >=. | |||
| 1513 | */ | |||
| 1514 | if (this->oper == ast_greater || this->oper == ast_lequal) { | |||
| 1515 | ir_rvalue *const tmp = op[0]; | |||
| 1516 | op[0] = op[1]; | |||
| 1517 | op[1] = tmp; | |||
| 1518 | } | |||
| 1519 | ||||
| 1520 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1521 | op[0], op[1]); | |||
| 1522 | error_emitted = type->is_error(); | |||
| 1523 | break; | |||
| 1524 | ||||
| 1525 | case ast_nequal: | |||
| 1526 | case ast_equal: | |||
| 1527 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1528 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1529 | ||||
| 1530 | /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: | |||
| 1531 | * | |||
| 1532 | * "The equality operators equal (==), and not equal (!=) | |||
| 1533 | * operate on all types. They result in a scalar Boolean. If | |||
| 1534 | * the operand types do not match, then there must be a | |||
| 1535 | * conversion from Section 4.1.10 "Implicit Conversions" | |||
| 1536 | * applied to one operand that can make them match, in which | |||
| 1537 | * case this conversion is done." | |||
| 1538 | */ | |||
| 1539 | ||||
| 1540 | if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { | |||
| 1541 | _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " | |||
| 1542 | "no operation `%1$s' exists that takes a left-hand " | |||
| 1543 | "operand of type 'void' or a right operand of type " | |||
| 1544 | "'void'", (this->oper == ast_equal) ? "==" : "!="); | |||
| 1545 | error_emitted = true; | |||
| 1546 | } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) | |||
| 1547 | && !apply_implicit_conversion(op[1]->type, op[0], state)) | |||
| 1548 | || (op[0]->type != op[1]->type)) { | |||
| 1549 | _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " | |||
| 1550 | "type", (this->oper == ast_equal) ? "==" : "!="); | |||
| 1551 | error_emitted = true; | |||
| 1552 | } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && | |||
| 1553 | !state->check_version(120, 300, &loc, | |||
| 1554 | "array comparisons forbidden")) { | |||
| 1555 | error_emitted = true; | |||
| 1556 | } else if ((op[0]->type->contains_subroutine() || | |||
| 1557 | op[1]->type->contains_subroutine())) { | |||
| 1558 | _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); | |||
| 1559 | error_emitted = true; | |||
| 1560 | } else if ((op[0]->type->contains_opaque() || | |||
| 1561 | op[1]->type->contains_opaque())) { | |||
| 1562 | _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); | |||
| 1563 | error_emitted = true; | |||
| 1564 | } | |||
| 1565 | ||||
| 1566 | if (error_emitted) { | |||
| 1567 | result = new(ctx) ir_constant(false); | |||
| 1568 | } else { | |||
| 1569 | result = do_comparison(ctx, operations[this->oper], op[0], op[1]); | |||
| 1570 | assert(result->type == glsl_type::bool_type)(static_cast <bool> (result->type == glsl_type::bool_type ) ? void (0) : __assert_fail ("result->type == glsl_type::bool_type" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 1571 | } | |||
| 1572 | break; | |||
| 1573 | ||||
| 1574 | case ast_bit_and: | |||
| 1575 | case ast_bit_xor: | |||
| 1576 | case ast_bit_or: | |||
| 1577 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1578 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1579 | type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); | |||
| 1580 | result = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1581 | op[0], op[1]); | |||
| 1582 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); | |||
| 1583 | break; | |||
| 1584 | ||||
| 1585 | case ast_bit_not: | |||
| 1586 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1587 | ||||
| 1588 | if (!state->check_bitwise_operations_allowed(&loc)) { | |||
| 1589 | error_emitted = true; | |||
| 1590 | } | |||
| 1591 | ||||
| 1592 | if (!op[0]->type->is_integer_32_64()) { | |||
| 1593 | _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); | |||
| 1594 | error_emitted = true; | |||
| 1595 | } | |||
| 1596 | ||||
| 1597 | type = error_emitted ? glsl_type::error_type : op[0]->type; | |||
| 1598 | result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL__null); | |||
| 1599 | break; | |||
| 1600 | ||||
| 1601 | case ast_logic_and: { | |||
| 1602 | exec_list rhs_instructions; | |||
| 1603 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
| 1604 | "LHS", &error_emitted); | |||
| 1605 | op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, | |||
| 1606 | "RHS", &error_emitted); | |||
| 1607 | ||||
| 1608 | if (rhs_instructions.is_empty()) { | |||
| 1609 | result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); | |||
| 1610 | } else { | |||
| 1611 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, | |||
| 1612 | "and_tmp", | |||
| 1613 | ir_var_temporary); | |||
| 1614 | instructions->push_tail(tmp); | |||
| 1615 | ||||
| 1616 | ir_if *const stmt = new(ctx) ir_if(op[0]); | |||
| 1617 | instructions->push_tail(stmt); | |||
| 1618 | ||||
| 1619 | stmt->then_instructions.append_list(&rhs_instructions); | |||
| 1620 | ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); | |||
| 1621 | ir_assignment *const then_assign = | |||
| 1622 | new(ctx) ir_assignment(then_deref, op[1]); | |||
| 1623 | stmt->then_instructions.push_tail(then_assign); | |||
| 1624 | ||||
| 1625 | ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); | |||
| 1626 | ir_assignment *const else_assign = | |||
| 1627 | new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); | |||
| 1628 | stmt->else_instructions.push_tail(else_assign); | |||
| 1629 | ||||
| 1630 | result = new(ctx) ir_dereference_variable(tmp); | |||
| 1631 | } | |||
| 1632 | break; | |||
| 1633 | } | |||
| 1634 | ||||
| 1635 | case ast_logic_or: { | |||
| 1636 | exec_list rhs_instructions; | |||
| 1637 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
| 1638 | "LHS", &error_emitted); | |||
| 1639 | op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, | |||
| 1640 | "RHS", &error_emitted); | |||
| 1641 | ||||
| 1642 | if (rhs_instructions.is_empty()) { | |||
| 1643 | result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); | |||
| 1644 | } else { | |||
| 1645 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, | |||
| 1646 | "or_tmp", | |||
| 1647 | ir_var_temporary); | |||
| 1648 | instructions->push_tail(tmp); | |||
| 1649 | ||||
| 1650 | ir_if *const stmt = new(ctx) ir_if(op[0]); | |||
| 1651 | instructions->push_tail(stmt); | |||
| 1652 | ||||
| 1653 | ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); | |||
| 1654 | ir_assignment *const then_assign = | |||
| 1655 | new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); | |||
| 1656 | stmt->then_instructions.push_tail(then_assign); | |||
| 1657 | ||||
| 1658 | stmt->else_instructions.append_list(&rhs_instructions); | |||
| 1659 | ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); | |||
| 1660 | ir_assignment *const else_assign = | |||
| 1661 | new(ctx) ir_assignment(else_deref, op[1]); | |||
| 1662 | stmt->else_instructions.push_tail(else_assign); | |||
| 1663 | ||||
| 1664 | result = new(ctx) ir_dereference_variable(tmp); | |||
| 1665 | } | |||
| 1666 | break; | |||
| 1667 | } | |||
| 1668 | ||||
| 1669 | case ast_logic_xor: | |||
| 1670 | /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: | |||
| 1671 | * | |||
| 1672 | * "The logical binary operators and (&&), or ( | | ), and | |||
| 1673 | * exclusive or (^^). They operate only on two Boolean | |||
| 1674 | * expressions and result in a Boolean expression." | |||
| 1675 | */ | |||
| 1676 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", | |||
| 1677 | &error_emitted); | |||
| 1678 | op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", | |||
| 1679 | &error_emitted); | |||
| 1680 | ||||
| 1681 | result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, | |||
| 1682 | op[0], op[1]); | |||
| 1683 | break; | |||
| 1684 | ||||
| 1685 | case ast_logic_not: | |||
| 1686 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
| 1687 | "operand", &error_emitted); | |||
| 1688 | ||||
| 1689 | result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, | |||
| 1690 | op[0], NULL__null); | |||
| 1691 | break; | |||
| 1692 | ||||
| 1693 | case ast_mul_assign: | |||
| 1694 | case ast_div_assign: | |||
| 1695 | case ast_add_assign: | |||
| 1696 | case ast_sub_assign: { | |||
| 1697 | this->subexpressions[0]->set_is_lhs(true); | |||
| 1698 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1699 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1700 | ||||
| 1701 | orig_type = op[0]->type; | |||
| 1702 | ||||
| 1703 | /* Break out if operand types were not parsed successfully. */ | |||
| 1704 | if ((op[0]->type == glsl_type::error_type || | |||
| 1705 | op[1]->type == glsl_type::error_type)) { | |||
| 1706 | error_emitted = true; | |||
| 1707 | break; | |||
| 1708 | } | |||
| 1709 | ||||
| 1710 | type = arithmetic_result_type(op[0], op[1], | |||
| 1711 | (this->oper == ast_mul_assign), | |||
| 1712 | state, & loc); | |||
| 1713 | ||||
| 1714 | if (type != orig_type) { | |||
| 1715 | _mesa_glsl_error(& loc, state, | |||
| 1716 | "could not implicitly convert " | |||
| 1717 | "%s to %s", type->name, orig_type->name); | |||
| 1718 | type = glsl_type::error_type; | |||
| 1719 | } | |||
| 1720 | ||||
| 1721 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1722 | op[0], op[1]); | |||
| 1723 | ||||
| 1724 | error_emitted = | |||
| 1725 | do_assignment(instructions, state, | |||
| 1726 | this->subexpressions[0]->non_lvalue_description, | |||
| 1727 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
| 1728 | &result, needs_rvalue, false, | |||
| 1729 | this->subexpressions[0]->get_location()); | |||
| 1730 | ||||
| 1731 | /* GLSL 1.10 does not allow array assignment. However, we don't have to | |||
| 1732 | * explicitly test for this because none of the binary expression | |||
| 1733 | * operators allow array operands either. | |||
| 1734 | */ | |||
| 1735 | ||||
| 1736 | break; | |||
| 1737 | } | |||
| 1738 | ||||
| 1739 | case ast_mod_assign: { | |||
| 1740 | this->subexpressions[0]->set_is_lhs(true); | |||
| 1741 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1742 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1743 | ||||
| 1744 | orig_type = op[0]->type; | |||
| 1745 | type = modulus_result_type(op[0], op[1], state, &loc); | |||
| 1746 | ||||
| 1747 | if (type != orig_type) { | |||
| 1748 | _mesa_glsl_error(& loc, state, | |||
| 1749 | "could not implicitly convert " | |||
| 1750 | "%s to %s", type->name, orig_type->name); | |||
| 1751 | type = glsl_type::error_type; | |||
| 1752 | } | |||
| 1753 | ||||
| 1754 | assert(operations[this->oper] == ir_binop_mod)(static_cast <bool> (operations[this->oper] == ir_binop_mod ) ? void (0) : __assert_fail ("operations[this->oper] == ir_binop_mod" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 1755 | ||||
| 1756 | ir_rvalue *temp_rhs; | |||
| 1757 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1758 | op[0], op[1]); | |||
| 1759 | ||||
| 1760 | error_emitted = | |||
| 1761 | do_assignment(instructions, state, | |||
| 1762 | this->subexpressions[0]->non_lvalue_description, | |||
| 1763 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
| 1764 | &result, needs_rvalue, false, | |||
| 1765 | this->subexpressions[0]->get_location()); | |||
| 1766 | break; | |||
| 1767 | } | |||
| 1768 | ||||
| 1769 | case ast_ls_assign: | |||
| 1770 | case ast_rs_assign: { | |||
| 1771 | this->subexpressions[0]->set_is_lhs(true); | |||
| 1772 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1773 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1774 | type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, | |||
| 1775 | &loc); | |||
| 1776 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], | |||
| 1777 | type, op[0], op[1]); | |||
| 1778 | error_emitted = | |||
| 1779 | do_assignment(instructions, state, | |||
| 1780 | this->subexpressions[0]->non_lvalue_description, | |||
| 1781 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
| 1782 | &result, needs_rvalue, false, | |||
| 1783 | this->subexpressions[0]->get_location()); | |||
| 1784 | break; | |||
| 1785 | } | |||
| 1786 | ||||
| 1787 | case ast_and_assign: | |||
| 1788 | case ast_xor_assign: | |||
| 1789 | case ast_or_assign: { | |||
| 1790 | this->subexpressions[0]->set_is_lhs(true); | |||
| 1791 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1792 | op[1] = this->subexpressions[1]->hir(instructions, state); | |||
| 1793 | ||||
| 1794 | orig_type = op[0]->type; | |||
| 1795 | type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); | |||
| 1796 | ||||
| 1797 | if (type != orig_type) { | |||
| 1798 | _mesa_glsl_error(& loc, state, | |||
| 1799 | "could not implicitly convert " | |||
| 1800 | "%s to %s", type->name, orig_type->name); | |||
| 1801 | type = glsl_type::error_type; | |||
| 1802 | } | |||
| 1803 | ||||
| 1804 | ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], | |||
| 1805 | type, op[0], op[1]); | |||
| 1806 | error_emitted = | |||
| 1807 | do_assignment(instructions, state, | |||
| 1808 | this->subexpressions[0]->non_lvalue_description, | |||
| 1809 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
| 1810 | &result, needs_rvalue, false, | |||
| 1811 | this->subexpressions[0]->get_location()); | |||
| 1812 | break; | |||
| 1813 | } | |||
| 1814 | ||||
| 1815 | case ast_conditional: { | |||
| 1816 | /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: | |||
| 1817 | * | |||
| 1818 | * "The ternary selection operator (?:). It operates on three | |||
| 1819 | * expressions (exp1 ? exp2 : exp3). This operator evaluates the | |||
| 1820 | * first expression, which must result in a scalar Boolean." | |||
| 1821 | */ | |||
| 1822 | op[0] = get_scalar_boolean_operand(instructions, state, this, 0, | |||
| 1823 | "condition", &error_emitted); | |||
| 1824 | ||||
| 1825 | /* The :? operator is implemented by generating an anonymous temporary | |||
| 1826 | * followed by an if-statement. The last instruction in each branch of | |||
| 1827 | * the if-statement assigns a value to the anonymous temporary. This | |||
| 1828 | * temporary is the r-value of the expression. | |||
| 1829 | */ | |||
| 1830 | exec_list then_instructions; | |||
| 1831 | exec_list else_instructions; | |||
| 1832 | ||||
| 1833 | op[1] = this->subexpressions[1]->hir(&then_instructions, state); | |||
| 1834 | op[2] = this->subexpressions[2]->hir(&else_instructions, state); | |||
| 1835 | ||||
| 1836 | /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: | |||
| 1837 | * | |||
| 1838 | * "The second and third expressions can be any type, as | |||
| 1839 | * long their types match, or there is a conversion in | |||
| 1840 | * Section 4.1.10 "Implicit Conversions" that can be applied | |||
| 1841 | * to one of the expressions to make their types match. This | |||
| 1842 | * resulting matching type is the type of the entire | |||
| 1843 | * expression." | |||
| 1844 | */ | |||
| 1845 | if ((!apply_implicit_conversion(op[1]->type, op[2], state) | |||
| 1846 | && !apply_implicit_conversion(op[2]->type, op[1], state)) | |||
| 1847 | || (op[1]->type != op[2]->type)) { | |||
| 1848 | YYLTYPE loc = this->subexpressions[1]->get_location(); | |||
| 1849 | ||||
| 1850 | _mesa_glsl_error(& loc, state, "second and third operands of ?: " | |||
| 1851 | "operator must have matching types"); | |||
| 1852 | error_emitted = true; | |||
| 1853 | type = glsl_type::error_type; | |||
| 1854 | } else { | |||
| 1855 | type = op[1]->type; | |||
| 1856 | } | |||
| 1857 | ||||
| 1858 | /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: | |||
| 1859 | * | |||
| 1860 | * "The second and third expressions must be the same type, but can | |||
| 1861 | * be of any type other than an array." | |||
| 1862 | */ | |||
| 1863 | if (type->is_array() && | |||
| 1864 | !state->check_version(120, 300, &loc, | |||
| 1865 | "second and third operands of ?: operator " | |||
| 1866 | "cannot be arrays")) { | |||
| 1867 | error_emitted = true; | |||
| 1868 | } | |||
| 1869 | ||||
| 1870 | /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): | |||
| 1871 | * | |||
| 1872 | * "Except for array indexing, structure member selection, and | |||
| 1873 | * parentheses, opaque variables are not allowed to be operands in | |||
| 1874 | * expressions; such use results in a compile-time error." | |||
| 1875 | */ | |||
| 1876 | if (type->contains_opaque()) { | |||
| 1877 | if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { | |||
| 1878 | _mesa_glsl_error(&loc, state, "variables of type %s cannot be " | |||
| 1879 | "operands of the ?: operator", type->name); | |||
| 1880 | error_emitted = true; | |||
| 1881 | } | |||
| 1882 | } | |||
| 1883 | ||||
| 1884 | ir_constant *cond_val = op[0]->constant_expression_value(ctx); | |||
| 1885 | ||||
| 1886 | if (then_instructions.is_empty() | |||
| 1887 | && else_instructions.is_empty() | |||
| 1888 | && cond_val != NULL__null) { | |||
| 1889 | result = cond_val->value.b[0] ? op[1] : op[2]; | |||
| 1890 | } else { | |||
| 1891 | /* The copy to conditional_tmp reads the whole array. */ | |||
| 1892 | if (type->is_array()) { | |||
| 1893 | mark_whole_array_access(op[1]); | |||
| 1894 | mark_whole_array_access(op[2]); | |||
| 1895 | } | |||
| 1896 | ||||
| 1897 | ir_variable *const tmp = | |||
| 1898 | new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); | |||
| 1899 | instructions->push_tail(tmp); | |||
| 1900 | ||||
| 1901 | ir_if *const stmt = new(ctx) ir_if(op[0]); | |||
| 1902 | instructions->push_tail(stmt); | |||
| 1903 | ||||
| 1904 | then_instructions.move_nodes_to(& stmt->then_instructions); | |||
| 1905 | ir_dereference *const then_deref = | |||
| 1906 | new(ctx) ir_dereference_variable(tmp); | |||
| 1907 | ir_assignment *const then_assign = | |||
| 1908 | new(ctx) ir_assignment(then_deref, op[1]); | |||
| 1909 | stmt->then_instructions.push_tail(then_assign); | |||
| 1910 | ||||
| 1911 | else_instructions.move_nodes_to(& stmt->else_instructions); | |||
| 1912 | ir_dereference *const else_deref = | |||
| 1913 | new(ctx) ir_dereference_variable(tmp); | |||
| 1914 | ir_assignment *const else_assign = | |||
| 1915 | new(ctx) ir_assignment(else_deref, op[2]); | |||
| 1916 | stmt->else_instructions.push_tail(else_assign); | |||
| 1917 | ||||
| 1918 | result = new(ctx) ir_dereference_variable(tmp); | |||
| 1919 | } | |||
| 1920 | break; | |||
| 1921 | } | |||
| 1922 | ||||
| 1923 | case ast_pre_inc: | |||
| 1924 | case ast_pre_dec: { | |||
| 1925 | this->non_lvalue_description = (this->oper == ast_pre_inc) | |||
| 1926 | ? "pre-increment operation" : "pre-decrement operation"; | |||
| 1927 | ||||
| 1928 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1929 | op[1] = constant_one_for_inc_dec(ctx, op[0]->type); | |||
| 1930 | ||||
| 1931 | type = arithmetic_result_type(op[0], op[1], false, state, & loc); | |||
| 1932 | ||||
| 1933 | ir_rvalue *temp_rhs; | |||
| 1934 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1935 | op[0], op[1]); | |||
| 1936 | ||||
| 1937 | error_emitted = | |||
| 1938 | do_assignment(instructions, state, | |||
| 1939 | this->subexpressions[0]->non_lvalue_description, | |||
| 1940 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
| 1941 | &result, needs_rvalue, false, | |||
| 1942 | this->subexpressions[0]->get_location()); | |||
| 1943 | break; | |||
| 1944 | } | |||
| 1945 | ||||
| 1946 | case ast_post_inc: | |||
| 1947 | case ast_post_dec: { | |||
| 1948 | this->non_lvalue_description = (this->oper == ast_post_inc) | |||
| 1949 | ? "post-increment operation" : "post-decrement operation"; | |||
| 1950 | op[0] = this->subexpressions[0]->hir(instructions, state); | |||
| 1951 | op[1] = constant_one_for_inc_dec(ctx, op[0]->type); | |||
| 1952 | ||||
| 1953 | error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); | |||
| 1954 | ||||
| 1955 | if (error_emitted) { | |||
| 1956 | result = ir_rvalue::error_value(ctx); | |||
| 1957 | break; | |||
| 1958 | } | |||
| 1959 | ||||
| 1960 | type = arithmetic_result_type(op[0], op[1], false, state, & loc); | |||
| 1961 | ||||
| 1962 | ir_rvalue *temp_rhs; | |||
| 1963 | temp_rhs = new(ctx) ir_expression(operations[this->oper], type, | |||
| 1964 | op[0], op[1]); | |||
| 1965 | ||||
| 1966 | /* Get a temporary of a copy of the lvalue before it's modified. | |||
| 1967 | * This may get thrown away later. | |||
| 1968 | */ | |||
| 1969 | result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL__null)); | |||
| 1970 | ||||
| 1971 | ir_rvalue *junk_rvalue; | |||
| 1972 | error_emitted = | |||
| 1973 | do_assignment(instructions, state, | |||
| 1974 | this->subexpressions[0]->non_lvalue_description, | |||
| 1975 | op[0]->clone(ctx, NULL__null), temp_rhs, | |||
| 1976 | &junk_rvalue, false, false, | |||
| 1977 | this->subexpressions[0]->get_location()); | |||
| 1978 | ||||
| 1979 | break; | |||
| 1980 | } | |||
| 1981 | ||||
| 1982 | case ast_field_selection: | |||
| 1983 | result = _mesa_ast_field_selection_to_hir(this, instructions, state); | |||
| 1984 | break; | |||
| 1985 | ||||
| 1986 | case ast_array_index: { | |||
| 1987 | YYLTYPE index_loc = subexpressions[1]->get_location(); | |||
| 1988 | ||||
| 1989 | /* Getting if an array is being used uninitialized is beyond what we get | |||
| 1990 | * from ir_value.data.assigned. Setting is_lhs as true would force to | |||
| 1991 | * not raise a uninitialized warning when using an array | |||
| 1992 | */ | |||
| 1993 | subexpressions[0]->set_is_lhs(true); | |||
| 1994 | op[0] = subexpressions[0]->hir(instructions, state); | |||
| 1995 | op[1] = subexpressions[1]->hir(instructions, state); | |||
| 1996 | ||||
| 1997 | result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], | |||
| 1998 | loc, index_loc); | |||
| 1999 | ||||
| 2000 | if (result->type->is_error()) | |||
| 2001 | error_emitted = true; | |||
| 2002 | ||||
| 2003 | break; | |||
| 2004 | } | |||
| 2005 | ||||
| 2006 | case ast_unsized_array_dim: | |||
| 2007 | unreachable("ast_unsized_array_dim: Should never get here.")do { (static_cast <bool> (!"ast_unsized_array_dim: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_unsized_array_dim: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2008 | ||||
| 2009 | case ast_function_call: | |||
| 2010 | /* Should *NEVER* get here. ast_function_call should always be handled | |||
| 2011 | * by ast_function_expression::hir. | |||
| 2012 | */ | |||
| 2013 | unreachable("ast_function_call: handled elsewhere ")do { (static_cast <bool> (!"ast_function_call: handled elsewhere " ) ? void (0) : __assert_fail ("!\"ast_function_call: handled elsewhere \"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2014 | ||||
| 2015 | case ast_identifier: { | |||
| 2016 | /* ast_identifier can appear several places in a full abstract syntax | |||
| 2017 | * tree. This particular use must be at location specified in the grammar | |||
| 2018 | * as 'variable_identifier'. | |||
| 2019 | */ | |||
| 2020 | ir_variable *var = | |||
| 2021 | state->symbols->get_variable(this->primary_expression.identifier); | |||
| 2022 | ||||
| 2023 | if (var == NULL__null) { | |||
| 2024 | /* the identifier might be a subroutine name */ | |||
| 2025 | char *sub_name; | |||
| 2026 | sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); | |||
| 2027 | var = state->symbols->get_variable(sub_name); | |||
| 2028 | ralloc_free(sub_name); | |||
| 2029 | } | |||
| 2030 | ||||
| 2031 | if (var != NULL__null) { | |||
| 2032 | var->data.used = true; | |||
| 2033 | result = new(ctx) ir_dereference_variable(var); | |||
| 2034 | ||||
| 2035 | if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) | |||
| 2036 | && !this->is_lhs | |||
| 2037 | && result->variable_referenced()->data.assigned != true | |||
| 2038 | && !is_gl_identifier(var->name)) { | |||
| 2039 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", | |||
| 2040 | this->primary_expression.identifier); | |||
| 2041 | } | |||
| 2042 | ||||
| 2043 | /* From the EXT_shader_framebuffer_fetch spec: | |||
| 2044 | * | |||
| 2045 | * "Unless the GL_EXT_shader_framebuffer_fetch extension has been | |||
| 2046 | * enabled in addition, it's an error to use gl_LastFragData if it | |||
| 2047 | * hasn't been explicitly redeclared with layout(noncoherent)." | |||
| 2048 | */ | |||
| 2049 | if (var->data.fb_fetch_output && var->data.memory_coherent && | |||
| 2050 | !state->EXT_shader_framebuffer_fetch_enable) { | |||
| 2051 | _mesa_glsl_error(&loc, state, | |||
| 2052 | "invalid use of framebuffer fetch output not " | |||
| 2053 | "qualified with layout(noncoherent)"); | |||
| 2054 | } | |||
| 2055 | ||||
| 2056 | } else { | |||
| 2057 | _mesa_glsl_error(& loc, state, "`%s' undeclared", | |||
| 2058 | this->primary_expression.identifier); | |||
| 2059 | ||||
| 2060 | result = ir_rvalue::error_value(ctx); | |||
| 2061 | error_emitted = true; | |||
| 2062 | } | |||
| 2063 | break; | |||
| 2064 | } | |||
| 2065 | ||||
| 2066 | case ast_int_constant: | |||
| 2067 | result = new(ctx) ir_constant(this->primary_expression.int_constant); | |||
| 2068 | break; | |||
| 2069 | ||||
| 2070 | case ast_uint_constant: | |||
| 2071 | result = new(ctx) ir_constant(this->primary_expression.uint_constant); | |||
| 2072 | break; | |||
| 2073 | ||||
| 2074 | case ast_float_constant: | |||
| 2075 | result = new(ctx) ir_constant(this->primary_expression.float_constant); | |||
| 2076 | break; | |||
| 2077 | ||||
| 2078 | case ast_bool_constant: | |||
| 2079 | result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); | |||
| 2080 | break; | |||
| 2081 | ||||
| 2082 | case ast_double_constant: | |||
| 2083 | result = new(ctx) ir_constant(this->primary_expression.double_constant); | |||
| 2084 | break; | |||
| 2085 | ||||
| 2086 | case ast_uint64_constant: | |||
| 2087 | result = new(ctx) ir_constant(this->primary_expression.uint64_constant); | |||
| 2088 | break; | |||
| 2089 | ||||
| 2090 | case ast_int64_constant: | |||
| 2091 | result = new(ctx) ir_constant(this->primary_expression.int64_constant); | |||
| 2092 | break; | |||
| 2093 | ||||
| 2094 | case ast_sequence: { | |||
| 2095 | /* It should not be possible to generate a sequence in the AST without | |||
| 2096 | * any expressions in it. | |||
| 2097 | */ | |||
| 2098 | assert(!this->expressions.is_empty())(static_cast <bool> (!this->expressions.is_empty()) ? void (0) : __assert_fail ("!this->expressions.is_empty()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 2099 | ||||
| 2100 | /* The r-value of a sequence is the last expression in the sequence. If | |||
| 2101 | * the other expressions in the sequence do not have side-effects (and | |||
| 2102 | * therefore add instructions to the instruction list), they get dropped | |||
| 2103 | * on the floor. | |||
| 2104 | */ | |||
| 2105 | exec_node *previous_tail = NULL__null; | |||
| 2106 | YYLTYPE previous_operand_loc = loc; | |||
| 2107 | ||||
| 2108 | foreach_list_typed (ast_node, ast, link, &this->expressions)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->expressions)->head_sentinel.next) ? ((ast_node *) ((( uintptr_t) (&this->expressions)->head_sentinel.next ) - (((char *) &((ast_node *) (&this->expressions) ->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - (((char * ) &((ast_node *) (ast)->link.next)->link) - ((char * ) (ast)->link.next)))) : __null)) { | |||
| 2109 | /* If one of the operands of comma operator does not generate any | |||
| 2110 | * code, we want to emit a warning. At each pass through the loop | |||
| 2111 | * previous_tail will point to the last instruction in the stream | |||
| 2112 | * *before* processing the previous operand. Naturally, | |||
| 2113 | * instructions->get_tail_raw() will point to the last instruction in | |||
| 2114 | * the stream *after* processing the previous operand. If the two | |||
| 2115 | * pointers match, then the previous operand had no effect. | |||
| 2116 | * | |||
| 2117 | * The warning behavior here differs slightly from GCC. GCC will | |||
| 2118 | * only emit a warning if none of the left-hand operands have an | |||
| 2119 | * effect. However, it will emit a warning for each. I believe that | |||
| 2120 | * there are some cases in C (especially with GCC extensions) where | |||
| 2121 | * it is useful to have an intermediate step in a sequence have no | |||
| 2122 | * effect, but I don't think these cases exist in GLSL. Either way, | |||
| 2123 | * it would be a giant hassle to replicate that behavior. | |||
| 2124 | */ | |||
| 2125 | if (previous_tail == instructions->get_tail_raw()) { | |||
| 2126 | _mesa_glsl_warning(&previous_operand_loc, state, | |||
| 2127 | "left-hand operand of comma expression has " | |||
| 2128 | "no effect"); | |||
| 2129 | } | |||
| 2130 | ||||
| 2131 | /* The tail is directly accessed instead of using the get_tail() | |||
| 2132 | * method for performance reasons. get_tail() has extra code to | |||
| 2133 | * return NULL when the list is empty. We don't care about that | |||
| 2134 | * here, so using get_tail_raw() is fine. | |||
| 2135 | */ | |||
| 2136 | previous_tail = instructions->get_tail_raw(); | |||
| 2137 | previous_operand_loc = ast->get_location(); | |||
| 2138 | ||||
| 2139 | result = ast->hir(instructions, state); | |||
| 2140 | } | |||
| 2141 | ||||
| 2142 | /* Any errors should have already been emitted in the loop above. | |||
| 2143 | */ | |||
| 2144 | error_emitted = true; | |||
| 2145 | break; | |||
| 2146 | } | |||
| 2147 | } | |||
| 2148 | type = NULL__null; /* use result->type, not type. */ | |||
| 2149 | assert(error_emitted || (result != NULL || !needs_rvalue))(static_cast <bool> (error_emitted || (result != __null || !needs_rvalue)) ? void (0) : __assert_fail ("error_emitted || (result != NULL || !needs_rvalue)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 2150 | ||||
| 2151 | if (result && result->type->is_error() && !error_emitted) | |||
| 2152 | _mesa_glsl_error(& loc, state, "type mismatch"); | |||
| 2153 | ||||
| 2154 | return result; | |||
| 2155 | } | |||
| 2156 | ||||
| 2157 | bool | |||
| 2158 | ast_expression::has_sequence_subexpression() const | |||
| 2159 | { | |||
| 2160 | switch (this->oper) { | |||
| 2161 | case ast_plus: | |||
| 2162 | case ast_neg: | |||
| 2163 | case ast_bit_not: | |||
| 2164 | case ast_logic_not: | |||
| 2165 | case ast_pre_inc: | |||
| 2166 | case ast_pre_dec: | |||
| 2167 | case ast_post_inc: | |||
| 2168 | case ast_post_dec: | |||
| 2169 | return this->subexpressions[0]->has_sequence_subexpression(); | |||
| 2170 | ||||
| 2171 | case ast_assign: | |||
| 2172 | case ast_add: | |||
| 2173 | case ast_sub: | |||
| 2174 | case ast_mul: | |||
| 2175 | case ast_div: | |||
| 2176 | case ast_mod: | |||
| 2177 | case ast_lshift: | |||
| 2178 | case ast_rshift: | |||
| 2179 | case ast_less: | |||
| 2180 | case ast_greater: | |||
| 2181 | case ast_lequal: | |||
| 2182 | case ast_gequal: | |||
| 2183 | case ast_nequal: | |||
| 2184 | case ast_equal: | |||
| 2185 | case ast_bit_and: | |||
| 2186 | case ast_bit_xor: | |||
| 2187 | case ast_bit_or: | |||
| 2188 | case ast_logic_and: | |||
| 2189 | case ast_logic_or: | |||
| 2190 | case ast_logic_xor: | |||
| 2191 | case ast_array_index: | |||
| 2192 | case ast_mul_assign: | |||
| 2193 | case ast_div_assign: | |||
| 2194 | case ast_add_assign: | |||
| 2195 | case ast_sub_assign: | |||
| 2196 | case ast_mod_assign: | |||
| 2197 | case ast_ls_assign: | |||
| 2198 | case ast_rs_assign: | |||
| 2199 | case ast_and_assign: | |||
| 2200 | case ast_xor_assign: | |||
| 2201 | case ast_or_assign: | |||
| 2202 | return this->subexpressions[0]->has_sequence_subexpression() || | |||
| 2203 | this->subexpressions[1]->has_sequence_subexpression(); | |||
| 2204 | ||||
| 2205 | case ast_conditional: | |||
| 2206 | return this->subexpressions[0]->has_sequence_subexpression() || | |||
| 2207 | this->subexpressions[1]->has_sequence_subexpression() || | |||
| 2208 | this->subexpressions[2]->has_sequence_subexpression(); | |||
| 2209 | ||||
| 2210 | case ast_sequence: | |||
| 2211 | return true; | |||
| 2212 | ||||
| 2213 | case ast_field_selection: | |||
| 2214 | case ast_identifier: | |||
| 2215 | case ast_int_constant: | |||
| 2216 | case ast_uint_constant: | |||
| 2217 | case ast_float_constant: | |||
| 2218 | case ast_bool_constant: | |||
| 2219 | case ast_double_constant: | |||
| 2220 | case ast_int64_constant: | |||
| 2221 | case ast_uint64_constant: | |||
| 2222 | return false; | |||
| 2223 | ||||
| 2224 | case ast_aggregate: | |||
| 2225 | return false; | |||
| 2226 | ||||
| 2227 | case ast_function_call: | |||
| 2228 | unreachable("should be handled by ast_function_expression::hir")do { (static_cast <bool> (!"should be handled by ast_function_expression::hir" ) ? void (0) : __assert_fail ("!\"should be handled by ast_function_expression::hir\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2229 | ||||
| 2230 | case ast_unsized_array_dim: | |||
| 2231 | unreachable("ast_unsized_array_dim: Should never get here.")do { (static_cast <bool> (!"ast_unsized_array_dim: Should never get here." ) ? void (0) : __assert_fail ("!\"ast_unsized_array_dim: Should never get here.\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2232 | } | |||
| 2233 | ||||
| 2234 | return false; | |||
| 2235 | } | |||
| 2236 | ||||
| 2237 | ir_rvalue * | |||
| 2238 | ast_expression_statement::hir(exec_list *instructions, | |||
| 2239 | struct _mesa_glsl_parse_state *state) | |||
| 2240 | { | |||
| 2241 | /* It is possible to have expression statements that don't have an | |||
| 2242 | * expression. This is the solitary semicolon: | |||
| 2243 | * | |||
| 2244 | * for (i = 0; i < 5; i++) | |||
| 2245 | * ; | |||
| 2246 | * | |||
| 2247 | * In this case the expression will be NULL. Test for NULL and don't do | |||
| 2248 | * anything in that case. | |||
| 2249 | */ | |||
| 2250 | if (expression != NULL__null) | |||
| 2251 | expression->hir_no_rvalue(instructions, state); | |||
| 2252 | ||||
| 2253 | /* Statements do not have r-values. | |||
| 2254 | */ | |||
| 2255 | return NULL__null; | |||
| 2256 | } | |||
| 2257 | ||||
| 2258 | ||||
| 2259 | ir_rvalue * | |||
| 2260 | ast_compound_statement::hir(exec_list *instructions, | |||
| 2261 | struct _mesa_glsl_parse_state *state) | |||
| 2262 | { | |||
| 2263 | if (new_scope) | |||
| 2264 | state->symbols->push_scope(); | |||
| 2265 | ||||
| 2266 | foreach_list_typed (ast_node, ast, link, &this->statements)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->statements)->head_sentinel.next) ? ((ast_node *) (((uintptr_t ) (&this->statements)->head_sentinel.next) - (((char *) &((ast_node *) (&this->statements)->head_sentinel .next)->link) - ((char *) (&this->statements)->head_sentinel .next)))) : __null); (ast) != __null; (ast) = (!exec_node_is_tail_sentinel ((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)-> link.next) - (((char *) &((ast_node *) (ast)->link.next )->link) - ((char *) (ast)->link.next)))) : __null)) | |||
| 2267 | ast->hir(instructions, state); | |||
| 2268 | ||||
| 2269 | if (new_scope) | |||
| 2270 | state->symbols->pop_scope(); | |||
| 2271 | ||||
| 2272 | /* Compound statements do not have r-values. | |||
| 2273 | */ | |||
| 2274 | return NULL__null; | |||
| 2275 | } | |||
| 2276 | ||||
| 2277 | /** | |||
| 2278 | * Evaluate the given exec_node (which should be an ast_node representing | |||
| 2279 | * a single array dimension) and return its integer value. | |||
| 2280 | */ | |||
| 2281 | static unsigned | |||
| 2282 | process_array_size(exec_node *node, | |||
| 2283 | struct _mesa_glsl_parse_state *state) | |||
| 2284 | { | |||
| 2285 | void *mem_ctx = state; | |||
| 2286 | ||||
| 2287 | exec_list dummy_instructions; | |||
| 2288 | ||||
| 2289 | ast_node *array_size = exec_node_data(ast_node, node, link)((ast_node *) (((uintptr_t) node) - (((char *) &((ast_node *) node)->link) - ((char *) node)))); | |||
| 2290 | ||||
| 2291 | /** | |||
| 2292 | * Dimensions other than the outermost dimension can by unsized if they | |||
| 2293 | * are immediately sized by a constructor or initializer. | |||
| 2294 | */ | |||
| 2295 | if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) | |||
| 2296 | return 0; | |||
| 2297 | ||||
| 2298 | ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); | |||
| 2299 | YYLTYPE loc = array_size->get_location(); | |||
| 2300 | ||||
| 2301 | if (ir == NULL__null) { | |||
| 2302 | _mesa_glsl_error(& loc, state, | |||
| 2303 | "array size could not be resolved"); | |||
| 2304 | return 0; | |||
| 2305 | } | |||
| 2306 | ||||
| 2307 | if (!ir->type->is_integer_32()) { | |||
| 2308 | _mesa_glsl_error(& loc, state, | |||
| 2309 | "array size must be integer type"); | |||
| 2310 | return 0; | |||
| 2311 | } | |||
| 2312 | ||||
| 2313 | if (!ir->type->is_scalar()) { | |||
| 2314 | _mesa_glsl_error(& loc, state, | |||
| 2315 | "array size must be scalar type"); | |||
| 2316 | return 0; | |||
| 2317 | } | |||
| 2318 | ||||
| 2319 | ir_constant *const size = ir->constant_expression_value(mem_ctx); | |||
| 2320 | if (size == NULL__null || | |||
| 2321 | (state->is_version(120, 300) && | |||
| 2322 | array_size->has_sequence_subexpression())) { | |||
| 2323 | _mesa_glsl_error(& loc, state, "array size must be a " | |||
| 2324 | "constant valued expression"); | |||
| 2325 | return 0; | |||
| 2326 | } | |||
| 2327 | ||||
| 2328 | if (size->value.i[0] <= 0) { | |||
| 2329 | _mesa_glsl_error(& loc, state, "array size must be > 0"); | |||
| 2330 | return 0; | |||
| 2331 | } | |||
| 2332 | ||||
| 2333 | assert(size->type == ir->type)(static_cast <bool> (size->type == ir->type) ? void (0) : __assert_fail ("size->type == ir->type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2334 | ||||
| 2335 | /* If the array size is const (and we've verified that | |||
| 2336 | * it is) then no instructions should have been emitted | |||
| 2337 | * when we converted it to HIR. If they were emitted, | |||
| 2338 | * then either the array size isn't const after all, or | |||
| 2339 | * we are emitting unnecessary instructions. | |||
| 2340 | */ | |||
| 2341 | assert(dummy_instructions.is_empty())(static_cast <bool> (dummy_instructions.is_empty()) ? void (0) : __assert_fail ("dummy_instructions.is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2342 | ||||
| 2343 | return size->value.u[0]; | |||
| 2344 | } | |||
| 2345 | ||||
| 2346 | static const glsl_type * | |||
| 2347 | process_array_type(YYLTYPE *loc, const glsl_type *base, | |||
| 2348 | ast_array_specifier *array_specifier, | |||
| 2349 | struct _mesa_glsl_parse_state *state) | |||
| 2350 | { | |||
| 2351 | const glsl_type *array_type = base; | |||
| 2352 | ||||
| 2353 | if (array_specifier != NULL__null) { | |||
| 2354 | if (base->is_array()) { | |||
| 2355 | ||||
| 2356 | /* From page 19 (page 25) of the GLSL 1.20 spec: | |||
| 2357 | * | |||
| 2358 | * "Only one-dimensional arrays may be declared." | |||
| 2359 | */ | |||
| 2360 | if (!state->check_arrays_of_arrays_allowed(loc)) { | |||
| 2361 | return glsl_type::error_type; | |||
| 2362 | } | |||
| 2363 | } | |||
| 2364 | ||||
| 2365 | for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); | |||
| 2366 | !node->is_head_sentinel(); node = node->prev) { | |||
| 2367 | unsigned array_size = process_array_size(node, state); | |||
| 2368 | array_type = glsl_type::get_array_instance(array_type, array_size); | |||
| 2369 | } | |||
| 2370 | } | |||
| 2371 | ||||
| 2372 | return array_type; | |||
| 2373 | } | |||
| 2374 | ||||
| 2375 | static bool | |||
| 2376 | precision_qualifier_allowed(const glsl_type *type) | |||
| 2377 | { | |||
| 2378 | /* Precision qualifiers apply to floating point, integer and opaque | |||
| 2379 | * types. | |||
| 2380 | * | |||
| 2381 | * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: | |||
| 2382 | * "Any floating point or any integer declaration can have the type | |||
| 2383 | * preceded by one of these precision qualifiers [...] Literal | |||
| 2384 | * constants do not have precision qualifiers. Neither do Boolean | |||
| 2385 | * variables. | |||
| 2386 | * | |||
| 2387 | * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 | |||
| 2388 | * spec also says: | |||
| 2389 | * | |||
| 2390 | * "Precision qualifiers are added for code portability with OpenGL | |||
| 2391 | * ES, not for functionality. They have the same syntax as in OpenGL | |||
| 2392 | * ES." | |||
| 2393 | * | |||
| 2394 | * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: | |||
| 2395 | * | |||
| 2396 | * "uniform lowp sampler2D sampler; | |||
| 2397 | * highp vec2 coord; | |||
| 2398 | * ... | |||
| 2399 | * lowp vec4 col = texture2D (sampler, coord); | |||
| 2400 | * // texture2D returns lowp" | |||
| 2401 | * | |||
| 2402 | * From this, we infer that GLSL 1.30 (and later) should allow precision | |||
| 2403 | * qualifiers on sampler types just like float and integer types. | |||
| 2404 | */ | |||
| 2405 | const glsl_type *const t = type->without_array(); | |||
| 2406 | ||||
| 2407 | return (t->is_float() || t->is_integer_32() || t->contains_opaque()) && | |||
| 2408 | !t->is_struct(); | |||
| 2409 | } | |||
| 2410 | ||||
| 2411 | const glsl_type * | |||
| 2412 | ast_type_specifier::glsl_type(const char **name, | |||
| 2413 | struct _mesa_glsl_parse_state *state) const | |||
| 2414 | { | |||
| 2415 | const struct glsl_type *type; | |||
| 2416 | ||||
| 2417 | if (this->type != NULL__null) | |||
| 2418 | type = this->type; | |||
| 2419 | else if (structure) | |||
| 2420 | type = structure->type; | |||
| 2421 | else | |||
| 2422 | type = state->symbols->get_type(this->type_name); | |||
| 2423 | *name = this->type_name; | |||
| 2424 | ||||
| 2425 | YYLTYPE loc = this->get_location(); | |||
| 2426 | type = process_array_type(&loc, type, this->array_specifier, state); | |||
| 2427 | ||||
| 2428 | return type; | |||
| 2429 | } | |||
| 2430 | ||||
| 2431 | /** | |||
| 2432 | * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: | |||
| 2433 | * | |||
| 2434 | * "The precision statement | |||
| 2435 | * | |||
| 2436 | * precision precision-qualifier type; | |||
| 2437 | * | |||
| 2438 | * can be used to establish a default precision qualifier. The type field can | |||
| 2439 | * be either int or float or any of the sampler types, (...) If type is float, | |||
| 2440 | * the directive applies to non-precision-qualified floating point type | |||
| 2441 | * (scalar, vector, and matrix) declarations. If type is int, the directive | |||
| 2442 | * applies to all non-precision-qualified integer type (scalar, vector, signed, | |||
| 2443 | * and unsigned) declarations." | |||
| 2444 | * | |||
| 2445 | * We use the symbol table to keep the values of the default precisions for | |||
| 2446 | * each 'type' in each scope and we use the 'type' string from the precision | |||
| 2447 | * statement as key in the symbol table. When we want to retrieve the default | |||
| 2448 | * precision associated with a given glsl_type we need to know the type string | |||
| 2449 | * associated with it. This is what this function returns. | |||
| 2450 | */ | |||
| 2451 | static const char * | |||
| 2452 | get_type_name_for_precision_qualifier(const glsl_type *type) | |||
| 2453 | { | |||
| 2454 | switch (type->base_type) { | |||
| 2455 | case GLSL_TYPE_FLOAT: | |||
| 2456 | return "float"; | |||
| 2457 | case GLSL_TYPE_UINT: | |||
| 2458 | case GLSL_TYPE_INT: | |||
| 2459 | return "int"; | |||
| 2460 | case GLSL_TYPE_ATOMIC_UINT: | |||
| 2461 | return "atomic_uint"; | |||
| 2462 | case GLSL_TYPE_IMAGE: | |||
| 2463 | /* fallthrough */ | |||
| 2464 | case GLSL_TYPE_SAMPLER: { | |||
| 2465 | const unsigned type_idx = | |||
| 2466 | type->sampler_array + 2 * type->sampler_shadow; | |||
| 2467 | const unsigned offset = type->is_sampler() ? 0 : 4; | |||
| 2468 | assert(type_idx < 4)(static_cast <bool> (type_idx < 4) ? void (0) : __assert_fail ("type_idx < 4", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2469 | switch (type->sampled_type) { | |||
| 2470 | case GLSL_TYPE_FLOAT: | |||
| 2471 | switch (type->sampler_dimensionality) { | |||
| 2472 | case GLSL_SAMPLER_DIM_1D: { | |||
| 2473 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2474 | static const char *const names[4] = { | |||
| 2475 | "sampler1D", "sampler1DArray", | |||
| 2476 | "sampler1DShadow", "sampler1DArrayShadow" | |||
| 2477 | }; | |||
| 2478 | return names[type_idx]; | |||
| 2479 | } | |||
| 2480 | case GLSL_SAMPLER_DIM_2D: { | |||
| 2481 | static const char *const names[8] = { | |||
| 2482 | "sampler2D", "sampler2DArray", | |||
| 2483 | "sampler2DShadow", "sampler2DArrayShadow", | |||
| 2484 | "image2D", "image2DArray", NULL__null, NULL__null | |||
| 2485 | }; | |||
| 2486 | return names[offset + type_idx]; | |||
| 2487 | } | |||
| 2488 | case GLSL_SAMPLER_DIM_3D: { | |||
| 2489 | static const char *const names[8] = { | |||
| 2490 | "sampler3D", NULL__null, NULL__null, NULL__null, | |||
| 2491 | "image3D", NULL__null, NULL__null, NULL__null | |||
| 2492 | }; | |||
| 2493 | return names[offset + type_idx]; | |||
| 2494 | } | |||
| 2495 | case GLSL_SAMPLER_DIM_CUBE: { | |||
| 2496 | static const char *const names[8] = { | |||
| 2497 | "samplerCube", "samplerCubeArray", | |||
| 2498 | "samplerCubeShadow", "samplerCubeArrayShadow", | |||
| 2499 | "imageCube", NULL__null, NULL__null, NULL__null | |||
| 2500 | }; | |||
| 2501 | return names[offset + type_idx]; | |||
| 2502 | } | |||
| 2503 | case GLSL_SAMPLER_DIM_MS: { | |||
| 2504 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2505 | static const char *const names[4] = { | |||
| 2506 | "sampler2DMS", "sampler2DMSArray", NULL__null, NULL__null | |||
| 2507 | }; | |||
| 2508 | return names[type_idx]; | |||
| 2509 | } | |||
| 2510 | case GLSL_SAMPLER_DIM_RECT: { | |||
| 2511 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2512 | static const char *const names[4] = { | |||
| 2513 | "samplerRect", NULL__null, "samplerRectShadow", NULL__null | |||
| 2514 | }; | |||
| 2515 | return names[type_idx]; | |||
| 2516 | } | |||
| 2517 | case GLSL_SAMPLER_DIM_BUF: { | |||
| 2518 | static const char *const names[8] = { | |||
| 2519 | "samplerBuffer", NULL__null, NULL__null, NULL__null, | |||
| 2520 | "imageBuffer", NULL__null, NULL__null, NULL__null | |||
| 2521 | }; | |||
| 2522 | return names[offset + type_idx]; | |||
| 2523 | } | |||
| 2524 | case GLSL_SAMPLER_DIM_EXTERNAL: { | |||
| 2525 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2526 | static const char *const names[4] = { | |||
| 2527 | "samplerExternalOES", NULL__null, NULL__null, NULL__null | |||
| 2528 | }; | |||
| 2529 | return names[type_idx]; | |||
| 2530 | } | |||
| 2531 | default: | |||
| 2532 | unreachable("Unsupported sampler/image dimensionality")do { (static_cast <bool> (!"Unsupported sampler/image dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported sampler/image dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2533 | } /* sampler/image float dimensionality */ | |||
| 2534 | break; | |||
| 2535 | case GLSL_TYPE_INT: | |||
| 2536 | switch (type->sampler_dimensionality) { | |||
| 2537 | case GLSL_SAMPLER_DIM_1D: { | |||
| 2538 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2539 | static const char *const names[4] = { | |||
| 2540 | "isampler1D", "isampler1DArray", NULL__null, NULL__null | |||
| 2541 | }; | |||
| 2542 | return names[type_idx]; | |||
| 2543 | } | |||
| 2544 | case GLSL_SAMPLER_DIM_2D: { | |||
| 2545 | static const char *const names[8] = { | |||
| 2546 | "isampler2D", "isampler2DArray", NULL__null, NULL__null, | |||
| 2547 | "iimage2D", "iimage2DArray", NULL__null, NULL__null | |||
| 2548 | }; | |||
| 2549 | return names[offset + type_idx]; | |||
| 2550 | } | |||
| 2551 | case GLSL_SAMPLER_DIM_3D: { | |||
| 2552 | static const char *const names[8] = { | |||
| 2553 | "isampler3D", NULL__null, NULL__null, NULL__null, | |||
| 2554 | "iimage3D", NULL__null, NULL__null, NULL__null | |||
| 2555 | }; | |||
| 2556 | return names[offset + type_idx]; | |||
| 2557 | } | |||
| 2558 | case GLSL_SAMPLER_DIM_CUBE: { | |||
| 2559 | static const char *const names[8] = { | |||
| 2560 | "isamplerCube", "isamplerCubeArray", NULL__null, NULL__null, | |||
| 2561 | "iimageCube", NULL__null, NULL__null, NULL__null | |||
| 2562 | }; | |||
| 2563 | return names[offset + type_idx]; | |||
| 2564 | } | |||
| 2565 | case GLSL_SAMPLER_DIM_MS: { | |||
| 2566 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2567 | static const char *const names[4] = { | |||
| 2568 | "isampler2DMS", "isampler2DMSArray", NULL__null, NULL__null | |||
| 2569 | }; | |||
| 2570 | return names[type_idx]; | |||
| 2571 | } | |||
| 2572 | case GLSL_SAMPLER_DIM_RECT: { | |||
| 2573 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2574 | static const char *const names[4] = { | |||
| 2575 | "isamplerRect", NULL__null, "isamplerRectShadow", NULL__null | |||
| 2576 | }; | |||
| 2577 | return names[type_idx]; | |||
| 2578 | } | |||
| 2579 | case GLSL_SAMPLER_DIM_BUF: { | |||
| 2580 | static const char *const names[8] = { | |||
| 2581 | "isamplerBuffer", NULL__null, NULL__null, NULL__null, | |||
| 2582 | "iimageBuffer", NULL__null, NULL__null, NULL__null | |||
| 2583 | }; | |||
| 2584 | return names[offset + type_idx]; | |||
| 2585 | } | |||
| 2586 | default: | |||
| 2587 | unreachable("Unsupported isampler/iimage dimensionality")do { (static_cast <bool> (!"Unsupported isampler/iimage dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported isampler/iimage dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2588 | } /* sampler/image int dimensionality */ | |||
| 2589 | break; | |||
| 2590 | case GLSL_TYPE_UINT: | |||
| 2591 | switch (type->sampler_dimensionality) { | |||
| 2592 | case GLSL_SAMPLER_DIM_1D: { | |||
| 2593 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2594 | static const char *const names[4] = { | |||
| 2595 | "usampler1D", "usampler1DArray", NULL__null, NULL__null | |||
| 2596 | }; | |||
| 2597 | return names[type_idx]; | |||
| 2598 | } | |||
| 2599 | case GLSL_SAMPLER_DIM_2D: { | |||
| 2600 | static const char *const names[8] = { | |||
| 2601 | "usampler2D", "usampler2DArray", NULL__null, NULL__null, | |||
| 2602 | "uimage2D", "uimage2DArray", NULL__null, NULL__null | |||
| 2603 | }; | |||
| 2604 | return names[offset + type_idx]; | |||
| 2605 | } | |||
| 2606 | case GLSL_SAMPLER_DIM_3D: { | |||
| 2607 | static const char *const names[8] = { | |||
| 2608 | "usampler3D", NULL__null, NULL__null, NULL__null, | |||
| 2609 | "uimage3D", NULL__null, NULL__null, NULL__null | |||
| 2610 | }; | |||
| 2611 | return names[offset + type_idx]; | |||
| 2612 | } | |||
| 2613 | case GLSL_SAMPLER_DIM_CUBE: { | |||
| 2614 | static const char *const names[8] = { | |||
| 2615 | "usamplerCube", "usamplerCubeArray", NULL__null, NULL__null, | |||
| 2616 | "uimageCube", NULL__null, NULL__null, NULL__null | |||
| 2617 | }; | |||
| 2618 | return names[offset + type_idx]; | |||
| 2619 | } | |||
| 2620 | case GLSL_SAMPLER_DIM_MS: { | |||
| 2621 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2622 | static const char *const names[4] = { | |||
| 2623 | "usampler2DMS", "usampler2DMSArray", NULL__null, NULL__null | |||
| 2624 | }; | |||
| 2625 | return names[type_idx]; | |||
| 2626 | } | |||
| 2627 | case GLSL_SAMPLER_DIM_RECT: { | |||
| 2628 | assert(type->is_sampler())(static_cast <bool> (type->is_sampler()) ? void (0) : __assert_fail ("type->is_sampler()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2629 | static const char *const names[4] = { | |||
| 2630 | "usamplerRect", NULL__null, "usamplerRectShadow", NULL__null | |||
| 2631 | }; | |||
| 2632 | return names[type_idx]; | |||
| 2633 | } | |||
| 2634 | case GLSL_SAMPLER_DIM_BUF: { | |||
| 2635 | static const char *const names[8] = { | |||
| 2636 | "usamplerBuffer", NULL__null, NULL__null, NULL__null, | |||
| 2637 | "uimageBuffer", NULL__null, NULL__null, NULL__null | |||
| 2638 | }; | |||
| 2639 | return names[offset + type_idx]; | |||
| 2640 | } | |||
| 2641 | default: | |||
| 2642 | unreachable("Unsupported usampler/uimage dimensionality")do { (static_cast <bool> (!"Unsupported usampler/uimage dimensionality" ) ? void (0) : __assert_fail ("!\"Unsupported usampler/uimage dimensionality\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2643 | } /* sampler/image uint dimensionality */ | |||
| 2644 | break; | |||
| 2645 | default: | |||
| 2646 | unreachable("Unsupported sampler/image type")do { (static_cast <bool> (!"Unsupported sampler/image type" ) ? void (0) : __assert_fail ("!\"Unsupported sampler/image type\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); __builtin_unreachable(); } while (0); | |||
| 2647 | } /* sampler/image type */ | |||
| 2648 | break; | |||
| 2649 | } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ | |||
| 2650 | break; | |||
| 2651 | default: | |||
| 2652 | unreachable("Unsupported type")do { (static_cast <bool> (!"Unsupported type") ? void ( 0) : __assert_fail ("!\"Unsupported type\"", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable (); } while (0); | |||
| 2653 | } /* base type */ | |||
| 2654 | } | |||
| 2655 | ||||
| 2656 | static unsigned | |||
| 2657 | select_gles_precision(unsigned qual_precision, | |||
| 2658 | const glsl_type *type, | |||
| 2659 | struct _mesa_glsl_parse_state *state, YYLTYPE *loc) | |||
| 2660 | { | |||
| 2661 | /* Precision qualifiers do not have any meaning in Desktop GLSL. | |||
| 2662 | * In GLES we take the precision from the type qualifier if present, | |||
| 2663 | * otherwise, if the type of the variable allows precision qualifiers at | |||
| 2664 | * all, we look for the default precision qualifier for that type in the | |||
| 2665 | * current scope. | |||
| 2666 | */ | |||
| 2667 | assert(state->es_shader)(static_cast <bool> (state->es_shader) ? void (0) : __assert_fail ("state->es_shader", __builtin_FILE (), __builtin_LINE () , __extension__ __PRETTY_FUNCTION__)); | |||
| 2668 | ||||
| 2669 | unsigned precision = GLSL_PRECISION_NONE; | |||
| 2670 | if (qual_precision) { | |||
| 2671 | precision = qual_precision; | |||
| 2672 | } else if (precision_qualifier_allowed(type)) { | |||
| 2673 | const char *type_name = | |||
| 2674 | get_type_name_for_precision_qualifier(type->without_array()); | |||
| 2675 | assert(type_name != NULL)(static_cast <bool> (type_name != __null) ? void (0) : __assert_fail ("type_name != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 2676 | ||||
| 2677 | precision = | |||
| 2678 | state->symbols->get_default_precision_qualifier(type_name); | |||
| 2679 | if (precision == ast_precision_none) { | |||
| 2680 | _mesa_glsl_error(loc, state, | |||
| 2681 | "No precision specified in this scope for type `%s'", | |||
| 2682 | type->name); | |||
| 2683 | } | |||
| 2684 | } | |||
| 2685 | ||||
| 2686 | ||||
| 2687 | /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: | |||
| 2688 | * | |||
| 2689 | * "The default precision of all atomic types is highp. It is an error to | |||
| 2690 | * declare an atomic type with a different precision or to specify the | |||
| 2691 | * default precision for an atomic type to be lowp or mediump." | |||
| 2692 | */ | |||
| 2693 | if (type->is_atomic_uint() && precision != ast_precision_high) { | |||
| 2694 | _mesa_glsl_error(loc, state, | |||
| 2695 | "atomic_uint can only have highp precision qualifier"); | |||
| 2696 | } | |||
| 2697 | ||||
| 2698 | return precision; | |||
| 2699 | } | |||
| 2700 | ||||
| 2701 | const glsl_type * | |||
| 2702 | ast_fully_specified_type::glsl_type(const char **name, | |||
| 2703 | struct _mesa_glsl_parse_state *state) const | |||
| 2704 | { | |||
| 2705 | return this->specifier->glsl_type(name, state); | |||
| 2706 | } | |||
| 2707 | ||||
| 2708 | /** | |||
| 2709 | * Determine whether a toplevel variable declaration declares a varying. This | |||
| 2710 | * function operates by examining the variable's mode and the shader target, | |||
| 2711 | * so it correctly identifies linkage variables regardless of whether they are | |||
| 2712 | * declared using the deprecated "varying" syntax or the new "in/out" syntax. | |||
| 2713 | * | |||
| 2714 | * Passing a non-toplevel variable declaration (e.g. a function parameter) to | |||
| 2715 | * this function will produce undefined results. | |||
| 2716 | */ | |||
| 2717 | static bool | |||
| 2718 | is_varying_var(ir_variable *var, gl_shader_stage target) | |||
| 2719 | { | |||
| 2720 | switch (target) { | |||
| 2721 | case MESA_SHADER_VERTEX: | |||
| 2722 | return var->data.mode == ir_var_shader_out; | |||
| 2723 | case MESA_SHADER_FRAGMENT: | |||
| 2724 | return var->data.mode == ir_var_shader_in || | |||
| 2725 | (var->data.mode == ir_var_system_value && | |||
| 2726 | var->data.location == SYSTEM_VALUE_FRAG_COORD); | |||
| 2727 | default: | |||
| 2728 | return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; | |||
| 2729 | } | |||
| 2730 | } | |||
| 2731 | ||||
| 2732 | static bool | |||
| 2733 | is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) | |||
| 2734 | { | |||
| 2735 | if (is_varying_var(var, state->stage)) | |||
| 2736 | return true; | |||
| 2737 | ||||
| 2738 | /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: | |||
| 2739 | * "Only variables output from a vertex shader can be candidates | |||
| 2740 | * for invariance". | |||
| 2741 | */ | |||
| 2742 | if (!state->is_version(130, 100)) | |||
| 2743 | return false; | |||
| 2744 | ||||
| 2745 | /* | |||
| 2746 | * Later specs remove this language - so allowed invariant | |||
| 2747 | * on fragment shader outputs as well. | |||
| 2748 | */ | |||
| 2749 | if (state->stage == MESA_SHADER_FRAGMENT && | |||
| 2750 | var->data.mode == ir_var_shader_out) | |||
| 2751 | return true; | |||
| 2752 | return false; | |||
| 2753 | } | |||
| 2754 | ||||
| 2755 | /** | |||
| 2756 | * Matrix layout qualifiers are only allowed on certain types | |||
| 2757 | */ | |||
| 2758 | static void | |||
| 2759 | validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, | |||
| 2760 | YYLTYPE *loc, | |||
| 2761 | const glsl_type *type, | |||
| 2762 | ir_variable *var) | |||
| 2763 | { | |||
| 2764 | if (var && !var->is_in_buffer_block()) { | |||
| 2765 | /* Layout qualifiers may only apply to interface blocks and fields in | |||
| 2766 | * them. | |||
| 2767 | */ | |||
| 2768 | _mesa_glsl_error(loc, state, | |||
| 2769 | "uniform block layout qualifiers row_major and " | |||
| 2770 | "column_major may not be applied to variables " | |||
| 2771 | "outside of uniform blocks"); | |||
| 2772 | } else if (!type->without_array()->is_matrix()) { | |||
| 2773 | /* The OpenGL ES 3.0 conformance tests did not originally allow | |||
| 2774 | * matrix layout qualifiers on non-matrices. However, the OpenGL | |||
| 2775 | * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were | |||
| 2776 | * amended to specifically allow these layouts on all types. Emit | |||
| 2777 | * a warning so that people know their code may not be portable. | |||
| 2778 | */ | |||
| 2779 | _mesa_glsl_warning(loc, state, | |||
| 2780 | "uniform block layout qualifiers row_major and " | |||
| 2781 | "column_major applied to non-matrix types may " | |||
| 2782 | "be rejected by older compilers"); | |||
| 2783 | } | |||
| 2784 | } | |||
| 2785 | ||||
| 2786 | static bool | |||
| 2787 | validate_xfb_buffer_qualifier(YYLTYPE *loc, | |||
| 2788 | struct _mesa_glsl_parse_state *state, | |||
| 2789 | unsigned xfb_buffer) { | |||
| 2790 | if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { | |||
| 2791 | _mesa_glsl_error(loc, state, | |||
| 2792 | "invalid xfb_buffer specified %d is larger than " | |||
| 2793 | "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", | |||
| 2794 | xfb_buffer, | |||
| 2795 | state->Const.MaxTransformFeedbackBuffers - 1); | |||
| 2796 | return false; | |||
| 2797 | } | |||
| 2798 | ||||
| 2799 | return true; | |||
| 2800 | } | |||
| 2801 | ||||
| 2802 | /* From the ARB_enhanced_layouts spec: | |||
| 2803 | * | |||
| 2804 | * "Variables and block members qualified with *xfb_offset* can be | |||
| 2805 | * scalars, vectors, matrices, structures, and (sized) arrays of these. | |||
| 2806 | * The offset must be a multiple of the size of the first component of | |||
| 2807 | * the first qualified variable or block member, or a compile-time error | |||
| 2808 | * results. Further, if applied to an aggregate containing a double, | |||
| 2809 | * the offset must also be a multiple of 8, and the space taken in the | |||
| 2810 | * buffer will be a multiple of 8. | |||
| 2811 | */ | |||
| 2812 | static bool | |||
| 2813 | validate_xfb_offset_qualifier(YYLTYPE *loc, | |||
| 2814 | struct _mesa_glsl_parse_state *state, | |||
| 2815 | int xfb_offset, const glsl_type *type, | |||
| 2816 | unsigned component_size) { | |||
| 2817 | const glsl_type *t_without_array = type->without_array(); | |||
| 2818 | ||||
| 2819 | if (xfb_offset != -1 && type->is_unsized_array()) { | |||
| 2820 | _mesa_glsl_error(loc, state, | |||
| 2821 | "xfb_offset can't be used with unsized arrays."); | |||
| 2822 | return false; | |||
| 2823 | } | |||
| 2824 | ||||
| 2825 | /* Make sure nested structs don't contain unsized arrays, and validate | |||
| 2826 | * any xfb_offsets on interface members. | |||
| 2827 | */ | |||
| 2828 | if (t_without_array->is_struct() || t_without_array->is_interface()) | |||
| 2829 | for (unsigned int i = 0; i < t_without_array->length; i++) { | |||
| 2830 | const glsl_type *member_t = t_without_array->fields.structure[i].type; | |||
| 2831 | ||||
| 2832 | /* When the interface block doesn't have an xfb_offset qualifier then | |||
| 2833 | * we apply the component size rules at the member level. | |||
| 2834 | */ | |||
| 2835 | if (xfb_offset == -1) | |||
| 2836 | component_size = member_t->contains_double() ? 8 : 4; | |||
| 2837 | ||||
| 2838 | int xfb_offset = t_without_array->fields.structure[i].offset; | |||
| 2839 | validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, | |||
| 2840 | component_size); | |||
| 2841 | } | |||
| 2842 | ||||
| 2843 | /* Nested structs or interface block without offset may not have had an | |||
| 2844 | * offset applied yet so return. | |||
| 2845 | */ | |||
| 2846 | if (xfb_offset == -1) { | |||
| 2847 | return true; | |||
| 2848 | } | |||
| 2849 | ||||
| 2850 | if (xfb_offset % component_size) { | |||
| 2851 | _mesa_glsl_error(loc, state, | |||
| 2852 | "invalid qualifier xfb_offset=%d must be a multiple " | |||
| 2853 | "of the first component size of the first qualified " | |||
| 2854 | "variable or block member. Or double if an aggregate " | |||
| 2855 | "that contains a double (%d).", | |||
| 2856 | xfb_offset, component_size); | |||
| 2857 | return false; | |||
| 2858 | } | |||
| 2859 | ||||
| 2860 | return true; | |||
| 2861 | } | |||
| 2862 | ||||
| 2863 | static bool | |||
| 2864 | validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, | |||
| 2865 | unsigned stream) | |||
| 2866 | { | |||
| 2867 | if (stream >= state->ctx->Const.MaxVertexStreams) { | |||
| 2868 | _mesa_glsl_error(loc, state, | |||
| 2869 | "invalid stream specified %d is larger than " | |||
| 2870 | "MAX_VERTEX_STREAMS - 1 (%d).", | |||
| 2871 | stream, state->ctx->Const.MaxVertexStreams - 1); | |||
| 2872 | return false; | |||
| 2873 | } | |||
| 2874 | ||||
| 2875 | return true; | |||
| 2876 | } | |||
| 2877 | ||||
| 2878 | static void | |||
| 2879 | apply_explicit_binding(struct _mesa_glsl_parse_state *state, | |||
| 2880 | YYLTYPE *loc, | |||
| 2881 | ir_variable *var, | |||
| 2882 | const glsl_type *type, | |||
| 2883 | const ast_type_qualifier *qual) | |||
| 2884 | { | |||
| 2885 | if (!qual->flags.q.uniform && !qual->flags.q.buffer) { | |||
| 2886 | _mesa_glsl_error(loc, state, | |||
| 2887 | "the \"binding\" qualifier only applies to uniforms and " | |||
| 2888 | "shader storage buffer objects"); | |||
| 2889 | return; | |||
| 2890 | } | |||
| 2891 | ||||
| 2892 | unsigned qual_binding; | |||
| 2893 | if (!process_qualifier_constant(state, loc, "binding", qual->binding, | |||
| 2894 | &qual_binding)) { | |||
| 2895 | return; | |||
| 2896 | } | |||
| 2897 | ||||
| 2898 | const struct gl_context *const ctx = state->ctx; | |||
| 2899 | unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; | |||
| 2900 | unsigned max_index = qual_binding + elements - 1; | |||
| 2901 | const glsl_type *base_type = type->without_array(); | |||
| 2902 | ||||
| 2903 | if (base_type->is_interface()) { | |||
| 2904 | /* UBOs. From page 60 of the GLSL 4.20 specification: | |||
| 2905 | * "If the binding point for any uniform block instance is less than zero, | |||
| 2906 | * or greater than or equal to the implementation-dependent maximum | |||
| 2907 | * number of uniform buffer bindings, a compilation error will occur. | |||
| 2908 | * When the binding identifier is used with a uniform block instanced as | |||
| 2909 | * an array of size N, all elements of the array from binding through | |||
| 2910 | * binding + N – 1 must be within this range." | |||
| 2911 | * | |||
| 2912 | * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. | |||
| 2913 | */ | |||
| 2914 | if (qual->flags.q.uniform && | |||
| 2915 | max_index >= ctx->Const.MaxUniformBufferBindings) { | |||
| 2916 | _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " | |||
| 2917 | "the maximum number of UBO binding points (%d)", | |||
| 2918 | qual_binding, elements, | |||
| 2919 | ctx->Const.MaxUniformBufferBindings); | |||
| 2920 | return; | |||
| 2921 | } | |||
| 2922 | ||||
| 2923 | /* SSBOs. From page 67 of the GLSL 4.30 specification: | |||
| 2924 | * "If the binding point for any uniform or shader storage block instance | |||
| 2925 | * is less than zero, or greater than or equal to the | |||
| 2926 | * implementation-dependent maximum number of uniform buffer bindings, a | |||
| 2927 | * compile-time error will occur. When the binding identifier is used | |||
| 2928 | * with a uniform or shader storage block instanced as an array of size | |||
| 2929 | * N, all elements of the array from binding through binding + N – 1 must | |||
| 2930 | * be within this range." | |||
| 2931 | */ | |||
| 2932 | if (qual->flags.q.buffer && | |||
| 2933 | max_index >= ctx->Const.MaxShaderStorageBufferBindings) { | |||
| 2934 | _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " | |||
| 2935 | "the maximum number of SSBO binding points (%d)", | |||
| 2936 | qual_binding, elements, | |||
| 2937 | ctx->Const.MaxShaderStorageBufferBindings); | |||
| 2938 | return; | |||
| 2939 | } | |||
| 2940 | } else if (base_type->is_sampler()) { | |||
| 2941 | /* Samplers. From page 63 of the GLSL 4.20 specification: | |||
| 2942 | * "If the binding is less than zero, or greater than or equal to the | |||
| 2943 | * implementation-dependent maximum supported number of units, a | |||
| 2944 | * compilation error will occur. When the binding identifier is used | |||
| 2945 | * with an array of size N, all elements of the array from binding | |||
| 2946 | * through binding + N - 1 must be within this range." | |||
| 2947 | */ | |||
| 2948 | unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; | |||
| 2949 | ||||
| 2950 | if (max_index >= limit) { | |||
| 2951 | _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " | |||
| 2952 | "exceeds the maximum number of texture image units " | |||
| 2953 | "(%u)", qual_binding, elements, limit); | |||
| 2954 | ||||
| 2955 | return; | |||
| 2956 | } | |||
| 2957 | } else if (base_type->contains_atomic()) { | |||
| 2958 | assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS)(static_cast <bool> (ctx->Const.MaxAtomicBufferBindings <= (15 * 6)) ? void (0) : __assert_fail ("ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 2959 | if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { | |||
| 2960 | _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " | |||
| 2961 | "maximum number of atomic counter buffer bindings " | |||
| 2962 | "(%u)", qual_binding, | |||
| 2963 | ctx->Const.MaxAtomicBufferBindings); | |||
| 2964 | ||||
| 2965 | return; | |||
| 2966 | } | |||
| 2967 | } else if ((state->is_version(420, 310) || | |||
| 2968 | state->ARB_shading_language_420pack_enable) && | |||
| 2969 | base_type->is_image()) { | |||
| 2970 | assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS)(static_cast <bool> (ctx->Const.MaxImageUnits <= ( 32 * 6)) ? void (0) : __assert_fail ("ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); | |||
| 2971 | if (max_index >= ctx->Const.MaxImageUnits) { | |||
| 2972 | _mesa_glsl_error(loc, state, "Image binding %d exceeds the " | |||
| 2973 | "maximum number of image units (%d)", max_index, | |||
| 2974 | ctx->Const.MaxImageUnits); | |||
| 2975 | return; | |||
| 2976 | } | |||
| 2977 | ||||
| 2978 | } else { | |||
| 2979 | _mesa_glsl_error(loc, state, | |||
| 2980 | "the \"binding\" qualifier only applies to uniform " | |||
| 2981 | "blocks, storage blocks, opaque variables, or arrays " | |||
| 2982 | "thereof"); | |||
| 2983 | return; | |||
| 2984 | } | |||
| 2985 | ||||
| 2986 | var->data.explicit_binding = true; | |||
| 2987 | var->data.binding = qual_binding; | |||
| 2988 | ||||
| 2989 | return; | |||
| 2990 | } | |||
| 2991 | ||||
| 2992 | static void | |||
| 2993 | validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, | |||
| 2994 | YYLTYPE *loc, | |||
| 2995 | const glsl_interp_mode interpolation, | |||
| 2996 | const struct glsl_type *var_type, | |||
| 2997 | ir_variable_mode mode) | |||
| 2998 | { | |||
| 2999 | if (state->stage != MESA_SHADER_FRAGMENT || | |||
| 3000 | interpolation == INTERP_MODE_FLAT || | |||
| 3001 | mode != ir_var_shader_in) | |||
| 3002 | return; | |||
| 3003 | ||||
| 3004 | /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, | |||
| 3005 | * so must integer vertex outputs. | |||
| 3006 | * | |||
| 3007 | * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: | |||
| 3008 | * "Fragment shader inputs that are signed or unsigned integers or | |||
| 3009 | * integer vectors must be qualified with the interpolation qualifier | |||
| 3010 | * flat." | |||
| 3011 | * | |||
| 3012 | * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: | |||
| 3013 | * "Fragment shader inputs that are, or contain, signed or unsigned | |||
| 3014 | * integers or integer vectors must be qualified with the | |||
| 3015 | * interpolation qualifier flat." | |||
| 3016 | * | |||
| 3017 | * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: | |||
| 3018 | * "Vertex shader outputs that are, or contain, signed or unsigned | |||
| 3019 | * integers or integer vectors must be qualified with the | |||
| 3020 | * interpolation qualifier flat." | |||
| 3021 | * | |||
| 3022 | * Note that prior to GLSL 1.50, this requirement applied to vertex | |||
| 3023 | * outputs rather than fragment inputs. That creates problems in the | |||
| 3024 | * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all | |||
| 3025 | * desktop GL shaders. For GLSL ES shaders, we follow the spec and | |||
| 3026 | * apply the restriction to both vertex outputs and fragment inputs. | |||
| 3027 | * | |||
| 3028 | * Note also that the desktop GLSL specs are missing the text "or | |||
| 3029 | * contain"; this is presumably an oversight, since there is no | |||
| 3030 | * reasonable way to interpolate a fragment shader input that contains | |||
| 3031 | * an integer. See Khronos bug #15671. | |||
| 3032 | */ | |||
| 3033 | if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) | |||
| 3034 | && var_type->contains_integer()) { | |||
| 3035 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " | |||
| 3036 | "an integer, then it must be qualified with 'flat'"); | |||
| 3037 | } | |||
| 3038 | ||||
| 3039 | /* Double fragment inputs must be qualified with 'flat'. | |||
| 3040 | * | |||
| 3041 | * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: | |||
| 3042 | * "This extension does not support interpolation of double-precision | |||
| 3043 | * values; doubles used as fragment shader inputs must be qualified as | |||
| 3044 | * "flat"." | |||
| 3045 | * | |||
| 3046 | * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: | |||
| 3047 | * "Fragment shader inputs that are signed or unsigned integers, integer | |||
| 3048 | * vectors, or any double-precision floating-point type must be | |||
| 3049 | * qualified with the interpolation qualifier flat." | |||
| 3050 | * | |||
| 3051 | * Note that the GLSL specs are missing the text "or contain"; this is | |||
| 3052 | * presumably an oversight. See Khronos bug #15671. | |||
| 3053 | * | |||
| 3054 | * The 'double' type does not exist in GLSL ES so far. | |||
| 3055 | */ | |||
| 3056 | if (state->has_double() | |||
| 3057 | && var_type->contains_double()) { | |||
| 3058 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " | |||
| 3059 | "a double, then it must be qualified with 'flat'"); | |||
| 3060 | } | |||
| 3061 | ||||
| 3062 | /* Bindless sampler/image fragment inputs must be qualified with 'flat'. | |||
| 3063 | * | |||
| 3064 | * From section 4.3.4 of the ARB_bindless_texture spec: | |||
| 3065 | * | |||
| 3066 | * "(modify last paragraph, p. 35, allowing samplers and images as | |||
| 3067 | * fragment shader inputs) ... Fragment inputs can only be signed and | |||
| 3068 | * unsigned integers and integer vectors, floating point scalars, | |||
| 3069 | * floating-point vectors, matrices, sampler and image types, or arrays | |||
| 3070 | * or structures of these. Fragment shader inputs that are signed or | |||
| 3071 | * unsigned integers, integer vectors, or any double-precision floating- | |||
| 3072 | * point type, or any sampler or image type must be qualified with the | |||
| 3073 | * interpolation qualifier "flat"." | |||
| 3074 | */ | |||
| 3075 | if (state->has_bindless() | |||
| 3076 | && (var_type->contains_sampler() || var_type->contains_image())) { | |||
| 3077 | _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " | |||
| 3078 | "a bindless sampler (or image), then it must be " | |||
| 3079 | "qualified with 'flat'"); | |||
| 3080 | } | |||
| 3081 | } | |||
| 3082 | ||||
| 3083 | static void | |||
| 3084 | validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, | |||
| 3085 | YYLTYPE *loc, | |||
| 3086 | const glsl_interp_mode interpolation, | |||
| 3087 | const struct ast_type_qualifier *qual, | |||
| 3088 | const struct glsl_type *var_type, | |||
| 3089 | ir_variable_mode mode) | |||
| 3090 | { | |||
| 3091 | /* Interpolation qualifiers can only apply to shader inputs or outputs, but | |||
| 3092 | * not to vertex shader inputs nor fragment shader outputs. | |||
| 3093 | * | |||
| 3094 | * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: | |||
| 3095 | * "Outputs from a vertex shader (out) and inputs to a fragment | |||
| 3096 | * shader (in) can be further qualified with one or more of these | |||
| 3097 | * interpolation qualifiers" | |||
| 3098 | * ... | |||
| 3099 | * "These interpolation qualifiers may only precede the qualifiers in, | |||
| 3100 | * centroid in, out, or centroid out in a declaration. They do not apply | |||
| 3101 | * to the deprecated storage qualifiers varying or centroid | |||
| 3102 | * varying. They also do not apply to inputs into a vertex shader or | |||
| 3103 | * outputs from a fragment shader." | |||
| 3104 | * | |||
| 3105 | * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: | |||
| 3106 | * "Outputs from a shader (out) and inputs to a shader (in) can be | |||
| 3107 | * further qualified with one of these interpolation qualifiers." | |||
| 3108 | * ... | |||
| 3109 | * "These interpolation qualifiers may only precede the qualifiers | |||
| 3110 | * in, centroid in, out, or centroid out in a declaration. They do | |||
| 3111 | * not apply to inputs into a vertex shader or outputs from a | |||
| 3112 | * fragment shader." | |||
| 3113 | */ | |||
| 3114 | if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) | |||
| 3115 | && interpolation != INTERP_MODE_NONE) { | |||
| 3116 | const char *i = interpolation_string(interpolation); | |||
| 3117 | if (mode != ir_var_shader_in && mode != ir_var_shader_out) | |||
| 3118 | _mesa_glsl_error(loc, state, | |||
| 3119 | "interpolation qualifier `%s' can only be applied to " | |||
| 3120 | "shader inputs or outputs.", i); | |||
| 3121 | ||||
| 3122 | switch (state->stage) { | |||
| 3123 | case MESA_SHADER_VERTEX: | |||
| 3124 | if (mode == ir_var_shader_in) { | |||
| 3125 | _mesa_glsl_error(loc, state, | |||
| 3126 | "interpolation qualifier '%s' cannot be applied to " | |||
| 3127 | "vertex shader inputs", i); | |||
| 3128 | } | |||
| 3129 | break; | |||
| 3130 | case MESA_SHADER_FRAGMENT: | |||
| 3131 | if (mode == ir_var_shader_out) { | |||
| 3132 | _mesa_glsl_error(loc, state, | |||
| 3133 | "interpolation qualifier '%s' cannot be applied to " | |||
| 3134 | "fragment shader outputs", i); | |||
| 3135 | } | |||
| 3136 | break; | |||
| 3137 | default: | |||
| 3138 | break; | |||
| 3139 | } | |||
| 3140 | } | |||
| 3141 | ||||
| 3142 | /* Interpolation qualifiers cannot be applied to 'centroid' and | |||
| 3143 | * 'centroid varying'. | |||
| 3144 | * | |||
| 3145 | * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: | |||
| 3146 | * "interpolation qualifiers may only precede the qualifiers in, | |||
| 3147 | * centroid in, out, or centroid out in a declaration. They do not apply | |||
| 3148 | * to the deprecated storage qualifiers varying or centroid varying." | |||
| 3149 | * | |||
| 3150 | * These deprecated storage qualifiers do not exist in GLSL ES 3.00. | |||
| 3151 | * | |||
| 3152 | * GL_EXT_gpu_shader4 allows this. | |||
| 3153 | */ | |||
| 3154 | if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable | |||
| 3155 | && interpolation != INTERP_MODE_NONE | |||
| 3156 | && qual->flags.q.varying) { | |||
| 3157 | ||||
| 3158 | const char *i = interpolation_string(interpolation); | |||
| 3159 | const char *s; | |||
| 3160 | if (qual->flags.q.centroid) | |||
| 3161 | s = "centroid varying"; | |||
| 3162 | else | |||
| 3163 | s = "varying"; | |||
| 3164 | ||||
| 3165 | _mesa_glsl_error(loc, state, | |||
| 3166 | "qualifier '%s' cannot be applied to the " | |||
| 3167 | "deprecated storage qualifier '%s'", i, s); | |||
| 3168 | } | |||
| 3169 | ||||
| 3170 | validate_fragment_flat_interpolation_input(state, loc, interpolation, | |||
| 3171 | var_type, mode); | |||
| 3172 | } | |||
| 3173 | ||||
| 3174 | static glsl_interp_mode | |||
| 3175 | interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, | |||
| 3176 | const struct glsl_type *var_type, | |||
| 3177 | ir_variable_mode mode, | |||
| 3178 | struct _mesa_glsl_parse_state *state, | |||
| 3179 | YYLTYPE *loc) | |||
| 3180 | { | |||
| 3181 | glsl_interp_mode interpolation; | |||
| 3182 | if (qual->flags.q.flat) | |||
| 3183 | interpolation = INTERP_MODE_FLAT; | |||
| 3184 | else if (qual->flags.q.noperspective) | |||
| 3185 | interpolation = INTERP_MODE_NOPERSPECTIVE; | |||
| 3186 | else if (qual->flags.q.smooth) | |||
| 3187 | interpolation = INTERP_MODE_SMOOTH; | |||
| 3188 | else | |||
| 3189 | interpolation = INTERP_MODE_NONE; | |||
| 3190 | ||||
| 3191 | validate_interpolation_qualifier(state, loc, | |||
| 3192 | interpolation, | |||
| 3193 | qual, var_type, mode); | |||
| 3194 | ||||
| 3195 | return interpolation; | |||
| 3196 | } | |||
| 3197 | ||||
| 3198 | ||||
| 3199 | static void | |||
| 3200 | apply_explicit_location(const struct ast_type_qualifier *qual, | |||
| 3201 | ir_variable *var, | |||
| 3202 | struct _mesa_glsl_parse_state *state, | |||
| 3203 | YYLTYPE *loc) | |||
| 3204 | { | |||
| 3205 | bool fail = false; | |||
| 3206 | ||||
| 3207 | unsigned qual_location; | |||
| 3208 | if (!process_qualifier_constant(state, loc, "location", qual->location, | |||
| 3209 | &qual_location)) { | |||
| 3210 | return; | |||
| 3211 | } | |||
| 3212 | ||||
| 3213 | /* Checks for GL_ARB_explicit_uniform_location. */ | |||
| 3214 | if (qual->flags.q.uniform) { | |||
| 3215 | if (!state->check_explicit_uniform_location_allowed(loc, var)) | |||
| 3216 | return; | |||
| 3217 | ||||
| 3218 | const struct gl_context *const ctx = state->ctx; | |||
| 3219 | unsigned max_loc = qual_location + var->type->uniform_locations() - 1; | |||
| 3220 | ||||
| 3221 | if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { | |||
| 3222 | _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " | |||
| 3223 | ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, | |||
| 3224 | ctx->Const.MaxUserAssignableUniformLocations); | |||
| 3225 | return; | |||
| 3226 | } | |||
| 3227 | ||||
| 3228 | var->data.explicit_location = true; | |||
| 3229 | var->data.location = qual_location; | |||
| 3230 | return; | |||
| 3231 | } | |||
| 3232 | ||||
| 3233 | /* Between GL_ARB_explicit_attrib_location an | |||
| 3234 | * GL_ARB_separate_shader_objects, the inputs and outputs of any shader | |||
| 3235 | * stage can be assigned explicit locations. The checking here associates | |||
| 3236 | * the correct extension with the correct stage's input / output: | |||
| 3237 | * | |||
| 3238 | * input output | |||
| 3239 | * ----- ------ | |||
| 3240 | * vertex explicit_loc sso | |||
| 3241 | * tess control sso sso | |||
| 3242 | * tess eval sso sso | |||
| 3243 | * geometry sso sso | |||
| 3244 | * fragment sso explicit_loc | |||
| 3245 | */ | |||
| 3246 | switch (state->stage) { | |||
| 3247 | case MESA_SHADER_VERTEX: | |||
| 3248 | if (var->data.mode == ir_var_shader_in) { | |||
| 3249 | if (!state->check_explicit_attrib_location_allowed(loc, var)) | |||
| 3250 | return; | |||
| 3251 | ||||
| 3252 | break; | |||
| 3253 | } | |||
| 3254 | ||||
| 3255 | if (var->data.mode == ir_var_shader_out) { | |||
| 3256 | if (!state->check_separate_shader_objects_allowed(loc, var)) | |||
| 3257 | return; | |||
| 3258 | ||||
| 3259 | break; | |||
| 3260 | } | |||
| 3261 | ||||
| 3262 | fail = true; | |||
| 3263 | break; | |||
| 3264 | ||||
| 3265 | case MESA_SHADER_TESS_CTRL: | |||
| 3266 | case MESA_SHADER_TESS_EVAL: | |||
| 3267 | case MESA_SHADER_GEOMETRY: | |||
| 3268 | if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { | |||
| 3269 | if (!state->check_separate_shader_objects_allowed(loc, var)) | |||
| 3270 | return; | |||
| 3271 | ||||
| 3272 | break; | |||
| 3273 | } | |||
| 3274 | ||||
| 3275 | fail = true; | |||
| 3276 | break; | |||
| 3277 | ||||
| 3278 | case MESA_SHADER_FRAGMENT: | |||
| 3279 | if (var->data.mode == ir_var_shader_in) { | |||
| 3280 | if (!state->check_separate_shader_objects_allowed(loc, var)) | |||
| 3281 | return; | |||
| 3282 | ||||
| 3283 | break; | |||
| 3284 | } | |||
| 3285 | ||||
| 3286 | if (var->data.mode == ir_var_shader_out) { | |||
| 3287 | if (!state->check_explicit_attrib_location_allowed(loc, var)) | |||
| 3288 | return; | |||
| 3289 | ||||
| 3290 | break; | |||
| 3291 | } | |||
| 3292 | ||||
| 3293 | fail = true; | |||
| 3294 | break; | |||
| 3295 | ||||
| 3296 | case MESA_SHADER_COMPUTE: | |||
| 3297 | _mesa_glsl_error(loc, state, | |||
| 3298 | "compute shader variables cannot be given " | |||
| 3299 | "explicit locations"); | |||
| 3300 | return; | |||
| 3301 | default: | |||
| 3302 | fail = true; | |||
| 3303 | break; | |||
| 3304 | }; | |||
| 3305 | ||||
| 3306 | if (fail) { | |||
| 3307 | _mesa_glsl_error(loc, state, | |||
| 3308 | "%s cannot be given an explicit location in %s shader", | |||
| 3309 | mode_string(var), | |||
| 3310 | _mesa_shader_stage_to_string(state->stage)); | |||
| 3311 | } else { | |||
| 3312 | var->data.explicit_location = true; | |||
| 3313 | ||||
| 3314 | switch (state->stage) { | |||
| 3315 | case MESA_SHADER_VERTEX: | |||
| 3316 | var->data.location = (var->data.mode == ir_var_shader_in) | |||
| 3317 | ? (qual_location + VERT_ATTRIB_GENERIC0) | |||
| 3318 | : (qual_location + VARYING_SLOT_VAR0); | |||
| 3319 | break; | |||
| 3320 | ||||
| 3321 | case MESA_SHADER_TESS_CTRL: | |||
| 3322 | case MESA_SHADER_TESS_EVAL: | |||
| 3323 | case MESA_SHADER_GEOMETRY: | |||
| 3324 | if (var->data.patch) | |||
| 3325 | var->data.location = qual_location + VARYING_SLOT_PATCH0((VARYING_SLOT_VAR0 + 32)); | |||
| 3326 | else | |||
| 3327 | var->data.location = qual_location + VARYING_SLOT_VAR0; | |||
| 3328 | break; | |||
| 3329 | ||||
| 3330 | case MESA_SHADER_FRAGMENT: | |||
| 3331 | var->data.location = (var->data.mode == ir_var_shader_out) | |||
| 3332 | ? (qual_location + FRAG_RESULT_DATA0) | |||
| 3333 | : (qual_location + VARYING_SLOT_VAR0); | |||
| 3334 | break; | |||
| 3335 | default: | |||
| 3336 | assert(!"Unexpected shader type")(static_cast <bool> (!"Unexpected shader type") ? void ( 0) : __assert_fail ("!\"Unexpected shader type\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); | |||
| 3337 | break; | |||
| 3338 | } | |||
| 3339 | ||||
| 3340 | /* Check if index was set for the uniform instead of the function */ | |||
| 3341 | if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { | |||
| 3342 | _mesa_glsl_error(loc, state, "an index qualifier can only be " | |||
| 3343 | "used with subroutine functions"); | |||
| 3344 | return; | |||
| 3345 | } | |||
| 3346 | ||||
| 3347 | unsigned qual_index; | |||
| 3348 | if (qual->flags.q.explicit_index && | |||
| 3349 | process_qualifier_constant(state, loc, "index", qual->index, | |||
| 3350 | &qual_index)) { | |||
| 3351 | /* From the GLSL 4.30 specification, section 4.4.2 (Output | |||
| 3352 | * Layout Qualifiers): | |||
| 3353 | * | |||
| 3354 | * "It is also a compile-time error if a fragment shader | |||
| 3355 | * sets a layout index to less than 0 or greater than 1." | |||
| 3356 | * | |||
| 3357 | * Older specifications don't mandate a behavior; we take | |||
| 3358 | * this as a clarification and always generate the error. | |||
| 3359 | */ | |||
| 3360 | if (qual_index > 1) { | |||
| 3361 | _mesa_glsl_error(loc, state, | |||
| 3362 | "explicit index may only be 0 or 1"); | |||
| 3363 | } else { | |||
| 3364 | var->data.explicit_index = true; | |||
| 3365 | var->data.index = qual_index; | |||
| 3366 | } | |||
| 3367 | } | |||
| 3368 | } | |||
| 3369 | } | |||
| 3370 | ||||
| 3371 | static bool | |||
| 3372 | validate_storage_for_sampler_image_types(ir_variable *var, | |||
| 3373 | struct _mesa_glsl_parse_state *state, | |||
| 3374 | YYLTYPE *loc) | |||
| 3375 | { | |||
| 3376 | /* From section 4.1.7 of the GLSL 4.40 spec: | |||
| 3377 | * | |||
| 3378 | * "[Opaque types] can only be declared as function | |||
| 3379 | * parameters or uniform-qualified variables." | |||
| 3380 | * | |||
| 3381 | * From section 4.1.7 of the ARB_bindless_texture spec: | |||
| 3382 | * | |||
| 3383 | * "Samplers may be declared as shader inputs and outputs, as uniform | |||
| 3384 | * variables, as temporary variables, and as function parameters." | |||
| 3385 | * | |||
| 3386 | * From section 4.1.X of the ARB_bindless_texture spec: | |||
| 3387 | * | |||
| 3388 | * "Images may be declared as shader inputs and outputs, as uniform | |||
| 3389 | * variables, as temporary variables, and as function parameters." | |||
| 3390 | */ | |||
| 3391 | if (state->has_bindless()) { | |||
| 3392 | if (var->data.mode != ir_var_auto && | |||
| 3393 | var->data.mode != ir_var_uniform && | |||
| 3394 | var->data.mode != ir_var_shader_in && | |||
| 3395 | var->data.mode != ir_var_shader_out && | |||
| 3396 | var->data.mode != ir_var_function_in && | |||
| 3397 | var->data.mode != ir_var_function_out && | |||
| 3398 | var->data.mode != ir_var_function_inout) { | |||
| 3399 | _mesa_glsl_error(loc, state, "bindless image/sampler variables may " | |||
| 3400 | "only be declared as shader inputs and outputs, as " | |||
| 3401 | "uniform variables, as temporary variables and as " | |||
| 3402 | "function parameters"); | |||
| 3403 | return false; | |||
| 3404 | } | |||
| 3405 | } else { | |||
| 3406 | if (var->data.mode != ir_var_uniform && | |||
| 3407 | var->data.mode != ir_var_function_in) { | |||
| 3408 | _mesa_glsl_error(loc, state, "image/sampler variables may only be " | |||
| 3409 | "declared as function parameters or " | |||
| 3410 | "uniform-qualified global variables"); | |||
| 3411 | return false; | |||
| 3412 | } | |||
| 3413 | } | |||
| 3414 | return true; | |||
| 3415 | } | |||
| 3416 | ||||
| 3417 | static bool | |||
| 3418 | validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, | |||
| 3419 | YYLTYPE *loc, | |||
| 3420 | const struct ast_type_qualifier *qual, | |||
| 3421 | const glsl_type *type) | |||
| 3422 | { | |||
| 3423 | /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: | |||
| 3424 | * | |||
| 3425 | * "Memory qualifiers are only supported in the declarations of image | |||
| 3426 | * variables, buffer variables, and shader storage blocks; it is an error | |||
| 3427 | * to use such qualifiers in any other declarations. | |||
| 3428 | */ | |||
| 3429 | if (!type->is_image() && !qual->flags.q.buffer) { | |||
| 3430 | if (qual->flags.q.read_only || | |||
| 3431 | qual->flags.q.write_only || | |||
| 3432 | qual->flags.q.coherent || | |||
| 3433 | qual->flags.q._volatile || | |||
| 3434 | qual->flags.q.restrict_flag) { | |||
| 3435 | _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " | |||
| 3436 | "in the declarations of image variables, buffer " | |||
| 3437 | "variables, and shader storage blocks"); | |||
| 3438 | return false; | |||
| 3439 | } | |||
| 3440 | } | |||
| 3441 | return true; | |||
| 3442 | } | |||
| 3443 | ||||
| 3444 | static bool | |||
| 3445 | validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, | |||
| 3446 | YYLTYPE *loc, | |||
| 3447 | const struct ast_type_qualifier *qual, | |||
| 3448 | const glsl_type *type) | |||
| 3449 | { | |||
| 3450 | /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: | |||
| 3451 | * | |||
| 3452 | * "Format layout qualifiers can be used on image variable declarations | |||
| 3453 | * (those declared with a basic type having “image ” in its keyword)." | |||
| 3454 | */ | |||
| 3455 | if (!type->is_image() && qual->flags.q.explicit_image_format) { | |||
| 3456 | _mesa_glsl_error(loc, state, "format layout qualifiers may only be " | |||
| 3457 | "applied to images"); | |||
| 3458 | return false; | |||
| 3459 | } | |||
| 3460 | return true; | |||
| 3461 | } | |||
| 3462 | ||||
| 3463 | static void | |||
| 3464 | apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
| 3465 | ir_variable *var, | |||
| 3466 | struct _mesa_glsl_parse_state *state, | |||
| 3467 | YYLTYPE *loc) | |||
| 3468 | { | |||
| 3469 | const glsl_type *base_type = var->type->without_array(); | |||
| 3470 | ||||
| 3471 | if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || | |||
| 3472 | !validate_memory_qualifier_for_type(state, loc, qual, base_type)) | |||
| 3473 | return; | |||
| 3474 | ||||
| 3475 | if (!base_type->is_image()) | |||
| 3476 | return; | |||
| 3477 | ||||
| 3478 | if (!validate_storage_for_sampler_image_types(var, state, loc)) | |||
| 3479 | return; | |||
| 3480 | ||||
| 3481 | var->data.memory_read_only |= qual->flags.q.read_only; | |||
| 3482 | var->data.memory_write_only |= qual->flags.q.write_only; | |||
| 3483 | var->data.memory_coherent |= qual->flags.q.coherent; | |||
| 3484 | var->data.memory_volatile |= qual->flags.q._volatile; | |||
| 3485 | var->data.memory_restrict |= qual->flags.q.restrict_flag; | |||
| 3486 | ||||
| 3487 | if (qual->flags.q.explicit_image_format) { | |||
| 3488 | if (var->data.mode == ir_var_function_in) { | |||
| 3489 | _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " | |||
| 3490 | "image function parameters"); | |||
| 3491 | } | |||
| 3492 | ||||
| 3493 | if (qual->image_base_type != base_type->sampled_type) { | |||
| 3494 | _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " | |||
| 3495 | "data type of the image"); | |||
| 3496 | } | |||
| 3497 | ||||
| 3498 | var->data.image_format = qual->image_format; | |||
| 3499 | } else if (state->has_image_load_formatted()) { | |||
| 3500 | if (var->data.mode == ir_var_uniform && | |||
| 3501 | state->EXT_shader_image_load_formatted_warn) { | |||
| 3502 | _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used"); | |||
| 3503 | } | |||
| 3504 | } else { | |||
| 3505 | if (var->data.mode == ir_var_uniform) { | |||
| 3506 | if (state->es_shader || | |||
| 3507 | !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) { | |||
| 3508 | _mesa_glsl_error(loc, state, "all image uniforms must have a " | |||
| 3509 | "format layout qualifier"); | |||
| 3510 | } else if (!qual->flags.q.write_only) { | |||
| 3511 | _mesa_glsl_error(loc, state, "image uniforms not qualified with " | |||
| 3512 | "`writeonly' must have a format layout qualifier"); | |||
| 3513 | } | |||
| 3514 | } | |||
| 3515 | var->data.image_format = PIPE_FORMAT_NONE; | |||
| 3516 | } | |||
| 3517 | ||||
| 3518 | /* From page 70 of the GLSL ES 3.1 specification: | |||
| 3519 | * | |||
| 3520 | * "Except for image variables qualified with the format qualifiers r32f, | |||
| 3521 | * r32i, and r32ui, image variables must specify either memory qualifier | |||
| 3522 | * readonly or the memory qualifier writeonly." | |||
| 3523 | */ | |||
| 3524 | if (state->es_shader && | |||
| 3525 | var->data.image_format != PIPE_FORMAT_R32_FLOAT && | |||
| 3526 | var->data.image_format != PIPE_FORMAT_R32_SINT && | |||
| 3527 | var->data.image_format != PIPE_FORMAT_R32_UINT && | |||
| 3528 | !var->data.memory_read_only && | |||
| 3529 | !var->data.memory_write_only) { | |||
| 3530 | _mesa_glsl_error(loc, state, "image variables of format other than r32f, " | |||
| 3531 | "r32i or r32ui must be qualified `readonly' or " | |||
| 3532 | "`writeonly'"); | |||
| 3533 | } | |||
| 3534 | } | |||
| 3535 | ||||
| 3536 | static inline const char* | |||
| 3537 | get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) | |||
| 3538 | { | |||
| 3539 | if (origin_upper_left && pixel_center_integer) | |||
| 3540 | return "origin_upper_left, pixel_center_integer"; | |||
| 3541 | else if (origin_upper_left) | |||
| 3542 | return "origin_upper_left"; | |||
| 3543 | else if (pixel_center_integer) | |||
| 3544 | return "pixel_center_integer"; | |||
| 3545 | else | |||
| 3546 | return " "; | |||
| 3547 | } | |||
| 3548 | ||||
| 3549 | static inline bool | |||
| 3550 | is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, | |||
| 3551 | const struct ast_type_qualifier *qual) | |||
| 3552 | { | |||
| 3553 | /* If gl_FragCoord was previously declared, and the qualifiers were | |||
| 3554 | * different in any way, return true. | |||
| 3555 | */ | |||
| 3556 | if (state->fs_redeclares_gl_fragcoord) { | |||
| 3557 | return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer | |||
| 3558 | || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); | |||
| 3559 | } | |||
| 3560 | ||||
| 3561 | return false; | |||
| 3562 | } | |||
| 3563 | ||||
| 3564 | static inline bool | |||
| 3565 | is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state, | |||
| 3566 | const struct ast_type_qualifier *qual) | |||
| 3567 | { | |||
| 3568 | if (state->redeclares_gl_layer) { | |||
| 3569 | return state->layer_viewport_relative != qual->flags.q.viewport_relative; | |||
| 3570 | } | |||
| 3571 | return false; | |||
| 3572 | } | |||
| 3573 | ||||
| 3574 | static inline void | |||
| 3575 | validate_array_dimensions(const glsl_type *t, | |||
| 3576 | struct _mesa_glsl_parse_state *state, | |||
| 3577 | YYLTYPE *loc) { | |||
| 3578 | if (t->is_array()) { | |||
| 3579 | t = t->fields.array; | |||
| 3580 | while (t->is_array()) { | |||
| 3581 | if (t->is_unsized_array()) { | |||
| 3582 | _mesa_glsl_error(loc, state, | |||
| 3583 | "only the outermost array dimension can " | |||
| 3584 | "be unsized", | |||
| 3585 | t->name); | |||
| 3586 | break; | |||
| 3587 | } | |||
| 3588 | t = t->fields.array; | |||
| 3589 | } | |||
| 3590 | } | |||
| 3591 | } | |||
| 3592 | ||||
| 3593 | static void | |||
| 3594 | apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
| 3595 | ir_variable *var, | |||
| 3596 | struct _mesa_glsl_parse_state *state, | |||
| 3597 | YYLTYPE *loc) | |||
| 3598 | { | |||
| 3599 | bool has_local_qualifiers = qual->flags.q.bindless_sampler || | |||
| 3600 | qual->flags.q.bindless_image || | |||
| 3601 | qual->flags.q.bound_sampler || | |||
| 3602 | qual->flags.q.bound_image; | |||
| 3603 | ||||
| 3604 | /* The ARB_bindless_texture spec says: | |||
| 3605 | * | |||
| 3606 | * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 | |||
| 3607 | * spec" | |||
| 3608 | * | |||
| 3609 | * "If these layout qualifiers are applied to other types of default block | |||
| 3610 | * uniforms, or variables with non-uniform storage, a compile-time error | |||
| 3611 | * will be generated." | |||
| 3612 | */ | |||
| 3613 | if (has_local_qualifiers && !qual->flags.q.uniform) { | |||
| 3614 | _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " | |||
| 3615 | "can only be applied to default block uniforms or " | |||
| 3616 | "variables with uniform storage"); | |||
| 3617 | return; | |||
| 3618 | } | |||
| 3619 | ||||
| 3620 | /* The ARB_bindless_texture spec doesn't state anything in this situation, | |||
| 3621 | * but it makes sense to only allow bindless_sampler/bound_sampler for | |||
| 3622 | * sampler types, and respectively bindless_image/bound_image for image | |||
| 3623 | * types. | |||
| 3624 | */ | |||
| 3625 | if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && | |||
| 3626 | !var->type->contains_sampler()) { | |||
| 3627 | _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " | |||
| 3628 | "be applied to sampler types"); | |||
| 3629 | return; | |||
| 3630 | } | |||
| 3631 | ||||
| 3632 | if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && | |||
| 3633 | !var->type->contains_image()) { | |||
| 3634 | _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " | |||
| 3635 | "applied to image types"); | |||
| 3636 | return; | |||
| 3637 | } | |||
| 3638 | ||||
| 3639 | /* The bindless_sampler/bindless_image (and respectively | |||
| 3640 | * bound_sampler/bound_image) layout qualifiers can be set at global and at | |||
| 3641 | * local scope. | |||
| 3642 | */ | |||
| 3643 | if (var->type->contains_sampler() || var->type->contains_image()) { | |||
| 3644 | var->data.bindless = qual->flags.q.bindless_sampler || | |||
| 3645 | qual->flags.q.bindless_image || | |||
| 3646 | state->bindless_sampler_specified || | |||
| 3647 | state->bindless_image_specified; | |||
| 3648 | ||||
| 3649 | var->data.bound = qual->flags.q.bound_sampler || | |||
| 3650 | qual->flags.q.bound_image || | |||
| 3651 | state->bound_sampler_specified || | |||
| 3652 | state->bound_image_specified; | |||
| 3653 | } | |||
| 3654 | } | |||
| 3655 | ||||
| 3656 | static void | |||
| 3657 | apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, | |||
| 3658 | ir_variable *var, | |||
| 3659 | struct _mesa_glsl_parse_state *state, | |||
| 3660 | YYLTYPE *loc) | |||
| 3661 | { | |||
| 3662 | if (var->name != NULL__null && strcmp(var->name, "gl_FragCoord") == 0) { | |||
| ||||
| 3663 | ||||
| 3664 | /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: | |||
| 3665 | * | |||
| 3666 | * "Within any shader, the first redeclarations of gl_FragCoord | |||
| 3667 | * must appear before any use of gl_FragCoord." | |||
| 3668 | * | |||
| 3669 | * Generate a compiler error if above condition is not met by the | |||
| 3670 | * fragment shader. | |||
| 3671 | */ | |||
| 3672 | ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); | |||
| 3673 | if (earlier != NULL__null && | |||
| 3674 | earlier->data.used && | |||
| 3675 | !state->fs_redeclares_gl_fragcoord) { | |||
| 3676 | _mesa_glsl_error(loc, state, | |||
| 3677 | "gl_FragCoord used before its first redeclaration " | |||
| 3678 | "in fragment shader"); | |||
| 3679 | } | |||
| 3680 | ||||
| 3681 | /* Make sure all gl_FragCoord redeclarations specify the same layout | |||
| 3682 | * qualifiers. | |||
| 3683 | */ | |||
| 3684 | if (is_conflicting_fragcoord_redeclaration(state, qual)) { | |||
| 3685 | const char *const qual_string = | |||
| 3686 | get_layout_qualifier_string(qual->flags.q.origin_upper_left, | |||
| 3687 | qual->flags.q.pixel_center_integer); | |||
| 3688 | ||||
| 3689 | const char *const state_string = | |||
| 3690 | get_layout_qualifier_string(state->fs_origin_upper_left, | |||
| 3691 | state->fs_pixel_center_integer); | |||
| 3692 | ||||
| 3693 | _mesa_glsl_error(loc, state, | |||
| 3694 | "gl_FragCoord redeclared with different layout " | |||
| 3695 | "qualifiers (%s) and (%s) ", | |||
| 3696 | state_string, | |||
| 3697 | qual_string); | |||
| 3698 | } | |||
| 3699 | state->fs_origin_upper_left = qual->flags.q.origin_upper_left; | |||
| 3700 | state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; | |||
| 3701 | state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = | |||
| 3702 | !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; | |||
| 3703 | state->fs_redeclares_gl_fragcoord = | |||
| 3704 | state->fs_origin_upper_left || | |||
| 3705 | state->fs_pixel_center_integer || | |||
| 3706 | state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; | |||
| 3707 | } | |||
| 3708 | ||||
| 3709 | if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) | |||
| 3710 | && (strcmp(var->name, "gl_FragCoord") != 0)) { | |||
| 3711 | const char *const qual_string = (qual->flags.q.origin_upper_left) | |||
| 3712 | ? "origin_upper_left" : "pixel_center_integer"; | |||
| 3713 | ||||
| 3714 | _mesa_glsl_error(loc, state, | |||
| 3715 | "layout qualifier `%s' can only be applied to " | |||
| 3716 | "fragment shader input `gl_FragCoord'", | |||
| 3717 | qual_string); | |||
| 3718 | } | |||
| 3719 | ||||
| 3720 | if (qual->flags.q.explicit_location) { | |||
| 3721 | apply_explicit_location(qual, var, state, loc); | |||
| 3722 | ||||
| 3723 | if (qual->flags.q.explicit_component) { | |||
| 3724 | unsigned qual_component; | |||
| 3725 | if (process_qualifier_constant(state, loc, "component", | |||
| 3726 | qual->component, &qual_component)) { | |||
| 3727 | const glsl_type *type = var->type->without_array(); | |||
| 3728 | unsigned components = type->component_slots(); | |||
| 3729 | ||||
| 3730 | if (type->is_matrix() || type->is_struct()) { | |||
| 3731 | _mesa_glsl_error(loc, state, "component layout qualifier " | |||
| 3732 | "cannot be applied to a matrix, a structure, " | |||
| 3733 | "a block, or an array containing any of " | |||
| 3734 | "these."); | |||
| 3735 | } else if (components > 4 && type->is_64bit()) { | |||
| 3736 | _mesa_glsl_error(loc, state, "component layout qualifier " | |||
| 3737 | "cannot be applied to dvec%u.", | |||
| 3738 | components / 2); | |||
| 3739 | } else if (qual_component != 0 && | |||
| 3740 | (qual_component + components - 1) > 3) { | |||
| 3741 | _mesa_glsl_error(loc, state, "component overflow (%u > 3)", | |||
| 3742 | (qual_component + components - 1)); | |||
| 3743 | } else if (qual_component == 1 && type->is_64bit()) { | |||
| 3744 | /* We don't bother checking for 3 as it should be caught by the | |||
| 3745 | * overflow check above. | |||
| 3746 | */ | |||
| 3747 | _mesa_glsl_error(loc, state, "doubles cannot begin at " | |||
| 3748 | "component 1 or 3"); | |||
| 3749 | } else { | |||
| 3750 | var->data.explicit_component = true; | |||
| 3751 | var->data.location_frac = qual_component; | |||
| 3752 | } | |||
| 3753 | } | |||
| 3754 | } | |||
| 3755 | } else if (qual->flags.q.explicit_index) { | |||
| 3756 | if (!qual->subroutine_list) | |||
| 3757 | _mesa_glsl_error(loc, state, | |||
| 3758 | "explicit index requires explicit location"); | |||
| 3759 | } else if (qual->flags.q.explicit_component) { | |||
| 3760 | _mesa_glsl_error(loc, state, | |||
| 3761 | "explicit component requires explicit location"); | |||
| 3762 | } | |||
| 3763 | ||||
| 3764 | if (qual->flags.q.explicit_binding) { | |||
| 3765 | apply_explicit_binding(state, loc, var, var->type, qual); | |||
| 3766 | } | |||
| 3767 | ||||
| 3768 | if (state->stage == MESA_SHADER_GEOMETRY && | |||
| 3769 | qual->flags.q.out && qual->flags.q.stream) { | |||
| 3770 | unsigned qual_stream; | |||
| 3771 | if (process_qualifier_constant(state, loc, "stream", qual->stream, | |||
| 3772 | &qual_stream) && | |||
| 3773 | validate_stream_qualifier(loc, state, qual_stream)) { | |||
| 3774 | var->data.stream = qual_stream; | |||
| 3775 | } | |||
| 3776 | } | |||
| 3777 | ||||
| 3778 | if (qual->flags.q.out && qual->flags.q.xfb_buffer) { | |||
| 3779 | unsigned qual_xfb_buffer; | |||
| 3780 | if (process_qualifier_constant(state, loc, "xfb_buffer", | |||
| 3781 | qual->xfb_buffer, &qual_xfb_buffer) && | |||
| 3782 | validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { | |||
| 3783 | var->data.xfb_buffer = qual_xfb_buffer; | |||
| 3784 | if (qual->flags.q.explicit_xfb_buffer) | |||
| 3785 | var->data.explicit_xfb_buffer = true; | |||
| 3786 | } | |||
| 3787 | } | |||
| 3788 | ||||
| 3789 | if (qual->flags.q.explicit_xfb_offset) { | |||
| 3790 | unsigned qual_xfb_offset; | |||
| 3791 | unsigned component_size = var->type->contains_double() ? 8 : 4; | |||
| 3792 | ||||
| 3793 | if (process_qualifier_constant(state, loc, "xfb_offset", | |||
| 3794 | qual->offset, &qual_xfb_offset) && | |||
| 3795 | validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, | |||
| 3796 | var->type, component_size)) { | |||
| 3797 | var->data.offset = qual_xfb_offset; | |||
| 3798 | var->data.explicit_xfb_offset = true; | |||
| 3799 | } | |||
| 3800 | } | |||
| 3801 | ||||
| 3802 | if (qual->flags.q.explicit_xfb_stride) { | |||
| 3803 | unsigned qual_xfb_stride; | |||
| 3804 | if (process_qualifier_constant(state, loc, "xfb_stride", | |||
| 3805 | qual->xfb_stride, &qual_xfb_stride)) { | |||
| 3806 | var->data.xfb_stride = qual_xfb_stride; | |||
| 3807 | var->data.explicit_xfb_stride = true; | |||
| 3808 | } | |||
| 3809 | } | |||
| 3810 | ||||
| 3811 | if (var->type->contains_atomic()) { | |||
| 3812 | if (var->data.mode == ir_var_uniform) { | |||
| 3813 | if (var->data.explicit_binding) { | |||
| 3814 | unsigned *offset = | |||
| 3815 | &state->atomic_counter_offsets[var->data.binding]; | |||
| 3816 | ||||
| 3817 | if (*offset % ATOMIC_COUNTER_SIZE4) | |||
| 3818 | _mesa_glsl_error(loc, state, | |||
| 3819 | "misaligned atomic counter offset"); | |||
| 3820 | ||||
| 3821 | var->data.offset = *offset; | |||
| 3822 | *offset += var->type->atomic_size(); | |||
| 3823 | ||||
| 3824 | } else { | |||
| 3825 | _mesa_glsl_error(loc, state, | |||
| 3826 | "atomic counters require explicit binding point"); | |||
| 3827 | } | |||
| 3828 | } else if (var->data.mode != ir_var_function_in) { | |||
| 3829 | _mesa_glsl_error(loc, state, "atomic counters may only be declared as " | |||
| 3830 | "function parameters or uniform-qualified " | |||
| 3831 | "global variables"); | |||
| 3832 | } | |||
| 3833 | } | |||
| 3834 | ||||
| 3835 | if (var->type->contains_sampler() && | |||
| 3836 | !validate_storage_for_sampler_image_types(var, state, loc)) | |||
| 3837 | return; | |||
| 3838 | ||||
| 3839 | /* Is the 'layout' keyword used with parameters that allow relaxed checking. | |||
| 3840 | * Many implementations of GL_ARB_fragment_coord_conventions_enable and some | |||
| 3841 | * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable | |||
| 3842 | * allowed the layout qualifier to be used with 'varying' and 'attribute'. | |||
| 3843 | * These extensions and all following extensions that add the 'layout' | |||
| 3844 | * keyword have been modified to require the use of 'in' or 'out'. | |||
| 3845 | * | |||
| 3846 | * The following extension do not allow the deprecated keywords: | |||
| 3847 | * | |||
| 3848 | * GL_AMD_conservative_depth | |||
| 3849 | * GL_ARB_conservative_depth | |||
| 3850 | * GL_ARB_gpu_shader5 | |||
| 3851 | * GL_ARB_separate_shader_objects | |||
| 3852 | * GL_ARB_tessellation_shader | |||
| 3853 | * GL_ARB_transform_feedback3 | |||
| 3854 | * GL_ARB_uniform_buffer_object | |||
| 3855 | * | |||
| 3856 | * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 | |||
| 3857 | * allow layout with the deprecated keywords. | |||
| 3858 | */ | |||
| 3859 | const bool relaxed_layout_qualifier_checking = | |||
| 3860 | state->ARB_fragment_coord_conventions_enable; | |||
| 3861 | ||||
| 3862 | const bool uses_deprecated_qualifier = qual->flags.q.attribute | |||
| 3863 | || qual->flags.q.varying; | |||
| 3864 | if (qual->has_layout() && uses_deprecated_qualifier) { | |||
| 3865 | if (relaxed_layout_qualifier_checking) { | |||
| 3866 | _mesa_glsl_warning(loc, state, | |||
| 3867 | "`layout' qualifier may not be used with " | |||
| 3868 | "`attribute' or `varying'"); | |||
| 3869 | } else { | |||
| 3870 | _mesa_glsl_error(loc, state, | |||
| 3871 | "`layout' qualifier may not be used with " | |||
| 3872 | "`attribute' or `varying'"); | |||
| 3873 | } | |||
| 3874 | } | |||
| 3875 | ||||
| 3876 | /* Layout qualifiers for gl_FragDepth, which are enabled by extension | |||
| 3877 | * AMD_conservative_depth. | |||
| 3878 | */ | |||
| 3879 | if (qual->flags.q.depth_type | |||
| 3880 | && !state->is_version(420, 0) | |||
| 3881 | && !state->AMD_conservative_depth_enable | |||
| 3882 | && !state->ARB_conservative_depth_enable) { | |||
| 3883 | _mesa_glsl_error(loc, state, | |||
| 3884 | "extension GL_AMD_conservative_depth or " | |||
| 3885 | "GL_ARB_conservative_depth must be enabled " | |||
| 3886 | "to use depth layout qualifiers"); | |||
| 3887 | } else if (qual->flags.q.depth_type |
20.1 | Field 'depth_type' is not equal to 0 |
21 | Null pointer passed to 1st parameter expecting 'nonnull' |