File: | root/firefox-clang/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/ast_function.cpp |
Warning: | line 370, column 7 Value stored to 'ir' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright © 2010 Intel Corporation |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice (including the next |
12 | * paragraph) shall be included in all copies or substantial portions of the |
13 | * Software. |
14 | * |
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
21 | * DEALINGS IN THE SOFTWARE. |
22 | */ |
23 | |
24 | #include "glsl_symbol_table.h" |
25 | #include "ast.h" |
26 | #include "compiler/glsl_types.h" |
27 | #include "ir.h" |
28 | #include "main/mtypes.h" |
29 | #include "main/shaderobj.h" |
30 | #include "builtin_functions.h" |
31 | |
32 | static ir_rvalue * |
33 | convert_component(ir_rvalue *src, const glsl_type *desired_type); |
34 | |
35 | static unsigned |
36 | process_parameters(exec_list *instructions, exec_list *actual_parameters, |
37 | exec_list *parameters, |
38 | struct _mesa_glsl_parse_state *state) |
39 | { |
40 | void *mem_ctx = state; |
41 | unsigned count = 0; |
42 | |
43 | foreach_list_typed(ast_node, ast, link, parameters)for (ast_node * ast = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? ((ast_node *) (((uintptr_t) (parameters )->head_sentinel.next) - (((char *) &((ast_node *) (parameters )->head_sentinel.next)->link) - ((char *) (parameters)-> head_sentinel.next)))) : __null); (ast) != __null; (ast) = (! exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node * ) (((uintptr_t) (ast)->link.next) - (((char *) &((ast_node *) (ast)->link.next)->link) - ((char *) (ast)->link .next)))) : __null)) { |
44 | /* We need to process the parameters first in order to know if we can |
45 | * raise or not a unitialized warning. Calling set_is_lhs silence the |
46 | * warning for now. Raising the warning or not will be checked at |
47 | * verify_parameter_modes. |
48 | */ |
49 | ast->set_is_lhs(true); |
50 | ir_rvalue *result = ast->hir(instructions, state); |
51 | |
52 | /* Error happened processing function parameter */ |
53 | if (!result) { |
54 | actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx)); |
55 | count++; |
56 | continue; |
57 | } |
58 | |
59 | ir_constant *const constant = |
60 | result->constant_expression_value(mem_ctx); |
61 | |
62 | if (constant != NULL__null) |
63 | result = constant; |
64 | |
65 | actual_parameters->push_tail(result); |
66 | count++; |
67 | } |
68 | |
69 | return count; |
70 | } |
71 | |
72 | |
73 | /** |
74 | * Generate a source prototype for a function signature |
75 | * |
76 | * \param return_type Return type of the function. May be \c NULL. |
77 | * \param name Name of the function. |
78 | * \param parameters List of \c ir_instruction nodes representing the |
79 | * parameter list for the function. This may be either a |
80 | * formal (\c ir_variable) or actual (\c ir_rvalue) |
81 | * parameter list. Only the type is used. |
82 | * |
83 | * \return |
84 | * A ralloced string representing the prototype of the function. |
85 | */ |
86 | char * |
87 | prototype_string(const glsl_type *return_type, const char *name, |
88 | exec_list *parameters) |
89 | { |
90 | char *str = NULL__null; |
91 | |
92 | if (return_type != NULL__null) |
93 | str = ralloc_asprintf(NULL__null, "%s ", return_type->name); |
94 | |
95 | ralloc_asprintf_append(&str, "%s(", name); |
96 | |
97 | const char *comma = ""; |
98 | foreach_in_list(const ir_variable, param, parameters)for (const ir_variable *param = (!exec_node_is_tail_sentinel( (parameters)->head_sentinel.next) ? (const ir_variable *) ( (parameters)->head_sentinel.next) : __null); (param) != __null ; (param) = (!exec_node_is_tail_sentinel((param)->next) ? ( const ir_variable *) ((param)->next) : __null)) { |
99 | ralloc_asprintf_append(&str, "%s%s", comma, param->type->name); |
100 | comma = ", "; |
101 | } |
102 | |
103 | ralloc_strcat(&str, ")"); |
104 | return str; |
105 | } |
106 | |
107 | static bool |
108 | verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, |
109 | const ir_variable *formal, const ir_variable *actual) |
110 | { |
111 | /** |
112 | * From the ARB_shader_image_load_store specification: |
113 | * |
114 | * "The values of image variables qualified with coherent, |
115 | * volatile, restrict, readonly, or writeonly may not be passed |
116 | * to functions whose formal parameters lack such |
117 | * qualifiers. [...] It is legal to have additional qualifiers |
118 | * on a formal parameter, but not to have fewer." |
119 | */ |
120 | if (actual->data.memory_coherent && !formal->data.memory_coherent) { |
121 | _mesa_glsl_error(loc, state, |
122 | "function call parameter `%s' drops " |
123 | "`coherent' qualifier", formal->name); |
124 | return false; |
125 | } |
126 | |
127 | if (actual->data.memory_volatile && !formal->data.memory_volatile) { |
128 | _mesa_glsl_error(loc, state, |
129 | "function call parameter `%s' drops " |
130 | "`volatile' qualifier", formal->name); |
131 | return false; |
132 | } |
133 | |
134 | if (actual->data.memory_restrict && !formal->data.memory_restrict) { |
135 | _mesa_glsl_error(loc, state, |
136 | "function call parameter `%s' drops " |
137 | "`restrict' qualifier", formal->name); |
138 | return false; |
139 | } |
140 | |
141 | if (actual->data.memory_read_only && !formal->data.memory_read_only) { |
142 | _mesa_glsl_error(loc, state, |
143 | "function call parameter `%s' drops " |
144 | "`readonly' qualifier", formal->name); |
145 | return false; |
146 | } |
147 | |
148 | if (actual->data.memory_write_only && !formal->data.memory_write_only) { |
149 | _mesa_glsl_error(loc, state, |
150 | "function call parameter `%s' drops " |
151 | "`writeonly' qualifier", formal->name); |
152 | return false; |
153 | } |
154 | |
155 | return true; |
156 | } |
157 | |
158 | static bool |
159 | verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, |
160 | ir_variable *var) |
161 | { |
162 | if (!var || |
163 | (!var->is_in_shader_storage_block() && |
164 | var->data.mode != ir_var_shader_shared)) { |
165 | _mesa_glsl_error(loc, state, "First argument to atomic function " |
166 | "must be a buffer or shared variable"); |
167 | return false; |
168 | } |
169 | return true; |
170 | } |
171 | |
172 | static bool |
173 | is_atomic_function(const char *func_name) |
174 | { |
175 | return !strcmp(func_name, "atomicAdd") || |
176 | !strcmp(func_name, "atomicMin") || |
177 | !strcmp(func_name, "atomicMax") || |
178 | !strcmp(func_name, "atomicAnd") || |
179 | !strcmp(func_name, "atomicOr") || |
180 | !strcmp(func_name, "atomicXor") || |
181 | !strcmp(func_name, "atomicExchange") || |
182 | !strcmp(func_name, "atomicCompSwap"); |
183 | } |
184 | |
185 | /** |
186 | * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify |
187 | * that 'const_in' formal parameters (an extension in our IR) correspond to |
188 | * ir_constant actual parameters. |
189 | */ |
190 | static bool |
191 | verify_parameter_modes(_mesa_glsl_parse_state *state, |
192 | ir_function_signature *sig, |
193 | exec_list &actual_ir_parameters, |
194 | exec_list &actual_ast_parameters) |
195 | { |
196 | exec_node *actual_ir_node = actual_ir_parameters.get_head_raw(); |
197 | exec_node *actual_ast_node = actual_ast_parameters.get_head_raw(); |
198 | |
199 | foreach_in_list(const ir_variable, formal, &sig->parameters)for (const ir_variable *formal = (!exec_node_is_tail_sentinel ((&sig->parameters)->head_sentinel.next) ? (const ir_variable *) ((&sig->parameters)->head_sentinel.next) : __null ); (formal) != __null; (formal) = (!exec_node_is_tail_sentinel ((formal)->next) ? (const ir_variable *) ((formal)->next ) : __null)) { |
200 | /* The lists must be the same length. */ |
201 | assert(!actual_ir_node->is_tail_sentinel())(static_cast <bool> (!actual_ir_node->is_tail_sentinel ()) ? void (0) : __assert_fail ("!actual_ir_node->is_tail_sentinel()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
202 | assert(!actual_ast_node->is_tail_sentinel())(static_cast <bool> (!actual_ast_node->is_tail_sentinel ()) ? void (0) : __assert_fail ("!actual_ast_node->is_tail_sentinel()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
203 | |
204 | const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node; |
205 | const ast_expression *const actual_ast = |
206 | exec_node_data(ast_expression, actual_ast_node, link)((ast_expression *) (((uintptr_t) actual_ast_node) - (((char * ) &((ast_expression *) actual_ast_node)->link) - ((char *) actual_ast_node)))); |
207 | |
208 | /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always |
209 | * FIXME: 0:0(0). |
210 | */ |
211 | YYLTYPE loc = actual_ast->get_location(); |
212 | |
213 | /* Verify that 'const_in' parameters are ir_constants. */ |
214 | if (formal->data.mode == ir_var_const_in && |
215 | actual->ir_type != ir_type_constant) { |
216 | _mesa_glsl_error(&loc, state, |
217 | "parameter `in %s' must be a constant expression", |
218 | formal->name); |
219 | return false; |
220 | } |
221 | |
222 | /* Verify that shader_in parameters are shader inputs */ |
223 | if (formal->data.must_be_shader_input) { |
224 | const ir_rvalue *val = actual; |
225 | |
226 | /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */ |
227 | if (val->ir_type == ir_type_swizzle) { |
228 | if (!state->is_version(440, 0)) { |
229 | _mesa_glsl_error(&loc, state, |
230 | "parameter `%s` must not be swizzled", |
231 | formal->name); |
232 | return false; |
233 | } |
234 | val = ((ir_swizzle *)val)->val; |
235 | } |
236 | |
237 | for (;;) { |
238 | if (val->ir_type == ir_type_dereference_array) { |
239 | val = ((ir_dereference_array *)val)->array; |
240 | } else if (val->ir_type == ir_type_dereference_record && |
241 | !state->es_shader) { |
242 | val = ((ir_dereference_record *)val)->record; |
243 | } else |
244 | break; |
245 | } |
246 | |
247 | ir_variable *var = NULL__null; |
248 | if (const ir_dereference_variable *deref_var = val->as_dereference_variable()) |
249 | var = deref_var->variable_referenced(); |
250 | |
251 | if (!var || var->data.mode != ir_var_shader_in) { |
252 | _mesa_glsl_error(&loc, state, |
253 | "parameter `%s` must be a shader input", |
254 | formal->name); |
255 | return false; |
256 | } |
257 | |
258 | var->data.must_be_shader_input = 1; |
259 | } |
260 | |
261 | /* Verify that 'out' and 'inout' actual parameters are lvalues. */ |
262 | if (formal->data.mode == ir_var_function_out |
263 | || formal->data.mode == ir_var_function_inout) { |
264 | const char *mode = NULL__null; |
265 | switch (formal->data.mode) { |
266 | case ir_var_function_out: mode = "out"; break; |
267 | case ir_var_function_inout: mode = "inout"; break; |
268 | default: assert(false)(static_cast <bool> (false) ? void (0) : __assert_fail ( "false", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); break; |
269 | } |
270 | |
271 | /* This AST-based check catches errors like f(i++). The IR-based |
272 | * is_lvalue() is insufficient because the actual parameter at the |
273 | * IR-level is just a temporary value, which is an l-value. |
274 | */ |
275 | if (actual_ast->non_lvalue_description != NULL__null) { |
276 | _mesa_glsl_error(&loc, state, |
277 | "function parameter '%s %s' references a %s", |
278 | mode, formal->name, |
279 | actual_ast->non_lvalue_description); |
280 | return false; |
281 | } |
282 | |
283 | ir_variable *var = actual->variable_referenced(); |
284 | |
285 | if (var && formal->data.mode == ir_var_function_inout) { |
286 | if ((var->data.mode == ir_var_auto || |
287 | var->data.mode == ir_var_shader_out) && |
288 | !var->data.assigned && |
289 | !is_gl_identifier(var->name)) { |
290 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", |
291 | var->name); |
292 | } |
293 | } |
294 | |
295 | if (var) |
296 | var->data.assigned = true; |
297 | |
298 | if (var && var->data.read_only) { |
299 | _mesa_glsl_error(&loc, state, |
300 | "function parameter '%s %s' references the " |
301 | "read-only variable '%s'", |
302 | mode, formal->name, |
303 | actual->variable_referenced()->name); |
304 | return false; |
305 | } else if (!actual->is_lvalue(state)) { |
306 | _mesa_glsl_error(&loc, state, |
307 | "function parameter '%s %s' is not an lvalue", |
308 | mode, formal->name); |
309 | return false; |
310 | } |
311 | } else { |
312 | assert(formal->data.mode == ir_var_function_in ||(static_cast <bool> (formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in) ? void (0) : __assert_fail ("formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) |
313 | formal->data.mode == ir_var_const_in)(static_cast <bool> (formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in) ? void (0) : __assert_fail ("formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
314 | ir_variable *var = actual->variable_referenced(); |
315 | if (var) { |
316 | if ((var->data.mode == ir_var_auto || |
317 | var->data.mode == ir_var_shader_out) && |
318 | !var->data.assigned && |
319 | !is_gl_identifier(var->name)) { |
320 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", |
321 | var->name); |
322 | } |
323 | } |
324 | } |
325 | |
326 | if (formal->type->is_image() && |
327 | actual->variable_referenced()) { |
328 | if (!verify_image_parameter(&loc, state, formal, |
329 | actual->variable_referenced())) |
330 | return false; |
331 | } |
332 | |
333 | actual_ir_node = actual_ir_node->next; |
334 | actual_ast_node = actual_ast_node->next; |
335 | } |
336 | |
337 | /* The first parameter of atomic functions must be a buffer variable */ |
338 | const char *func_name = sig->function_name(); |
339 | bool is_atomic = is_atomic_function(func_name); |
340 | if (is_atomic) { |
341 | const ir_rvalue *const actual = |
342 | (ir_rvalue *) actual_ir_parameters.get_head_raw(); |
343 | |
344 | const ast_expression *const actual_ast = |
345 | exec_node_data(ast_expression,((ast_expression *) (((uintptr_t) actual_ast_parameters.get_head_raw ()) - (((char *) &((ast_expression *) actual_ast_parameters .get_head_raw())->link) - ((char *) actual_ast_parameters. get_head_raw())))) |
346 | actual_ast_parameters.get_head_raw(), link)((ast_expression *) (((uintptr_t) actual_ast_parameters.get_head_raw ()) - (((char *) &((ast_expression *) actual_ast_parameters .get_head_raw())->link) - ((char *) actual_ast_parameters. get_head_raw())))); |
347 | YYLTYPE loc = actual_ast->get_location(); |
348 | |
349 | if (!verify_first_atomic_parameter(&loc, state, |
350 | actual->variable_referenced())) { |
351 | return false; |
352 | } |
353 | } |
354 | |
355 | return true; |
356 | } |
357 | |
358 | struct copy_index_deref_data { |
359 | void *mem_ctx; |
360 | exec_list *before_instructions; |
361 | }; |
362 | |
363 | static void |
364 | copy_index_derefs_to_temps(ir_instruction *ir, void *data) |
365 | { |
366 | struct copy_index_deref_data *d = (struct copy_index_deref_data *)data; |
367 | |
368 | if (ir->ir_type == ir_type_dereference_array) { |
369 | ir_dereference_array *a = (ir_dereference_array *) ir; |
370 | ir = a->array->as_dereference(); |
Value stored to 'ir' is never read | |
371 | |
372 | ir_rvalue *idx = a->array_index; |
373 | ir_variable *var = idx->variable_referenced(); |
374 | |
375 | /* If the index is read only it cannot change so there is no need |
376 | * to copy it. |
377 | */ |
378 | if (!var || var->data.read_only || var->data.memory_read_only) |
379 | return; |
380 | |
381 | ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp", |
382 | ir_var_temporary); |
383 | d->before_instructions->push_tail(tmp); |
384 | |
385 | ir_dereference_variable *const deref_tmp_1 = |
386 | new(d->mem_ctx) ir_dereference_variable(tmp); |
387 | ir_assignment *const assignment = |
388 | new(d->mem_ctx) ir_assignment(deref_tmp_1, |
389 | idx->clone(d->mem_ctx, NULL__null)); |
390 | d->before_instructions->push_tail(assignment); |
391 | |
392 | /* Replace the array index with a dereference of the new temporary */ |
393 | ir_dereference_variable *const deref_tmp_2 = |
394 | new(d->mem_ctx) ir_dereference_variable(tmp); |
395 | a->array_index = deref_tmp_2; |
396 | } |
397 | } |
398 | |
399 | static void |
400 | fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type, |
401 | exec_list *before_instructions, exec_list *after_instructions, |
402 | bool parameter_is_inout) |
403 | { |
404 | ir_expression *const expr = actual->as_expression(); |
405 | |
406 | /* If the types match exactly and the parameter is not a vector-extract, |
407 | * nothing needs to be done to fix the parameter. |
408 | */ |
409 | if (formal_type == actual->type |
410 | && (expr == NULL__null || expr->operation != ir_binop_vector_extract) |
411 | && actual->as_dereference_variable()) |
412 | return; |
413 | |
414 | /* An array index could also be an out variable so we need to make a copy |
415 | * of them before the function is called. |
416 | */ |
417 | if (!actual->as_dereference_variable()) { |
418 | struct copy_index_deref_data data; |
419 | data.mem_ctx = mem_ctx; |
420 | data.before_instructions = before_instructions; |
421 | |
422 | visit_tree(actual, copy_index_derefs_to_temps, &data); |
423 | } |
424 | |
425 | /* To convert an out parameter, we need to create a temporary variable to |
426 | * hold the value before conversion, and then perform the conversion after |
427 | * the function call returns. |
428 | * |
429 | * This has the effect of transforming code like this: |
430 | * |
431 | * void f(out int x); |
432 | * float value; |
433 | * f(value); |
434 | * |
435 | * Into IR that's equivalent to this: |
436 | * |
437 | * void f(out int x); |
438 | * float value; |
439 | * int out_parameter_conversion; |
440 | * f(out_parameter_conversion); |
441 | * value = float(out_parameter_conversion); |
442 | * |
443 | * If the parameter is an ir_expression of ir_binop_vector_extract, |
444 | * additional conversion is needed in the post-call re-write. |
445 | */ |
446 | ir_variable *tmp = |
447 | new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary); |
448 | |
449 | before_instructions->push_tail(tmp); |
450 | |
451 | /* If the parameter is an inout parameter, copy the value of the actual |
452 | * parameter to the new temporary. Note that no type conversion is allowed |
453 | * here because inout parameters must match types exactly. |
454 | */ |
455 | if (parameter_is_inout) { |
456 | /* Inout parameters should never require conversion, since that would |
457 | * require an implicit conversion to exist both to and from the formal |
458 | * parameter type, and there are no bidirectional implicit conversions. |
459 | */ |
460 | assert (actual->type == formal_type)(static_cast <bool> (actual->type == formal_type) ? void (0) : __assert_fail ("actual->type == formal_type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
461 | |
462 | ir_dereference_variable *const deref_tmp_1 = |
463 | new(mem_ctx) ir_dereference_variable(tmp); |
464 | ir_assignment *const assignment = |
465 | new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL__null)); |
466 | before_instructions->push_tail(assignment); |
467 | } |
468 | |
469 | /* Replace the parameter in the call with a dereference of the new |
470 | * temporary. |
471 | */ |
472 | ir_dereference_variable *const deref_tmp_2 = |
473 | new(mem_ctx) ir_dereference_variable(tmp); |
474 | actual->replace_with(deref_tmp_2); |
475 | |
476 | |
477 | /* Copy the temporary variable to the actual parameter with optional |
478 | * type conversion applied. |
479 | */ |
480 | ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp); |
481 | if (actual->type != formal_type) |
482 | rhs = convert_component(rhs, actual->type); |
483 | |
484 | ir_rvalue *lhs = actual; |
485 | if (expr != NULL__null && expr->operation == ir_binop_vector_extract) { |
486 | lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx, |
487 | NULL__null), |
488 | expr->operands[1]->clone(mem_ctx, |
489 | NULL__null)); |
490 | } |
491 | |
492 | ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs); |
493 | after_instructions->push_tail(assignment_2); |
494 | } |
495 | |
496 | /** |
497 | * Generate a function call. |
498 | * |
499 | * For non-void functions, this returns a dereference of the temporary |
500 | * variable which stores the return value for the call. For void functions, |
501 | * this returns NULL. |
502 | */ |
503 | static ir_rvalue * |
504 | generate_call(exec_list *instructions, ir_function_signature *sig, |
505 | exec_list *actual_parameters, |
506 | ir_variable *sub_var, |
507 | ir_rvalue *array_idx, |
508 | struct _mesa_glsl_parse_state *state) |
509 | { |
510 | void *ctx = state; |
511 | exec_list post_call_conversions; |
512 | |
513 | /* Perform implicit conversion of arguments. For out parameters, we need |
514 | * to place them in a temporary variable and do the conversion after the |
515 | * call takes place. Since we haven't emitted the call yet, we'll place |
516 | * the post-call conversions in a temporary exec_list, and emit them later. |
517 | */ |
518 | foreach_two_lists(formal_node, &sig->parameters,for (struct exec_node * formal_node = (&sig->parameters )->head_sentinel.next, * actual_node = (actual_parameters) ->head_sentinel.next, * __next1 = formal_node->next, * __next2 = actual_node->next ; __next1 != __null && __next2 != __null ; formal_node = __next1, actual_node = __next2, __next1 = __next1->next, __next2 = __next2->next) |
519 | actual_node, actual_parameters)for (struct exec_node * formal_node = (&sig->parameters )->head_sentinel.next, * actual_node = (actual_parameters) ->head_sentinel.next, * __next1 = formal_node->next, * __next2 = actual_node->next ; __next1 != __null && __next2 != __null ; formal_node = __next1, actual_node = __next2, __next1 = __next1->next, __next2 = __next2->next) { |
520 | ir_rvalue *actual = (ir_rvalue *) actual_node; |
521 | ir_variable *formal = (ir_variable *) formal_node; |
522 | |
523 | if (formal->type->is_numeric() || formal->type->is_boolean()) { |
524 | switch (formal->data.mode) { |
525 | case ir_var_const_in: |
526 | case ir_var_function_in: { |
527 | ir_rvalue *converted |
528 | = convert_component(actual, formal->type); |
529 | actual->replace_with(converted); |
530 | break; |
531 | } |
532 | case ir_var_function_out: |
533 | case ir_var_function_inout: |
534 | fix_parameter(ctx, actual, formal->type, |
535 | instructions, &post_call_conversions, |
536 | formal->data.mode == ir_var_function_inout); |
537 | break; |
538 | default: |
539 | assert (!"Illegal formal parameter mode")(static_cast <bool> (!"Illegal formal parameter mode") ? void (0) : __assert_fail ("!\"Illegal formal parameter mode\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
540 | break; |
541 | } |
542 | } |
543 | } |
544 | |
545 | /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says: |
546 | * |
547 | * "Initializers for const declarations must be formed from literal |
548 | * values, other const variables (not including function call |
549 | * paramaters), or expressions of these. |
550 | * |
551 | * Constructors may be used in such expressions, but function calls may |
552 | * not." |
553 | * |
554 | * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says: |
555 | * |
556 | * "A constant expression is one of |
557 | * |
558 | * ... |
559 | * |
560 | * - a built-in function call whose arguments are all constant |
561 | * expressions, with the exception of the texture lookup |
562 | * functions, the noise functions, and ftransform. The built-in |
563 | * functions dFdx, dFdy, and fwidth must return 0 when evaluated |
564 | * inside an initializer with an argument that is a constant |
565 | * expression." |
566 | * |
567 | * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says: |
568 | * |
569 | * "A constant expression is one of |
570 | * |
571 | * ... |
572 | * |
573 | * - a built-in function call whose arguments are all constant |
574 | * expressions, with the exception of the texture lookup |
575 | * functions." |
576 | * |
577 | * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says: |
578 | * |
579 | * "A constant expression is one of |
580 | * |
581 | * ... |
582 | * |
583 | * - a built-in function call whose arguments are all constant |
584 | * expressions, with the exception of the texture lookup |
585 | * functions. The built-in functions dFdx, dFdy, and fwidth must |
586 | * return 0 when evaluated inside an initializer with an argument |
587 | * that is a constant expression." |
588 | * |
589 | * If the function call is a constant expression, don't generate any |
590 | * instructions; just generate an ir_constant. |
591 | */ |
592 | if (state->is_version(120, 100) || |
593 | state->ctx->Const.AllowGLSLBuiltinConstantExpression) { |
594 | ir_constant *value = sig->constant_expression_value(ctx, |
595 | actual_parameters, |
596 | NULL__null); |
597 | if (value != NULL__null) { |
598 | return value; |
599 | } |
600 | } |
601 | |
602 | ir_dereference_variable *deref = NULL__null; |
603 | if (!sig->return_type->is_void()) { |
604 | /* Create a new temporary to hold the return value. */ |
605 | char *const name = ir_variable::temporaries_allocate_names |
606 | ? ralloc_asprintf(ctx, "%s_retval", sig->function_name()) |
607 | : NULL__null; |
608 | |
609 | ir_variable *var; |
610 | |
611 | var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary); |
612 | instructions->push_tail(var); |
613 | |
614 | ralloc_free(name); |
615 | |
616 | deref = new(ctx) ir_dereference_variable(var); |
617 | } |
618 | |
619 | ir_call *call = new(ctx) ir_call(sig, deref, |
620 | actual_parameters, sub_var, array_idx); |
621 | instructions->push_tail(call); |
622 | |
623 | /* Also emit any necessary out-parameter conversions. */ |
624 | instructions->append_list(&post_call_conversions); |
625 | |
626 | return deref ? deref->clone(ctx, NULL__null) : NULL__null; |
627 | } |
628 | |
629 | /** |
630 | * Given a function name and parameter list, find the matching signature. |
631 | */ |
632 | static ir_function_signature * |
633 | match_function_by_name(const char *name, |
634 | exec_list *actual_parameters, |
635 | struct _mesa_glsl_parse_state *state) |
636 | { |
637 | ir_function *f = state->symbols->get_function(name); |
638 | ir_function_signature *local_sig = NULL__null; |
639 | ir_function_signature *sig = NULL__null; |
640 | |
641 | /* Is the function hidden by a record type constructor? */ |
642 | if (state->symbols->get_type(name)) |
643 | return sig; /* no match */ |
644 | |
645 | /* Is the function hidden by a variable (impossible in 1.10)? */ |
646 | if (!state->symbols->separate_function_namespace |
647 | && state->symbols->get_variable(name)) |
648 | return sig; /* no match */ |
649 | |
650 | if (f != NULL__null) { |
651 | /* In desktop GL, the presence of a user-defined signature hides any |
652 | * built-in signatures, so we must ignore them. In contrast, in ES2 |
653 | * user-defined signatures add new overloads, so we must consider them. |
654 | */ |
655 | bool allow_builtins = state->es_shader || !f->has_user_signature(); |
656 | |
657 | /* Look for a match in the local shader. If exact, we're done. */ |
658 | bool is_exact = false; |
659 | sig = local_sig = f->matching_signature(state, actual_parameters, |
660 | allow_builtins, &is_exact); |
661 | if (is_exact) |
662 | return sig; |
663 | |
664 | if (!allow_builtins) |
665 | return sig; |
666 | } |
667 | |
668 | /* Local shader has no exact candidates; check the built-ins. */ |
669 | sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters); |
670 | |
671 | /* if _mesa_glsl_find_builtin_function failed, fall back to the result |
672 | * of choose_best_inexact_overload() instead. This should only affect |
673 | * GLES. |
674 | */ |
675 | return sig ? sig : local_sig; |
676 | } |
677 | |
678 | static ir_function_signature * |
679 | match_subroutine_by_name(const char *name, |
680 | exec_list *actual_parameters, |
681 | struct _mesa_glsl_parse_state *state, |
682 | ir_variable **var_r) |
683 | { |
684 | void *ctx = state; |
685 | ir_function_signature *sig = NULL__null; |
686 | ir_function *f, *found = NULL__null; |
687 | const char *new_name; |
688 | ir_variable *var; |
689 | bool is_exact = false; |
690 | |
691 | new_name = |
692 | ralloc_asprintf(ctx, "%s_%s", |
693 | _mesa_shader_stage_to_subroutine_prefix(state->stage), |
694 | name); |
695 | var = state->symbols->get_variable(new_name); |
696 | if (!var) |
697 | return NULL__null; |
698 | |
699 | for (int i = 0; i < state->num_subroutine_types; i++) { |
700 | f = state->subroutine_types[i]; |
701 | if (strcmp(f->name, var->type->without_array()->name)) |
702 | continue; |
703 | found = f; |
704 | break; |
705 | } |
706 | |
707 | if (!found) |
708 | return NULL__null; |
709 | *var_r = var; |
710 | sig = found->matching_signature(state, actual_parameters, |
711 | false, &is_exact); |
712 | return sig; |
713 | } |
714 | |
715 | static ir_rvalue * |
716 | generate_array_index(void *mem_ctx, exec_list *instructions, |
717 | struct _mesa_glsl_parse_state *state, YYLTYPE loc, |
718 | const ast_expression *array, ast_expression *idx, |
719 | const char **function_name, exec_list *actual_parameters) |
720 | { |
721 | if (array->oper == ast_array_index) { |
722 | /* This handles arrays of arrays */ |
723 | ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions, |
724 | state, loc, |
725 | array->subexpressions[0], |
726 | array->subexpressions[1], |
727 | function_name, |
728 | actual_parameters); |
729 | ir_rvalue *outer_array_idx = idx->hir(instructions, state); |
730 | |
731 | YYLTYPE index_loc = idx->get_location(); |
732 | return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array, |
733 | outer_array_idx, loc, |
734 | index_loc); |
735 | } else { |
736 | ir_variable *sub_var = NULL__null; |
737 | *function_name = array->primary_expression.identifier; |
738 | |
739 | if (!match_subroutine_by_name(*function_name, actual_parameters, |
740 | state, &sub_var)) { |
741 | _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'", |
742 | *function_name); |
743 | *function_name = NULL__null; /* indicate error condition to caller */ |
744 | return NULL__null; |
745 | } |
746 | |
747 | ir_rvalue *outer_array_idx = idx->hir(instructions, state); |
748 | return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx); |
749 | } |
750 | } |
751 | |
752 | static bool |
753 | function_exists(_mesa_glsl_parse_state *state, |
754 | struct glsl_symbol_table *symbols, const char *name) |
755 | { |
756 | ir_function *f = symbols->get_function(name); |
757 | if (f != NULL__null) { |
758 | foreach_in_list(ir_function_signature, sig, &f->signatures)for (ir_function_signature *sig = (!exec_node_is_tail_sentinel ((&f->signatures)->head_sentinel.next) ? (ir_function_signature *) ((&f->signatures)->head_sentinel.next) : __null ); (sig) != __null; (sig) = (!exec_node_is_tail_sentinel((sig )->next) ? (ir_function_signature *) ((sig)->next) : __null )) { |
759 | if (sig->is_builtin() && !sig->is_builtin_available(state)) |
760 | continue; |
761 | return true; |
762 | } |
763 | } |
764 | return false; |
765 | } |
766 | |
767 | static void |
768 | print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc, |
769 | ir_function *f) |
770 | { |
771 | if (f == NULL__null) |
772 | return; |
773 | |
774 | foreach_in_list(ir_function_signature, sig, &f->signatures)for (ir_function_signature *sig = (!exec_node_is_tail_sentinel ((&f->signatures)->head_sentinel.next) ? (ir_function_signature *) ((&f->signatures)->head_sentinel.next) : __null ); (sig) != __null; (sig) = (!exec_node_is_tail_sentinel((sig )->next) ? (ir_function_signature *) ((sig)->next) : __null )) { |
775 | if (sig->is_builtin() && !sig->is_builtin_available(state)) |
776 | continue; |
777 | |
778 | char *str = prototype_string(sig->return_type, f->name, |
779 | &sig->parameters); |
780 | _mesa_glsl_error(loc, state, " %s", str); |
781 | ralloc_free(str); |
782 | } |
783 | } |
784 | |
785 | /** |
786 | * Raise a "no matching function" error, listing all possible overloads the |
787 | * compiler considered so developers can figure out what went wrong. |
788 | */ |
789 | static void |
790 | no_matching_function_error(const char *name, |
791 | YYLTYPE *loc, |
792 | exec_list *actual_parameters, |
793 | _mesa_glsl_parse_state *state) |
794 | { |
795 | gl_shader *sh = _mesa_glsl_get_builtin_function_shader(); |
796 | |
797 | if (!function_exists(state, state->symbols, name) |
798 | && (!state->uses_builtin_functions |
799 | || !function_exists(state, sh->symbols, name))) { |
800 | _mesa_glsl_error(loc, state, "no function with name '%s'", name); |
801 | } else { |
802 | char *str = prototype_string(NULL__null, name, actual_parameters); |
803 | _mesa_glsl_error(loc, state, |
804 | "no matching function for call to `%s';" |
805 | " candidates are:", |
806 | str); |
807 | ralloc_free(str); |
808 | |
809 | print_function_prototypes(state, loc, |
810 | state->symbols->get_function(name)); |
811 | |
812 | if (state->uses_builtin_functions) { |
813 | print_function_prototypes(state, loc, |
814 | sh->symbols->get_function(name)); |
815 | } |
816 | } |
817 | } |
818 | |
819 | /** |
820 | * Perform automatic type conversion of constructor parameters |
821 | * |
822 | * This implements the rules in the "Conversion and Scalar Constructors" |
823 | * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. |
824 | */ |
825 | static ir_rvalue * |
826 | convert_component(ir_rvalue *src, const glsl_type *desired_type) |
827 | { |
828 | void *ctx = ralloc_parent(src); |
829 | const unsigned a = desired_type->base_type; |
830 | const unsigned b = src->type->base_type; |
831 | ir_expression *result = NULL__null; |
832 | |
833 | if (src->type->is_error()) |
834 | return src; |
835 | |
836 | assert(a <= GLSL_TYPE_IMAGE)(static_cast <bool> (a <= GLSL_TYPE_IMAGE) ? void (0 ) : __assert_fail ("a <= GLSL_TYPE_IMAGE", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
837 | assert(b <= GLSL_TYPE_IMAGE)(static_cast <bool> (b <= GLSL_TYPE_IMAGE) ? void (0 ) : __assert_fail ("b <= GLSL_TYPE_IMAGE", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
838 | |
839 | if (a == b) |
840 | return src; |
841 | |
842 | switch (a) { |
843 | case GLSL_TYPE_UINT: |
844 | switch (b) { |
845 | case GLSL_TYPE_INT: |
846 | result = new(ctx) ir_expression(ir_unop_i2u, src); |
847 | break; |
848 | case GLSL_TYPE_FLOAT: |
849 | result = new(ctx) ir_expression(ir_unop_f2u, src); |
850 | break; |
851 | case GLSL_TYPE_BOOL: |
852 | result = new(ctx) ir_expression(ir_unop_i2u, |
853 | new(ctx) ir_expression(ir_unop_b2i, |
854 | src)); |
855 | break; |
856 | case GLSL_TYPE_DOUBLE: |
857 | result = new(ctx) ir_expression(ir_unop_d2u, src); |
858 | break; |
859 | case GLSL_TYPE_UINT64: |
860 | result = new(ctx) ir_expression(ir_unop_u642u, src); |
861 | break; |
862 | case GLSL_TYPE_INT64: |
863 | result = new(ctx) ir_expression(ir_unop_i642u, src); |
864 | break; |
865 | case GLSL_TYPE_SAMPLER: |
866 | result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src); |
867 | break; |
868 | case GLSL_TYPE_IMAGE: |
869 | result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src); |
870 | break; |
871 | } |
872 | break; |
873 | case GLSL_TYPE_INT: |
874 | switch (b) { |
875 | case GLSL_TYPE_UINT: |
876 | result = new(ctx) ir_expression(ir_unop_u2i, src); |
877 | break; |
878 | case GLSL_TYPE_FLOAT: |
879 | result = new(ctx) ir_expression(ir_unop_f2i, src); |
880 | break; |
881 | case GLSL_TYPE_BOOL: |
882 | result = new(ctx) ir_expression(ir_unop_b2i, src); |
883 | break; |
884 | case GLSL_TYPE_DOUBLE: |
885 | result = new(ctx) ir_expression(ir_unop_d2i, src); |
886 | break; |
887 | case GLSL_TYPE_UINT64: |
888 | result = new(ctx) ir_expression(ir_unop_u642i, src); |
889 | break; |
890 | case GLSL_TYPE_INT64: |
891 | result = new(ctx) ir_expression(ir_unop_i642i, src); |
892 | break; |
893 | } |
894 | break; |
895 | case GLSL_TYPE_FLOAT: |
896 | switch (b) { |
897 | case GLSL_TYPE_UINT: |
898 | result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL__null); |
899 | break; |
900 | case GLSL_TYPE_INT: |
901 | result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL__null); |
902 | break; |
903 | case GLSL_TYPE_BOOL: |
904 | result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL__null); |
905 | break; |
906 | case GLSL_TYPE_DOUBLE: |
907 | result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL__null); |
908 | break; |
909 | case GLSL_TYPE_UINT64: |
910 | result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL__null); |
911 | break; |
912 | case GLSL_TYPE_INT64: |
913 | result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL__null); |
914 | break; |
915 | } |
916 | break; |
917 | case GLSL_TYPE_BOOL: |
918 | switch (b) { |
919 | case GLSL_TYPE_UINT: |
920 | result = new(ctx) ir_expression(ir_unop_i2b, |
921 | new(ctx) ir_expression(ir_unop_u2i, |
922 | src)); |
923 | break; |
924 | case GLSL_TYPE_INT: |
925 | result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL__null); |
926 | break; |
927 | case GLSL_TYPE_FLOAT: |
928 | result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL__null); |
929 | break; |
930 | case GLSL_TYPE_DOUBLE: |
931 | result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL__null); |
932 | break; |
933 | case GLSL_TYPE_UINT64: |
934 | result = new(ctx) ir_expression(ir_unop_i642b, |
935 | new(ctx) ir_expression(ir_unop_u642i64, |
936 | src)); |
937 | break; |
938 | case GLSL_TYPE_INT64: |
939 | result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL__null); |
940 | break; |
941 | } |
942 | break; |
943 | case GLSL_TYPE_DOUBLE: |
944 | switch (b) { |
945 | case GLSL_TYPE_INT: |
946 | result = new(ctx) ir_expression(ir_unop_i2d, src); |
947 | break; |
948 | case GLSL_TYPE_UINT: |
949 | result = new(ctx) ir_expression(ir_unop_u2d, src); |
950 | break; |
951 | case GLSL_TYPE_BOOL: |
952 | result = new(ctx) ir_expression(ir_unop_f2d, |
953 | new(ctx) ir_expression(ir_unop_b2f, |
954 | src)); |
955 | break; |
956 | case GLSL_TYPE_FLOAT: |
957 | result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL__null); |
958 | break; |
959 | case GLSL_TYPE_UINT64: |
960 | result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL__null); |
961 | break; |
962 | case GLSL_TYPE_INT64: |
963 | result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL__null); |
964 | break; |
965 | } |
966 | break; |
967 | case GLSL_TYPE_UINT64: |
968 | switch (b) { |
969 | case GLSL_TYPE_INT: |
970 | result = new(ctx) ir_expression(ir_unop_i2u64, src); |
971 | break; |
972 | case GLSL_TYPE_UINT: |
973 | result = new(ctx) ir_expression(ir_unop_u2u64, src); |
974 | break; |
975 | case GLSL_TYPE_BOOL: |
976 | result = new(ctx) ir_expression(ir_unop_i642u64, |
977 | new(ctx) ir_expression(ir_unop_b2i64, |
978 | src)); |
979 | break; |
980 | case GLSL_TYPE_FLOAT: |
981 | result = new(ctx) ir_expression(ir_unop_f2u64, src); |
982 | break; |
983 | case GLSL_TYPE_DOUBLE: |
984 | result = new(ctx) ir_expression(ir_unop_d2u64, src); |
985 | break; |
986 | case GLSL_TYPE_INT64: |
987 | result = new(ctx) ir_expression(ir_unop_i642u64, src); |
988 | break; |
989 | } |
990 | break; |
991 | case GLSL_TYPE_INT64: |
992 | switch (b) { |
993 | case GLSL_TYPE_INT: |
994 | result = new(ctx) ir_expression(ir_unop_i2i64, src); |
995 | break; |
996 | case GLSL_TYPE_UINT: |
997 | result = new(ctx) ir_expression(ir_unop_u2i64, src); |
998 | break; |
999 | case GLSL_TYPE_BOOL: |
1000 | result = new(ctx) ir_expression(ir_unop_b2i64, src); |
1001 | break; |
1002 | case GLSL_TYPE_FLOAT: |
1003 | result = new(ctx) ir_expression(ir_unop_f2i64, src); |
1004 | break; |
1005 | case GLSL_TYPE_DOUBLE: |
1006 | result = new(ctx) ir_expression(ir_unop_d2i64, src); |
1007 | break; |
1008 | case GLSL_TYPE_UINT64: |
1009 | result = new(ctx) ir_expression(ir_unop_u642i64, src); |
1010 | break; |
1011 | } |
1012 | break; |
1013 | case GLSL_TYPE_SAMPLER: |
1014 | switch (b) { |
1015 | case GLSL_TYPE_UINT: |
1016 | result = new(ctx) |
1017 | ir_expression(ir_unop_pack_sampler_2x32, desired_type, src); |
1018 | break; |
1019 | } |
1020 | break; |
1021 | case GLSL_TYPE_IMAGE: |
1022 | switch (b) { |
1023 | case GLSL_TYPE_UINT: |
1024 | result = new(ctx) |
1025 | ir_expression(ir_unop_pack_image_2x32, desired_type, src); |
1026 | break; |
1027 | } |
1028 | break; |
1029 | } |
1030 | |
1031 | assert(result != NULL)(static_cast <bool> (result != __null) ? void (0) : __assert_fail ("result != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1032 | assert(result->type == desired_type)(static_cast <bool> (result->type == desired_type) ? void (0) : __assert_fail ("result->type == desired_type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1033 | |
1034 | /* Try constant folding; it may fold in the conversion we just added. */ |
1035 | ir_constant *const constant = result->constant_expression_value(ctx); |
1036 | return (constant != NULL__null) ? (ir_rvalue *) constant : (ir_rvalue *) result; |
1037 | } |
1038 | |
1039 | |
1040 | /** |
1041 | * Perform automatic type and constant conversion of constructor parameters |
1042 | * |
1043 | * This implements the rules in the "Implicit Conversions" rules, not the |
1044 | * "Conversion and Scalar Constructors". |
1045 | * |
1046 | * After attempting the implicit conversion, an attempt to convert into a |
1047 | * constant valued expression is also done. |
1048 | * |
1049 | * The \c from \c ir_rvalue is converted "in place". |
1050 | * |
1051 | * \param from Operand that is being converted |
1052 | * \param to Base type the operand will be converted to |
1053 | * \param state GLSL compiler state |
1054 | * |
1055 | * \return |
1056 | * If the attempt to convert into a constant expression succeeds, \c true is |
1057 | * returned. Otherwise \c false is returned. |
1058 | */ |
1059 | static bool |
1060 | implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to, |
1061 | struct _mesa_glsl_parse_state *state) |
1062 | { |
1063 | void *mem_ctx = state; |
1064 | ir_rvalue *result = from; |
1065 | |
1066 | if (to != from->type->base_type) { |
1067 | const glsl_type *desired_type = |
1068 | glsl_type::get_instance(to, |
1069 | from->type->vector_elements, |
1070 | from->type->matrix_columns); |
1071 | |
1072 | if (from->type->can_implicitly_convert_to(desired_type, state)) { |
1073 | /* Even though convert_component() implements the constructor |
1074 | * conversion rules (not the implicit conversion rules), its safe |
1075 | * to use it here because we already checked that the implicit |
1076 | * conversion is legal. |
1077 | */ |
1078 | result = convert_component(from, desired_type); |
1079 | } |
1080 | } |
1081 | |
1082 | ir_rvalue *const constant = result->constant_expression_value(mem_ctx); |
1083 | |
1084 | if (constant != NULL__null) |
1085 | result = constant; |
1086 | |
1087 | if (from != result) { |
1088 | from->replace_with(result); |
1089 | from = result; |
1090 | } |
1091 | |
1092 | return constant != NULL__null; |
1093 | } |
1094 | |
1095 | |
1096 | /** |
1097 | * Dereference a specific component from a scalar, vector, or matrix |
1098 | */ |
1099 | static ir_rvalue * |
1100 | dereference_component(ir_rvalue *src, unsigned component) |
1101 | { |
1102 | void *ctx = ralloc_parent(src); |
1103 | assert(component < src->type->components())(static_cast <bool> (component < src->type->components ()) ? void (0) : __assert_fail ("component < src->type->components()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1104 | |
1105 | /* If the source is a constant, just create a new constant instead of a |
1106 | * dereference of the existing constant. |
1107 | */ |
1108 | ir_constant *constant = src->as_constant(); |
1109 | if (constant) |
1110 | return new(ctx) ir_constant(constant, component); |
1111 | |
1112 | if (src->type->is_scalar()) { |
1113 | return src; |
1114 | } else if (src->type->is_vector()) { |
1115 | return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); |
1116 | } else { |
1117 | assert(src->type->is_matrix())(static_cast <bool> (src->type->is_matrix()) ? void (0) : __assert_fail ("src->type->is_matrix()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1118 | |
1119 | /* Dereference a row of the matrix, then call this function again to get |
1120 | * a specific element from that row. |
1121 | */ |
1122 | const int c = component / src->type->column_type()->vector_elements; |
1123 | const int r = component % src->type->column_type()->vector_elements; |
1124 | ir_constant *const col_index = new(ctx) ir_constant(c); |
1125 | ir_dereference *const col = new(ctx) ir_dereference_array(src, |
1126 | col_index); |
1127 | |
1128 | col->type = src->type->column_type(); |
1129 | |
1130 | return dereference_component(col, r); |
1131 | } |
1132 | |
1133 | assert(!"Should not get here.")(static_cast <bool> (!"Should not get here.") ? void (0 ) : __assert_fail ("!\"Should not get here.\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1134 | return NULL__null; |
1135 | } |
1136 | |
1137 | |
1138 | static ir_rvalue * |
1139 | process_vec_mat_constructor(exec_list *instructions, |
1140 | const glsl_type *constructor_type, |
1141 | YYLTYPE *loc, exec_list *parameters, |
1142 | struct _mesa_glsl_parse_state *state) |
1143 | { |
1144 | void *ctx = state; |
1145 | |
1146 | /* The ARB_shading_language_420pack spec says: |
1147 | * |
1148 | * "If an initializer is a list of initializers enclosed in curly braces, |
1149 | * the variable being declared must be a vector, a matrix, an array, or a |
1150 | * structure. |
1151 | * |
1152 | * int i = { 1 }; // illegal, i is not an aggregate" |
1153 | */ |
1154 | if (constructor_type->vector_elements <= 1) { |
1155 | _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, " |
1156 | "matrices, arrays, and structs"); |
1157 | return ir_rvalue::error_value(ctx); |
1158 | } |
1159 | |
1160 | exec_list actual_parameters; |
1161 | const unsigned parameter_count = |
1162 | process_parameters(instructions, &actual_parameters, parameters, state); |
1163 | |
1164 | if (parameter_count == 0 |
1165 | || (constructor_type->is_vector() && |
1166 | constructor_type->vector_elements != parameter_count) |
1167 | || (constructor_type->is_matrix() && |
1168 | constructor_type->matrix_columns != parameter_count)) { |
1169 | _mesa_glsl_error(loc, state, "%s constructor must have %u parameters", |
1170 | constructor_type->is_vector() ? "vector" : "matrix", |
1171 | constructor_type->vector_elements); |
1172 | return ir_rvalue::error_value(ctx); |
1173 | } |
1174 | |
1175 | bool all_parameters_are_constant = true; |
1176 | |
1177 | /* Type cast each parameter and, if possible, fold constants. */ |
1178 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
1179 | /* Apply implicit conversions (not the scalar constructor rules, see the |
1180 | * spec quote above!) and attempt to convert the parameter to a constant |
1181 | * valued expression. After doing so, track whether or not all the |
1182 | * parameters to the constructor are trivially constant valued |
1183 | * expressions. |
1184 | */ |
1185 | all_parameters_are_constant &= |
1186 | implicitly_convert_component(ir, constructor_type->base_type, state); |
1187 | |
1188 | if (constructor_type->is_matrix()) { |
1189 | if (ir->type != constructor_type->column_type()) { |
1190 | _mesa_glsl_error(loc, state, "type error in matrix constructor: " |
1191 | "expected: %s, found %s", |
1192 | constructor_type->column_type()->name, |
1193 | ir->type->name); |
1194 | return ir_rvalue::error_value(ctx); |
1195 | } |
1196 | } else if (ir->type != constructor_type->get_scalar_type()) { |
1197 | _mesa_glsl_error(loc, state, "type error in vector constructor: " |
1198 | "expected: %s, found %s", |
1199 | constructor_type->get_scalar_type()->name, |
1200 | ir->type->name); |
1201 | return ir_rvalue::error_value(ctx); |
1202 | } |
1203 | } |
1204 | |
1205 | if (all_parameters_are_constant) |
1206 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
1207 | |
1208 | ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor", |
1209 | ir_var_temporary); |
1210 | instructions->push_tail(var); |
1211 | |
1212 | int i = 0; |
1213 | |
1214 | foreach_in_list(ir_rvalue, rhs, &actual_parameters)for (ir_rvalue *rhs = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null); (rhs) != __null; (rhs) = (!exec_node_is_tail_sentinel((rhs)->next) ? (ir_rvalue *) ((rhs)->next) : __null)) { |
1215 | ir_instruction *assignment = NULL__null; |
1216 | |
1217 | if (var->type->is_matrix()) { |
1218 | ir_rvalue *lhs = |
1219 | new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); |
1220 | assignment = new(ctx) ir_assignment(lhs, rhs); |
1221 | } else { |
1222 | /* use writemask rather than index for vector */ |
1223 | assert(var->type->is_vector())(static_cast <bool> (var->type->is_vector()) ? void (0) : __assert_fail ("var->type->is_vector()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1224 | assert(i < 4)(static_cast <bool> (i < 4) ? void (0) : __assert_fail ("i < 4", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1225 | ir_dereference *lhs = new(ctx) ir_dereference_variable(var); |
1226 | assignment = new(ctx) ir_assignment(lhs, rhs, NULL__null, |
1227 | (unsigned)(1 << i)); |
1228 | } |
1229 | |
1230 | instructions->push_tail(assignment); |
1231 | |
1232 | i++; |
1233 | } |
1234 | |
1235 | return new(ctx) ir_dereference_variable(var); |
1236 | } |
1237 | |
1238 | |
1239 | static ir_rvalue * |
1240 | process_array_constructor(exec_list *instructions, |
1241 | const glsl_type *constructor_type, |
1242 | YYLTYPE *loc, exec_list *parameters, |
1243 | struct _mesa_glsl_parse_state *state) |
1244 | { |
1245 | void *ctx = state; |
1246 | /* Array constructors come in two forms: sized and unsized. Sized array |
1247 | * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 |
1248 | * variables. In this case the number of parameters must exactly match the |
1249 | * specified size of the array. |
1250 | * |
1251 | * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' |
1252 | * are vec4 variables. In this case the size of the array being constructed |
1253 | * is determined by the number of parameters. |
1254 | * |
1255 | * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: |
1256 | * |
1257 | * "There must be exactly the same number of arguments as the size of |
1258 | * the array being constructed. If no size is present in the |
1259 | * constructor, then the array is explicitly sized to the number of |
1260 | * arguments provided. The arguments are assigned in order, starting at |
1261 | * element 0, to the elements of the constructed array. Each argument |
1262 | * must be the same type as the element type of the array, or be a type |
1263 | * that can be converted to the element type of the array according to |
1264 | * Section 4.1.10 "Implicit Conversions."" |
1265 | */ |
1266 | exec_list actual_parameters; |
1267 | const unsigned parameter_count = |
1268 | process_parameters(instructions, &actual_parameters, parameters, state); |
1269 | bool is_unsized_array = constructor_type->is_unsized_array(); |
1270 | |
1271 | if ((parameter_count == 0) || |
1272 | (!is_unsized_array && (constructor_type->length != parameter_count))) { |
1273 | const unsigned min_param = is_unsized_array |
1274 | ? 1 : constructor_type->length; |
1275 | |
1276 | _mesa_glsl_error(loc, state, "array constructor must have %s %u " |
1277 | "parameter%s", |
1278 | is_unsized_array ? "at least" : "exactly", |
1279 | min_param, (min_param <= 1) ? "" : "s"); |
1280 | return ir_rvalue::error_value(ctx); |
1281 | } |
1282 | |
1283 | if (is_unsized_array) { |
1284 | constructor_type = |
1285 | glsl_type::get_array_instance(constructor_type->fields.array, |
1286 | parameter_count); |
1287 | assert(constructor_type != NULL)(static_cast <bool> (constructor_type != __null) ? void (0) : __assert_fail ("constructor_type != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1288 | assert(constructor_type->length == parameter_count)(static_cast <bool> (constructor_type->length == parameter_count ) ? void (0) : __assert_fail ("constructor_type->length == parameter_count" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1289 | } |
1290 | |
1291 | bool all_parameters_are_constant = true; |
1292 | const glsl_type *element_type = constructor_type->fields.array; |
1293 | |
1294 | /* Type cast each parameter and, if possible, fold constants. */ |
1295 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
1296 | /* Apply implicit conversions (not the scalar constructor rules, see the |
1297 | * spec quote above!) and attempt to convert the parameter to a constant |
1298 | * valued expression. After doing so, track whether or not all the |
1299 | * parameters to the constructor are trivially constant valued |
1300 | * expressions. |
1301 | */ |
1302 | all_parameters_are_constant &= |
1303 | implicitly_convert_component(ir, element_type->base_type, state); |
1304 | |
1305 | if (constructor_type->fields.array->is_unsized_array()) { |
1306 | /* As the inner parameters of the constructor are created without |
1307 | * knowledge of each other we need to check to make sure unsized |
1308 | * parameters of unsized constructors all end up with the same size. |
1309 | * |
1310 | * e.g we make sure to fail for a constructor like this: |
1311 | * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)), |
1312 | * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)), |
1313 | * vec4[](vec4(0.0), vec4(1.0))); |
1314 | */ |
1315 | if (element_type->is_unsized_array()) { |
1316 | /* This is the first parameter so just get the type */ |
1317 | element_type = ir->type; |
1318 | } else if (element_type != ir->type) { |
1319 | _mesa_glsl_error(loc, state, "type error in array constructor: " |
1320 | "expected: %s, found %s", |
1321 | element_type->name, |
1322 | ir->type->name); |
1323 | return ir_rvalue::error_value(ctx); |
1324 | } |
1325 | } else if (ir->type != constructor_type->fields.array) { |
1326 | _mesa_glsl_error(loc, state, "type error in array constructor: " |
1327 | "expected: %s, found %s", |
1328 | constructor_type->fields.array->name, |
1329 | ir->type->name); |
1330 | return ir_rvalue::error_value(ctx); |
1331 | } else { |
1332 | element_type = ir->type; |
1333 | } |
1334 | } |
1335 | |
1336 | if (constructor_type->fields.array->is_unsized_array()) { |
1337 | constructor_type = |
1338 | glsl_type::get_array_instance(element_type, |
1339 | parameter_count); |
1340 | assert(constructor_type != NULL)(static_cast <bool> (constructor_type != __null) ? void (0) : __assert_fail ("constructor_type != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1341 | assert(constructor_type->length == parameter_count)(static_cast <bool> (constructor_type->length == parameter_count ) ? void (0) : __assert_fail ("constructor_type->length == parameter_count" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1342 | } |
1343 | |
1344 | if (all_parameters_are_constant) |
1345 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
1346 | |
1347 | ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", |
1348 | ir_var_temporary); |
1349 | instructions->push_tail(var); |
1350 | |
1351 | int i = 0; |
1352 | foreach_in_list(ir_rvalue, rhs, &actual_parameters)for (ir_rvalue *rhs = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null); (rhs) != __null; (rhs) = (!exec_node_is_tail_sentinel((rhs)->next) ? (ir_rvalue *) ((rhs)->next) : __null)) { |
1353 | ir_rvalue *lhs = new(ctx) ir_dereference_array(var, |
1354 | new(ctx) ir_constant(i)); |
1355 | |
1356 | ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs); |
1357 | instructions->push_tail(assignment); |
1358 | |
1359 | i++; |
1360 | } |
1361 | |
1362 | return new(ctx) ir_dereference_variable(var); |
1363 | } |
1364 | |
1365 | |
1366 | /** |
1367 | * Determine if a list consists of a single scalar r-value |
1368 | */ |
1369 | static bool |
1370 | single_scalar_parameter(exec_list *parameters) |
1371 | { |
1372 | const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw(); |
1373 | assert(((ir_rvalue *)p)->as_rvalue() != NULL)(static_cast <bool> (((ir_rvalue *)p)->as_rvalue() != __null) ? void (0) : __assert_fail ("((ir_rvalue *)p)->as_rvalue() != NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1374 | |
1375 | return (p->type->is_scalar() && p->next->is_tail_sentinel()); |
1376 | } |
1377 | |
1378 | |
1379 | /** |
1380 | * Generate inline code for a vector constructor |
1381 | * |
1382 | * The generated constructor code will consist of a temporary variable |
1383 | * declaration of the same type as the constructor. A sequence of assignments |
1384 | * from constructor parameters to the temporary will follow. |
1385 | * |
1386 | * \return |
1387 | * An \c ir_dereference_variable of the temprorary generated in the constructor |
1388 | * body. |
1389 | */ |
1390 | static ir_rvalue * |
1391 | emit_inline_vector_constructor(const glsl_type *type, |
1392 | exec_list *instructions, |
1393 | exec_list *parameters, |
1394 | void *ctx) |
1395 | { |
1396 | assert(!parameters->is_empty())(static_cast <bool> (!parameters->is_empty()) ? void (0) : __assert_fail ("!parameters->is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1397 | |
1398 | ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); |
1399 | instructions->push_tail(var); |
1400 | |
1401 | /* There are three kinds of vector constructors. |
1402 | * |
1403 | * - Construct a vector from a single scalar by replicating that scalar to |
1404 | * all components of the vector. |
1405 | * |
1406 | * - Construct a vector from at least a matrix. This case should already |
1407 | * have been taken care of in ast_function_expression::hir by breaking |
1408 | * down the matrix into a series of column vectors. |
1409 | * |
1410 | * - Construct a vector from an arbirary combination of vectors and |
1411 | * scalars. The components of the constructor parameters are assigned |
1412 | * to the vector in order until the vector is full. |
1413 | */ |
1414 | const unsigned lhs_components = type->components(); |
1415 | if (single_scalar_parameter(parameters)) { |
1416 | ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw(); |
1417 | ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, |
1418 | lhs_components); |
1419 | ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); |
1420 | const unsigned mask = (1U << lhs_components) - 1; |
1421 | |
1422 | assert(rhs->type == lhs->type)(static_cast <bool> (rhs->type == lhs->type) ? void (0) : __assert_fail ("rhs->type == lhs->type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1423 | |
1424 | ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL__null, mask); |
1425 | instructions->push_tail(inst); |
1426 | } else { |
1427 | unsigned base_component = 0; |
1428 | unsigned base_lhs_component = 0; |
1429 | ir_constant_data data; |
1430 | unsigned constant_mask = 0, constant_components = 0; |
1431 | |
1432 | memset(&data, 0, sizeof(data)); |
1433 | |
1434 | foreach_in_list(ir_rvalue, param, parameters)for (ir_rvalue *param = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? (ir_rvalue *) ((parameters)->head_sentinel .next) : __null); (param) != __null; (param) = (!exec_node_is_tail_sentinel ((param)->next) ? (ir_rvalue *) ((param)->next) : __null )) { |
1435 | unsigned rhs_components = param->type->components(); |
1436 | |
1437 | /* Do not try to assign more components to the vector than it has! */ |
1438 | if ((rhs_components + base_lhs_component) > lhs_components) { |
1439 | rhs_components = lhs_components - base_lhs_component; |
1440 | } |
1441 | |
1442 | const ir_constant *const c = param->as_constant(); |
1443 | if (c != NULL__null) { |
1444 | for (unsigned i = 0; i < rhs_components; i++) { |
1445 | switch (c->type->base_type) { |
1446 | case GLSL_TYPE_UINT: |
1447 | data.u[i + base_component] = c->get_uint_component(i); |
1448 | break; |
1449 | case GLSL_TYPE_INT: |
1450 | data.i[i + base_component] = c->get_int_component(i); |
1451 | break; |
1452 | case GLSL_TYPE_FLOAT: |
1453 | data.f[i + base_component] = c->get_float_component(i); |
1454 | break; |
1455 | case GLSL_TYPE_DOUBLE: |
1456 | data.d[i + base_component] = c->get_double_component(i); |
1457 | break; |
1458 | case GLSL_TYPE_BOOL: |
1459 | data.b[i + base_component] = c->get_bool_component(i); |
1460 | break; |
1461 | case GLSL_TYPE_UINT64: |
1462 | data.u64[i + base_component] = c->get_uint64_component(i); |
1463 | break; |
1464 | case GLSL_TYPE_INT64: |
1465 | data.i64[i + base_component] = c->get_int64_component(i); |
1466 | break; |
1467 | default: |
1468 | assert(!"Should not get here.")(static_cast <bool> (!"Should not get here.") ? void (0 ) : __assert_fail ("!\"Should not get here.\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1469 | break; |
1470 | } |
1471 | } |
1472 | |
1473 | /* Mask of fields to be written in the assignment. */ |
1474 | constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; |
1475 | constant_components += rhs_components; |
1476 | |
1477 | base_component += rhs_components; |
1478 | } |
1479 | /* Advance the component index by the number of components |
1480 | * that were just assigned. |
1481 | */ |
1482 | base_lhs_component += rhs_components; |
1483 | } |
1484 | |
1485 | if (constant_mask != 0) { |
1486 | ir_dereference *lhs = new(ctx) ir_dereference_variable(var); |
1487 | const glsl_type *rhs_type = |
1488 | glsl_type::get_instance(var->type->base_type, |
1489 | constant_components, |
1490 | 1); |
1491 | ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); |
1492 | |
1493 | ir_instruction *inst = |
1494 | new(ctx) ir_assignment(lhs, rhs, NULL__null, constant_mask); |
1495 | instructions->push_tail(inst); |
1496 | } |
1497 | |
1498 | base_component = 0; |
1499 | foreach_in_list(ir_rvalue, param, parameters)for (ir_rvalue *param = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? (ir_rvalue *) ((parameters)->head_sentinel .next) : __null); (param) != __null; (param) = (!exec_node_is_tail_sentinel ((param)->next) ? (ir_rvalue *) ((param)->next) : __null )) { |
1500 | unsigned rhs_components = param->type->components(); |
1501 | |
1502 | /* Do not try to assign more components to the vector than it has! */ |
1503 | if ((rhs_components + base_component) > lhs_components) { |
1504 | rhs_components = lhs_components - base_component; |
1505 | } |
1506 | |
1507 | /* If we do not have any components left to copy, break out of the |
1508 | * loop. This can happen when initializing a vec4 with a mat3 as the |
1509 | * mat3 would have been broken into a series of column vectors. |
1510 | */ |
1511 | if (rhs_components == 0) { |
1512 | break; |
1513 | } |
1514 | |
1515 | const ir_constant *const c = param->as_constant(); |
1516 | if (c == NULL__null) { |
1517 | /* Mask of fields to be written in the assignment. */ |
1518 | const unsigned write_mask = ((1U << rhs_components) - 1) |
1519 | << base_component; |
1520 | |
1521 | ir_dereference *lhs = new(ctx) ir_dereference_variable(var); |
1522 | |
1523 | /* Generate a swizzle so that LHS and RHS sizes match. */ |
1524 | ir_rvalue *rhs = |
1525 | new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components); |
1526 | |
1527 | ir_instruction *inst = |
1528 | new(ctx) ir_assignment(lhs, rhs, NULL__null, write_mask); |
1529 | instructions->push_tail(inst); |
1530 | } |
1531 | |
1532 | /* Advance the component index by the number of components that were |
1533 | * just assigned. |
1534 | */ |
1535 | base_component += rhs_components; |
1536 | } |
1537 | } |
1538 | return new(ctx) ir_dereference_variable(var); |
1539 | } |
1540 | |
1541 | |
1542 | /** |
1543 | * Generate assignment of a portion of a vector to a portion of a matrix column |
1544 | * |
1545 | * \param src_base First component of the source to be used in assignment |
1546 | * \param column Column of destination to be assiged |
1547 | * \param row_base First component of the destination column to be assigned |
1548 | * \param count Number of components to be assigned |
1549 | * |
1550 | * \note |
1551 | * \c src_base + \c count must be less than or equal to the number of |
1552 | * components in the source vector. |
1553 | */ |
1554 | static ir_instruction * |
1555 | assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, |
1556 | ir_rvalue *src, unsigned src_base, unsigned count, |
1557 | void *mem_ctx) |
1558 | { |
1559 | ir_constant *col_idx = new(mem_ctx) ir_constant(column); |
1560 | ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, |
1561 | col_idx); |
1562 | |
1563 | assert(column_ref->type->components() >= (row_base + count))(static_cast <bool> (column_ref->type->components () >= (row_base + count)) ? void (0) : __assert_fail ("column_ref->type->components() >= (row_base + count)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1564 | assert(src->type->components() >= (src_base + count))(static_cast <bool> (src->type->components() >= (src_base + count)) ? void (0) : __assert_fail ("src->type->components() >= (src_base + count)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1565 | |
1566 | /* Generate a swizzle that extracts the number of components from the source |
1567 | * that are to be assigned to the column of the matrix. |
1568 | */ |
1569 | if (count < src->type->vector_elements) { |
1570 | src = new(mem_ctx) ir_swizzle(src, |
1571 | src_base + 0, src_base + 1, |
1572 | src_base + 2, src_base + 3, |
1573 | count); |
1574 | } |
1575 | |
1576 | /* Mask of fields to be written in the assignment. */ |
1577 | const unsigned write_mask = ((1U << count) - 1) << row_base; |
1578 | |
1579 | return new(mem_ctx) ir_assignment(column_ref, src, NULL__null, write_mask); |
1580 | } |
1581 | |
1582 | |
1583 | /** |
1584 | * Generate inline code for a matrix constructor |
1585 | * |
1586 | * The generated constructor code will consist of a temporary variable |
1587 | * declaration of the same type as the constructor. A sequence of assignments |
1588 | * from constructor parameters to the temporary will follow. |
1589 | * |
1590 | * \return |
1591 | * An \c ir_dereference_variable of the temprorary generated in the constructor |
1592 | * body. |
1593 | */ |
1594 | static ir_rvalue * |
1595 | emit_inline_matrix_constructor(const glsl_type *type, |
1596 | exec_list *instructions, |
1597 | exec_list *parameters, |
1598 | void *ctx) |
1599 | { |
1600 | assert(!parameters->is_empty())(static_cast <bool> (!parameters->is_empty()) ? void (0) : __assert_fail ("!parameters->is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1601 | |
1602 | ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); |
1603 | instructions->push_tail(var); |
1604 | |
1605 | /* There are three kinds of matrix constructors. |
1606 | * |
1607 | * - Construct a matrix from a single scalar by replicating that scalar to |
1608 | * along the diagonal of the matrix and setting all other components to |
1609 | * zero. |
1610 | * |
1611 | * - Construct a matrix from an arbirary combination of vectors and |
1612 | * scalars. The components of the constructor parameters are assigned |
1613 | * to the matrix in column-major order until the matrix is full. |
1614 | * |
1615 | * - Construct a matrix from a single matrix. The source matrix is copied |
1616 | * to the upper left portion of the constructed matrix, and the remaining |
1617 | * elements take values from the identity matrix. |
1618 | */ |
1619 | ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw(); |
1620 | if (single_scalar_parameter(parameters)) { |
1621 | /* Assign the scalar to the X component of a vec4, and fill the remaining |
1622 | * components with zero. |
1623 | */ |
1624 | glsl_base_type param_base_type = first_param->type->base_type; |
1625 | assert(first_param->type->is_float() || first_param->type->is_double())(static_cast <bool> (first_param->type->is_float( ) || first_param->type->is_double()) ? void (0) : __assert_fail ("first_param->type->is_float() || first_param->type->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1626 | ir_variable *rhs_var = |
1627 | new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1), |
1628 | "mat_ctor_vec", |
1629 | ir_var_temporary); |
1630 | instructions->push_tail(rhs_var); |
1631 | |
1632 | ir_constant_data zero; |
1633 | for (unsigned i = 0; i < 4; i++) |
1634 | if (first_param->type->is_float()) |
1635 | zero.f[i] = 0.0; |
1636 | else |
1637 | zero.d[i] = 0.0; |
1638 | |
1639 | ir_instruction *inst = |
1640 | new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), |
1641 | new(ctx) ir_constant(rhs_var->type, &zero)); |
1642 | instructions->push_tail(inst); |
1643 | |
1644 | ir_dereference *const rhs_ref = |
1645 | new(ctx) ir_dereference_variable(rhs_var); |
1646 | |
1647 | inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL__null, 0x01); |
1648 | instructions->push_tail(inst); |
1649 | |
1650 | /* Assign the temporary vector to each column of the destination matrix |
1651 | * with a swizzle that puts the X component on the diagonal of the |
1652 | * matrix. In some cases this may mean that the X component does not |
1653 | * get assigned into the column at all (i.e., when the matrix has more |
1654 | * columns than rows). |
1655 | */ |
1656 | static const unsigned rhs_swiz[4][4] = { |
1657 | { 0, 1, 1, 1 }, |
1658 | { 1, 0, 1, 1 }, |
1659 | { 1, 1, 0, 1 }, |
1660 | { 1, 1, 1, 0 } |
1661 | }; |
1662 | |
1663 | const unsigned cols_to_init = MIN2(type->matrix_columns,( (type->matrix_columns)<(type->vector_elements) ? ( type->matrix_columns) : (type->vector_elements) ) |
1664 | type->vector_elements)( (type->matrix_columns)<(type->vector_elements) ? ( type->matrix_columns) : (type->vector_elements) ); |
1665 | for (unsigned i = 0; i < cols_to_init; i++) { |
1666 | ir_constant *const col_idx = new(ctx) ir_constant(i); |
1667 | ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, |
1668 | col_idx); |
1669 | |
1670 | ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); |
1671 | ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], |
1672 | type->vector_elements); |
1673 | |
1674 | inst = new(ctx) ir_assignment(col_ref, rhs); |
1675 | instructions->push_tail(inst); |
1676 | } |
1677 | |
1678 | for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { |
1679 | ir_constant *const col_idx = new(ctx) ir_constant(i); |
1680 | ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, |
1681 | col_idx); |
1682 | |
1683 | ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); |
1684 | ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, |
1685 | type->vector_elements); |
1686 | |
1687 | inst = new(ctx) ir_assignment(col_ref, rhs); |
1688 | instructions->push_tail(inst); |
1689 | } |
1690 | } else if (first_param->type->is_matrix()) { |
1691 | /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: |
1692 | * |
1693 | * "If a matrix is constructed from a matrix, then each component |
1694 | * (column i, row j) in the result that has a corresponding |
1695 | * component (column i, row j) in the argument will be initialized |
1696 | * from there. All other components will be initialized to the |
1697 | * identity matrix. If a matrix argument is given to a matrix |
1698 | * constructor, it is an error to have any other arguments." |
1699 | */ |
1700 | assert(first_param->next->is_tail_sentinel())(static_cast <bool> (first_param->next->is_tail_sentinel ()) ? void (0) : __assert_fail ("first_param->next->is_tail_sentinel()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
1701 | ir_rvalue *const src_matrix = first_param; |
1702 | |
1703 | /* If the source matrix is smaller, pre-initialize the relavent parts of |
1704 | * the destination matrix to the identity matrix. |
1705 | */ |
1706 | if ((src_matrix->type->matrix_columns < var->type->matrix_columns) || |
1707 | (src_matrix->type->vector_elements < var->type->vector_elements)) { |
1708 | |
1709 | /* If the source matrix has fewer rows, every column of the |
1710 | * destination must be initialized. Otherwise only the columns in |
1711 | * the destination that do not exist in the source must be |
1712 | * initialized. |
1713 | */ |
1714 | unsigned col = |
1715 | (src_matrix->type->vector_elements < var->type->vector_elements) |
1716 | ? 0 : src_matrix->type->matrix_columns; |
1717 | |
1718 | const glsl_type *const col_type = var->type->column_type(); |
1719 | for (/* empty */; col < var->type->matrix_columns; col++) { |
1720 | ir_constant_data ident; |
1721 | |
1722 | if (!col_type->is_double()) { |
1723 | ident.f[0] = 0.0f; |
1724 | ident.f[1] = 0.0f; |
1725 | ident.f[2] = 0.0f; |
1726 | ident.f[3] = 0.0f; |
1727 | ident.f[col] = 1.0f; |
1728 | } else { |
1729 | ident.d[0] = 0.0; |
1730 | ident.d[1] = 0.0; |
1731 | ident.d[2] = 0.0; |
1732 | ident.d[3] = 0.0; |
1733 | ident.d[col] = 1.0; |
1734 | } |
1735 | |
1736 | ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); |
1737 | |
1738 | ir_rvalue *const lhs = |
1739 | new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); |
1740 | |
1741 | ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs); |
1742 | instructions->push_tail(inst); |
1743 | } |
1744 | } |
1745 | |
1746 | /* Assign columns from the source matrix to the destination matrix. |
1747 | * |
1748 | * Since the parameter will be used in the RHS of multiple assignments, |
1749 | * generate a temporary and copy the paramter there. |
1750 | */ |
1751 | ir_variable *const rhs_var = |
1752 | new(ctx) ir_variable(first_param->type, "mat_ctor_mat", |
1753 | ir_var_temporary); |
1754 | instructions->push_tail(rhs_var); |
1755 | |
1756 | ir_dereference *const rhs_var_ref = |
1757 | new(ctx) ir_dereference_variable(rhs_var); |
1758 | ir_instruction *const inst = |
1759 | new(ctx) ir_assignment(rhs_var_ref, first_param); |
1760 | instructions->push_tail(inst); |
1761 | |
1762 | const unsigned last_row = MIN2(src_matrix->type->vector_elements,( (src_matrix->type->vector_elements)<(var->type-> vector_elements) ? (src_matrix->type->vector_elements) : (var->type->vector_elements) ) |
1763 | var->type->vector_elements)( (src_matrix->type->vector_elements)<(var->type-> vector_elements) ? (src_matrix->type->vector_elements) : (var->type->vector_elements) ); |
1764 | const unsigned last_col = MIN2(src_matrix->type->matrix_columns,( (src_matrix->type->matrix_columns)<(var->type-> matrix_columns) ? (src_matrix->type->matrix_columns) : ( var->type->matrix_columns) ) |
1765 | var->type->matrix_columns)( (src_matrix->type->matrix_columns)<(var->type-> matrix_columns) ? (src_matrix->type->matrix_columns) : ( var->type->matrix_columns) ); |
1766 | |
1767 | unsigned swiz[4] = { 0, 0, 0, 0 }; |
1768 | for (unsigned i = 1; i < last_row; i++) |
1769 | swiz[i] = i; |
1770 | |
1771 | const unsigned write_mask = (1U << last_row) - 1; |
1772 | |
1773 | for (unsigned i = 0; i < last_col; i++) { |
1774 | ir_dereference *const lhs = |
1775 | new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); |
1776 | ir_rvalue *const rhs_col = |
1777 | new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); |
1778 | |
1779 | /* If one matrix has columns that are smaller than the columns of the |
1780 | * other matrix, wrap the column access of the larger with a swizzle |
1781 | * so that the LHS and RHS of the assignment have the same size (and |
1782 | * therefore have the same type). |
1783 | * |
1784 | * It would be perfectly valid to unconditionally generate the |
1785 | * swizzles, this this will typically result in a more compact IR |
1786 | * tree. |
1787 | */ |
1788 | ir_rvalue *rhs; |
1789 | if (lhs->type->vector_elements != rhs_col->type->vector_elements) { |
1790 | rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); |
1791 | } else { |
1792 | rhs = rhs_col; |
1793 | } |
1794 | |
1795 | ir_instruction *inst = |
1796 | new(ctx) ir_assignment(lhs, rhs, NULL__null, write_mask); |
1797 | instructions->push_tail(inst); |
1798 | } |
1799 | } else { |
1800 | const unsigned cols = type->matrix_columns; |
1801 | const unsigned rows = type->vector_elements; |
1802 | unsigned remaining_slots = rows * cols; |
1803 | unsigned col_idx = 0; |
1804 | unsigned row_idx = 0; |
1805 | |
1806 | foreach_in_list(ir_rvalue, rhs, parameters)for (ir_rvalue *rhs = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? (ir_rvalue *) ((parameters)->head_sentinel .next) : __null); (rhs) != __null; (rhs) = (!exec_node_is_tail_sentinel ((rhs)->next) ? (ir_rvalue *) ((rhs)->next) : __null)) { |
1807 | unsigned rhs_components = rhs->type->components(); |
1808 | unsigned rhs_base = 0; |
1809 | |
1810 | if (remaining_slots == 0) |
1811 | break; |
1812 | |
1813 | /* Since the parameter might be used in the RHS of two assignments, |
1814 | * generate a temporary and copy the paramter there. |
1815 | */ |
1816 | ir_variable *rhs_var = |
1817 | new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); |
1818 | instructions->push_tail(rhs_var); |
1819 | |
1820 | ir_dereference *rhs_var_ref = |
1821 | new(ctx) ir_dereference_variable(rhs_var); |
1822 | ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs); |
1823 | instructions->push_tail(inst); |
1824 | |
1825 | do { |
1826 | /* Assign the current parameter to as many components of the matrix |
1827 | * as it will fill. |
1828 | * |
1829 | * NOTE: A single vector parameter can span two matrix columns. A |
1830 | * single vec4, for example, can completely fill a mat2. |
1831 | */ |
1832 | unsigned count = MIN2(rows - row_idx,( (rows - row_idx)<(rhs_components - rhs_base) ? (rows - row_idx ) : (rhs_components - rhs_base) ) |
1833 | rhs_components - rhs_base)( (rows - row_idx)<(rhs_components - rhs_base) ? (rows - row_idx ) : (rhs_components - rhs_base) ); |
1834 | |
1835 | rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); |
1836 | ir_instruction *inst = assign_to_matrix_column(var, col_idx, |
1837 | row_idx, |
1838 | rhs_var_ref, |
1839 | rhs_base, |
1840 | count, ctx); |
1841 | instructions->push_tail(inst); |
1842 | rhs_base += count; |
1843 | row_idx += count; |
1844 | remaining_slots -= count; |
1845 | |
1846 | /* Sometimes, there is still data left in the parameters and |
1847 | * components left to be set in the destination but in other |
1848 | * column. |
1849 | */ |
1850 | if (row_idx >= rows) { |
1851 | row_idx = 0; |
1852 | col_idx++; |
1853 | } |
1854 | } while(remaining_slots > 0 && rhs_base < rhs_components); |
1855 | } |
1856 | } |
1857 | |
1858 | return new(ctx) ir_dereference_variable(var); |
1859 | } |
1860 | |
1861 | |
1862 | static ir_rvalue * |
1863 | emit_inline_record_constructor(const glsl_type *type, |
1864 | exec_list *instructions, |
1865 | exec_list *parameters, |
1866 | void *mem_ctx) |
1867 | { |
1868 | ir_variable *const var = |
1869 | new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); |
1870 | ir_dereference_variable *const d = |
1871 | new(mem_ctx) ir_dereference_variable(var); |
1872 | |
1873 | instructions->push_tail(var); |
1874 | |
1875 | exec_node *node = parameters->get_head_raw(); |
1876 | for (unsigned i = 0; i < type->length; i++) { |
1877 | assert(!node->is_tail_sentinel())(static_cast <bool> (!node->is_tail_sentinel()) ? void (0) : __assert_fail ("!node->is_tail_sentinel()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1878 | |
1879 | ir_dereference *const lhs = |
1880 | new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL__null), |
1881 | type->fields.structure[i].name); |
1882 | |
1883 | ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); |
1884 | assert(rhs != NULL)(static_cast <bool> (rhs != __null) ? void (0) : __assert_fail ("rhs != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1885 | |
1886 | ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs); |
1887 | |
1888 | instructions->push_tail(assign); |
1889 | node = node->next; |
1890 | } |
1891 | |
1892 | return d; |
1893 | } |
1894 | |
1895 | |
1896 | static ir_rvalue * |
1897 | process_record_constructor(exec_list *instructions, |
1898 | const glsl_type *constructor_type, |
1899 | YYLTYPE *loc, exec_list *parameters, |
1900 | struct _mesa_glsl_parse_state *state) |
1901 | { |
1902 | void *ctx = state; |
1903 | /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec: |
1904 | * |
1905 | * "The arguments to the constructor will be used to set the structure's |
1906 | * fields, in order, using one argument per field. Each argument must |
1907 | * be the same type as the field it sets, or be a type that can be |
1908 | * converted to the field's type according to Section 4.1.10 “Implicit |
1909 | * Conversions.”" |
1910 | * |
1911 | * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec: |
1912 | * |
1913 | * "In all cases, the innermost initializer (i.e., not a list of |
1914 | * initializers enclosed in curly braces) applied to an object must |
1915 | * have the same type as the object being initialized or be a type that |
1916 | * can be converted to the object's type according to section 4.1.10 |
1917 | * "Implicit Conversions". In the latter case, an implicit conversion |
1918 | * will be done on the initializer before the assignment is done." |
1919 | */ |
1920 | exec_list actual_parameters; |
1921 | |
1922 | const unsigned parameter_count = |
1923 | process_parameters(instructions, &actual_parameters, parameters, |
1924 | state); |
1925 | |
1926 | if (parameter_count != constructor_type->length) { |
1927 | _mesa_glsl_error(loc, state, |
1928 | "%s parameters in constructor for `%s'", |
1929 | parameter_count > constructor_type->length |
1930 | ? "too many": "insufficient", |
1931 | constructor_type->name); |
1932 | return ir_rvalue::error_value(ctx); |
1933 | } |
1934 | |
1935 | bool all_parameters_are_constant = true; |
1936 | |
1937 | int i = 0; |
1938 | /* Type cast each parameter and, if possible, fold constants. */ |
1939 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
1940 | |
1941 | const glsl_struct_field *struct_field = |
1942 | &constructor_type->fields.structure[i]; |
1943 | |
1944 | /* Apply implicit conversions (not the scalar constructor rules, see the |
1945 | * spec quote above!) and attempt to convert the parameter to a constant |
1946 | * valued expression. After doing so, track whether or not all the |
1947 | * parameters to the constructor are trivially constant valued |
1948 | * expressions. |
1949 | */ |
1950 | all_parameters_are_constant &= |
1951 | implicitly_convert_component(ir, struct_field->type->base_type, |
1952 | state); |
1953 | |
1954 | if (ir->type != struct_field->type) { |
1955 | _mesa_glsl_error(loc, state, |
1956 | "parameter type mismatch in constructor for `%s.%s' " |
1957 | "(%s vs %s)", |
1958 | constructor_type->name, |
1959 | struct_field->name, |
1960 | ir->type->name, |
1961 | struct_field->type->name); |
1962 | return ir_rvalue::error_value(ctx); |
1963 | } |
1964 | |
1965 | i++; |
1966 | } |
1967 | |
1968 | if (all_parameters_are_constant) { |
1969 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
1970 | } else { |
1971 | return emit_inline_record_constructor(constructor_type, instructions, |
1972 | &actual_parameters, state); |
1973 | } |
1974 | } |
1975 | |
1976 | ir_rvalue * |
1977 | ast_function_expression::handle_method(exec_list *instructions, |
1978 | struct _mesa_glsl_parse_state *state) |
1979 | { |
1980 | const ast_expression *field = subexpressions[0]; |
1981 | ir_rvalue *op; |
1982 | ir_rvalue *result; |
1983 | void *ctx = state; |
1984 | /* Handle "method calls" in GLSL 1.20 - namely, array.length() */ |
1985 | YYLTYPE loc = get_location(); |
1986 | state->check_version(120, 300, &loc, "methods not supported"); |
1987 | |
1988 | const char *method; |
1989 | method = field->primary_expression.identifier; |
1990 | |
1991 | /* This would prevent to raise "uninitialized variable" warnings when |
1992 | * calling array.length. |
1993 | */ |
1994 | field->subexpressions[0]->set_is_lhs(true); |
1995 | op = field->subexpressions[0]->hir(instructions, state); |
1996 | if (strcmp(method, "length") == 0) { |
1997 | if (!this->expressions.is_empty()) { |
1998 | _mesa_glsl_error(&loc, state, "length method takes no arguments"); |
1999 | goto fail; |
2000 | } |
2001 | |
2002 | if (op->type->is_array()) { |
2003 | if (op->type->is_unsized_array()) { |
2004 | if (!state->has_shader_storage_buffer_objects()) { |
2005 | _mesa_glsl_error(&loc, state, |
2006 | "length called on unsized array" |
2007 | " only available with" |
2008 | " ARB_shader_storage_buffer_object"); |
2009 | } |
2010 | /* Calculate length of an unsized array in run-time */ |
2011 | result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, |
2012 | op); |
2013 | } else { |
2014 | result = new(ctx) ir_constant(op->type->array_size()); |
2015 | } |
2016 | } else if (op->type->is_vector()) { |
2017 | if (state->has_420pack()) { |
2018 | /* .length() returns int. */ |
2019 | result = new(ctx) ir_constant((int) op->type->vector_elements); |
2020 | } else { |
2021 | _mesa_glsl_error(&loc, state, "length method on matrix only" |
2022 | " available with ARB_shading_language_420pack"); |
2023 | goto fail; |
2024 | } |
2025 | } else if (op->type->is_matrix()) { |
2026 | if (state->has_420pack()) { |
2027 | /* .length() returns int. */ |
2028 | result = new(ctx) ir_constant((int) op->type->matrix_columns); |
2029 | } else { |
2030 | _mesa_glsl_error(&loc, state, "length method on matrix only" |
2031 | " available with ARB_shading_language_420pack"); |
2032 | goto fail; |
2033 | } |
2034 | } else { |
2035 | _mesa_glsl_error(&loc, state, "length called on scalar."); |
2036 | goto fail; |
2037 | } |
2038 | } else { |
2039 | _mesa_glsl_error(&loc, state, "unknown method: `%s'", method); |
2040 | goto fail; |
2041 | } |
2042 | return result; |
2043 | fail: |
2044 | return ir_rvalue::error_value(ctx); |
2045 | } |
2046 | |
2047 | static inline bool is_valid_constructor(const glsl_type *type, |
2048 | struct _mesa_glsl_parse_state *state) |
2049 | { |
2050 | return type->is_numeric() || type->is_boolean() || |
2051 | (state->has_bindless() && (type->is_sampler() || type->is_image())); |
2052 | } |
2053 | |
2054 | ir_rvalue * |
2055 | ast_function_expression::hir(exec_list *instructions, |
2056 | struct _mesa_glsl_parse_state *state) |
2057 | { |
2058 | void *ctx = state; |
2059 | /* There are three sorts of function calls. |
2060 | * |
2061 | * 1. constructors - The first subexpression is an ast_type_specifier. |
2062 | * 2. methods - Only the .length() method of array types. |
2063 | * 3. functions - Calls to regular old functions. |
2064 | * |
2065 | */ |
2066 | if (is_constructor()) { |
2067 | const ast_type_specifier *type = |
2068 | (ast_type_specifier *) subexpressions[0]; |
2069 | YYLTYPE loc = type->get_location(); |
2070 | const char *name; |
2071 | |
2072 | const glsl_type *const constructor_type = type->glsl_type(& name, state); |
2073 | |
2074 | /* constructor_type can be NULL if a variable with the same name as the |
2075 | * structure has come into scope. |
2076 | */ |
2077 | if (constructor_type == NULL__null) { |
2078 | _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name " |
2079 | "may be shadowed by a variable with the same name)", |
2080 | type->type_name); |
2081 | return ir_rvalue::error_value(ctx); |
2082 | } |
2083 | |
2084 | |
2085 | /* Constructors for opaque types are illegal. |
2086 | * |
2087 | * From section 4.1.7 of the ARB_bindless_texture spec: |
2088 | * |
2089 | * "Samplers are represented using 64-bit integer handles, and may be " |
2090 | * converted to and from 64-bit integers using constructors." |
2091 | * |
2092 | * From section 4.1.X of the ARB_bindless_texture spec: |
2093 | * |
2094 | * "Images are represented using 64-bit integer handles, and may be |
2095 | * converted to and from 64-bit integers using constructors." |
2096 | */ |
2097 | if (constructor_type->contains_atomic() || |
2098 | (!state->has_bindless() && constructor_type->contains_opaque())) { |
2099 | _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'", |
2100 | state->has_bindless() ? "atomic" : "opaque", |
2101 | constructor_type->name); |
2102 | return ir_rvalue::error_value(ctx); |
2103 | } |
2104 | |
2105 | if (constructor_type->is_subroutine()) { |
2106 | _mesa_glsl_error(& loc, state, |
2107 | "subroutine name cannot be a constructor `%s'", |
2108 | constructor_type->name); |
2109 | return ir_rvalue::error_value(ctx); |
2110 | } |
2111 | |
2112 | if (constructor_type->is_array()) { |
2113 | if (!state->check_version(120, 300, &loc, |
2114 | "array constructors forbidden")) { |
2115 | return ir_rvalue::error_value(ctx); |
2116 | } |
2117 | |
2118 | return process_array_constructor(instructions, constructor_type, |
2119 | & loc, &this->expressions, state); |
2120 | } |
2121 | |
2122 | |
2123 | /* There are two kinds of constructor calls. Constructors for arrays and |
2124 | * structures must have the exact number of arguments with matching types |
2125 | * in the correct order. These constructors follow essentially the same |
2126 | * type matching rules as functions. |
2127 | * |
2128 | * Constructors for built-in language types, such as mat4 and vec2, are |
2129 | * free form. The only requirements are that the parameters must provide |
2130 | * enough values of the correct scalar type and that no arguments are |
2131 | * given past the last used argument. |
2132 | * |
2133 | * When using the C-style initializer syntax from GLSL 4.20, constructors |
2134 | * must have the exact number of arguments with matching types in the |
2135 | * correct order. |
2136 | */ |
2137 | if (constructor_type->is_struct()) { |
2138 | return process_record_constructor(instructions, constructor_type, |
2139 | &loc, &this->expressions, |
2140 | state); |
2141 | } |
2142 | |
2143 | if (!is_valid_constructor(constructor_type, state)) |
2144 | return ir_rvalue::error_value(ctx); |
2145 | |
2146 | /* Total number of components of the type being constructed. */ |
2147 | const unsigned type_components = constructor_type->components(); |
2148 | |
2149 | /* Number of components from parameters that have actually been |
2150 | * consumed. This is used to perform several kinds of error checking. |
2151 | */ |
2152 | unsigned components_used = 0; |
2153 | |
2154 | unsigned matrix_parameters = 0; |
2155 | unsigned nonmatrix_parameters = 0; |
2156 | exec_list actual_parameters; |
2157 | |
2158 | foreach_list_typed(ast_node, ast, link, &this->expressions)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->expressions)->head_sentinel.next) ? ((ast_node *) ((( uintptr_t) (&this->expressions)->head_sentinel.next ) - (((char *) &((ast_node *) (&this->expressions) ->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - (((char * ) &((ast_node *) (ast)->link.next)->link) - ((char * ) (ast)->link.next)))) : __null)) { |
2159 | ir_rvalue *result = ast->hir(instructions, state); |
2160 | |
2161 | /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: |
2162 | * |
2163 | * "It is an error to provide extra arguments beyond this |
2164 | * last used argument." |
2165 | */ |
2166 | if (components_used >= type_components) { |
2167 | _mesa_glsl_error(& loc, state, "too many parameters to `%s' " |
2168 | "constructor", |
2169 | constructor_type->name); |
2170 | return ir_rvalue::error_value(ctx); |
2171 | } |
2172 | |
2173 | if (!is_valid_constructor(result->type, state)) { |
2174 | _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " |
2175 | "non-numeric data type", |
2176 | constructor_type->name); |
2177 | return ir_rvalue::error_value(ctx); |
2178 | } |
2179 | |
2180 | /* Count the number of matrix and nonmatrix parameters. This |
2181 | * is used below to enforce some of the constructor rules. |
2182 | */ |
2183 | if (result->type->is_matrix()) |
2184 | matrix_parameters++; |
2185 | else |
2186 | nonmatrix_parameters++; |
2187 | |
2188 | actual_parameters.push_tail(result); |
2189 | components_used += result->type->components(); |
2190 | } |
2191 | |
2192 | /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: |
2193 | * |
2194 | * "It is an error to construct matrices from other matrices. This |
2195 | * is reserved for future use." |
2196 | */ |
2197 | if (matrix_parameters > 0 |
2198 | && constructor_type->is_matrix() |
2199 | && !state->check_version(120, 100, &loc, |
2200 | "cannot construct `%s' from a matrix", |
2201 | constructor_type->name)) { |
2202 | return ir_rvalue::error_value(ctx); |
2203 | } |
2204 | |
2205 | /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: |
2206 | * |
2207 | * "If a matrix argument is given to a matrix constructor, it is |
2208 | * an error to have any other arguments." |
2209 | */ |
2210 | if ((matrix_parameters > 0) |
2211 | && ((matrix_parameters + nonmatrix_parameters) > 1) |
2212 | && constructor_type->is_matrix()) { |
2213 | _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " |
2214 | "matrix must be only parameter", |
2215 | constructor_type->name); |
2216 | return ir_rvalue::error_value(ctx); |
2217 | } |
2218 | |
2219 | /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: |
2220 | * |
2221 | * "In these cases, there must be enough components provided in the |
2222 | * arguments to provide an initializer for every component in the |
2223 | * constructed value." |
2224 | */ |
2225 | if (components_used < type_components && components_used != 1 |
2226 | && matrix_parameters == 0) { |
2227 | _mesa_glsl_error(& loc, state, "too few components to construct " |
2228 | "`%s'", |
2229 | constructor_type->name); |
2230 | return ir_rvalue::error_value(ctx); |
2231 | } |
2232 | |
2233 | /* Matrices can never be consumed as is by any constructor but matrix |
2234 | * constructors. If the constructor type is not matrix, always break the |
2235 | * matrix up into a series of column vectors. |
2236 | */ |
2237 | if (!constructor_type->is_matrix()) { |
2238 | foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters)for (ir_rvalue *matrix = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (matrix) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (matrix) != __null; (matrix) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next ->next) ? (ir_rvalue *) (__next->next) : __null) : __null ) { |
2239 | if (!matrix->type->is_matrix()) |
2240 | continue; |
2241 | |
2242 | /* Create a temporary containing the matrix. */ |
2243 | ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", |
2244 | ir_var_temporary); |
2245 | instructions->push_tail(var); |
2246 | instructions->push_tail( |
2247 | new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), |
2248 | matrix)); |
2249 | var->constant_value = matrix->constant_expression_value(ctx); |
2250 | |
2251 | /* Replace the matrix with dereferences of its columns. */ |
2252 | for (int i = 0; i < matrix->type->matrix_columns; i++) { |
2253 | matrix->insert_before( |
2254 | new (ctx) ir_dereference_array(var, |
2255 | new(ctx) ir_constant(i))); |
2256 | } |
2257 | matrix->remove(); |
2258 | } |
2259 | } |
2260 | |
2261 | bool all_parameters_are_constant = true; |
2262 | |
2263 | /* Type cast each parameter and, if possible, fold constants.*/ |
2264 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
2265 | const glsl_type *desired_type; |
2266 | |
2267 | /* From section 5.4.1 of the ARB_bindless_texture spec: |
2268 | * |
2269 | * "In the following four constructors, the low 32 bits of the sampler |
2270 | * type correspond to the .x component of the uvec2 and the high 32 |
2271 | * bits correspond to the .y component." |
2272 | * |
2273 | * uvec2(any sampler type) // Converts a sampler type to a |
2274 | * // pair of 32-bit unsigned integers |
2275 | * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to |
2276 | * // a sampler type |
2277 | * uvec2(any image type) // Converts an image type to a |
2278 | * // pair of 32-bit unsigned integers |
2279 | * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to |
2280 | * // an image type |
2281 | */ |
2282 | if (ir->type->is_sampler() || ir->type->is_image()) { |
2283 | /* Convert a sampler/image type to a pair of 32-bit unsigned |
2284 | * integers as defined by ARB_bindless_texture. |
2285 | */ |
2286 | if (constructor_type != glsl_type::uvec2_type) { |
2287 | _mesa_glsl_error(&loc, state, "sampler and image types can only " |
2288 | "be converted to a pair of 32-bit unsigned " |
2289 | "integers"); |
2290 | } |
2291 | desired_type = glsl_type::uvec2_type; |
2292 | } else if (constructor_type->is_sampler() || |
2293 | constructor_type->is_image()) { |
2294 | /* Convert a pair of 32-bit unsigned integers to a sampler or image |
2295 | * type as defined by ARB_bindless_texture. |
2296 | */ |
2297 | if (ir->type != glsl_type::uvec2_type) { |
2298 | _mesa_glsl_error(&loc, state, "sampler and image types can only " |
2299 | "be converted from a pair of 32-bit unsigned " |
2300 | "integers"); |
2301 | } |
2302 | desired_type = constructor_type; |
2303 | } else { |
2304 | desired_type = |
2305 | glsl_type::get_instance(constructor_type->base_type, |
2306 | ir->type->vector_elements, |
2307 | ir->type->matrix_columns); |
2308 | } |
2309 | |
2310 | ir_rvalue *result = convert_component(ir, desired_type); |
2311 | |
2312 | /* Attempt to convert the parameter to a constant valued expression. |
2313 | * After doing so, track whether or not all the parameters to the |
2314 | * constructor are trivially constant valued expressions. |
2315 | */ |
2316 | ir_rvalue *const constant = result->constant_expression_value(ctx); |
2317 | |
2318 | if (constant != NULL__null) |
2319 | result = constant; |
2320 | else |
2321 | all_parameters_are_constant = false; |
2322 | |
2323 | if (result != ir) { |
2324 | ir->replace_with(result); |
2325 | } |
2326 | } |
2327 | |
2328 | /* If all of the parameters are trivially constant, create a |
2329 | * constant representing the complete collection of parameters. |
2330 | */ |
2331 | if (all_parameters_are_constant) { |
2332 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
2333 | } else if (constructor_type->is_scalar()) { |
2334 | return dereference_component((ir_rvalue *) |
2335 | actual_parameters.get_head_raw(), |
2336 | 0); |
2337 | } else if (constructor_type->is_vector()) { |
2338 | return emit_inline_vector_constructor(constructor_type, |
2339 | instructions, |
2340 | &actual_parameters, |
2341 | ctx); |
2342 | } else { |
2343 | assert(constructor_type->is_matrix())(static_cast <bool> (constructor_type->is_matrix()) ? void (0) : __assert_fail ("constructor_type->is_matrix()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
2344 | return emit_inline_matrix_constructor(constructor_type, |
2345 | instructions, |
2346 | &actual_parameters, |
2347 | ctx); |
2348 | } |
2349 | } else if (subexpressions[0]->oper == ast_field_selection) { |
2350 | return handle_method(instructions, state); |
2351 | } else { |
2352 | const ast_expression *id = subexpressions[0]; |
2353 | const char *func_name = NULL__null; |
2354 | YYLTYPE loc = get_location(); |
2355 | exec_list actual_parameters; |
2356 | ir_variable *sub_var = NULL__null; |
2357 | ir_rvalue *array_idx = NULL__null; |
2358 | |
2359 | process_parameters(instructions, &actual_parameters, &this->expressions, |
2360 | state); |
2361 | |
2362 | if (id->oper == ast_array_index) { |
2363 | array_idx = generate_array_index(ctx, instructions, state, loc, |
2364 | id->subexpressions[0], |
2365 | id->subexpressions[1], &func_name, |
2366 | &actual_parameters); |
2367 | } else if (id->oper == ast_identifier) { |
2368 | func_name = id->primary_expression.identifier; |
2369 | } else { |
2370 | _mesa_glsl_error(&loc, state, "function name is not an identifier"); |
2371 | } |
2372 | |
2373 | /* an error was emitted earlier */ |
2374 | if (!func_name) |
2375 | return ir_rvalue::error_value(ctx); |
2376 | |
2377 | ir_function_signature *sig = |
2378 | match_function_by_name(func_name, &actual_parameters, state); |
2379 | |
2380 | ir_rvalue *value = NULL__null; |
2381 | if (sig == NULL__null) { |
2382 | sig = match_subroutine_by_name(func_name, &actual_parameters, |
2383 | state, &sub_var); |
2384 | } |
2385 | |
2386 | if (sig == NULL__null) { |
2387 | no_matching_function_error(func_name, &loc, |
2388 | &actual_parameters, state); |
2389 | value = ir_rvalue::error_value(ctx); |
2390 | } else if (!verify_parameter_modes(state, sig, |
2391 | actual_parameters, |
2392 | this->expressions)) { |
2393 | /* an error has already been emitted */ |
2394 | value = ir_rvalue::error_value(ctx); |
2395 | } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) { |
2396 | /* ftransform refers to global variables, and we don't have any code |
2397 | * for remapping the variable references in the built-in shader. |
2398 | */ |
2399 | ir_variable *mvp = |
2400 | state->symbols->get_variable("gl_ModelViewProjectionMatrix"); |
2401 | ir_variable *vtx = state->symbols->get_variable("gl_Vertex"); |
2402 | value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type, |
2403 | new(ctx) ir_dereference_variable(mvp), |
2404 | new(ctx) ir_dereference_variable(vtx)); |
2405 | } else { |
2406 | bool is_begin_interlock = false; |
2407 | bool is_end_interlock = false; |
2408 | if (sig->is_builtin() && |
2409 | state->stage == MESA_SHADER_FRAGMENT && |
2410 | state->ARB_fragment_shader_interlock_enable) { |
2411 | is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0; |
2412 | is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0; |
2413 | } |
2414 | |
2415 | if (sig->is_builtin() && |
2416 | ((state->stage == MESA_SHADER_TESS_CTRL && |
2417 | strcmp(func_name, "barrier") == 0) || |
2418 | is_begin_interlock || is_end_interlock)) { |
2419 | if (state->current_function == NULL__null || |
2420 | strcmp(state->current_function->function_name(), "main") != 0) { |
2421 | _mesa_glsl_error(&loc, state, |
2422 | "%s() may only be used in main()", func_name); |
2423 | } |
2424 | |
2425 | if (state->found_return) { |
2426 | _mesa_glsl_error(&loc, state, |
2427 | "%s() may not be used after return", func_name); |
2428 | } |
2429 | |
2430 | if (instructions != &state->current_function->body) { |
2431 | _mesa_glsl_error(&loc, state, |
2432 | "%s() may not be used in control flow", func_name); |
2433 | } |
2434 | } |
2435 | |
2436 | /* There can be only one begin/end interlock pair in the function. */ |
2437 | if (is_begin_interlock) { |
2438 | if (state->found_begin_interlock) |
2439 | _mesa_glsl_error(&loc, state, |
2440 | "beginInvocationInterlockARB may not be used twice"); |
2441 | state->found_begin_interlock = true; |
2442 | } else if (is_end_interlock) { |
2443 | if (!state->found_begin_interlock) |
2444 | _mesa_glsl_error(&loc, state, |
2445 | "endInvocationInterlockARB may not be used " |
2446 | "before beginInvocationInterlockARB"); |
2447 | if (state->found_end_interlock) |
2448 | _mesa_glsl_error(&loc, state, |
2449 | "endInvocationInterlockARB may not be used twice"); |
2450 | state->found_end_interlock = true; |
2451 | } |
2452 | |
2453 | value = generate_call(instructions, sig, &actual_parameters, sub_var, |
2454 | array_idx, state); |
2455 | if (!value) { |
2456 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type, |
2457 | "void_var", |
2458 | ir_var_temporary); |
2459 | instructions->push_tail(tmp); |
2460 | value = new(ctx) ir_dereference_variable(tmp); |
2461 | } |
2462 | } |
2463 | |
2464 | return value; |
2465 | } |
2466 | |
2467 | unreachable("not reached")do { (static_cast <bool> (!"not reached") ? void (0) : __assert_fail ("!\"not reached\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable(); } while (0); |
2468 | } |
2469 | |
2470 | bool |
2471 | ast_function_expression::has_sequence_subexpression() const |
2472 | { |
2473 | foreach_list_typed(const ast_node, ast, link, &this->expressions)for (const ast_node * ast = (!exec_node_is_tail_sentinel((& this->expressions)->head_sentinel.next) ? ((const ast_node *) (((uintptr_t) (&this->expressions)->head_sentinel .next) - (((char *) &((const ast_node *) (&this->expressions )->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((const ast_node *) (((uintptr_t) (ast)->link.next) - ((( char *) &((const ast_node *) (ast)->link.next)->link ) - ((char *) (ast)->link.next)))) : __null)) { |
2474 | if (ast->has_sequence_subexpression()) |
2475 | return true; |
2476 | } |
2477 | |
2478 | return false; |
2479 | } |
2480 | |
2481 | ir_rvalue * |
2482 | ast_aggregate_initializer::hir(exec_list *instructions, |
2483 | struct _mesa_glsl_parse_state *state) |
2484 | { |
2485 | void *ctx = state; |
2486 | YYLTYPE loc = this->get_location(); |
2487 | |
2488 | if (!this->constructor_type) { |
2489 | _mesa_glsl_error(&loc, state, "type of C-style initializer unknown"); |
2490 | return ir_rvalue::error_value(ctx); |
2491 | } |
2492 | const glsl_type *const constructor_type = this->constructor_type; |
2493 | |
2494 | if (!state->has_420pack()) { |
2495 | _mesa_glsl_error(&loc, state, "C-style initialization requires the " |
2496 | "GL_ARB_shading_language_420pack extension"); |
2497 | return ir_rvalue::error_value(ctx); |
2498 | } |
2499 | |
2500 | if (constructor_type->is_array()) { |
2501 | return process_array_constructor(instructions, constructor_type, &loc, |
2502 | &this->expressions, state); |
2503 | } |
2504 | |
2505 | if (constructor_type->is_struct()) { |
2506 | return process_record_constructor(instructions, constructor_type, &loc, |
2507 | &this->expressions, state); |
2508 | } |
2509 | |
2510 | return process_vec_mat_constructor(instructions, constructor_type, &loc, |
2511 | &this->expressions, state); |
2512 | } |