| File: | root/firefox-clang/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/ast_function.cpp |
| Warning: | line 370, column 7 Value stored to 'ir' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * Copyright © 2010 Intel Corporation |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice (including the next |
| 12 | * paragraph) shall be included in all copies or substantial portions of the |
| 13 | * Software. |
| 14 | * |
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| 21 | * DEALINGS IN THE SOFTWARE. |
| 22 | */ |
| 23 | |
| 24 | #include "glsl_symbol_table.h" |
| 25 | #include "ast.h" |
| 26 | #include "compiler/glsl_types.h" |
| 27 | #include "ir.h" |
| 28 | #include "main/mtypes.h" |
| 29 | #include "main/shaderobj.h" |
| 30 | #include "builtin_functions.h" |
| 31 | |
| 32 | static ir_rvalue * |
| 33 | convert_component(ir_rvalue *src, const glsl_type *desired_type); |
| 34 | |
| 35 | static unsigned |
| 36 | process_parameters(exec_list *instructions, exec_list *actual_parameters, |
| 37 | exec_list *parameters, |
| 38 | struct _mesa_glsl_parse_state *state) |
| 39 | { |
| 40 | void *mem_ctx = state; |
| 41 | unsigned count = 0; |
| 42 | |
| 43 | foreach_list_typed(ast_node, ast, link, parameters)for (ast_node * ast = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? ((ast_node *) (((uintptr_t) (parameters )->head_sentinel.next) - (((char *) &((ast_node *) (parameters )->head_sentinel.next)->link) - ((char *) (parameters)-> head_sentinel.next)))) : __null); (ast) != __null; (ast) = (! exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node * ) (((uintptr_t) (ast)->link.next) - (((char *) &((ast_node *) (ast)->link.next)->link) - ((char *) (ast)->link .next)))) : __null)) { |
| 44 | /* We need to process the parameters first in order to know if we can |
| 45 | * raise or not a unitialized warning. Calling set_is_lhs silence the |
| 46 | * warning for now. Raising the warning or not will be checked at |
| 47 | * verify_parameter_modes. |
| 48 | */ |
| 49 | ast->set_is_lhs(true); |
| 50 | ir_rvalue *result = ast->hir(instructions, state); |
| 51 | |
| 52 | /* Error happened processing function parameter */ |
| 53 | if (!result) { |
| 54 | actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx)); |
| 55 | count++; |
| 56 | continue; |
| 57 | } |
| 58 | |
| 59 | ir_constant *const constant = |
| 60 | result->constant_expression_value(mem_ctx); |
| 61 | |
| 62 | if (constant != NULL__null) |
| 63 | result = constant; |
| 64 | |
| 65 | actual_parameters->push_tail(result); |
| 66 | count++; |
| 67 | } |
| 68 | |
| 69 | return count; |
| 70 | } |
| 71 | |
| 72 | |
| 73 | /** |
| 74 | * Generate a source prototype for a function signature |
| 75 | * |
| 76 | * \param return_type Return type of the function. May be \c NULL. |
| 77 | * \param name Name of the function. |
| 78 | * \param parameters List of \c ir_instruction nodes representing the |
| 79 | * parameter list for the function. This may be either a |
| 80 | * formal (\c ir_variable) or actual (\c ir_rvalue) |
| 81 | * parameter list. Only the type is used. |
| 82 | * |
| 83 | * \return |
| 84 | * A ralloced string representing the prototype of the function. |
| 85 | */ |
| 86 | char * |
| 87 | prototype_string(const glsl_type *return_type, const char *name, |
| 88 | exec_list *parameters) |
| 89 | { |
| 90 | char *str = NULL__null; |
| 91 | |
| 92 | if (return_type != NULL__null) |
| 93 | str = ralloc_asprintf(NULL__null, "%s ", return_type->name); |
| 94 | |
| 95 | ralloc_asprintf_append(&str, "%s(", name); |
| 96 | |
| 97 | const char *comma = ""; |
| 98 | foreach_in_list(const ir_variable, param, parameters)for (const ir_variable *param = (!exec_node_is_tail_sentinel( (parameters)->head_sentinel.next) ? (const ir_variable *) ( (parameters)->head_sentinel.next) : __null); (param) != __null ; (param) = (!exec_node_is_tail_sentinel((param)->next) ? ( const ir_variable *) ((param)->next) : __null)) { |
| 99 | ralloc_asprintf_append(&str, "%s%s", comma, param->type->name); |
| 100 | comma = ", "; |
| 101 | } |
| 102 | |
| 103 | ralloc_strcat(&str, ")"); |
| 104 | return str; |
| 105 | } |
| 106 | |
| 107 | static bool |
| 108 | verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, |
| 109 | const ir_variable *formal, const ir_variable *actual) |
| 110 | { |
| 111 | /** |
| 112 | * From the ARB_shader_image_load_store specification: |
| 113 | * |
| 114 | * "The values of image variables qualified with coherent, |
| 115 | * volatile, restrict, readonly, or writeonly may not be passed |
| 116 | * to functions whose formal parameters lack such |
| 117 | * qualifiers. [...] It is legal to have additional qualifiers |
| 118 | * on a formal parameter, but not to have fewer." |
| 119 | */ |
| 120 | if (actual->data.memory_coherent && !formal->data.memory_coherent) { |
| 121 | _mesa_glsl_error(loc, state, |
| 122 | "function call parameter `%s' drops " |
| 123 | "`coherent' qualifier", formal->name); |
| 124 | return false; |
| 125 | } |
| 126 | |
| 127 | if (actual->data.memory_volatile && !formal->data.memory_volatile) { |
| 128 | _mesa_glsl_error(loc, state, |
| 129 | "function call parameter `%s' drops " |
| 130 | "`volatile' qualifier", formal->name); |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | if (actual->data.memory_restrict && !formal->data.memory_restrict) { |
| 135 | _mesa_glsl_error(loc, state, |
| 136 | "function call parameter `%s' drops " |
| 137 | "`restrict' qualifier", formal->name); |
| 138 | return false; |
| 139 | } |
| 140 | |
| 141 | if (actual->data.memory_read_only && !formal->data.memory_read_only) { |
| 142 | _mesa_glsl_error(loc, state, |
| 143 | "function call parameter `%s' drops " |
| 144 | "`readonly' qualifier", formal->name); |
| 145 | return false; |
| 146 | } |
| 147 | |
| 148 | if (actual->data.memory_write_only && !formal->data.memory_write_only) { |
| 149 | _mesa_glsl_error(loc, state, |
| 150 | "function call parameter `%s' drops " |
| 151 | "`writeonly' qualifier", formal->name); |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | return true; |
| 156 | } |
| 157 | |
| 158 | static bool |
| 159 | verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, |
| 160 | ir_variable *var) |
| 161 | { |
| 162 | if (!var || |
| 163 | (!var->is_in_shader_storage_block() && |
| 164 | var->data.mode != ir_var_shader_shared)) { |
| 165 | _mesa_glsl_error(loc, state, "First argument to atomic function " |
| 166 | "must be a buffer or shared variable"); |
| 167 | return false; |
| 168 | } |
| 169 | return true; |
| 170 | } |
| 171 | |
| 172 | static bool |
| 173 | is_atomic_function(const char *func_name) |
| 174 | { |
| 175 | return !strcmp(func_name, "atomicAdd") || |
| 176 | !strcmp(func_name, "atomicMin") || |
| 177 | !strcmp(func_name, "atomicMax") || |
| 178 | !strcmp(func_name, "atomicAnd") || |
| 179 | !strcmp(func_name, "atomicOr") || |
| 180 | !strcmp(func_name, "atomicXor") || |
| 181 | !strcmp(func_name, "atomicExchange") || |
| 182 | !strcmp(func_name, "atomicCompSwap"); |
| 183 | } |
| 184 | |
| 185 | /** |
| 186 | * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify |
| 187 | * that 'const_in' formal parameters (an extension in our IR) correspond to |
| 188 | * ir_constant actual parameters. |
| 189 | */ |
| 190 | static bool |
| 191 | verify_parameter_modes(_mesa_glsl_parse_state *state, |
| 192 | ir_function_signature *sig, |
| 193 | exec_list &actual_ir_parameters, |
| 194 | exec_list &actual_ast_parameters) |
| 195 | { |
| 196 | exec_node *actual_ir_node = actual_ir_parameters.get_head_raw(); |
| 197 | exec_node *actual_ast_node = actual_ast_parameters.get_head_raw(); |
| 198 | |
| 199 | foreach_in_list(const ir_variable, formal, &sig->parameters)for (const ir_variable *formal = (!exec_node_is_tail_sentinel ((&sig->parameters)->head_sentinel.next) ? (const ir_variable *) ((&sig->parameters)->head_sentinel.next) : __null ); (formal) != __null; (formal) = (!exec_node_is_tail_sentinel ((formal)->next) ? (const ir_variable *) ((formal)->next ) : __null)) { |
| 200 | /* The lists must be the same length. */ |
| 201 | assert(!actual_ir_node->is_tail_sentinel())(static_cast <bool> (!actual_ir_node->is_tail_sentinel ()) ? void (0) : __assert_fail ("!actual_ir_node->is_tail_sentinel()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 202 | assert(!actual_ast_node->is_tail_sentinel())(static_cast <bool> (!actual_ast_node->is_tail_sentinel ()) ? void (0) : __assert_fail ("!actual_ast_node->is_tail_sentinel()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 203 | |
| 204 | const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node; |
| 205 | const ast_expression *const actual_ast = |
| 206 | exec_node_data(ast_expression, actual_ast_node, link)((ast_expression *) (((uintptr_t) actual_ast_node) - (((char * ) &((ast_expression *) actual_ast_node)->link) - ((char *) actual_ast_node)))); |
| 207 | |
| 208 | /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always |
| 209 | * FIXME: 0:0(0). |
| 210 | */ |
| 211 | YYLTYPE loc = actual_ast->get_location(); |
| 212 | |
| 213 | /* Verify that 'const_in' parameters are ir_constants. */ |
| 214 | if (formal->data.mode == ir_var_const_in && |
| 215 | actual->ir_type != ir_type_constant) { |
| 216 | _mesa_glsl_error(&loc, state, |
| 217 | "parameter `in %s' must be a constant expression", |
| 218 | formal->name); |
| 219 | return false; |
| 220 | } |
| 221 | |
| 222 | /* Verify that shader_in parameters are shader inputs */ |
| 223 | if (formal->data.must_be_shader_input) { |
| 224 | const ir_rvalue *val = actual; |
| 225 | |
| 226 | /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */ |
| 227 | if (val->ir_type == ir_type_swizzle) { |
| 228 | if (!state->is_version(440, 0)) { |
| 229 | _mesa_glsl_error(&loc, state, |
| 230 | "parameter `%s` must not be swizzled", |
| 231 | formal->name); |
| 232 | return false; |
| 233 | } |
| 234 | val = ((ir_swizzle *)val)->val; |
| 235 | } |
| 236 | |
| 237 | for (;;) { |
| 238 | if (val->ir_type == ir_type_dereference_array) { |
| 239 | val = ((ir_dereference_array *)val)->array; |
| 240 | } else if (val->ir_type == ir_type_dereference_record && |
| 241 | !state->es_shader) { |
| 242 | val = ((ir_dereference_record *)val)->record; |
| 243 | } else |
| 244 | break; |
| 245 | } |
| 246 | |
| 247 | ir_variable *var = NULL__null; |
| 248 | if (const ir_dereference_variable *deref_var = val->as_dereference_variable()) |
| 249 | var = deref_var->variable_referenced(); |
| 250 | |
| 251 | if (!var || var->data.mode != ir_var_shader_in) { |
| 252 | _mesa_glsl_error(&loc, state, |
| 253 | "parameter `%s` must be a shader input", |
| 254 | formal->name); |
| 255 | return false; |
| 256 | } |
| 257 | |
| 258 | var->data.must_be_shader_input = 1; |
| 259 | } |
| 260 | |
| 261 | /* Verify that 'out' and 'inout' actual parameters are lvalues. */ |
| 262 | if (formal->data.mode == ir_var_function_out |
| 263 | || formal->data.mode == ir_var_function_inout) { |
| 264 | const char *mode = NULL__null; |
| 265 | switch (formal->data.mode) { |
| 266 | case ir_var_function_out: mode = "out"; break; |
| 267 | case ir_var_function_inout: mode = "inout"; break; |
| 268 | default: assert(false)(static_cast <bool> (false) ? void (0) : __assert_fail ( "false", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); break; |
| 269 | } |
| 270 | |
| 271 | /* This AST-based check catches errors like f(i++). The IR-based |
| 272 | * is_lvalue() is insufficient because the actual parameter at the |
| 273 | * IR-level is just a temporary value, which is an l-value. |
| 274 | */ |
| 275 | if (actual_ast->non_lvalue_description != NULL__null) { |
| 276 | _mesa_glsl_error(&loc, state, |
| 277 | "function parameter '%s %s' references a %s", |
| 278 | mode, formal->name, |
| 279 | actual_ast->non_lvalue_description); |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | ir_variable *var = actual->variable_referenced(); |
| 284 | |
| 285 | if (var && formal->data.mode == ir_var_function_inout) { |
| 286 | if ((var->data.mode == ir_var_auto || |
| 287 | var->data.mode == ir_var_shader_out) && |
| 288 | !var->data.assigned && |
| 289 | !is_gl_identifier(var->name)) { |
| 290 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", |
| 291 | var->name); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | if (var) |
| 296 | var->data.assigned = true; |
| 297 | |
| 298 | if (var && var->data.read_only) { |
| 299 | _mesa_glsl_error(&loc, state, |
| 300 | "function parameter '%s %s' references the " |
| 301 | "read-only variable '%s'", |
| 302 | mode, formal->name, |
| 303 | actual->variable_referenced()->name); |
| 304 | return false; |
| 305 | } else if (!actual->is_lvalue(state)) { |
| 306 | _mesa_glsl_error(&loc, state, |
| 307 | "function parameter '%s %s' is not an lvalue", |
| 308 | mode, formal->name); |
| 309 | return false; |
| 310 | } |
| 311 | } else { |
| 312 | assert(formal->data.mode == ir_var_function_in ||(static_cast <bool> (formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in) ? void (0) : __assert_fail ("formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )) |
| 313 | formal->data.mode == ir_var_const_in)(static_cast <bool> (formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in) ? void (0) : __assert_fail ("formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 314 | ir_variable *var = actual->variable_referenced(); |
| 315 | if (var) { |
| 316 | if ((var->data.mode == ir_var_auto || |
| 317 | var->data.mode == ir_var_shader_out) && |
| 318 | !var->data.assigned && |
| 319 | !is_gl_identifier(var->name)) { |
| 320 | _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", |
| 321 | var->name); |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | if (formal->type->is_image() && |
| 327 | actual->variable_referenced()) { |
| 328 | if (!verify_image_parameter(&loc, state, formal, |
| 329 | actual->variable_referenced())) |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | actual_ir_node = actual_ir_node->next; |
| 334 | actual_ast_node = actual_ast_node->next; |
| 335 | } |
| 336 | |
| 337 | /* The first parameter of atomic functions must be a buffer variable */ |
| 338 | const char *func_name = sig->function_name(); |
| 339 | bool is_atomic = is_atomic_function(func_name); |
| 340 | if (is_atomic) { |
| 341 | const ir_rvalue *const actual = |
| 342 | (ir_rvalue *) actual_ir_parameters.get_head_raw(); |
| 343 | |
| 344 | const ast_expression *const actual_ast = |
| 345 | exec_node_data(ast_expression,((ast_expression *) (((uintptr_t) actual_ast_parameters.get_head_raw ()) - (((char *) &((ast_expression *) actual_ast_parameters .get_head_raw())->link) - ((char *) actual_ast_parameters. get_head_raw())))) |
| 346 | actual_ast_parameters.get_head_raw(), link)((ast_expression *) (((uintptr_t) actual_ast_parameters.get_head_raw ()) - (((char *) &((ast_expression *) actual_ast_parameters .get_head_raw())->link) - ((char *) actual_ast_parameters. get_head_raw())))); |
| 347 | YYLTYPE loc = actual_ast->get_location(); |
| 348 | |
| 349 | if (!verify_first_atomic_parameter(&loc, state, |
| 350 | actual->variable_referenced())) { |
| 351 | return false; |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | return true; |
| 356 | } |
| 357 | |
| 358 | struct copy_index_deref_data { |
| 359 | void *mem_ctx; |
| 360 | exec_list *before_instructions; |
| 361 | }; |
| 362 | |
| 363 | static void |
| 364 | copy_index_derefs_to_temps(ir_instruction *ir, void *data) |
| 365 | { |
| 366 | struct copy_index_deref_data *d = (struct copy_index_deref_data *)data; |
| 367 | |
| 368 | if (ir->ir_type == ir_type_dereference_array) { |
| 369 | ir_dereference_array *a = (ir_dereference_array *) ir; |
| 370 | ir = a->array->as_dereference(); |
Value stored to 'ir' is never read | |
| 371 | |
| 372 | ir_rvalue *idx = a->array_index; |
| 373 | ir_variable *var = idx->variable_referenced(); |
| 374 | |
| 375 | /* If the index is read only it cannot change so there is no need |
| 376 | * to copy it. |
| 377 | */ |
| 378 | if (!var || var->data.read_only || var->data.memory_read_only) |
| 379 | return; |
| 380 | |
| 381 | ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp", |
| 382 | ir_var_temporary); |
| 383 | d->before_instructions->push_tail(tmp); |
| 384 | |
| 385 | ir_dereference_variable *const deref_tmp_1 = |
| 386 | new(d->mem_ctx) ir_dereference_variable(tmp); |
| 387 | ir_assignment *const assignment = |
| 388 | new(d->mem_ctx) ir_assignment(deref_tmp_1, |
| 389 | idx->clone(d->mem_ctx, NULL__null)); |
| 390 | d->before_instructions->push_tail(assignment); |
| 391 | |
| 392 | /* Replace the array index with a dereference of the new temporary */ |
| 393 | ir_dereference_variable *const deref_tmp_2 = |
| 394 | new(d->mem_ctx) ir_dereference_variable(tmp); |
| 395 | a->array_index = deref_tmp_2; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | static void |
| 400 | fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type, |
| 401 | exec_list *before_instructions, exec_list *after_instructions, |
| 402 | bool parameter_is_inout) |
| 403 | { |
| 404 | ir_expression *const expr = actual->as_expression(); |
| 405 | |
| 406 | /* If the types match exactly and the parameter is not a vector-extract, |
| 407 | * nothing needs to be done to fix the parameter. |
| 408 | */ |
| 409 | if (formal_type == actual->type |
| 410 | && (expr == NULL__null || expr->operation != ir_binop_vector_extract) |
| 411 | && actual->as_dereference_variable()) |
| 412 | return; |
| 413 | |
| 414 | /* An array index could also be an out variable so we need to make a copy |
| 415 | * of them before the function is called. |
| 416 | */ |
| 417 | if (!actual->as_dereference_variable()) { |
| 418 | struct copy_index_deref_data data; |
| 419 | data.mem_ctx = mem_ctx; |
| 420 | data.before_instructions = before_instructions; |
| 421 | |
| 422 | visit_tree(actual, copy_index_derefs_to_temps, &data); |
| 423 | } |
| 424 | |
| 425 | /* To convert an out parameter, we need to create a temporary variable to |
| 426 | * hold the value before conversion, and then perform the conversion after |
| 427 | * the function call returns. |
| 428 | * |
| 429 | * This has the effect of transforming code like this: |
| 430 | * |
| 431 | * void f(out int x); |
| 432 | * float value; |
| 433 | * f(value); |
| 434 | * |
| 435 | * Into IR that's equivalent to this: |
| 436 | * |
| 437 | * void f(out int x); |
| 438 | * float value; |
| 439 | * int out_parameter_conversion; |
| 440 | * f(out_parameter_conversion); |
| 441 | * value = float(out_parameter_conversion); |
| 442 | * |
| 443 | * If the parameter is an ir_expression of ir_binop_vector_extract, |
| 444 | * additional conversion is needed in the post-call re-write. |
| 445 | */ |
| 446 | ir_variable *tmp = |
| 447 | new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary); |
| 448 | |
| 449 | before_instructions->push_tail(tmp); |
| 450 | |
| 451 | /* If the parameter is an inout parameter, copy the value of the actual |
| 452 | * parameter to the new temporary. Note that no type conversion is allowed |
| 453 | * here because inout parameters must match types exactly. |
| 454 | */ |
| 455 | if (parameter_is_inout) { |
| 456 | /* Inout parameters should never require conversion, since that would |
| 457 | * require an implicit conversion to exist both to and from the formal |
| 458 | * parameter type, and there are no bidirectional implicit conversions. |
| 459 | */ |
| 460 | assert (actual->type == formal_type)(static_cast <bool> (actual->type == formal_type) ? void (0) : __assert_fail ("actual->type == formal_type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 461 | |
| 462 | ir_dereference_variable *const deref_tmp_1 = |
| 463 | new(mem_ctx) ir_dereference_variable(tmp); |
| 464 | ir_assignment *const assignment = |
| 465 | new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL__null)); |
| 466 | before_instructions->push_tail(assignment); |
| 467 | } |
| 468 | |
| 469 | /* Replace the parameter in the call with a dereference of the new |
| 470 | * temporary. |
| 471 | */ |
| 472 | ir_dereference_variable *const deref_tmp_2 = |
| 473 | new(mem_ctx) ir_dereference_variable(tmp); |
| 474 | actual->replace_with(deref_tmp_2); |
| 475 | |
| 476 | |
| 477 | /* Copy the temporary variable to the actual parameter with optional |
| 478 | * type conversion applied. |
| 479 | */ |
| 480 | ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp); |
| 481 | if (actual->type != formal_type) |
| 482 | rhs = convert_component(rhs, actual->type); |
| 483 | |
| 484 | ir_rvalue *lhs = actual; |
| 485 | if (expr != NULL__null && expr->operation == ir_binop_vector_extract) { |
| 486 | lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx, |
| 487 | NULL__null), |
| 488 | expr->operands[1]->clone(mem_ctx, |
| 489 | NULL__null)); |
| 490 | } |
| 491 | |
| 492 | ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs); |
| 493 | after_instructions->push_tail(assignment_2); |
| 494 | } |
| 495 | |
| 496 | /** |
| 497 | * Generate a function call. |
| 498 | * |
| 499 | * For non-void functions, this returns a dereference of the temporary |
| 500 | * variable which stores the return value for the call. For void functions, |
| 501 | * this returns NULL. |
| 502 | */ |
| 503 | static ir_rvalue * |
| 504 | generate_call(exec_list *instructions, ir_function_signature *sig, |
| 505 | exec_list *actual_parameters, |
| 506 | ir_variable *sub_var, |
| 507 | ir_rvalue *array_idx, |
| 508 | struct _mesa_glsl_parse_state *state) |
| 509 | { |
| 510 | void *ctx = state; |
| 511 | exec_list post_call_conversions; |
| 512 | |
| 513 | /* Perform implicit conversion of arguments. For out parameters, we need |
| 514 | * to place them in a temporary variable and do the conversion after the |
| 515 | * call takes place. Since we haven't emitted the call yet, we'll place |
| 516 | * the post-call conversions in a temporary exec_list, and emit them later. |
| 517 | */ |
| 518 | foreach_two_lists(formal_node, &sig->parameters,for (struct exec_node * formal_node = (&sig->parameters )->head_sentinel.next, * actual_node = (actual_parameters) ->head_sentinel.next, * __next1 = formal_node->next, * __next2 = actual_node->next ; __next1 != __null && __next2 != __null ; formal_node = __next1, actual_node = __next2, __next1 = __next1->next, __next2 = __next2->next) |
| 519 | actual_node, actual_parameters)for (struct exec_node * formal_node = (&sig->parameters )->head_sentinel.next, * actual_node = (actual_parameters) ->head_sentinel.next, * __next1 = formal_node->next, * __next2 = actual_node->next ; __next1 != __null && __next2 != __null ; formal_node = __next1, actual_node = __next2, __next1 = __next1->next, __next2 = __next2->next) { |
| 520 | ir_rvalue *actual = (ir_rvalue *) actual_node; |
| 521 | ir_variable *formal = (ir_variable *) formal_node; |
| 522 | |
| 523 | if (formal->type->is_numeric() || formal->type->is_boolean()) { |
| 524 | switch (formal->data.mode) { |
| 525 | case ir_var_const_in: |
| 526 | case ir_var_function_in: { |
| 527 | ir_rvalue *converted |
| 528 | = convert_component(actual, formal->type); |
| 529 | actual->replace_with(converted); |
| 530 | break; |
| 531 | } |
| 532 | case ir_var_function_out: |
| 533 | case ir_var_function_inout: |
| 534 | fix_parameter(ctx, actual, formal->type, |
| 535 | instructions, &post_call_conversions, |
| 536 | formal->data.mode == ir_var_function_inout); |
| 537 | break; |
| 538 | default: |
| 539 | assert (!"Illegal formal parameter mode")(static_cast <bool> (!"Illegal formal parameter mode") ? void (0) : __assert_fail ("!\"Illegal formal parameter mode\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 540 | break; |
| 541 | } |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says: |
| 546 | * |
| 547 | * "Initializers for const declarations must be formed from literal |
| 548 | * values, other const variables (not including function call |
| 549 | * paramaters), or expressions of these. |
| 550 | * |
| 551 | * Constructors may be used in such expressions, but function calls may |
| 552 | * not." |
| 553 | * |
| 554 | * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says: |
| 555 | * |
| 556 | * "A constant expression is one of |
| 557 | * |
| 558 | * ... |
| 559 | * |
| 560 | * - a built-in function call whose arguments are all constant |
| 561 | * expressions, with the exception of the texture lookup |
| 562 | * functions, the noise functions, and ftransform. The built-in |
| 563 | * functions dFdx, dFdy, and fwidth must return 0 when evaluated |
| 564 | * inside an initializer with an argument that is a constant |
| 565 | * expression." |
| 566 | * |
| 567 | * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says: |
| 568 | * |
| 569 | * "A constant expression is one of |
| 570 | * |
| 571 | * ... |
| 572 | * |
| 573 | * - a built-in function call whose arguments are all constant |
| 574 | * expressions, with the exception of the texture lookup |
| 575 | * functions." |
| 576 | * |
| 577 | * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says: |
| 578 | * |
| 579 | * "A constant expression is one of |
| 580 | * |
| 581 | * ... |
| 582 | * |
| 583 | * - a built-in function call whose arguments are all constant |
| 584 | * expressions, with the exception of the texture lookup |
| 585 | * functions. The built-in functions dFdx, dFdy, and fwidth must |
| 586 | * return 0 when evaluated inside an initializer with an argument |
| 587 | * that is a constant expression." |
| 588 | * |
| 589 | * If the function call is a constant expression, don't generate any |
| 590 | * instructions; just generate an ir_constant. |
| 591 | */ |
| 592 | if (state->is_version(120, 100) || |
| 593 | state->ctx->Const.AllowGLSLBuiltinConstantExpression) { |
| 594 | ir_constant *value = sig->constant_expression_value(ctx, |
| 595 | actual_parameters, |
| 596 | NULL__null); |
| 597 | if (value != NULL__null) { |
| 598 | return value; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | ir_dereference_variable *deref = NULL__null; |
| 603 | if (!sig->return_type->is_void()) { |
| 604 | /* Create a new temporary to hold the return value. */ |
| 605 | char *const name = ir_variable::temporaries_allocate_names |
| 606 | ? ralloc_asprintf(ctx, "%s_retval", sig->function_name()) |
| 607 | : NULL__null; |
| 608 | |
| 609 | ir_variable *var; |
| 610 | |
| 611 | var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary); |
| 612 | instructions->push_tail(var); |
| 613 | |
| 614 | ralloc_free(name); |
| 615 | |
| 616 | deref = new(ctx) ir_dereference_variable(var); |
| 617 | } |
| 618 | |
| 619 | ir_call *call = new(ctx) ir_call(sig, deref, |
| 620 | actual_parameters, sub_var, array_idx); |
| 621 | instructions->push_tail(call); |
| 622 | |
| 623 | /* Also emit any necessary out-parameter conversions. */ |
| 624 | instructions->append_list(&post_call_conversions); |
| 625 | |
| 626 | return deref ? deref->clone(ctx, NULL__null) : NULL__null; |
| 627 | } |
| 628 | |
| 629 | /** |
| 630 | * Given a function name and parameter list, find the matching signature. |
| 631 | */ |
| 632 | static ir_function_signature * |
| 633 | match_function_by_name(const char *name, |
| 634 | exec_list *actual_parameters, |
| 635 | struct _mesa_glsl_parse_state *state) |
| 636 | { |
| 637 | ir_function *f = state->symbols->get_function(name); |
| 638 | ir_function_signature *local_sig = NULL__null; |
| 639 | ir_function_signature *sig = NULL__null; |
| 640 | |
| 641 | /* Is the function hidden by a record type constructor? */ |
| 642 | if (state->symbols->get_type(name)) |
| 643 | return sig; /* no match */ |
| 644 | |
| 645 | /* Is the function hidden by a variable (impossible in 1.10)? */ |
| 646 | if (!state->symbols->separate_function_namespace |
| 647 | && state->symbols->get_variable(name)) |
| 648 | return sig; /* no match */ |
| 649 | |
| 650 | if (f != NULL__null) { |
| 651 | /* In desktop GL, the presence of a user-defined signature hides any |
| 652 | * built-in signatures, so we must ignore them. In contrast, in ES2 |
| 653 | * user-defined signatures add new overloads, so we must consider them. |
| 654 | */ |
| 655 | bool allow_builtins = state->es_shader || !f->has_user_signature(); |
| 656 | |
| 657 | /* Look for a match in the local shader. If exact, we're done. */ |
| 658 | bool is_exact = false; |
| 659 | sig = local_sig = f->matching_signature(state, actual_parameters, |
| 660 | allow_builtins, &is_exact); |
| 661 | if (is_exact) |
| 662 | return sig; |
| 663 | |
| 664 | if (!allow_builtins) |
| 665 | return sig; |
| 666 | } |
| 667 | |
| 668 | /* Local shader has no exact candidates; check the built-ins. */ |
| 669 | sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters); |
| 670 | |
| 671 | /* if _mesa_glsl_find_builtin_function failed, fall back to the result |
| 672 | * of choose_best_inexact_overload() instead. This should only affect |
| 673 | * GLES. |
| 674 | */ |
| 675 | return sig ? sig : local_sig; |
| 676 | } |
| 677 | |
| 678 | static ir_function_signature * |
| 679 | match_subroutine_by_name(const char *name, |
| 680 | exec_list *actual_parameters, |
| 681 | struct _mesa_glsl_parse_state *state, |
| 682 | ir_variable **var_r) |
| 683 | { |
| 684 | void *ctx = state; |
| 685 | ir_function_signature *sig = NULL__null; |
| 686 | ir_function *f, *found = NULL__null; |
| 687 | const char *new_name; |
| 688 | ir_variable *var; |
| 689 | bool is_exact = false; |
| 690 | |
| 691 | new_name = |
| 692 | ralloc_asprintf(ctx, "%s_%s", |
| 693 | _mesa_shader_stage_to_subroutine_prefix(state->stage), |
| 694 | name); |
| 695 | var = state->symbols->get_variable(new_name); |
| 696 | if (!var) |
| 697 | return NULL__null; |
| 698 | |
| 699 | for (int i = 0; i < state->num_subroutine_types; i++) { |
| 700 | f = state->subroutine_types[i]; |
| 701 | if (strcmp(f->name, var->type->without_array()->name)) |
| 702 | continue; |
| 703 | found = f; |
| 704 | break; |
| 705 | } |
| 706 | |
| 707 | if (!found) |
| 708 | return NULL__null; |
| 709 | *var_r = var; |
| 710 | sig = found->matching_signature(state, actual_parameters, |
| 711 | false, &is_exact); |
| 712 | return sig; |
| 713 | } |
| 714 | |
| 715 | static ir_rvalue * |
| 716 | generate_array_index(void *mem_ctx, exec_list *instructions, |
| 717 | struct _mesa_glsl_parse_state *state, YYLTYPE loc, |
| 718 | const ast_expression *array, ast_expression *idx, |
| 719 | const char **function_name, exec_list *actual_parameters) |
| 720 | { |
| 721 | if (array->oper == ast_array_index) { |
| 722 | /* This handles arrays of arrays */ |
| 723 | ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions, |
| 724 | state, loc, |
| 725 | array->subexpressions[0], |
| 726 | array->subexpressions[1], |
| 727 | function_name, |
| 728 | actual_parameters); |
| 729 | ir_rvalue *outer_array_idx = idx->hir(instructions, state); |
| 730 | |
| 731 | YYLTYPE index_loc = idx->get_location(); |
| 732 | return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array, |
| 733 | outer_array_idx, loc, |
| 734 | index_loc); |
| 735 | } else { |
| 736 | ir_variable *sub_var = NULL__null; |
| 737 | *function_name = array->primary_expression.identifier; |
| 738 | |
| 739 | if (!match_subroutine_by_name(*function_name, actual_parameters, |
| 740 | state, &sub_var)) { |
| 741 | _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'", |
| 742 | *function_name); |
| 743 | *function_name = NULL__null; /* indicate error condition to caller */ |
| 744 | return NULL__null; |
| 745 | } |
| 746 | |
| 747 | ir_rvalue *outer_array_idx = idx->hir(instructions, state); |
| 748 | return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx); |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | static bool |
| 753 | function_exists(_mesa_glsl_parse_state *state, |
| 754 | struct glsl_symbol_table *symbols, const char *name) |
| 755 | { |
| 756 | ir_function *f = symbols->get_function(name); |
| 757 | if (f != NULL__null) { |
| 758 | foreach_in_list(ir_function_signature, sig, &f->signatures)for (ir_function_signature *sig = (!exec_node_is_tail_sentinel ((&f->signatures)->head_sentinel.next) ? (ir_function_signature *) ((&f->signatures)->head_sentinel.next) : __null ); (sig) != __null; (sig) = (!exec_node_is_tail_sentinel((sig )->next) ? (ir_function_signature *) ((sig)->next) : __null )) { |
| 759 | if (sig->is_builtin() && !sig->is_builtin_available(state)) |
| 760 | continue; |
| 761 | return true; |
| 762 | } |
| 763 | } |
| 764 | return false; |
| 765 | } |
| 766 | |
| 767 | static void |
| 768 | print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc, |
| 769 | ir_function *f) |
| 770 | { |
| 771 | if (f == NULL__null) |
| 772 | return; |
| 773 | |
| 774 | foreach_in_list(ir_function_signature, sig, &f->signatures)for (ir_function_signature *sig = (!exec_node_is_tail_sentinel ((&f->signatures)->head_sentinel.next) ? (ir_function_signature *) ((&f->signatures)->head_sentinel.next) : __null ); (sig) != __null; (sig) = (!exec_node_is_tail_sentinel((sig )->next) ? (ir_function_signature *) ((sig)->next) : __null )) { |
| 775 | if (sig->is_builtin() && !sig->is_builtin_available(state)) |
| 776 | continue; |
| 777 | |
| 778 | char *str = prototype_string(sig->return_type, f->name, |
| 779 | &sig->parameters); |
| 780 | _mesa_glsl_error(loc, state, " %s", str); |
| 781 | ralloc_free(str); |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | /** |
| 786 | * Raise a "no matching function" error, listing all possible overloads the |
| 787 | * compiler considered so developers can figure out what went wrong. |
| 788 | */ |
| 789 | static void |
| 790 | no_matching_function_error(const char *name, |
| 791 | YYLTYPE *loc, |
| 792 | exec_list *actual_parameters, |
| 793 | _mesa_glsl_parse_state *state) |
| 794 | { |
| 795 | gl_shader *sh = _mesa_glsl_get_builtin_function_shader(); |
| 796 | |
| 797 | if (!function_exists(state, state->symbols, name) |
| 798 | && (!state->uses_builtin_functions |
| 799 | || !function_exists(state, sh->symbols, name))) { |
| 800 | _mesa_glsl_error(loc, state, "no function with name '%s'", name); |
| 801 | } else { |
| 802 | char *str = prototype_string(NULL__null, name, actual_parameters); |
| 803 | _mesa_glsl_error(loc, state, |
| 804 | "no matching function for call to `%s';" |
| 805 | " candidates are:", |
| 806 | str); |
| 807 | ralloc_free(str); |
| 808 | |
| 809 | print_function_prototypes(state, loc, |
| 810 | state->symbols->get_function(name)); |
| 811 | |
| 812 | if (state->uses_builtin_functions) { |
| 813 | print_function_prototypes(state, loc, |
| 814 | sh->symbols->get_function(name)); |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | /** |
| 820 | * Perform automatic type conversion of constructor parameters |
| 821 | * |
| 822 | * This implements the rules in the "Conversion and Scalar Constructors" |
| 823 | * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. |
| 824 | */ |
| 825 | static ir_rvalue * |
| 826 | convert_component(ir_rvalue *src, const glsl_type *desired_type) |
| 827 | { |
| 828 | void *ctx = ralloc_parent(src); |
| 829 | const unsigned a = desired_type->base_type; |
| 830 | const unsigned b = src->type->base_type; |
| 831 | ir_expression *result = NULL__null; |
| 832 | |
| 833 | if (src->type->is_error()) |
| 834 | return src; |
| 835 | |
| 836 | assert(a <= GLSL_TYPE_IMAGE)(static_cast <bool> (a <= GLSL_TYPE_IMAGE) ? void (0 ) : __assert_fail ("a <= GLSL_TYPE_IMAGE", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 837 | assert(b <= GLSL_TYPE_IMAGE)(static_cast <bool> (b <= GLSL_TYPE_IMAGE) ? void (0 ) : __assert_fail ("b <= GLSL_TYPE_IMAGE", __builtin_FILE ( ), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 838 | |
| 839 | if (a == b) |
| 840 | return src; |
| 841 | |
| 842 | switch (a) { |
| 843 | case GLSL_TYPE_UINT: |
| 844 | switch (b) { |
| 845 | case GLSL_TYPE_INT: |
| 846 | result = new(ctx) ir_expression(ir_unop_i2u, src); |
| 847 | break; |
| 848 | case GLSL_TYPE_FLOAT: |
| 849 | result = new(ctx) ir_expression(ir_unop_f2u, src); |
| 850 | break; |
| 851 | case GLSL_TYPE_BOOL: |
| 852 | result = new(ctx) ir_expression(ir_unop_i2u, |
| 853 | new(ctx) ir_expression(ir_unop_b2i, |
| 854 | src)); |
| 855 | break; |
| 856 | case GLSL_TYPE_DOUBLE: |
| 857 | result = new(ctx) ir_expression(ir_unop_d2u, src); |
| 858 | break; |
| 859 | case GLSL_TYPE_UINT64: |
| 860 | result = new(ctx) ir_expression(ir_unop_u642u, src); |
| 861 | break; |
| 862 | case GLSL_TYPE_INT64: |
| 863 | result = new(ctx) ir_expression(ir_unop_i642u, src); |
| 864 | break; |
| 865 | case GLSL_TYPE_SAMPLER: |
| 866 | result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src); |
| 867 | break; |
| 868 | case GLSL_TYPE_IMAGE: |
| 869 | result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src); |
| 870 | break; |
| 871 | } |
| 872 | break; |
| 873 | case GLSL_TYPE_INT: |
| 874 | switch (b) { |
| 875 | case GLSL_TYPE_UINT: |
| 876 | result = new(ctx) ir_expression(ir_unop_u2i, src); |
| 877 | break; |
| 878 | case GLSL_TYPE_FLOAT: |
| 879 | result = new(ctx) ir_expression(ir_unop_f2i, src); |
| 880 | break; |
| 881 | case GLSL_TYPE_BOOL: |
| 882 | result = new(ctx) ir_expression(ir_unop_b2i, src); |
| 883 | break; |
| 884 | case GLSL_TYPE_DOUBLE: |
| 885 | result = new(ctx) ir_expression(ir_unop_d2i, src); |
| 886 | break; |
| 887 | case GLSL_TYPE_UINT64: |
| 888 | result = new(ctx) ir_expression(ir_unop_u642i, src); |
| 889 | break; |
| 890 | case GLSL_TYPE_INT64: |
| 891 | result = new(ctx) ir_expression(ir_unop_i642i, src); |
| 892 | break; |
| 893 | } |
| 894 | break; |
| 895 | case GLSL_TYPE_FLOAT: |
| 896 | switch (b) { |
| 897 | case GLSL_TYPE_UINT: |
| 898 | result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL__null); |
| 899 | break; |
| 900 | case GLSL_TYPE_INT: |
| 901 | result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL__null); |
| 902 | break; |
| 903 | case GLSL_TYPE_BOOL: |
| 904 | result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL__null); |
| 905 | break; |
| 906 | case GLSL_TYPE_DOUBLE: |
| 907 | result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL__null); |
| 908 | break; |
| 909 | case GLSL_TYPE_UINT64: |
| 910 | result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL__null); |
| 911 | break; |
| 912 | case GLSL_TYPE_INT64: |
| 913 | result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL__null); |
| 914 | break; |
| 915 | } |
| 916 | break; |
| 917 | case GLSL_TYPE_BOOL: |
| 918 | switch (b) { |
| 919 | case GLSL_TYPE_UINT: |
| 920 | result = new(ctx) ir_expression(ir_unop_i2b, |
| 921 | new(ctx) ir_expression(ir_unop_u2i, |
| 922 | src)); |
| 923 | break; |
| 924 | case GLSL_TYPE_INT: |
| 925 | result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL__null); |
| 926 | break; |
| 927 | case GLSL_TYPE_FLOAT: |
| 928 | result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL__null); |
| 929 | break; |
| 930 | case GLSL_TYPE_DOUBLE: |
| 931 | result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL__null); |
| 932 | break; |
| 933 | case GLSL_TYPE_UINT64: |
| 934 | result = new(ctx) ir_expression(ir_unop_i642b, |
| 935 | new(ctx) ir_expression(ir_unop_u642i64, |
| 936 | src)); |
| 937 | break; |
| 938 | case GLSL_TYPE_INT64: |
| 939 | result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL__null); |
| 940 | break; |
| 941 | } |
| 942 | break; |
| 943 | case GLSL_TYPE_DOUBLE: |
| 944 | switch (b) { |
| 945 | case GLSL_TYPE_INT: |
| 946 | result = new(ctx) ir_expression(ir_unop_i2d, src); |
| 947 | break; |
| 948 | case GLSL_TYPE_UINT: |
| 949 | result = new(ctx) ir_expression(ir_unop_u2d, src); |
| 950 | break; |
| 951 | case GLSL_TYPE_BOOL: |
| 952 | result = new(ctx) ir_expression(ir_unop_f2d, |
| 953 | new(ctx) ir_expression(ir_unop_b2f, |
| 954 | src)); |
| 955 | break; |
| 956 | case GLSL_TYPE_FLOAT: |
| 957 | result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL__null); |
| 958 | break; |
| 959 | case GLSL_TYPE_UINT64: |
| 960 | result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL__null); |
| 961 | break; |
| 962 | case GLSL_TYPE_INT64: |
| 963 | result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL__null); |
| 964 | break; |
| 965 | } |
| 966 | break; |
| 967 | case GLSL_TYPE_UINT64: |
| 968 | switch (b) { |
| 969 | case GLSL_TYPE_INT: |
| 970 | result = new(ctx) ir_expression(ir_unop_i2u64, src); |
| 971 | break; |
| 972 | case GLSL_TYPE_UINT: |
| 973 | result = new(ctx) ir_expression(ir_unop_u2u64, src); |
| 974 | break; |
| 975 | case GLSL_TYPE_BOOL: |
| 976 | result = new(ctx) ir_expression(ir_unop_i642u64, |
| 977 | new(ctx) ir_expression(ir_unop_b2i64, |
| 978 | src)); |
| 979 | break; |
| 980 | case GLSL_TYPE_FLOAT: |
| 981 | result = new(ctx) ir_expression(ir_unop_f2u64, src); |
| 982 | break; |
| 983 | case GLSL_TYPE_DOUBLE: |
| 984 | result = new(ctx) ir_expression(ir_unop_d2u64, src); |
| 985 | break; |
| 986 | case GLSL_TYPE_INT64: |
| 987 | result = new(ctx) ir_expression(ir_unop_i642u64, src); |
| 988 | break; |
| 989 | } |
| 990 | break; |
| 991 | case GLSL_TYPE_INT64: |
| 992 | switch (b) { |
| 993 | case GLSL_TYPE_INT: |
| 994 | result = new(ctx) ir_expression(ir_unop_i2i64, src); |
| 995 | break; |
| 996 | case GLSL_TYPE_UINT: |
| 997 | result = new(ctx) ir_expression(ir_unop_u2i64, src); |
| 998 | break; |
| 999 | case GLSL_TYPE_BOOL: |
| 1000 | result = new(ctx) ir_expression(ir_unop_b2i64, src); |
| 1001 | break; |
| 1002 | case GLSL_TYPE_FLOAT: |
| 1003 | result = new(ctx) ir_expression(ir_unop_f2i64, src); |
| 1004 | break; |
| 1005 | case GLSL_TYPE_DOUBLE: |
| 1006 | result = new(ctx) ir_expression(ir_unop_d2i64, src); |
| 1007 | break; |
| 1008 | case GLSL_TYPE_UINT64: |
| 1009 | result = new(ctx) ir_expression(ir_unop_u642i64, src); |
| 1010 | break; |
| 1011 | } |
| 1012 | break; |
| 1013 | case GLSL_TYPE_SAMPLER: |
| 1014 | switch (b) { |
| 1015 | case GLSL_TYPE_UINT: |
| 1016 | result = new(ctx) |
| 1017 | ir_expression(ir_unop_pack_sampler_2x32, desired_type, src); |
| 1018 | break; |
| 1019 | } |
| 1020 | break; |
| 1021 | case GLSL_TYPE_IMAGE: |
| 1022 | switch (b) { |
| 1023 | case GLSL_TYPE_UINT: |
| 1024 | result = new(ctx) |
| 1025 | ir_expression(ir_unop_pack_image_2x32, desired_type, src); |
| 1026 | break; |
| 1027 | } |
| 1028 | break; |
| 1029 | } |
| 1030 | |
| 1031 | assert(result != NULL)(static_cast <bool> (result != __null) ? void (0) : __assert_fail ("result != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1032 | assert(result->type == desired_type)(static_cast <bool> (result->type == desired_type) ? void (0) : __assert_fail ("result->type == desired_type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1033 | |
| 1034 | /* Try constant folding; it may fold in the conversion we just added. */ |
| 1035 | ir_constant *const constant = result->constant_expression_value(ctx); |
| 1036 | return (constant != NULL__null) ? (ir_rvalue *) constant : (ir_rvalue *) result; |
| 1037 | } |
| 1038 | |
| 1039 | |
| 1040 | /** |
| 1041 | * Perform automatic type and constant conversion of constructor parameters |
| 1042 | * |
| 1043 | * This implements the rules in the "Implicit Conversions" rules, not the |
| 1044 | * "Conversion and Scalar Constructors". |
| 1045 | * |
| 1046 | * After attempting the implicit conversion, an attempt to convert into a |
| 1047 | * constant valued expression is also done. |
| 1048 | * |
| 1049 | * The \c from \c ir_rvalue is converted "in place". |
| 1050 | * |
| 1051 | * \param from Operand that is being converted |
| 1052 | * \param to Base type the operand will be converted to |
| 1053 | * \param state GLSL compiler state |
| 1054 | * |
| 1055 | * \return |
| 1056 | * If the attempt to convert into a constant expression succeeds, \c true is |
| 1057 | * returned. Otherwise \c false is returned. |
| 1058 | */ |
| 1059 | static bool |
| 1060 | implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to, |
| 1061 | struct _mesa_glsl_parse_state *state) |
| 1062 | { |
| 1063 | void *mem_ctx = state; |
| 1064 | ir_rvalue *result = from; |
| 1065 | |
| 1066 | if (to != from->type->base_type) { |
| 1067 | const glsl_type *desired_type = |
| 1068 | glsl_type::get_instance(to, |
| 1069 | from->type->vector_elements, |
| 1070 | from->type->matrix_columns); |
| 1071 | |
| 1072 | if (from->type->can_implicitly_convert_to(desired_type, state)) { |
| 1073 | /* Even though convert_component() implements the constructor |
| 1074 | * conversion rules (not the implicit conversion rules), its safe |
| 1075 | * to use it here because we already checked that the implicit |
| 1076 | * conversion is legal. |
| 1077 | */ |
| 1078 | result = convert_component(from, desired_type); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | ir_rvalue *const constant = result->constant_expression_value(mem_ctx); |
| 1083 | |
| 1084 | if (constant != NULL__null) |
| 1085 | result = constant; |
| 1086 | |
| 1087 | if (from != result) { |
| 1088 | from->replace_with(result); |
| 1089 | from = result; |
| 1090 | } |
| 1091 | |
| 1092 | return constant != NULL__null; |
| 1093 | } |
| 1094 | |
| 1095 | |
| 1096 | /** |
| 1097 | * Dereference a specific component from a scalar, vector, or matrix |
| 1098 | */ |
| 1099 | static ir_rvalue * |
| 1100 | dereference_component(ir_rvalue *src, unsigned component) |
| 1101 | { |
| 1102 | void *ctx = ralloc_parent(src); |
| 1103 | assert(component < src->type->components())(static_cast <bool> (component < src->type->components ()) ? void (0) : __assert_fail ("component < src->type->components()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1104 | |
| 1105 | /* If the source is a constant, just create a new constant instead of a |
| 1106 | * dereference of the existing constant. |
| 1107 | */ |
| 1108 | ir_constant *constant = src->as_constant(); |
| 1109 | if (constant) |
| 1110 | return new(ctx) ir_constant(constant, component); |
| 1111 | |
| 1112 | if (src->type->is_scalar()) { |
| 1113 | return src; |
| 1114 | } else if (src->type->is_vector()) { |
| 1115 | return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); |
| 1116 | } else { |
| 1117 | assert(src->type->is_matrix())(static_cast <bool> (src->type->is_matrix()) ? void (0) : __assert_fail ("src->type->is_matrix()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1118 | |
| 1119 | /* Dereference a row of the matrix, then call this function again to get |
| 1120 | * a specific element from that row. |
| 1121 | */ |
| 1122 | const int c = component / src->type->column_type()->vector_elements; |
| 1123 | const int r = component % src->type->column_type()->vector_elements; |
| 1124 | ir_constant *const col_index = new(ctx) ir_constant(c); |
| 1125 | ir_dereference *const col = new(ctx) ir_dereference_array(src, |
| 1126 | col_index); |
| 1127 | |
| 1128 | col->type = src->type->column_type(); |
| 1129 | |
| 1130 | return dereference_component(col, r); |
| 1131 | } |
| 1132 | |
| 1133 | assert(!"Should not get here.")(static_cast <bool> (!"Should not get here.") ? void (0 ) : __assert_fail ("!\"Should not get here.\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1134 | return NULL__null; |
| 1135 | } |
| 1136 | |
| 1137 | |
| 1138 | static ir_rvalue * |
| 1139 | process_vec_mat_constructor(exec_list *instructions, |
| 1140 | const glsl_type *constructor_type, |
| 1141 | YYLTYPE *loc, exec_list *parameters, |
| 1142 | struct _mesa_glsl_parse_state *state) |
| 1143 | { |
| 1144 | void *ctx = state; |
| 1145 | |
| 1146 | /* The ARB_shading_language_420pack spec says: |
| 1147 | * |
| 1148 | * "If an initializer is a list of initializers enclosed in curly braces, |
| 1149 | * the variable being declared must be a vector, a matrix, an array, or a |
| 1150 | * structure. |
| 1151 | * |
| 1152 | * int i = { 1 }; // illegal, i is not an aggregate" |
| 1153 | */ |
| 1154 | if (constructor_type->vector_elements <= 1) { |
| 1155 | _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, " |
| 1156 | "matrices, arrays, and structs"); |
| 1157 | return ir_rvalue::error_value(ctx); |
| 1158 | } |
| 1159 | |
| 1160 | exec_list actual_parameters; |
| 1161 | const unsigned parameter_count = |
| 1162 | process_parameters(instructions, &actual_parameters, parameters, state); |
| 1163 | |
| 1164 | if (parameter_count == 0 |
| 1165 | || (constructor_type->is_vector() && |
| 1166 | constructor_type->vector_elements != parameter_count) |
| 1167 | || (constructor_type->is_matrix() && |
| 1168 | constructor_type->matrix_columns != parameter_count)) { |
| 1169 | _mesa_glsl_error(loc, state, "%s constructor must have %u parameters", |
| 1170 | constructor_type->is_vector() ? "vector" : "matrix", |
| 1171 | constructor_type->vector_elements); |
| 1172 | return ir_rvalue::error_value(ctx); |
| 1173 | } |
| 1174 | |
| 1175 | bool all_parameters_are_constant = true; |
| 1176 | |
| 1177 | /* Type cast each parameter and, if possible, fold constants. */ |
| 1178 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
| 1179 | /* Apply implicit conversions (not the scalar constructor rules, see the |
| 1180 | * spec quote above!) and attempt to convert the parameter to a constant |
| 1181 | * valued expression. After doing so, track whether or not all the |
| 1182 | * parameters to the constructor are trivially constant valued |
| 1183 | * expressions. |
| 1184 | */ |
| 1185 | all_parameters_are_constant &= |
| 1186 | implicitly_convert_component(ir, constructor_type->base_type, state); |
| 1187 | |
| 1188 | if (constructor_type->is_matrix()) { |
| 1189 | if (ir->type != constructor_type->column_type()) { |
| 1190 | _mesa_glsl_error(loc, state, "type error in matrix constructor: " |
| 1191 | "expected: %s, found %s", |
| 1192 | constructor_type->column_type()->name, |
| 1193 | ir->type->name); |
| 1194 | return ir_rvalue::error_value(ctx); |
| 1195 | } |
| 1196 | } else if (ir->type != constructor_type->get_scalar_type()) { |
| 1197 | _mesa_glsl_error(loc, state, "type error in vector constructor: " |
| 1198 | "expected: %s, found %s", |
| 1199 | constructor_type->get_scalar_type()->name, |
| 1200 | ir->type->name); |
| 1201 | return ir_rvalue::error_value(ctx); |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | if (all_parameters_are_constant) |
| 1206 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
| 1207 | |
| 1208 | ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor", |
| 1209 | ir_var_temporary); |
| 1210 | instructions->push_tail(var); |
| 1211 | |
| 1212 | int i = 0; |
| 1213 | |
| 1214 | foreach_in_list(ir_rvalue, rhs, &actual_parameters)for (ir_rvalue *rhs = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null); (rhs) != __null; (rhs) = (!exec_node_is_tail_sentinel((rhs)->next) ? (ir_rvalue *) ((rhs)->next) : __null)) { |
| 1215 | ir_instruction *assignment = NULL__null; |
| 1216 | |
| 1217 | if (var->type->is_matrix()) { |
| 1218 | ir_rvalue *lhs = |
| 1219 | new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); |
| 1220 | assignment = new(ctx) ir_assignment(lhs, rhs); |
| 1221 | } else { |
| 1222 | /* use writemask rather than index for vector */ |
| 1223 | assert(var->type->is_vector())(static_cast <bool> (var->type->is_vector()) ? void (0) : __assert_fail ("var->type->is_vector()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1224 | assert(i < 4)(static_cast <bool> (i < 4) ? void (0) : __assert_fail ("i < 4", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1225 | ir_dereference *lhs = new(ctx) ir_dereference_variable(var); |
| 1226 | assignment = new(ctx) ir_assignment(lhs, rhs, NULL__null, |
| 1227 | (unsigned)(1 << i)); |
| 1228 | } |
| 1229 | |
| 1230 | instructions->push_tail(assignment); |
| 1231 | |
| 1232 | i++; |
| 1233 | } |
| 1234 | |
| 1235 | return new(ctx) ir_dereference_variable(var); |
| 1236 | } |
| 1237 | |
| 1238 | |
| 1239 | static ir_rvalue * |
| 1240 | process_array_constructor(exec_list *instructions, |
| 1241 | const glsl_type *constructor_type, |
| 1242 | YYLTYPE *loc, exec_list *parameters, |
| 1243 | struct _mesa_glsl_parse_state *state) |
| 1244 | { |
| 1245 | void *ctx = state; |
| 1246 | /* Array constructors come in two forms: sized and unsized. Sized array |
| 1247 | * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 |
| 1248 | * variables. In this case the number of parameters must exactly match the |
| 1249 | * specified size of the array. |
| 1250 | * |
| 1251 | * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' |
| 1252 | * are vec4 variables. In this case the size of the array being constructed |
| 1253 | * is determined by the number of parameters. |
| 1254 | * |
| 1255 | * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: |
| 1256 | * |
| 1257 | * "There must be exactly the same number of arguments as the size of |
| 1258 | * the array being constructed. If no size is present in the |
| 1259 | * constructor, then the array is explicitly sized to the number of |
| 1260 | * arguments provided. The arguments are assigned in order, starting at |
| 1261 | * element 0, to the elements of the constructed array. Each argument |
| 1262 | * must be the same type as the element type of the array, or be a type |
| 1263 | * that can be converted to the element type of the array according to |
| 1264 | * Section 4.1.10 "Implicit Conversions."" |
| 1265 | */ |
| 1266 | exec_list actual_parameters; |
| 1267 | const unsigned parameter_count = |
| 1268 | process_parameters(instructions, &actual_parameters, parameters, state); |
| 1269 | bool is_unsized_array = constructor_type->is_unsized_array(); |
| 1270 | |
| 1271 | if ((parameter_count == 0) || |
| 1272 | (!is_unsized_array && (constructor_type->length != parameter_count))) { |
| 1273 | const unsigned min_param = is_unsized_array |
| 1274 | ? 1 : constructor_type->length; |
| 1275 | |
| 1276 | _mesa_glsl_error(loc, state, "array constructor must have %s %u " |
| 1277 | "parameter%s", |
| 1278 | is_unsized_array ? "at least" : "exactly", |
| 1279 | min_param, (min_param <= 1) ? "" : "s"); |
| 1280 | return ir_rvalue::error_value(ctx); |
| 1281 | } |
| 1282 | |
| 1283 | if (is_unsized_array) { |
| 1284 | constructor_type = |
| 1285 | glsl_type::get_array_instance(constructor_type->fields.array, |
| 1286 | parameter_count); |
| 1287 | assert(constructor_type != NULL)(static_cast <bool> (constructor_type != __null) ? void (0) : __assert_fail ("constructor_type != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1288 | assert(constructor_type->length == parameter_count)(static_cast <bool> (constructor_type->length == parameter_count ) ? void (0) : __assert_fail ("constructor_type->length == parameter_count" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1289 | } |
| 1290 | |
| 1291 | bool all_parameters_are_constant = true; |
| 1292 | const glsl_type *element_type = constructor_type->fields.array; |
| 1293 | |
| 1294 | /* Type cast each parameter and, if possible, fold constants. */ |
| 1295 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
| 1296 | /* Apply implicit conversions (not the scalar constructor rules, see the |
| 1297 | * spec quote above!) and attempt to convert the parameter to a constant |
| 1298 | * valued expression. After doing so, track whether or not all the |
| 1299 | * parameters to the constructor are trivially constant valued |
| 1300 | * expressions. |
| 1301 | */ |
| 1302 | all_parameters_are_constant &= |
| 1303 | implicitly_convert_component(ir, element_type->base_type, state); |
| 1304 | |
| 1305 | if (constructor_type->fields.array->is_unsized_array()) { |
| 1306 | /* As the inner parameters of the constructor are created without |
| 1307 | * knowledge of each other we need to check to make sure unsized |
| 1308 | * parameters of unsized constructors all end up with the same size. |
| 1309 | * |
| 1310 | * e.g we make sure to fail for a constructor like this: |
| 1311 | * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)), |
| 1312 | * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)), |
| 1313 | * vec4[](vec4(0.0), vec4(1.0))); |
| 1314 | */ |
| 1315 | if (element_type->is_unsized_array()) { |
| 1316 | /* This is the first parameter so just get the type */ |
| 1317 | element_type = ir->type; |
| 1318 | } else if (element_type != ir->type) { |
| 1319 | _mesa_glsl_error(loc, state, "type error in array constructor: " |
| 1320 | "expected: %s, found %s", |
| 1321 | element_type->name, |
| 1322 | ir->type->name); |
| 1323 | return ir_rvalue::error_value(ctx); |
| 1324 | } |
| 1325 | } else if (ir->type != constructor_type->fields.array) { |
| 1326 | _mesa_glsl_error(loc, state, "type error in array constructor: " |
| 1327 | "expected: %s, found %s", |
| 1328 | constructor_type->fields.array->name, |
| 1329 | ir->type->name); |
| 1330 | return ir_rvalue::error_value(ctx); |
| 1331 | } else { |
| 1332 | element_type = ir->type; |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | if (constructor_type->fields.array->is_unsized_array()) { |
| 1337 | constructor_type = |
| 1338 | glsl_type::get_array_instance(element_type, |
| 1339 | parameter_count); |
| 1340 | assert(constructor_type != NULL)(static_cast <bool> (constructor_type != __null) ? void (0) : __assert_fail ("constructor_type != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1341 | assert(constructor_type->length == parameter_count)(static_cast <bool> (constructor_type->length == parameter_count ) ? void (0) : __assert_fail ("constructor_type->length == parameter_count" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1342 | } |
| 1343 | |
| 1344 | if (all_parameters_are_constant) |
| 1345 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
| 1346 | |
| 1347 | ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", |
| 1348 | ir_var_temporary); |
| 1349 | instructions->push_tail(var); |
| 1350 | |
| 1351 | int i = 0; |
| 1352 | foreach_in_list(ir_rvalue, rhs, &actual_parameters)for (ir_rvalue *rhs = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null); (rhs) != __null; (rhs) = (!exec_node_is_tail_sentinel((rhs)->next) ? (ir_rvalue *) ((rhs)->next) : __null)) { |
| 1353 | ir_rvalue *lhs = new(ctx) ir_dereference_array(var, |
| 1354 | new(ctx) ir_constant(i)); |
| 1355 | |
| 1356 | ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs); |
| 1357 | instructions->push_tail(assignment); |
| 1358 | |
| 1359 | i++; |
| 1360 | } |
| 1361 | |
| 1362 | return new(ctx) ir_dereference_variable(var); |
| 1363 | } |
| 1364 | |
| 1365 | |
| 1366 | /** |
| 1367 | * Determine if a list consists of a single scalar r-value |
| 1368 | */ |
| 1369 | static bool |
| 1370 | single_scalar_parameter(exec_list *parameters) |
| 1371 | { |
| 1372 | const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw(); |
| 1373 | assert(((ir_rvalue *)p)->as_rvalue() != NULL)(static_cast <bool> (((ir_rvalue *)p)->as_rvalue() != __null) ? void (0) : __assert_fail ("((ir_rvalue *)p)->as_rvalue() != NULL" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1374 | |
| 1375 | return (p->type->is_scalar() && p->next->is_tail_sentinel()); |
| 1376 | } |
| 1377 | |
| 1378 | |
| 1379 | /** |
| 1380 | * Generate inline code for a vector constructor |
| 1381 | * |
| 1382 | * The generated constructor code will consist of a temporary variable |
| 1383 | * declaration of the same type as the constructor. A sequence of assignments |
| 1384 | * from constructor parameters to the temporary will follow. |
| 1385 | * |
| 1386 | * \return |
| 1387 | * An \c ir_dereference_variable of the temprorary generated in the constructor |
| 1388 | * body. |
| 1389 | */ |
| 1390 | static ir_rvalue * |
| 1391 | emit_inline_vector_constructor(const glsl_type *type, |
| 1392 | exec_list *instructions, |
| 1393 | exec_list *parameters, |
| 1394 | void *ctx) |
| 1395 | { |
| 1396 | assert(!parameters->is_empty())(static_cast <bool> (!parameters->is_empty()) ? void (0) : __assert_fail ("!parameters->is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1397 | |
| 1398 | ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); |
| 1399 | instructions->push_tail(var); |
| 1400 | |
| 1401 | /* There are three kinds of vector constructors. |
| 1402 | * |
| 1403 | * - Construct a vector from a single scalar by replicating that scalar to |
| 1404 | * all components of the vector. |
| 1405 | * |
| 1406 | * - Construct a vector from at least a matrix. This case should already |
| 1407 | * have been taken care of in ast_function_expression::hir by breaking |
| 1408 | * down the matrix into a series of column vectors. |
| 1409 | * |
| 1410 | * - Construct a vector from an arbirary combination of vectors and |
| 1411 | * scalars. The components of the constructor parameters are assigned |
| 1412 | * to the vector in order until the vector is full. |
| 1413 | */ |
| 1414 | const unsigned lhs_components = type->components(); |
| 1415 | if (single_scalar_parameter(parameters)) { |
| 1416 | ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw(); |
| 1417 | ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, |
| 1418 | lhs_components); |
| 1419 | ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); |
| 1420 | const unsigned mask = (1U << lhs_components) - 1; |
| 1421 | |
| 1422 | assert(rhs->type == lhs->type)(static_cast <bool> (rhs->type == lhs->type) ? void (0) : __assert_fail ("rhs->type == lhs->type", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1423 | |
| 1424 | ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL__null, mask); |
| 1425 | instructions->push_tail(inst); |
| 1426 | } else { |
| 1427 | unsigned base_component = 0; |
| 1428 | unsigned base_lhs_component = 0; |
| 1429 | ir_constant_data data; |
| 1430 | unsigned constant_mask = 0, constant_components = 0; |
| 1431 | |
| 1432 | memset(&data, 0, sizeof(data)); |
| 1433 | |
| 1434 | foreach_in_list(ir_rvalue, param, parameters)for (ir_rvalue *param = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? (ir_rvalue *) ((parameters)->head_sentinel .next) : __null); (param) != __null; (param) = (!exec_node_is_tail_sentinel ((param)->next) ? (ir_rvalue *) ((param)->next) : __null )) { |
| 1435 | unsigned rhs_components = param->type->components(); |
| 1436 | |
| 1437 | /* Do not try to assign more components to the vector than it has! */ |
| 1438 | if ((rhs_components + base_lhs_component) > lhs_components) { |
| 1439 | rhs_components = lhs_components - base_lhs_component; |
| 1440 | } |
| 1441 | |
| 1442 | const ir_constant *const c = param->as_constant(); |
| 1443 | if (c != NULL__null) { |
| 1444 | for (unsigned i = 0; i < rhs_components; i++) { |
| 1445 | switch (c->type->base_type) { |
| 1446 | case GLSL_TYPE_UINT: |
| 1447 | data.u[i + base_component] = c->get_uint_component(i); |
| 1448 | break; |
| 1449 | case GLSL_TYPE_INT: |
| 1450 | data.i[i + base_component] = c->get_int_component(i); |
| 1451 | break; |
| 1452 | case GLSL_TYPE_FLOAT: |
| 1453 | data.f[i + base_component] = c->get_float_component(i); |
| 1454 | break; |
| 1455 | case GLSL_TYPE_DOUBLE: |
| 1456 | data.d[i + base_component] = c->get_double_component(i); |
| 1457 | break; |
| 1458 | case GLSL_TYPE_BOOL: |
| 1459 | data.b[i + base_component] = c->get_bool_component(i); |
| 1460 | break; |
| 1461 | case GLSL_TYPE_UINT64: |
| 1462 | data.u64[i + base_component] = c->get_uint64_component(i); |
| 1463 | break; |
| 1464 | case GLSL_TYPE_INT64: |
| 1465 | data.i64[i + base_component] = c->get_int64_component(i); |
| 1466 | break; |
| 1467 | default: |
| 1468 | assert(!"Should not get here.")(static_cast <bool> (!"Should not get here.") ? void (0 ) : __assert_fail ("!\"Should not get here.\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1469 | break; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | /* Mask of fields to be written in the assignment. */ |
| 1474 | constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; |
| 1475 | constant_components += rhs_components; |
| 1476 | |
| 1477 | base_component += rhs_components; |
| 1478 | } |
| 1479 | /* Advance the component index by the number of components |
| 1480 | * that were just assigned. |
| 1481 | */ |
| 1482 | base_lhs_component += rhs_components; |
| 1483 | } |
| 1484 | |
| 1485 | if (constant_mask != 0) { |
| 1486 | ir_dereference *lhs = new(ctx) ir_dereference_variable(var); |
| 1487 | const glsl_type *rhs_type = |
| 1488 | glsl_type::get_instance(var->type->base_type, |
| 1489 | constant_components, |
| 1490 | 1); |
| 1491 | ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); |
| 1492 | |
| 1493 | ir_instruction *inst = |
| 1494 | new(ctx) ir_assignment(lhs, rhs, NULL__null, constant_mask); |
| 1495 | instructions->push_tail(inst); |
| 1496 | } |
| 1497 | |
| 1498 | base_component = 0; |
| 1499 | foreach_in_list(ir_rvalue, param, parameters)for (ir_rvalue *param = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? (ir_rvalue *) ((parameters)->head_sentinel .next) : __null); (param) != __null; (param) = (!exec_node_is_tail_sentinel ((param)->next) ? (ir_rvalue *) ((param)->next) : __null )) { |
| 1500 | unsigned rhs_components = param->type->components(); |
| 1501 | |
| 1502 | /* Do not try to assign more components to the vector than it has! */ |
| 1503 | if ((rhs_components + base_component) > lhs_components) { |
| 1504 | rhs_components = lhs_components - base_component; |
| 1505 | } |
| 1506 | |
| 1507 | /* If we do not have any components left to copy, break out of the |
| 1508 | * loop. This can happen when initializing a vec4 with a mat3 as the |
| 1509 | * mat3 would have been broken into a series of column vectors. |
| 1510 | */ |
| 1511 | if (rhs_components == 0) { |
| 1512 | break; |
| 1513 | } |
| 1514 | |
| 1515 | const ir_constant *const c = param->as_constant(); |
| 1516 | if (c == NULL__null) { |
| 1517 | /* Mask of fields to be written in the assignment. */ |
| 1518 | const unsigned write_mask = ((1U << rhs_components) - 1) |
| 1519 | << base_component; |
| 1520 | |
| 1521 | ir_dereference *lhs = new(ctx) ir_dereference_variable(var); |
| 1522 | |
| 1523 | /* Generate a swizzle so that LHS and RHS sizes match. */ |
| 1524 | ir_rvalue *rhs = |
| 1525 | new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components); |
| 1526 | |
| 1527 | ir_instruction *inst = |
| 1528 | new(ctx) ir_assignment(lhs, rhs, NULL__null, write_mask); |
| 1529 | instructions->push_tail(inst); |
| 1530 | } |
| 1531 | |
| 1532 | /* Advance the component index by the number of components that were |
| 1533 | * just assigned. |
| 1534 | */ |
| 1535 | base_component += rhs_components; |
| 1536 | } |
| 1537 | } |
| 1538 | return new(ctx) ir_dereference_variable(var); |
| 1539 | } |
| 1540 | |
| 1541 | |
| 1542 | /** |
| 1543 | * Generate assignment of a portion of a vector to a portion of a matrix column |
| 1544 | * |
| 1545 | * \param src_base First component of the source to be used in assignment |
| 1546 | * \param column Column of destination to be assiged |
| 1547 | * \param row_base First component of the destination column to be assigned |
| 1548 | * \param count Number of components to be assigned |
| 1549 | * |
| 1550 | * \note |
| 1551 | * \c src_base + \c count must be less than or equal to the number of |
| 1552 | * components in the source vector. |
| 1553 | */ |
| 1554 | static ir_instruction * |
| 1555 | assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, |
| 1556 | ir_rvalue *src, unsigned src_base, unsigned count, |
| 1557 | void *mem_ctx) |
| 1558 | { |
| 1559 | ir_constant *col_idx = new(mem_ctx) ir_constant(column); |
| 1560 | ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, |
| 1561 | col_idx); |
| 1562 | |
| 1563 | assert(column_ref->type->components() >= (row_base + count))(static_cast <bool> (column_ref->type->components () >= (row_base + count)) ? void (0) : __assert_fail ("column_ref->type->components() >= (row_base + count)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1564 | assert(src->type->components() >= (src_base + count))(static_cast <bool> (src->type->components() >= (src_base + count)) ? void (0) : __assert_fail ("src->type->components() >= (src_base + count)" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1565 | |
| 1566 | /* Generate a swizzle that extracts the number of components from the source |
| 1567 | * that are to be assigned to the column of the matrix. |
| 1568 | */ |
| 1569 | if (count < src->type->vector_elements) { |
| 1570 | src = new(mem_ctx) ir_swizzle(src, |
| 1571 | src_base + 0, src_base + 1, |
| 1572 | src_base + 2, src_base + 3, |
| 1573 | count); |
| 1574 | } |
| 1575 | |
| 1576 | /* Mask of fields to be written in the assignment. */ |
| 1577 | const unsigned write_mask = ((1U << count) - 1) << row_base; |
| 1578 | |
| 1579 | return new(mem_ctx) ir_assignment(column_ref, src, NULL__null, write_mask); |
| 1580 | } |
| 1581 | |
| 1582 | |
| 1583 | /** |
| 1584 | * Generate inline code for a matrix constructor |
| 1585 | * |
| 1586 | * The generated constructor code will consist of a temporary variable |
| 1587 | * declaration of the same type as the constructor. A sequence of assignments |
| 1588 | * from constructor parameters to the temporary will follow. |
| 1589 | * |
| 1590 | * \return |
| 1591 | * An \c ir_dereference_variable of the temprorary generated in the constructor |
| 1592 | * body. |
| 1593 | */ |
| 1594 | static ir_rvalue * |
| 1595 | emit_inline_matrix_constructor(const glsl_type *type, |
| 1596 | exec_list *instructions, |
| 1597 | exec_list *parameters, |
| 1598 | void *ctx) |
| 1599 | { |
| 1600 | assert(!parameters->is_empty())(static_cast <bool> (!parameters->is_empty()) ? void (0) : __assert_fail ("!parameters->is_empty()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1601 | |
| 1602 | ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); |
| 1603 | instructions->push_tail(var); |
| 1604 | |
| 1605 | /* There are three kinds of matrix constructors. |
| 1606 | * |
| 1607 | * - Construct a matrix from a single scalar by replicating that scalar to |
| 1608 | * along the diagonal of the matrix and setting all other components to |
| 1609 | * zero. |
| 1610 | * |
| 1611 | * - Construct a matrix from an arbirary combination of vectors and |
| 1612 | * scalars. The components of the constructor parameters are assigned |
| 1613 | * to the matrix in column-major order until the matrix is full. |
| 1614 | * |
| 1615 | * - Construct a matrix from a single matrix. The source matrix is copied |
| 1616 | * to the upper left portion of the constructed matrix, and the remaining |
| 1617 | * elements take values from the identity matrix. |
| 1618 | */ |
| 1619 | ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw(); |
| 1620 | if (single_scalar_parameter(parameters)) { |
| 1621 | /* Assign the scalar to the X component of a vec4, and fill the remaining |
| 1622 | * components with zero. |
| 1623 | */ |
| 1624 | glsl_base_type param_base_type = first_param->type->base_type; |
| 1625 | assert(first_param->type->is_float() || first_param->type->is_double())(static_cast <bool> (first_param->type->is_float( ) || first_param->type->is_double()) ? void (0) : __assert_fail ("first_param->type->is_float() || first_param->type->is_double()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1626 | ir_variable *rhs_var = |
| 1627 | new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1), |
| 1628 | "mat_ctor_vec", |
| 1629 | ir_var_temporary); |
| 1630 | instructions->push_tail(rhs_var); |
| 1631 | |
| 1632 | ir_constant_data zero; |
| 1633 | for (unsigned i = 0; i < 4; i++) |
| 1634 | if (first_param->type->is_float()) |
| 1635 | zero.f[i] = 0.0; |
| 1636 | else |
| 1637 | zero.d[i] = 0.0; |
| 1638 | |
| 1639 | ir_instruction *inst = |
| 1640 | new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), |
| 1641 | new(ctx) ir_constant(rhs_var->type, &zero)); |
| 1642 | instructions->push_tail(inst); |
| 1643 | |
| 1644 | ir_dereference *const rhs_ref = |
| 1645 | new(ctx) ir_dereference_variable(rhs_var); |
| 1646 | |
| 1647 | inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL__null, 0x01); |
| 1648 | instructions->push_tail(inst); |
| 1649 | |
| 1650 | /* Assign the temporary vector to each column of the destination matrix |
| 1651 | * with a swizzle that puts the X component on the diagonal of the |
| 1652 | * matrix. In some cases this may mean that the X component does not |
| 1653 | * get assigned into the column at all (i.e., when the matrix has more |
| 1654 | * columns than rows). |
| 1655 | */ |
| 1656 | static const unsigned rhs_swiz[4][4] = { |
| 1657 | { 0, 1, 1, 1 }, |
| 1658 | { 1, 0, 1, 1 }, |
| 1659 | { 1, 1, 0, 1 }, |
| 1660 | { 1, 1, 1, 0 } |
| 1661 | }; |
| 1662 | |
| 1663 | const unsigned cols_to_init = MIN2(type->matrix_columns,( (type->matrix_columns)<(type->vector_elements) ? ( type->matrix_columns) : (type->vector_elements) ) |
| 1664 | type->vector_elements)( (type->matrix_columns)<(type->vector_elements) ? ( type->matrix_columns) : (type->vector_elements) ); |
| 1665 | for (unsigned i = 0; i < cols_to_init; i++) { |
| 1666 | ir_constant *const col_idx = new(ctx) ir_constant(i); |
| 1667 | ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, |
| 1668 | col_idx); |
| 1669 | |
| 1670 | ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); |
| 1671 | ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], |
| 1672 | type->vector_elements); |
| 1673 | |
| 1674 | inst = new(ctx) ir_assignment(col_ref, rhs); |
| 1675 | instructions->push_tail(inst); |
| 1676 | } |
| 1677 | |
| 1678 | for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { |
| 1679 | ir_constant *const col_idx = new(ctx) ir_constant(i); |
| 1680 | ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, |
| 1681 | col_idx); |
| 1682 | |
| 1683 | ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); |
| 1684 | ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, |
| 1685 | type->vector_elements); |
| 1686 | |
| 1687 | inst = new(ctx) ir_assignment(col_ref, rhs); |
| 1688 | instructions->push_tail(inst); |
| 1689 | } |
| 1690 | } else if (first_param->type->is_matrix()) { |
| 1691 | /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: |
| 1692 | * |
| 1693 | * "If a matrix is constructed from a matrix, then each component |
| 1694 | * (column i, row j) in the result that has a corresponding |
| 1695 | * component (column i, row j) in the argument will be initialized |
| 1696 | * from there. All other components will be initialized to the |
| 1697 | * identity matrix. If a matrix argument is given to a matrix |
| 1698 | * constructor, it is an error to have any other arguments." |
| 1699 | */ |
| 1700 | assert(first_param->next->is_tail_sentinel())(static_cast <bool> (first_param->next->is_tail_sentinel ()) ? void (0) : __assert_fail ("first_param->next->is_tail_sentinel()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 1701 | ir_rvalue *const src_matrix = first_param; |
| 1702 | |
| 1703 | /* If the source matrix is smaller, pre-initialize the relavent parts of |
| 1704 | * the destination matrix to the identity matrix. |
| 1705 | */ |
| 1706 | if ((src_matrix->type->matrix_columns < var->type->matrix_columns) || |
| 1707 | (src_matrix->type->vector_elements < var->type->vector_elements)) { |
| 1708 | |
| 1709 | /* If the source matrix has fewer rows, every column of the |
| 1710 | * destination must be initialized. Otherwise only the columns in |
| 1711 | * the destination that do not exist in the source must be |
| 1712 | * initialized. |
| 1713 | */ |
| 1714 | unsigned col = |
| 1715 | (src_matrix->type->vector_elements < var->type->vector_elements) |
| 1716 | ? 0 : src_matrix->type->matrix_columns; |
| 1717 | |
| 1718 | const glsl_type *const col_type = var->type->column_type(); |
| 1719 | for (/* empty */; col < var->type->matrix_columns; col++) { |
| 1720 | ir_constant_data ident; |
| 1721 | |
| 1722 | if (!col_type->is_double()) { |
| 1723 | ident.f[0] = 0.0f; |
| 1724 | ident.f[1] = 0.0f; |
| 1725 | ident.f[2] = 0.0f; |
| 1726 | ident.f[3] = 0.0f; |
| 1727 | ident.f[col] = 1.0f; |
| 1728 | } else { |
| 1729 | ident.d[0] = 0.0; |
| 1730 | ident.d[1] = 0.0; |
| 1731 | ident.d[2] = 0.0; |
| 1732 | ident.d[3] = 0.0; |
| 1733 | ident.d[col] = 1.0; |
| 1734 | } |
| 1735 | |
| 1736 | ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); |
| 1737 | |
| 1738 | ir_rvalue *const lhs = |
| 1739 | new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); |
| 1740 | |
| 1741 | ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs); |
| 1742 | instructions->push_tail(inst); |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | /* Assign columns from the source matrix to the destination matrix. |
| 1747 | * |
| 1748 | * Since the parameter will be used in the RHS of multiple assignments, |
| 1749 | * generate a temporary and copy the paramter there. |
| 1750 | */ |
| 1751 | ir_variable *const rhs_var = |
| 1752 | new(ctx) ir_variable(first_param->type, "mat_ctor_mat", |
| 1753 | ir_var_temporary); |
| 1754 | instructions->push_tail(rhs_var); |
| 1755 | |
| 1756 | ir_dereference *const rhs_var_ref = |
| 1757 | new(ctx) ir_dereference_variable(rhs_var); |
| 1758 | ir_instruction *const inst = |
| 1759 | new(ctx) ir_assignment(rhs_var_ref, first_param); |
| 1760 | instructions->push_tail(inst); |
| 1761 | |
| 1762 | const unsigned last_row = MIN2(src_matrix->type->vector_elements,( (src_matrix->type->vector_elements)<(var->type-> vector_elements) ? (src_matrix->type->vector_elements) : (var->type->vector_elements) ) |
| 1763 | var->type->vector_elements)( (src_matrix->type->vector_elements)<(var->type-> vector_elements) ? (src_matrix->type->vector_elements) : (var->type->vector_elements) ); |
| 1764 | const unsigned last_col = MIN2(src_matrix->type->matrix_columns,( (src_matrix->type->matrix_columns)<(var->type-> matrix_columns) ? (src_matrix->type->matrix_columns) : ( var->type->matrix_columns) ) |
| 1765 | var->type->matrix_columns)( (src_matrix->type->matrix_columns)<(var->type-> matrix_columns) ? (src_matrix->type->matrix_columns) : ( var->type->matrix_columns) ); |
| 1766 | |
| 1767 | unsigned swiz[4] = { 0, 0, 0, 0 }; |
| 1768 | for (unsigned i = 1; i < last_row; i++) |
| 1769 | swiz[i] = i; |
| 1770 | |
| 1771 | const unsigned write_mask = (1U << last_row) - 1; |
| 1772 | |
| 1773 | for (unsigned i = 0; i < last_col; i++) { |
| 1774 | ir_dereference *const lhs = |
| 1775 | new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); |
| 1776 | ir_rvalue *const rhs_col = |
| 1777 | new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); |
| 1778 | |
| 1779 | /* If one matrix has columns that are smaller than the columns of the |
| 1780 | * other matrix, wrap the column access of the larger with a swizzle |
| 1781 | * so that the LHS and RHS of the assignment have the same size (and |
| 1782 | * therefore have the same type). |
| 1783 | * |
| 1784 | * It would be perfectly valid to unconditionally generate the |
| 1785 | * swizzles, this this will typically result in a more compact IR |
| 1786 | * tree. |
| 1787 | */ |
| 1788 | ir_rvalue *rhs; |
| 1789 | if (lhs->type->vector_elements != rhs_col->type->vector_elements) { |
| 1790 | rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); |
| 1791 | } else { |
| 1792 | rhs = rhs_col; |
| 1793 | } |
| 1794 | |
| 1795 | ir_instruction *inst = |
| 1796 | new(ctx) ir_assignment(lhs, rhs, NULL__null, write_mask); |
| 1797 | instructions->push_tail(inst); |
| 1798 | } |
| 1799 | } else { |
| 1800 | const unsigned cols = type->matrix_columns; |
| 1801 | const unsigned rows = type->vector_elements; |
| 1802 | unsigned remaining_slots = rows * cols; |
| 1803 | unsigned col_idx = 0; |
| 1804 | unsigned row_idx = 0; |
| 1805 | |
| 1806 | foreach_in_list(ir_rvalue, rhs, parameters)for (ir_rvalue *rhs = (!exec_node_is_tail_sentinel((parameters )->head_sentinel.next) ? (ir_rvalue *) ((parameters)->head_sentinel .next) : __null); (rhs) != __null; (rhs) = (!exec_node_is_tail_sentinel ((rhs)->next) ? (ir_rvalue *) ((rhs)->next) : __null)) { |
| 1807 | unsigned rhs_components = rhs->type->components(); |
| 1808 | unsigned rhs_base = 0; |
| 1809 | |
| 1810 | if (remaining_slots == 0) |
| 1811 | break; |
| 1812 | |
| 1813 | /* Since the parameter might be used in the RHS of two assignments, |
| 1814 | * generate a temporary and copy the paramter there. |
| 1815 | */ |
| 1816 | ir_variable *rhs_var = |
| 1817 | new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); |
| 1818 | instructions->push_tail(rhs_var); |
| 1819 | |
| 1820 | ir_dereference *rhs_var_ref = |
| 1821 | new(ctx) ir_dereference_variable(rhs_var); |
| 1822 | ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs); |
| 1823 | instructions->push_tail(inst); |
| 1824 | |
| 1825 | do { |
| 1826 | /* Assign the current parameter to as many components of the matrix |
| 1827 | * as it will fill. |
| 1828 | * |
| 1829 | * NOTE: A single vector parameter can span two matrix columns. A |
| 1830 | * single vec4, for example, can completely fill a mat2. |
| 1831 | */ |
| 1832 | unsigned count = MIN2(rows - row_idx,( (rows - row_idx)<(rhs_components - rhs_base) ? (rows - row_idx ) : (rhs_components - rhs_base) ) |
| 1833 | rhs_components - rhs_base)( (rows - row_idx)<(rhs_components - rhs_base) ? (rows - row_idx ) : (rhs_components - rhs_base) ); |
| 1834 | |
| 1835 | rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); |
| 1836 | ir_instruction *inst = assign_to_matrix_column(var, col_idx, |
| 1837 | row_idx, |
| 1838 | rhs_var_ref, |
| 1839 | rhs_base, |
| 1840 | count, ctx); |
| 1841 | instructions->push_tail(inst); |
| 1842 | rhs_base += count; |
| 1843 | row_idx += count; |
| 1844 | remaining_slots -= count; |
| 1845 | |
| 1846 | /* Sometimes, there is still data left in the parameters and |
| 1847 | * components left to be set in the destination but in other |
| 1848 | * column. |
| 1849 | */ |
| 1850 | if (row_idx >= rows) { |
| 1851 | row_idx = 0; |
| 1852 | col_idx++; |
| 1853 | } |
| 1854 | } while(remaining_slots > 0 && rhs_base < rhs_components); |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | return new(ctx) ir_dereference_variable(var); |
| 1859 | } |
| 1860 | |
| 1861 | |
| 1862 | static ir_rvalue * |
| 1863 | emit_inline_record_constructor(const glsl_type *type, |
| 1864 | exec_list *instructions, |
| 1865 | exec_list *parameters, |
| 1866 | void *mem_ctx) |
| 1867 | { |
| 1868 | ir_variable *const var = |
| 1869 | new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); |
| 1870 | ir_dereference_variable *const d = |
| 1871 | new(mem_ctx) ir_dereference_variable(var); |
| 1872 | |
| 1873 | instructions->push_tail(var); |
| 1874 | |
| 1875 | exec_node *node = parameters->get_head_raw(); |
| 1876 | for (unsigned i = 0; i < type->length; i++) { |
| 1877 | assert(!node->is_tail_sentinel())(static_cast <bool> (!node->is_tail_sentinel()) ? void (0) : __assert_fail ("!node->is_tail_sentinel()", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1878 | |
| 1879 | ir_dereference *const lhs = |
| 1880 | new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL__null), |
| 1881 | type->fields.structure[i].name); |
| 1882 | |
| 1883 | ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); |
| 1884 | assert(rhs != NULL)(static_cast <bool> (rhs != __null) ? void (0) : __assert_fail ("rhs != NULL", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
| 1885 | |
| 1886 | ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs); |
| 1887 | |
| 1888 | instructions->push_tail(assign); |
| 1889 | node = node->next; |
| 1890 | } |
| 1891 | |
| 1892 | return d; |
| 1893 | } |
| 1894 | |
| 1895 | |
| 1896 | static ir_rvalue * |
| 1897 | process_record_constructor(exec_list *instructions, |
| 1898 | const glsl_type *constructor_type, |
| 1899 | YYLTYPE *loc, exec_list *parameters, |
| 1900 | struct _mesa_glsl_parse_state *state) |
| 1901 | { |
| 1902 | void *ctx = state; |
| 1903 | /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec: |
| 1904 | * |
| 1905 | * "The arguments to the constructor will be used to set the structure's |
| 1906 | * fields, in order, using one argument per field. Each argument must |
| 1907 | * be the same type as the field it sets, or be a type that can be |
| 1908 | * converted to the field's type according to Section 4.1.10 “Implicit |
| 1909 | * Conversions.”" |
| 1910 | * |
| 1911 | * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec: |
| 1912 | * |
| 1913 | * "In all cases, the innermost initializer (i.e., not a list of |
| 1914 | * initializers enclosed in curly braces) applied to an object must |
| 1915 | * have the same type as the object being initialized or be a type that |
| 1916 | * can be converted to the object's type according to section 4.1.10 |
| 1917 | * "Implicit Conversions". In the latter case, an implicit conversion |
| 1918 | * will be done on the initializer before the assignment is done." |
| 1919 | */ |
| 1920 | exec_list actual_parameters; |
| 1921 | |
| 1922 | const unsigned parameter_count = |
| 1923 | process_parameters(instructions, &actual_parameters, parameters, |
| 1924 | state); |
| 1925 | |
| 1926 | if (parameter_count != constructor_type->length) { |
| 1927 | _mesa_glsl_error(loc, state, |
| 1928 | "%s parameters in constructor for `%s'", |
| 1929 | parameter_count > constructor_type->length |
| 1930 | ? "too many": "insufficient", |
| 1931 | constructor_type->name); |
| 1932 | return ir_rvalue::error_value(ctx); |
| 1933 | } |
| 1934 | |
| 1935 | bool all_parameters_are_constant = true; |
| 1936 | |
| 1937 | int i = 0; |
| 1938 | /* Type cast each parameter and, if possible, fold constants. */ |
| 1939 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
| 1940 | |
| 1941 | const glsl_struct_field *struct_field = |
| 1942 | &constructor_type->fields.structure[i]; |
| 1943 | |
| 1944 | /* Apply implicit conversions (not the scalar constructor rules, see the |
| 1945 | * spec quote above!) and attempt to convert the parameter to a constant |
| 1946 | * valued expression. After doing so, track whether or not all the |
| 1947 | * parameters to the constructor are trivially constant valued |
| 1948 | * expressions. |
| 1949 | */ |
| 1950 | all_parameters_are_constant &= |
| 1951 | implicitly_convert_component(ir, struct_field->type->base_type, |
| 1952 | state); |
| 1953 | |
| 1954 | if (ir->type != struct_field->type) { |
| 1955 | _mesa_glsl_error(loc, state, |
| 1956 | "parameter type mismatch in constructor for `%s.%s' " |
| 1957 | "(%s vs %s)", |
| 1958 | constructor_type->name, |
| 1959 | struct_field->name, |
| 1960 | ir->type->name, |
| 1961 | struct_field->type->name); |
| 1962 | return ir_rvalue::error_value(ctx); |
| 1963 | } |
| 1964 | |
| 1965 | i++; |
| 1966 | } |
| 1967 | |
| 1968 | if (all_parameters_are_constant) { |
| 1969 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
| 1970 | } else { |
| 1971 | return emit_inline_record_constructor(constructor_type, instructions, |
| 1972 | &actual_parameters, state); |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | ir_rvalue * |
| 1977 | ast_function_expression::handle_method(exec_list *instructions, |
| 1978 | struct _mesa_glsl_parse_state *state) |
| 1979 | { |
| 1980 | const ast_expression *field = subexpressions[0]; |
| 1981 | ir_rvalue *op; |
| 1982 | ir_rvalue *result; |
| 1983 | void *ctx = state; |
| 1984 | /* Handle "method calls" in GLSL 1.20 - namely, array.length() */ |
| 1985 | YYLTYPE loc = get_location(); |
| 1986 | state->check_version(120, 300, &loc, "methods not supported"); |
| 1987 | |
| 1988 | const char *method; |
| 1989 | method = field->primary_expression.identifier; |
| 1990 | |
| 1991 | /* This would prevent to raise "uninitialized variable" warnings when |
| 1992 | * calling array.length. |
| 1993 | */ |
| 1994 | field->subexpressions[0]->set_is_lhs(true); |
| 1995 | op = field->subexpressions[0]->hir(instructions, state); |
| 1996 | if (strcmp(method, "length") == 0) { |
| 1997 | if (!this->expressions.is_empty()) { |
| 1998 | _mesa_glsl_error(&loc, state, "length method takes no arguments"); |
| 1999 | goto fail; |
| 2000 | } |
| 2001 | |
| 2002 | if (op->type->is_array()) { |
| 2003 | if (op->type->is_unsized_array()) { |
| 2004 | if (!state->has_shader_storage_buffer_objects()) { |
| 2005 | _mesa_glsl_error(&loc, state, |
| 2006 | "length called on unsized array" |
| 2007 | " only available with" |
| 2008 | " ARB_shader_storage_buffer_object"); |
| 2009 | } |
| 2010 | /* Calculate length of an unsized array in run-time */ |
| 2011 | result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, |
| 2012 | op); |
| 2013 | } else { |
| 2014 | result = new(ctx) ir_constant(op->type->array_size()); |
| 2015 | } |
| 2016 | } else if (op->type->is_vector()) { |
| 2017 | if (state->has_420pack()) { |
| 2018 | /* .length() returns int. */ |
| 2019 | result = new(ctx) ir_constant((int) op->type->vector_elements); |
| 2020 | } else { |
| 2021 | _mesa_glsl_error(&loc, state, "length method on matrix only" |
| 2022 | " available with ARB_shading_language_420pack"); |
| 2023 | goto fail; |
| 2024 | } |
| 2025 | } else if (op->type->is_matrix()) { |
| 2026 | if (state->has_420pack()) { |
| 2027 | /* .length() returns int. */ |
| 2028 | result = new(ctx) ir_constant((int) op->type->matrix_columns); |
| 2029 | } else { |
| 2030 | _mesa_glsl_error(&loc, state, "length method on matrix only" |
| 2031 | " available with ARB_shading_language_420pack"); |
| 2032 | goto fail; |
| 2033 | } |
| 2034 | } else { |
| 2035 | _mesa_glsl_error(&loc, state, "length called on scalar."); |
| 2036 | goto fail; |
| 2037 | } |
| 2038 | } else { |
| 2039 | _mesa_glsl_error(&loc, state, "unknown method: `%s'", method); |
| 2040 | goto fail; |
| 2041 | } |
| 2042 | return result; |
| 2043 | fail: |
| 2044 | return ir_rvalue::error_value(ctx); |
| 2045 | } |
| 2046 | |
| 2047 | static inline bool is_valid_constructor(const glsl_type *type, |
| 2048 | struct _mesa_glsl_parse_state *state) |
| 2049 | { |
| 2050 | return type->is_numeric() || type->is_boolean() || |
| 2051 | (state->has_bindless() && (type->is_sampler() || type->is_image())); |
| 2052 | } |
| 2053 | |
| 2054 | ir_rvalue * |
| 2055 | ast_function_expression::hir(exec_list *instructions, |
| 2056 | struct _mesa_glsl_parse_state *state) |
| 2057 | { |
| 2058 | void *ctx = state; |
| 2059 | /* There are three sorts of function calls. |
| 2060 | * |
| 2061 | * 1. constructors - The first subexpression is an ast_type_specifier. |
| 2062 | * 2. methods - Only the .length() method of array types. |
| 2063 | * 3. functions - Calls to regular old functions. |
| 2064 | * |
| 2065 | */ |
| 2066 | if (is_constructor()) { |
| 2067 | const ast_type_specifier *type = |
| 2068 | (ast_type_specifier *) subexpressions[0]; |
| 2069 | YYLTYPE loc = type->get_location(); |
| 2070 | const char *name; |
| 2071 | |
| 2072 | const glsl_type *const constructor_type = type->glsl_type(& name, state); |
| 2073 | |
| 2074 | /* constructor_type can be NULL if a variable with the same name as the |
| 2075 | * structure has come into scope. |
| 2076 | */ |
| 2077 | if (constructor_type == NULL__null) { |
| 2078 | _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name " |
| 2079 | "may be shadowed by a variable with the same name)", |
| 2080 | type->type_name); |
| 2081 | return ir_rvalue::error_value(ctx); |
| 2082 | } |
| 2083 | |
| 2084 | |
| 2085 | /* Constructors for opaque types are illegal. |
| 2086 | * |
| 2087 | * From section 4.1.7 of the ARB_bindless_texture spec: |
| 2088 | * |
| 2089 | * "Samplers are represented using 64-bit integer handles, and may be " |
| 2090 | * converted to and from 64-bit integers using constructors." |
| 2091 | * |
| 2092 | * From section 4.1.X of the ARB_bindless_texture spec: |
| 2093 | * |
| 2094 | * "Images are represented using 64-bit integer handles, and may be |
| 2095 | * converted to and from 64-bit integers using constructors." |
| 2096 | */ |
| 2097 | if (constructor_type->contains_atomic() || |
| 2098 | (!state->has_bindless() && constructor_type->contains_opaque())) { |
| 2099 | _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'", |
| 2100 | state->has_bindless() ? "atomic" : "opaque", |
| 2101 | constructor_type->name); |
| 2102 | return ir_rvalue::error_value(ctx); |
| 2103 | } |
| 2104 | |
| 2105 | if (constructor_type->is_subroutine()) { |
| 2106 | _mesa_glsl_error(& loc, state, |
| 2107 | "subroutine name cannot be a constructor `%s'", |
| 2108 | constructor_type->name); |
| 2109 | return ir_rvalue::error_value(ctx); |
| 2110 | } |
| 2111 | |
| 2112 | if (constructor_type->is_array()) { |
| 2113 | if (!state->check_version(120, 300, &loc, |
| 2114 | "array constructors forbidden")) { |
| 2115 | return ir_rvalue::error_value(ctx); |
| 2116 | } |
| 2117 | |
| 2118 | return process_array_constructor(instructions, constructor_type, |
| 2119 | & loc, &this->expressions, state); |
| 2120 | } |
| 2121 | |
| 2122 | |
| 2123 | /* There are two kinds of constructor calls. Constructors for arrays and |
| 2124 | * structures must have the exact number of arguments with matching types |
| 2125 | * in the correct order. These constructors follow essentially the same |
| 2126 | * type matching rules as functions. |
| 2127 | * |
| 2128 | * Constructors for built-in language types, such as mat4 and vec2, are |
| 2129 | * free form. The only requirements are that the parameters must provide |
| 2130 | * enough values of the correct scalar type and that no arguments are |
| 2131 | * given past the last used argument. |
| 2132 | * |
| 2133 | * When using the C-style initializer syntax from GLSL 4.20, constructors |
| 2134 | * must have the exact number of arguments with matching types in the |
| 2135 | * correct order. |
| 2136 | */ |
| 2137 | if (constructor_type->is_struct()) { |
| 2138 | return process_record_constructor(instructions, constructor_type, |
| 2139 | &loc, &this->expressions, |
| 2140 | state); |
| 2141 | } |
| 2142 | |
| 2143 | if (!is_valid_constructor(constructor_type, state)) |
| 2144 | return ir_rvalue::error_value(ctx); |
| 2145 | |
| 2146 | /* Total number of components of the type being constructed. */ |
| 2147 | const unsigned type_components = constructor_type->components(); |
| 2148 | |
| 2149 | /* Number of components from parameters that have actually been |
| 2150 | * consumed. This is used to perform several kinds of error checking. |
| 2151 | */ |
| 2152 | unsigned components_used = 0; |
| 2153 | |
| 2154 | unsigned matrix_parameters = 0; |
| 2155 | unsigned nonmatrix_parameters = 0; |
| 2156 | exec_list actual_parameters; |
| 2157 | |
| 2158 | foreach_list_typed(ast_node, ast, link, &this->expressions)for (ast_node * ast = (!exec_node_is_tail_sentinel((&this ->expressions)->head_sentinel.next) ? ((ast_node *) ((( uintptr_t) (&this->expressions)->head_sentinel.next ) - (((char *) &((ast_node *) (&this->expressions) ->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((ast_node *) (((uintptr_t) (ast)->link.next) - (((char * ) &((ast_node *) (ast)->link.next)->link) - ((char * ) (ast)->link.next)))) : __null)) { |
| 2159 | ir_rvalue *result = ast->hir(instructions, state); |
| 2160 | |
| 2161 | /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: |
| 2162 | * |
| 2163 | * "It is an error to provide extra arguments beyond this |
| 2164 | * last used argument." |
| 2165 | */ |
| 2166 | if (components_used >= type_components) { |
| 2167 | _mesa_glsl_error(& loc, state, "too many parameters to `%s' " |
| 2168 | "constructor", |
| 2169 | constructor_type->name); |
| 2170 | return ir_rvalue::error_value(ctx); |
| 2171 | } |
| 2172 | |
| 2173 | if (!is_valid_constructor(result->type, state)) { |
| 2174 | _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " |
| 2175 | "non-numeric data type", |
| 2176 | constructor_type->name); |
| 2177 | return ir_rvalue::error_value(ctx); |
| 2178 | } |
| 2179 | |
| 2180 | /* Count the number of matrix and nonmatrix parameters. This |
| 2181 | * is used below to enforce some of the constructor rules. |
| 2182 | */ |
| 2183 | if (result->type->is_matrix()) |
| 2184 | matrix_parameters++; |
| 2185 | else |
| 2186 | nonmatrix_parameters++; |
| 2187 | |
| 2188 | actual_parameters.push_tail(result); |
| 2189 | components_used += result->type->components(); |
| 2190 | } |
| 2191 | |
| 2192 | /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: |
| 2193 | * |
| 2194 | * "It is an error to construct matrices from other matrices. This |
| 2195 | * is reserved for future use." |
| 2196 | */ |
| 2197 | if (matrix_parameters > 0 |
| 2198 | && constructor_type->is_matrix() |
| 2199 | && !state->check_version(120, 100, &loc, |
| 2200 | "cannot construct `%s' from a matrix", |
| 2201 | constructor_type->name)) { |
| 2202 | return ir_rvalue::error_value(ctx); |
| 2203 | } |
| 2204 | |
| 2205 | /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: |
| 2206 | * |
| 2207 | * "If a matrix argument is given to a matrix constructor, it is |
| 2208 | * an error to have any other arguments." |
| 2209 | */ |
| 2210 | if ((matrix_parameters > 0) |
| 2211 | && ((matrix_parameters + nonmatrix_parameters) > 1) |
| 2212 | && constructor_type->is_matrix()) { |
| 2213 | _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " |
| 2214 | "matrix must be only parameter", |
| 2215 | constructor_type->name); |
| 2216 | return ir_rvalue::error_value(ctx); |
| 2217 | } |
| 2218 | |
| 2219 | /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: |
| 2220 | * |
| 2221 | * "In these cases, there must be enough components provided in the |
| 2222 | * arguments to provide an initializer for every component in the |
| 2223 | * constructed value." |
| 2224 | */ |
| 2225 | if (components_used < type_components && components_used != 1 |
| 2226 | && matrix_parameters == 0) { |
| 2227 | _mesa_glsl_error(& loc, state, "too few components to construct " |
| 2228 | "`%s'", |
| 2229 | constructor_type->name); |
| 2230 | return ir_rvalue::error_value(ctx); |
| 2231 | } |
| 2232 | |
| 2233 | /* Matrices can never be consumed as is by any constructor but matrix |
| 2234 | * constructors. If the constructor type is not matrix, always break the |
| 2235 | * matrix up into a series of column vectors. |
| 2236 | */ |
| 2237 | if (!constructor_type->is_matrix()) { |
| 2238 | foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters)for (ir_rvalue *matrix = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (matrix) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (matrix) != __null; (matrix) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next ->next) ? (ir_rvalue *) (__next->next) : __null) : __null ) { |
| 2239 | if (!matrix->type->is_matrix()) |
| 2240 | continue; |
| 2241 | |
| 2242 | /* Create a temporary containing the matrix. */ |
| 2243 | ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", |
| 2244 | ir_var_temporary); |
| 2245 | instructions->push_tail(var); |
| 2246 | instructions->push_tail( |
| 2247 | new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), |
| 2248 | matrix)); |
| 2249 | var->constant_value = matrix->constant_expression_value(ctx); |
| 2250 | |
| 2251 | /* Replace the matrix with dereferences of its columns. */ |
| 2252 | for (int i = 0; i < matrix->type->matrix_columns; i++) { |
| 2253 | matrix->insert_before( |
| 2254 | new (ctx) ir_dereference_array(var, |
| 2255 | new(ctx) ir_constant(i))); |
| 2256 | } |
| 2257 | matrix->remove(); |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | bool all_parameters_are_constant = true; |
| 2262 | |
| 2263 | /* Type cast each parameter and, if possible, fold constants.*/ |
| 2264 | foreach_in_list_safe(ir_rvalue, ir, &actual_parameters)for (ir_rvalue *ir = (!exec_node_is_tail_sentinel((&actual_parameters )->head_sentinel.next) ? (ir_rvalue *) ((&actual_parameters )->head_sentinel.next) : __null), *__next = (ir) ? (!exec_node_is_tail_sentinel ((&actual_parameters)->head_sentinel.next->next) ? ( ir_rvalue *) ((&actual_parameters)->head_sentinel.next ->next) : __null) : __null; (ir) != __null; (ir) = __next, __next = __next ? (!exec_node_is_tail_sentinel(__next->next ) ? (ir_rvalue *) (__next->next) : __null) : __null) { |
| 2265 | const glsl_type *desired_type; |
| 2266 | |
| 2267 | /* From section 5.4.1 of the ARB_bindless_texture spec: |
| 2268 | * |
| 2269 | * "In the following four constructors, the low 32 bits of the sampler |
| 2270 | * type correspond to the .x component of the uvec2 and the high 32 |
| 2271 | * bits correspond to the .y component." |
| 2272 | * |
| 2273 | * uvec2(any sampler type) // Converts a sampler type to a |
| 2274 | * // pair of 32-bit unsigned integers |
| 2275 | * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to |
| 2276 | * // a sampler type |
| 2277 | * uvec2(any image type) // Converts an image type to a |
| 2278 | * // pair of 32-bit unsigned integers |
| 2279 | * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to |
| 2280 | * // an image type |
| 2281 | */ |
| 2282 | if (ir->type->is_sampler() || ir->type->is_image()) { |
| 2283 | /* Convert a sampler/image type to a pair of 32-bit unsigned |
| 2284 | * integers as defined by ARB_bindless_texture. |
| 2285 | */ |
| 2286 | if (constructor_type != glsl_type::uvec2_type) { |
| 2287 | _mesa_glsl_error(&loc, state, "sampler and image types can only " |
| 2288 | "be converted to a pair of 32-bit unsigned " |
| 2289 | "integers"); |
| 2290 | } |
| 2291 | desired_type = glsl_type::uvec2_type; |
| 2292 | } else if (constructor_type->is_sampler() || |
| 2293 | constructor_type->is_image()) { |
| 2294 | /* Convert a pair of 32-bit unsigned integers to a sampler or image |
| 2295 | * type as defined by ARB_bindless_texture. |
| 2296 | */ |
| 2297 | if (ir->type != glsl_type::uvec2_type) { |
| 2298 | _mesa_glsl_error(&loc, state, "sampler and image types can only " |
| 2299 | "be converted from a pair of 32-bit unsigned " |
| 2300 | "integers"); |
| 2301 | } |
| 2302 | desired_type = constructor_type; |
| 2303 | } else { |
| 2304 | desired_type = |
| 2305 | glsl_type::get_instance(constructor_type->base_type, |
| 2306 | ir->type->vector_elements, |
| 2307 | ir->type->matrix_columns); |
| 2308 | } |
| 2309 | |
| 2310 | ir_rvalue *result = convert_component(ir, desired_type); |
| 2311 | |
| 2312 | /* Attempt to convert the parameter to a constant valued expression. |
| 2313 | * After doing so, track whether or not all the parameters to the |
| 2314 | * constructor are trivially constant valued expressions. |
| 2315 | */ |
| 2316 | ir_rvalue *const constant = result->constant_expression_value(ctx); |
| 2317 | |
| 2318 | if (constant != NULL__null) |
| 2319 | result = constant; |
| 2320 | else |
| 2321 | all_parameters_are_constant = false; |
| 2322 | |
| 2323 | if (result != ir) { |
| 2324 | ir->replace_with(result); |
| 2325 | } |
| 2326 | } |
| 2327 | |
| 2328 | /* If all of the parameters are trivially constant, create a |
| 2329 | * constant representing the complete collection of parameters. |
| 2330 | */ |
| 2331 | if (all_parameters_are_constant) { |
| 2332 | return new(ctx) ir_constant(constructor_type, &actual_parameters); |
| 2333 | } else if (constructor_type->is_scalar()) { |
| 2334 | return dereference_component((ir_rvalue *) |
| 2335 | actual_parameters.get_head_raw(), |
| 2336 | 0); |
| 2337 | } else if (constructor_type->is_vector()) { |
| 2338 | return emit_inline_vector_constructor(constructor_type, |
| 2339 | instructions, |
| 2340 | &actual_parameters, |
| 2341 | ctx); |
| 2342 | } else { |
| 2343 | assert(constructor_type->is_matrix())(static_cast <bool> (constructor_type->is_matrix()) ? void (0) : __assert_fail ("constructor_type->is_matrix()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
| 2344 | return emit_inline_matrix_constructor(constructor_type, |
| 2345 | instructions, |
| 2346 | &actual_parameters, |
| 2347 | ctx); |
| 2348 | } |
| 2349 | } else if (subexpressions[0]->oper == ast_field_selection) { |
| 2350 | return handle_method(instructions, state); |
| 2351 | } else { |
| 2352 | const ast_expression *id = subexpressions[0]; |
| 2353 | const char *func_name = NULL__null; |
| 2354 | YYLTYPE loc = get_location(); |
| 2355 | exec_list actual_parameters; |
| 2356 | ir_variable *sub_var = NULL__null; |
| 2357 | ir_rvalue *array_idx = NULL__null; |
| 2358 | |
| 2359 | process_parameters(instructions, &actual_parameters, &this->expressions, |
| 2360 | state); |
| 2361 | |
| 2362 | if (id->oper == ast_array_index) { |
| 2363 | array_idx = generate_array_index(ctx, instructions, state, loc, |
| 2364 | id->subexpressions[0], |
| 2365 | id->subexpressions[1], &func_name, |
| 2366 | &actual_parameters); |
| 2367 | } else if (id->oper == ast_identifier) { |
| 2368 | func_name = id->primary_expression.identifier; |
| 2369 | } else { |
| 2370 | _mesa_glsl_error(&loc, state, "function name is not an identifier"); |
| 2371 | } |
| 2372 | |
| 2373 | /* an error was emitted earlier */ |
| 2374 | if (!func_name) |
| 2375 | return ir_rvalue::error_value(ctx); |
| 2376 | |
| 2377 | ir_function_signature *sig = |
| 2378 | match_function_by_name(func_name, &actual_parameters, state); |
| 2379 | |
| 2380 | ir_rvalue *value = NULL__null; |
| 2381 | if (sig == NULL__null) { |
| 2382 | sig = match_subroutine_by_name(func_name, &actual_parameters, |
| 2383 | state, &sub_var); |
| 2384 | } |
| 2385 | |
| 2386 | if (sig == NULL__null) { |
| 2387 | no_matching_function_error(func_name, &loc, |
| 2388 | &actual_parameters, state); |
| 2389 | value = ir_rvalue::error_value(ctx); |
| 2390 | } else if (!verify_parameter_modes(state, sig, |
| 2391 | actual_parameters, |
| 2392 | this->expressions)) { |
| 2393 | /* an error has already been emitted */ |
| 2394 | value = ir_rvalue::error_value(ctx); |
| 2395 | } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) { |
| 2396 | /* ftransform refers to global variables, and we don't have any code |
| 2397 | * for remapping the variable references in the built-in shader. |
| 2398 | */ |
| 2399 | ir_variable *mvp = |
| 2400 | state->symbols->get_variable("gl_ModelViewProjectionMatrix"); |
| 2401 | ir_variable *vtx = state->symbols->get_variable("gl_Vertex"); |
| 2402 | value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type, |
| 2403 | new(ctx) ir_dereference_variable(mvp), |
| 2404 | new(ctx) ir_dereference_variable(vtx)); |
| 2405 | } else { |
| 2406 | bool is_begin_interlock = false; |
| 2407 | bool is_end_interlock = false; |
| 2408 | if (sig->is_builtin() && |
| 2409 | state->stage == MESA_SHADER_FRAGMENT && |
| 2410 | state->ARB_fragment_shader_interlock_enable) { |
| 2411 | is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0; |
| 2412 | is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0; |
| 2413 | } |
| 2414 | |
| 2415 | if (sig->is_builtin() && |
| 2416 | ((state->stage == MESA_SHADER_TESS_CTRL && |
| 2417 | strcmp(func_name, "barrier") == 0) || |
| 2418 | is_begin_interlock || is_end_interlock)) { |
| 2419 | if (state->current_function == NULL__null || |
| 2420 | strcmp(state->current_function->function_name(), "main") != 0) { |
| 2421 | _mesa_glsl_error(&loc, state, |
| 2422 | "%s() may only be used in main()", func_name); |
| 2423 | } |
| 2424 | |
| 2425 | if (state->found_return) { |
| 2426 | _mesa_glsl_error(&loc, state, |
| 2427 | "%s() may not be used after return", func_name); |
| 2428 | } |
| 2429 | |
| 2430 | if (instructions != &state->current_function->body) { |
| 2431 | _mesa_glsl_error(&loc, state, |
| 2432 | "%s() may not be used in control flow", func_name); |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | /* There can be only one begin/end interlock pair in the function. */ |
| 2437 | if (is_begin_interlock) { |
| 2438 | if (state->found_begin_interlock) |
| 2439 | _mesa_glsl_error(&loc, state, |
| 2440 | "beginInvocationInterlockARB may not be used twice"); |
| 2441 | state->found_begin_interlock = true; |
| 2442 | } else if (is_end_interlock) { |
| 2443 | if (!state->found_begin_interlock) |
| 2444 | _mesa_glsl_error(&loc, state, |
| 2445 | "endInvocationInterlockARB may not be used " |
| 2446 | "before beginInvocationInterlockARB"); |
| 2447 | if (state->found_end_interlock) |
| 2448 | _mesa_glsl_error(&loc, state, |
| 2449 | "endInvocationInterlockARB may not be used twice"); |
| 2450 | state->found_end_interlock = true; |
| 2451 | } |
| 2452 | |
| 2453 | value = generate_call(instructions, sig, &actual_parameters, sub_var, |
| 2454 | array_idx, state); |
| 2455 | if (!value) { |
| 2456 | ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type, |
| 2457 | "void_var", |
| 2458 | ir_var_temporary); |
| 2459 | instructions->push_tail(tmp); |
| 2460 | value = new(ctx) ir_dereference_variable(tmp); |
| 2461 | } |
| 2462 | } |
| 2463 | |
| 2464 | return value; |
| 2465 | } |
| 2466 | |
| 2467 | unreachable("not reached")do { (static_cast <bool> (!"not reached") ? void (0) : __assert_fail ("!\"not reached\"", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); __builtin_unreachable(); } while (0); |
| 2468 | } |
| 2469 | |
| 2470 | bool |
| 2471 | ast_function_expression::has_sequence_subexpression() const |
| 2472 | { |
| 2473 | foreach_list_typed(const ast_node, ast, link, &this->expressions)for (const ast_node * ast = (!exec_node_is_tail_sentinel((& this->expressions)->head_sentinel.next) ? ((const ast_node *) (((uintptr_t) (&this->expressions)->head_sentinel .next) - (((char *) &((const ast_node *) (&this->expressions )->head_sentinel.next)->link) - ((char *) (&this-> expressions)->head_sentinel.next)))) : __null); (ast) != __null ; (ast) = (!exec_node_is_tail_sentinel((ast)->link.next) ? ((const ast_node *) (((uintptr_t) (ast)->link.next) - ((( char *) &((const ast_node *) (ast)->link.next)->link ) - ((char *) (ast)->link.next)))) : __null)) { |
| 2474 | if (ast->has_sequence_subexpression()) |
| 2475 | return true; |
| 2476 | } |
| 2477 | |
| 2478 | return false; |
| 2479 | } |
| 2480 | |
| 2481 | ir_rvalue * |
| 2482 | ast_aggregate_initializer::hir(exec_list *instructions, |
| 2483 | struct _mesa_glsl_parse_state *state) |
| 2484 | { |
| 2485 | void *ctx = state; |
| 2486 | YYLTYPE loc = this->get_location(); |
| 2487 | |
| 2488 | if (!this->constructor_type) { |
| 2489 | _mesa_glsl_error(&loc, state, "type of C-style initializer unknown"); |
| 2490 | return ir_rvalue::error_value(ctx); |
| 2491 | } |
| 2492 | const glsl_type *const constructor_type = this->constructor_type; |
| 2493 | |
| 2494 | if (!state->has_420pack()) { |
| 2495 | _mesa_glsl_error(&loc, state, "C-style initialization requires the " |
| 2496 | "GL_ARB_shading_language_420pack extension"); |
| 2497 | return ir_rvalue::error_value(ctx); |
| 2498 | } |
| 2499 | |
| 2500 | if (constructor_type->is_array()) { |
| 2501 | return process_array_constructor(instructions, constructor_type, &loc, |
| 2502 | &this->expressions, state); |
| 2503 | } |
| 2504 | |
| 2505 | if (constructor_type->is_struct()) { |
| 2506 | return process_record_constructor(instructions, constructor_type, &loc, |
| 2507 | &this->expressions, state); |
| 2508 | } |
| 2509 | |
| 2510 | return process_vec_mat_constructor(instructions, constructor_type, &loc, |
| 2511 | &this->expressions, state); |
| 2512 | } |