File: | root/firefox-clang/media/libsoundtouch/src/TDStretch.cpp |
Warning: | line 302, column 5 Value stored to 'bestCorr' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /////////////////////////////////////////////////////////////////////////////// |
2 | /// |
3 | /// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo |
4 | /// while maintaining the original pitch by using a time domain WSOLA-like |
5 | /// method with several performance-increasing tweaks. |
6 | /// |
7 | /// Notes : MMX optimized functions reside in a separate, platform-specific |
8 | /// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'. |
9 | /// |
10 | /// This source file contains OpenMP optimizations that allow speeding up the |
11 | /// corss-correlation algorithm by executing it in several threads / CPU cores |
12 | /// in parallel. See the following article link for more detailed discussion |
13 | /// about SoundTouch OpenMP optimizations: |
14 | /// http://www.softwarecoven.com/parallel-computing-in-embedded-mobile-devices |
15 | /// |
16 | /// Author : Copyright (c) Olli Parviainen |
17 | /// Author e-mail : oparviai 'at' iki.fi |
18 | /// SoundTouch WWW: http://www.surina.net/soundtouch |
19 | /// |
20 | //////////////////////////////////////////////////////////////////////////////// |
21 | // |
22 | // License : |
23 | // |
24 | // SoundTouch audio processing library |
25 | // Copyright (c) Olli Parviainen |
26 | // |
27 | // This library is free software; you can redistribute it and/or |
28 | // modify it under the terms of the GNU Lesser General Public |
29 | // License as published by the Free Software Foundation; either |
30 | // version 2.1 of the License, or (at your option) any later version. |
31 | // |
32 | // This library is distributed in the hope that it will be useful, |
33 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
34 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
35 | // Lesser General Public License for more details. |
36 | // |
37 | // You should have received a copy of the GNU Lesser General Public |
38 | // License along with this library; if not, write to the Free Software |
39 | // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
40 | // |
41 | //////////////////////////////////////////////////////////////////////////////// |
42 | |
43 | #include <string.h> |
44 | #include <limits.h> |
45 | #include <assert.h> |
46 | #include <math.h> |
47 | #include <float.h> |
48 | |
49 | #include "STTypes.h" |
50 | #include "cpu_detect.h" |
51 | #include "TDStretch.h" |
52 | |
53 | using namespace soundtouch; |
54 | |
55 | #define max(x, y)(((x) > (y)) ? (x) : (y)) (((x) > (y)) ? (x) : (y)) |
56 | |
57 | /***************************************************************************** |
58 | * |
59 | * Constant definitions |
60 | * |
61 | *****************************************************************************/ |
62 | |
63 | // Table for the hierarchical mixing position seeking algorithm |
64 | const short _scanOffsets[5][24]={ |
65 | { 124, 186, 248, 310, 372, 434, 496, 558, 620, 682, 744, 806, |
66 | 868, 930, 992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488, 0}, |
67 | {-100, -75, -50, -25, 25, 50, 75, 100, 0, 0, 0, 0, |
68 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
69 | { -20, -15, -10, -5, 5, 10, 15, 20, 0, 0, 0, 0, |
70 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
71 | { -4, -3, -2, -1, 1, 2, 3, 4, 0, 0, 0, 0, |
72 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
73 | { 121, 114, 97, 114, 98, 105, 108, 32, 104, 99, 117, 111, |
74 | 116, 100, 110, 117, 111, 115, 0, 0, 0, 0, 0, 0}}; |
75 | |
76 | /***************************************************************************** |
77 | * |
78 | * Implementation of the class 'TDStretch' |
79 | * |
80 | *****************************************************************************/ |
81 | |
82 | |
83 | TDStretch::TDStretch() : FIFOProcessor(&outputBuffer) |
84 | { |
85 | bQuickSeek = false; |
86 | channels = 2; |
87 | |
88 | pMidBuffer = NULL__null; |
89 | pMidBufferUnaligned = NULL__null; |
90 | overlapLength = 0; |
91 | |
92 | bAutoSeqSetting = true; |
93 | bAutoSeekSetting = true; |
94 | |
95 | tempo = 1.0f; |
96 | setParameters(44100, DEFAULT_SEQUENCE_MS0, DEFAULT_SEEKWINDOW_MS0, DEFAULT_OVERLAP_MS8); |
97 | setTempo(1.0f); |
98 | |
99 | clear(); |
100 | } |
101 | |
102 | |
103 | |
104 | TDStretch::~TDStretch() |
105 | { |
106 | delete[] pMidBufferUnaligned; |
107 | } |
108 | |
109 | |
110 | |
111 | // Sets routine control parameters. These control are certain time constants |
112 | // defining how the sound is stretched to the desired duration. |
113 | // |
114 | // 'sampleRate' = sample rate of the sound |
115 | // 'sequenceMS' = one processing sequence length in milliseconds (default = 82 ms) |
116 | // 'seekwindowMS' = seeking window length for scanning the best overlapping |
117 | // position (default = 28 ms) |
118 | // 'overlapMS' = overlapping length (default = 12 ms) |
119 | |
120 | void TDStretch::setParameters(int aSampleRate, int aSequenceMS, |
121 | int aSeekWindowMS, int aOverlapMS) |
122 | { |
123 | // accept only positive parameter values - if zero or negative, use old values instead |
124 | if (aSampleRate > 0) |
125 | { |
126 | if (aSampleRate > 192000) ST_THROW_RT_ERROR("Error: Excessive samplerate"){(static_cast <bool> ((const char *)"Error: Excessive samplerate" ) ? void (0) : __assert_fail ("(const char *)\"Error: Excessive samplerate\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ ));}; |
127 | this->sampleRate = aSampleRate; |
128 | } |
129 | |
130 | if (aOverlapMS > 0) this->overlapMs = aOverlapMS; |
131 | |
132 | if (aSequenceMS > 0) |
133 | { |
134 | this->sequenceMs = aSequenceMS; |
135 | bAutoSeqSetting = false; |
136 | } |
137 | else if (aSequenceMS == 0) |
138 | { |
139 | // if zero, use automatic setting |
140 | bAutoSeqSetting = true; |
141 | } |
142 | |
143 | if (aSeekWindowMS > 0) |
144 | { |
145 | this->seekWindowMs = aSeekWindowMS; |
146 | bAutoSeekSetting = false; |
147 | } |
148 | else if (aSeekWindowMS == 0) |
149 | { |
150 | // if zero, use automatic setting |
151 | bAutoSeekSetting = true; |
152 | } |
153 | |
154 | calcSeqParameters(); |
155 | |
156 | calculateOverlapLength(overlapMs); |
157 | |
158 | // set tempo to recalculate 'sampleReq' |
159 | setTempo(tempo); |
160 | } |
161 | |
162 | |
163 | |
164 | /// Get routine control parameters, see setParameters() function. |
165 | /// Any of the parameters to this function can be NULL, in such case corresponding parameter |
166 | /// value isn't returned. |
167 | void TDStretch::getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWindowMs, int *pOverlapMs) const |
168 | { |
169 | if (pSampleRate) |
170 | { |
171 | *pSampleRate = sampleRate; |
172 | } |
173 | |
174 | if (pSequenceMs) |
175 | { |
176 | *pSequenceMs = (bAutoSeqSetting) ? (USE_AUTO_SEQUENCE_LEN0) : sequenceMs; |
177 | } |
178 | |
179 | if (pSeekWindowMs) |
180 | { |
181 | *pSeekWindowMs = (bAutoSeekSetting) ? (USE_AUTO_SEEKWINDOW_LEN0) : seekWindowMs; |
182 | } |
183 | |
184 | if (pOverlapMs) |
185 | { |
186 | *pOverlapMs = overlapMs; |
187 | } |
188 | } |
189 | |
190 | |
191 | // Overlaps samples in 'midBuffer' with the samples in 'pInput' |
192 | void TDStretch::overlapMono(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput) const |
193 | { |
194 | int i; |
195 | SAMPLETYPE m1, m2; |
196 | |
197 | m1 = (SAMPLETYPE)0; |
198 | m2 = (SAMPLETYPE)overlapLength; |
199 | |
200 | for (i = 0; i < overlapLength ; i ++) |
201 | { |
202 | pOutput[i] = (pInput[i] * m1 + pMidBuffer[i] * m2 ) / overlapLength; |
203 | m1 += 1; |
204 | m2 -= 1; |
205 | } |
206 | } |
207 | |
208 | |
209 | |
210 | void TDStretch::clearMidBuffer() |
211 | { |
212 | memset(pMidBuffer, 0, channels * sizeof(SAMPLETYPE) * overlapLength); |
213 | } |
214 | |
215 | |
216 | void TDStretch::clearInput() |
217 | { |
218 | inputBuffer.clear(); |
219 | clearMidBuffer(); |
220 | isBeginning = true; |
221 | maxnorm = 0; |
222 | maxnormf = 1e8; |
223 | skipFract = 0; |
224 | } |
225 | |
226 | |
227 | // Clears the sample buffers |
228 | void TDStretch::clear() |
229 | { |
230 | outputBuffer.clear(); |
231 | clearInput(); |
232 | } |
233 | |
234 | |
235 | |
236 | // Enables/disables the quick position seeking algorithm. Zero to disable, nonzero |
237 | // to enable |
238 | void TDStretch::enableQuickSeek(bool enable) |
239 | { |
240 | bQuickSeek = enable; |
241 | } |
242 | |
243 | |
244 | // Returns nonzero if the quick seeking algorithm is enabled. |
245 | bool TDStretch::isQuickSeekEnabled() const |
246 | { |
247 | return bQuickSeek; |
248 | } |
249 | |
250 | |
251 | // Seeks for the optimal overlap-mixing position. |
252 | int TDStretch::seekBestOverlapPosition(const SAMPLETYPE *refPos) |
253 | { |
254 | if (bQuickSeek) |
255 | { |
256 | return seekBestOverlapPositionQuick(refPos); |
257 | } |
258 | else |
259 | { |
260 | return seekBestOverlapPositionFull(refPos); |
261 | } |
262 | } |
263 | |
264 | |
265 | // Overlaps samples in 'midBuffer' with the samples in 'pInputBuffer' at position |
266 | // of 'ovlPos'. |
267 | inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, uint ovlPos) const |
268 | { |
269 | #ifndef USE_MULTICH_ALWAYS |
270 | if (channels == 1) |
271 | { |
272 | // mono sound. |
273 | overlapMono(pOutput, pInput + ovlPos); |
274 | } |
275 | else if (channels == 2) |
276 | { |
277 | // stereo sound |
278 | overlapStereo(pOutput, pInput + 2 * ovlPos); |
279 | } |
280 | else |
281 | #endif // USE_MULTICH_ALWAYS |
282 | { |
283 | assert(channels > 0)(static_cast <bool> (channels > 0) ? void (0) : __assert_fail ("channels > 0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
284 | overlapMulti(pOutput, pInput + channels * ovlPos); |
285 | } |
286 | } |
287 | |
288 | |
289 | // Seeks for the optimal overlap-mixing position. The 'stereo' version of the |
290 | // routine |
291 | // |
292 | // The best position is determined as the position where the two overlapped |
293 | // sample sequences are 'most alike', in terms of the highest cross-correlation |
294 | // value over the overlapping period |
295 | int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos) |
296 | { |
297 | int bestOffs; |
298 | double bestCorr; |
299 | int i; |
300 | double norm; |
301 | |
302 | bestCorr = -FLT_MAX3.40282347e+38F; |
Value stored to 'bestCorr' is never read | |
303 | bestOffs = 0; |
304 | |
305 | // Scans for the best correlation value by testing each possible position |
306 | // over the permitted range. |
307 | bestCorr = calcCrossCorr(refPos, pMidBuffer, norm); |
308 | bestCorr = (bestCorr + 0.1) * 0.75; |
309 | |
310 | #pragma omp parallel for |
311 | for (i = 1; i < seekLength; i ++) |
312 | { |
313 | double corr; |
314 | // Calculates correlation value for the mixing position corresponding to 'i' |
315 | #if defined(_OPENMP) || defined(ST_SIMD_AVOID_UNALIGNED) |
316 | // in parallel OpenMP mode, can't use norm accumulator version as parallel executor won't |
317 | // iterate the loop in sequential order |
318 | // in SIMD mode, avoid accumulator version to allow avoiding unaligned positions |
319 | corr = calcCrossCorr(refPos + channels * i, pMidBuffer, norm); |
320 | #else |
321 | // In non-parallel version call "calcCrossCorrAccumulate" that is otherwise same |
322 | // as "calcCrossCorr", but saves time by reusing & updating previously stored |
323 | // "norm" value |
324 | corr = calcCrossCorrAccumulate(refPos + channels * i, pMidBuffer, norm); |
325 | #endif |
326 | // heuristic rule to slightly favour values close to mid of the range |
327 | double tmp = (double)(2 * i - seekLength) / (double)seekLength; |
328 | corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp)); |
329 | |
330 | // Checks for the highest correlation value |
331 | if (corr > bestCorr) |
332 | { |
333 | // For optimal performance, enter critical section only in case that best value found. |
334 | // in such case repeat 'if' condition as it's possible that parallel execution may have |
335 | // updated the bestCorr value in the mean time |
336 | #pragma omp critical |
337 | if (corr > bestCorr) |
338 | { |
339 | bestCorr = corr; |
340 | bestOffs = i; |
341 | } |
342 | } |
343 | } |
344 | |
345 | #ifdef SOUNDTOUCH_INTEGER_SAMPLES |
346 | adaptNormalizer(); |
347 | #endif |
348 | |
349 | // clear cross correlation routine state if necessary (is so e.g. in MMX routines). |
350 | clearCrossCorrState(); |
351 | |
352 | return bestOffs; |
353 | } |
354 | |
355 | |
356 | // Quick seek algorithm for improved runtime-performance: First roughly scans through the |
357 | // correlation area, and then scan surroundings of two best preliminary correlation candidates |
358 | // with improved precision |
359 | // |
360 | // Based on testing: |
361 | // - This algorithm gives on average 99% as good match as the full algorithm |
362 | // - this quick seek algorithm finds the best match on ~90% of cases |
363 | // - on those 10% of cases when this algorithm doesn't find best match, |
364 | // it still finds on average ~90% match vs. the best possible match |
365 | int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos) |
366 | { |
367 | #define _MIN(a, b)(((a) < (b)) ? (a) : (b)) (((a) < (b)) ? (a) : (b)) |
368 | #define SCANSTEP16 16 |
369 | #define SCANWIND8 8 |
370 | |
371 | int bestOffs; |
372 | int i; |
373 | int bestOffs2; |
374 | float bestCorr, corr; |
375 | float bestCorr2; |
376 | double norm; |
377 | |
378 | // note: 'float' types used in this function in case that the platform would need to use software-fp |
379 | |
380 | bestCorr = |
381 | bestCorr2 = -FLT_MAX3.40282347e+38F; |
382 | bestOffs = |
383 | bestOffs2 = SCANWIND8; |
384 | |
385 | // Scans for the best correlation value by testing each possible position |
386 | // over the permitted range. Look for two best matches on the first pass to |
387 | // increase possibility of ideal match. |
388 | // |
389 | // Begin from "SCANSTEP" instead of SCANWIND to make the calculation |
390 | // catch the 'middlepoint' of seekLength vector as that's the a-priori |
391 | // expected best match position |
392 | // |
393 | // Roughly: |
394 | // - 15% of cases find best result directly on the first round, |
395 | // - 75% cases find better match on 2nd round around the best match from 1st round |
396 | // - 10% cases find better match on 2nd round around the 2nd-best-match from 1st round |
397 | for (i = SCANSTEP16; i < seekLength - SCANWIND8 - 1; i += SCANSTEP16) |
398 | { |
399 | // Calculates correlation value for the mixing position corresponding |
400 | // to 'i' |
401 | corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm); |
402 | // heuristic rule to slightly favour values close to mid of the seek range |
403 | float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength; |
404 | corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp)); |
405 | |
406 | // Checks for the highest correlation value |
407 | if (corr > bestCorr) |
408 | { |
409 | // found new best match. keep the previous best as 2nd best match |
410 | bestCorr2 = bestCorr; |
411 | bestOffs2 = bestOffs; |
412 | bestCorr = corr; |
413 | bestOffs = i; |
414 | } |
415 | else if (corr > bestCorr2) |
416 | { |
417 | // not new best, but still new 2nd best match |
418 | bestCorr2 = corr; |
419 | bestOffs2 = i; |
420 | } |
421 | } |
422 | |
423 | // Scans surroundings of the found best match with small stepping |
424 | int end = _MIN(bestOffs + SCANWIND + 1, seekLength)(((bestOffs + 8 + 1) < (seekLength)) ? (bestOffs + 8 + 1) : (seekLength)); |
425 | for (i = bestOffs - SCANWIND8; i < end; i++) |
426 | { |
427 | if (i == bestOffs) continue; // this offset already calculated, thus skip |
428 | |
429 | // Calculates correlation value for the mixing position corresponding |
430 | // to 'i' |
431 | corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm); |
432 | // heuristic rule to slightly favour values close to mid of the range |
433 | float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength; |
434 | corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp)); |
435 | |
436 | // Checks for the highest correlation value |
437 | if (corr > bestCorr) |
438 | { |
439 | bestCorr = corr; |
440 | bestOffs = i; |
441 | } |
442 | } |
443 | |
444 | // Scans surroundings of the 2nd best match with small stepping |
445 | end = _MIN(bestOffs2 + SCANWIND + 1, seekLength)(((bestOffs2 + 8 + 1) < (seekLength)) ? (bestOffs2 + 8 + 1 ) : (seekLength)); |
446 | for (i = bestOffs2 - SCANWIND8; i < end; i++) |
447 | { |
448 | if (i == bestOffs2) continue; // this offset already calculated, thus skip |
449 | |
450 | // Calculates correlation value for the mixing position corresponding |
451 | // to 'i' |
452 | corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm); |
453 | // heuristic rule to slightly favour values close to mid of the range |
454 | float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength; |
455 | corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp)); |
456 | |
457 | // Checks for the highest correlation value |
458 | if (corr > bestCorr) |
459 | { |
460 | bestCorr = corr; |
461 | bestOffs = i; |
462 | } |
463 | } |
464 | |
465 | // clear cross correlation routine state if necessary (is so e.g. in MMX routines). |
466 | clearCrossCorrState(); |
467 | |
468 | #ifdef SOUNDTOUCH_INTEGER_SAMPLES |
469 | adaptNormalizer(); |
470 | #endif |
471 | |
472 | return bestOffs; |
473 | } |
474 | |
475 | |
476 | |
477 | |
478 | /// For integer algorithm: adapt normalization factor divider with music so that |
479 | /// it'll not be pessimistically restrictive that can degrade quality on quieter sections |
480 | /// yet won't cause integer overflows either |
481 | void TDStretch::adaptNormalizer() |
482 | { |
483 | // Do not adapt normalizer over too silent sequences to avoid averaging filter depleting to |
484 | // too low values during pauses in music |
485 | if ((maxnorm > 1000) || (maxnormf > 40000000)) |
486 | { |
487 | //norm averaging filter |
488 | maxnormf = 0.9f * maxnormf + 0.1f * (float)maxnorm; |
489 | |
490 | if ((maxnorm > 800000000) && (overlapDividerBitsNorm < 16)) |
491 | { |
492 | // large values, so increase divider |
493 | overlapDividerBitsNorm++; |
494 | if (maxnorm > 1600000000) overlapDividerBitsNorm++; // extra large value => extra increase |
495 | } |
496 | else if ((maxnormf < 1000000) && (overlapDividerBitsNorm > 0)) |
497 | { |
498 | // extra small values, decrease divider |
499 | overlapDividerBitsNorm--; |
500 | } |
501 | } |
502 | |
503 | maxnorm = 0; |
504 | } |
505 | |
506 | |
507 | /// clear cross correlation routine state if necessary |
508 | void TDStretch::clearCrossCorrState() |
509 | { |
510 | // default implementation is empty. |
511 | } |
512 | |
513 | |
514 | /// Calculates processing sequence length according to tempo setting |
515 | void TDStretch::calcSeqParameters() |
516 | { |
517 | // Adjust tempo param according to tempo, so that variating processing sequence length is used |
518 | // at various tempo settings, between the given low...top limits |
519 | #define AUTOSEQ_TEMPO_LOW0.5 0.5 // auto setting low tempo range (-50%) |
520 | #define AUTOSEQ_TEMPO_TOP2.0 2.0 // auto setting top tempo range (+100%) |
521 | |
522 | // sequence-ms setting values at above low & top tempo |
523 | #define AUTOSEQ_AT_MIN90.0 90.0 |
524 | #define AUTOSEQ_AT_MAX40.0 40.0 |
525 | #define AUTOSEQ_K((40.0 - 90.0) / (2.0 - 0.5)) ((AUTOSEQ_AT_MAX40.0 - AUTOSEQ_AT_MIN90.0) / (AUTOSEQ_TEMPO_TOP2.0 - AUTOSEQ_TEMPO_LOW0.5)) |
526 | #define AUTOSEQ_C(90.0 - (((40.0 - 90.0) / (2.0 - 0.5))) * (0.5)) (AUTOSEQ_AT_MIN90.0 - (AUTOSEQ_K((40.0 - 90.0) / (2.0 - 0.5))) * (AUTOSEQ_TEMPO_LOW0.5)) |
527 | |
528 | // seek-window-ms setting values at above low & top tempoq |
529 | #define AUTOSEEK_AT_MIN20.0 20.0 |
530 | #define AUTOSEEK_AT_MAX15.0 15.0 |
531 | #define AUTOSEEK_K((15.0 - 20.0) / (2.0 - 0.5)) ((AUTOSEEK_AT_MAX15.0 - AUTOSEEK_AT_MIN20.0) / (AUTOSEQ_TEMPO_TOP2.0 - AUTOSEQ_TEMPO_LOW0.5)) |
532 | #define AUTOSEEK_C(20.0 - (((15.0 - 20.0) / (2.0 - 0.5))) * (0.5)) (AUTOSEEK_AT_MIN20.0 - (AUTOSEEK_K((15.0 - 20.0) / (2.0 - 0.5))) * (AUTOSEQ_TEMPO_LOW0.5)) |
533 | |
534 | #define CHECK_LIMITS(x, mi, ma)(((x) < (mi)) ? (mi) : (((x) > (ma)) ? (ma) : (x))) (((x) < (mi)) ? (mi) : (((x) > (ma)) ? (ma) : (x))) |
535 | |
536 | double seq, seek; |
537 | |
538 | if (bAutoSeqSetting) |
539 | { |
540 | seq = AUTOSEQ_C(90.0 - (((40.0 - 90.0) / (2.0 - 0.5))) * (0.5)) + AUTOSEQ_K((40.0 - 90.0) / (2.0 - 0.5)) * tempo; |
541 | seq = CHECK_LIMITS(seq, AUTOSEQ_AT_MAX, AUTOSEQ_AT_MIN)(((seq) < (40.0)) ? (40.0) : (((seq) > (90.0)) ? (90.0) : (seq))); |
542 | sequenceMs = (int)(seq + 0.5); |
543 | } |
544 | |
545 | if (bAutoSeekSetting) |
546 | { |
547 | seek = AUTOSEEK_C(20.0 - (((15.0 - 20.0) / (2.0 - 0.5))) * (0.5)) + AUTOSEEK_K((15.0 - 20.0) / (2.0 - 0.5)) * tempo; |
548 | seek = CHECK_LIMITS(seek, AUTOSEEK_AT_MAX, AUTOSEEK_AT_MIN)(((seek) < (15.0)) ? (15.0) : (((seek) > (20.0)) ? (20.0 ) : (seek))); |
549 | seekWindowMs = (int)(seek + 0.5); |
550 | } |
551 | |
552 | // Update seek window lengths |
553 | seekWindowLength = (sampleRate * sequenceMs) / 1000; |
554 | if (seekWindowLength < 2 * overlapLength) |
555 | { |
556 | seekWindowLength = 2 * overlapLength; |
557 | } |
558 | seekLength = (sampleRate * seekWindowMs) / 1000; |
559 | } |
560 | |
561 | |
562 | |
563 | // Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower |
564 | // tempo, larger faster tempo. |
565 | void TDStretch::setTempo(double newTempo) |
566 | { |
567 | int intskip; |
568 | |
569 | tempo = newTempo; |
570 | |
571 | // Calculate new sequence duration |
572 | calcSeqParameters(); |
573 | |
574 | // Calculate ideal skip length (according to tempo value) |
575 | nominalSkip = tempo * (seekWindowLength - overlapLength); |
576 | intskip = (int)(nominalSkip + 0.5); |
577 | |
578 | // Calculate how many samples are needed in the 'inputBuffer' to |
579 | // process another batch of samples |
580 | //sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength / 2; |
581 | sampleReq = max(intskip + overlapLength, seekWindowLength)(((intskip + overlapLength) > (seekWindowLength)) ? (intskip + overlapLength) : (seekWindowLength)) + seekLength; |
582 | } |
583 | |
584 | |
585 | |
586 | // Sets the number of channels, 1 = mono, 2 = stereo |
587 | void TDStretch::setChannels(int numChannels) |
588 | { |
589 | if (!verifyNumberOfChannels(numChannels) || |
590 | (channels == numChannels)) return; |
591 | |
592 | channels = numChannels; |
593 | inputBuffer.setChannels(channels); |
594 | outputBuffer.setChannels(channels); |
595 | |
596 | // re-init overlap/buffer |
597 | overlapLength=0; |
598 | setParameters(sampleRate); |
599 | } |
600 | |
601 | |
602 | // nominal tempo, no need for processing, just pass the samples through |
603 | // to outputBuffer |
604 | /* |
605 | void TDStretch::processNominalTempo() |
606 | { |
607 | assert(tempo == 1.0f); |
608 | |
609 | if (bMidBufferDirty) |
610 | { |
611 | // If there are samples in pMidBuffer waiting for overlapping, |
612 | // do a single sliding overlapping with them in order to prevent a |
613 | // clicking distortion in the output sound |
614 | if (inputBuffer.numSamples() < overlapLength) |
615 | { |
616 | // wait until we've got overlapLength input samples |
617 | return; |
618 | } |
619 | // Mix the samples in the beginning of 'inputBuffer' with the |
620 | // samples in 'midBuffer' using sliding overlapping |
621 | overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), 0); |
622 | outputBuffer.putSamples(overlapLength); |
623 | inputBuffer.receiveSamples(overlapLength); |
624 | clearMidBuffer(); |
625 | // now we've caught the nominal sample flow and may switch to |
626 | // bypass mode |
627 | } |
628 | |
629 | // Simply bypass samples from input to output |
630 | outputBuffer.moveSamples(inputBuffer); |
631 | } |
632 | */ |
633 | |
634 | |
635 | // Processes as many processing frames of the samples 'inputBuffer', store |
636 | // the result into 'outputBuffer' |
637 | void TDStretch::processSamples() |
638 | { |
639 | int ovlSkip; |
640 | int offset = 0; |
641 | int temp; |
642 | |
643 | /* Removed this small optimization - can introduce a click to sound when tempo setting |
644 | crosses the nominal value |
645 | if (tempo == 1.0f) |
646 | { |
647 | // tempo not changed from the original, so bypass the processing |
648 | processNominalTempo(); |
649 | return; |
650 | } |
651 | */ |
652 | |
653 | // Process samples as long as there are enough samples in 'inputBuffer' |
654 | // to form a processing frame. |
655 | while ((int)inputBuffer.numSamples() >= sampleReq) |
656 | { |
657 | if (isBeginning == false) |
658 | { |
659 | // apart from the very beginning of the track, |
660 | // scan for the best overlapping position & do overlap-add |
661 | offset = seekBestOverlapPosition(inputBuffer.ptrBegin()); |
662 | |
663 | // Mix the samples in the 'inputBuffer' at position of 'offset' with the |
664 | // samples in 'midBuffer' using sliding overlapping |
665 | // ... first partially overlap with the end of the previous sequence |
666 | // (that's in 'midBuffer') |
667 | overlap(outputBuffer.ptrEnd((uint)overlapLength), inputBuffer.ptrBegin(), (uint)offset); |
668 | outputBuffer.putSamples((uint)overlapLength); |
669 | offset += overlapLength; |
670 | } |
671 | else |
672 | { |
673 | // Adjust processing offset at beginning of track by not perform initial overlapping |
674 | // and compensating that in the 'input buffer skip' calculation |
675 | isBeginning = false; |
676 | int skip = (int)(tempo * overlapLength + 0.5 * seekLength + 0.5); |
677 | |
678 | #ifdef ST_SIMD_AVOID_UNALIGNED |
679 | // in SIMD mode, round the skip amount to value corresponding to aligned memory address |
680 | if (channels == 1) |
681 | { |
682 | skip &= -4; |
683 | } |
684 | else if (channels == 2) |
685 | { |
686 | skip &= -2; |
687 | } |
688 | #endif |
689 | skipFract -= skip; |
690 | if (skipFract <= -nominalSkip) |
691 | { |
692 | skipFract = -nominalSkip; |
693 | } |
694 | } |
695 | |
696 | // ... then copy sequence samples from 'inputBuffer' to output: |
697 | |
698 | // crosscheck that we don't have buffer overflow... |
699 | if ((int)inputBuffer.numSamples() < (offset + seekWindowLength - overlapLength)) |
700 | { |
701 | continue; // just in case, shouldn't really happen |
702 | } |
703 | |
704 | // length of sequence |
705 | temp = (seekWindowLength - 2 * overlapLength); |
706 | outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * offset, (uint)temp); |
707 | |
708 | // Copies the end of the current sequence from 'inputBuffer' to |
709 | // 'midBuffer' for being mixed with the beginning of the next |
710 | // processing sequence and so on |
711 | assert((offset + temp + overlapLength) <= (int)inputBuffer.numSamples())(static_cast <bool> ((offset + temp + overlapLength) <= (int)inputBuffer.numSamples()) ? void (0) : __assert_fail ("(offset + temp + overlapLength) <= (int)inputBuffer.numSamples()" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ )); |
712 | memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp), |
713 | channels * sizeof(SAMPLETYPE) * overlapLength); |
714 | |
715 | // Remove the processed samples from the input buffer. Update |
716 | // the difference between integer & nominal skip step to 'skipFract' |
717 | // in order to prevent the error from accumulating over time. |
718 | skipFract += nominalSkip; // real skip size |
719 | ovlSkip = (int)skipFract; // rounded to integer skip |
720 | skipFract -= ovlSkip; // maintain the fraction part, i.e. real vs. integer skip |
721 | inputBuffer.receiveSamples((uint)ovlSkip); |
722 | } |
723 | } |
724 | |
725 | |
726 | // Adds 'numsamples' pcs of samples from the 'samples' memory position into |
727 | // the input of the object. |
728 | void TDStretch::putSamples(const SAMPLETYPE *samples, uint nSamples) |
729 | { |
730 | // Add the samples into the input buffer |
731 | inputBuffer.putSamples(samples, nSamples); |
732 | // Process the samples in input buffer |
733 | processSamples(); |
734 | } |
735 | |
736 | |
737 | |
738 | /// Set new overlap length parameter & reallocate RefMidBuffer if necessary. |
739 | void TDStretch::acceptNewOverlapLength(int newOverlapLength) |
740 | { |
741 | int prevOvl; |
742 | |
743 | assert(newOverlapLength >= 0)(static_cast <bool> (newOverlapLength >= 0) ? void ( 0) : __assert_fail ("newOverlapLength >= 0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
744 | prevOvl = overlapLength; |
745 | overlapLength = newOverlapLength; |
746 | |
747 | if (overlapLength > prevOvl) |
748 | { |
749 | delete[] pMidBufferUnaligned; |
750 | |
751 | pMidBufferUnaligned = new SAMPLETYPE[overlapLength * channels + 16 / sizeof(SAMPLETYPE)]; |
752 | // ensure that 'pMidBuffer' is aligned to 16 byte boundary for efficiency |
753 | pMidBuffer = (SAMPLETYPE *)SOUNDTOUCH_ALIGN_POINTER_16(pMidBufferUnaligned)( ( (ulongptr)(pMidBufferUnaligned) + 15 ) & ~(ulongptr)15 ); |
754 | |
755 | clearMidBuffer(); |
756 | } |
757 | } |
758 | |
759 | |
760 | // Operator 'new' is overloaded so that it automatically creates a suitable instance |
761 | // depending on if we've a MMX/SSE/etc-capable CPU available or not. |
762 | void * TDStretch::operator new(size_t s) |
763 | { |
764 | // Notice! don't use "new TDStretch" directly, use "newInstance" to create a new instance instead! |
765 | ST_THROW_RT_ERROR("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!"){(static_cast <bool> ((const char *)"Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!" ) ? void (0) : __assert_fail ("(const char *)\"Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!\"" , __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__ ));}; |
766 | return newInstance(); |
767 | } |
768 | |
769 | |
770 | TDStretch * TDStretch::newInstance() |
771 | { |
772 | #if defined(SOUNDTOUCH_ALLOW_MMX) || defined(SOUNDTOUCH_ALLOW_SSE1) |
773 | uint uExtensions; |
774 | |
775 | uExtensions = detectCPUextensions(); |
776 | #endif |
777 | |
778 | // Check if MMX/SSE instruction set extensions supported by CPU |
779 | |
780 | #ifdef SOUNDTOUCH_ALLOW_MMX |
781 | // MMX routines available only with integer sample types |
782 | if (uExtensions & SUPPORT_MMX0x0001) |
783 | { |
784 | return ::new TDStretchMMX; |
785 | } |
786 | else |
787 | #endif // SOUNDTOUCH_ALLOW_MMX |
788 | |
789 | |
790 | #ifdef SOUNDTOUCH_ALLOW_SSE1 |
791 | if (uExtensions & SUPPORT_SSE0x0008) |
792 | { |
793 | // SSE support |
794 | return ::new TDStretchSSE; |
795 | } |
796 | else |
797 | #endif // SOUNDTOUCH_ALLOW_SSE |
798 | |
799 | { |
800 | // ISA optimizations not supported, use plain C version |
801 | return ::new TDStretch; |
802 | } |
803 | } |
804 | |
805 | |
806 | ////////////////////////////////////////////////////////////////////////////// |
807 | // |
808 | // Integer arithmetic specific algorithm implementations. |
809 | // |
810 | ////////////////////////////////////////////////////////////////////////////// |
811 | |
812 | #ifdef SOUNDTOUCH_INTEGER_SAMPLES |
813 | |
814 | // Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo' |
815 | // version of the routine. |
816 | void TDStretch::overlapStereo(short *poutput, const short *input) const |
817 | { |
818 | int i; |
819 | short temp; |
820 | int cnt2; |
821 | |
822 | for (i = 0; i < overlapLength ; i ++) |
823 | { |
824 | temp = (short)(overlapLength - i); |
825 | cnt2 = 2 * i; |
826 | poutput[cnt2] = (input[cnt2] * i + pMidBuffer[cnt2] * temp ) / overlapLength; |
827 | poutput[cnt2 + 1] = (input[cnt2 + 1] * i + pMidBuffer[cnt2 + 1] * temp ) / overlapLength; |
828 | } |
829 | } |
830 | |
831 | |
832 | // Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Multi' |
833 | // version of the routine. |
834 | void TDStretch::overlapMulti(short *poutput, const short *input) const |
835 | { |
836 | short m1; |
837 | int i = 0; |
838 | |
839 | for (m1 = 0; m1 < overlapLength; m1 ++) |
840 | { |
841 | short m2 = (short)(overlapLength - m1); |
842 | for (int c = 0; c < channels; c ++) |
843 | { |
844 | poutput[i] = (input[i] * m1 + pMidBuffer[i] * m2) / overlapLength; |
845 | i++; |
846 | } |
847 | } |
848 | } |
849 | |
850 | // Calculates the x having the closest 2^x value for the given value |
851 | static int _getClosest2Power(double value) |
852 | { |
853 | return (int)(log(value) / log(2.0) + 0.5); |
854 | } |
855 | |
856 | |
857 | /// Calculates overlap period length in samples. |
858 | /// Integer version rounds overlap length to closest power of 2 |
859 | /// for a divide scaling operation. |
860 | void TDStretch::calculateOverlapLength(int aoverlapMs) |
861 | { |
862 | int newOvl; |
863 | |
864 | assert(aoverlapMs >= 0)(static_cast <bool> (aoverlapMs >= 0) ? void (0) : __assert_fail ("aoverlapMs >= 0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
865 | |
866 | // calculate overlap length so that it's power of 2 - thus it's easy to do |
867 | // integer division by right-shifting. Term "-1" at end is to account for |
868 | // the extra most significatnt bit left unused in result by signed multiplication |
869 | overlapDividerBitsPure = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1; |
870 | if (overlapDividerBitsPure > 9) overlapDividerBitsPure = 9; |
871 | if (overlapDividerBitsPure < 3) overlapDividerBitsPure = 3; |
872 | newOvl = (int)pow(2.0, (int)overlapDividerBitsPure + 1); // +1 => account for -1 above |
873 | |
874 | acceptNewOverlapLength(newOvl); |
875 | |
876 | overlapDividerBitsNorm = overlapDividerBitsPure; |
877 | |
878 | // calculate sloping divider so that crosscorrelation operation won't |
879 | // overflow 32-bit register. Max. sum of the crosscorrelation sum without |
880 | // divider would be 2^30*(N^3-N)/3, where N = overlap length |
881 | slopingDivider = (newOvl * newOvl - 1) / 3; |
882 | } |
883 | |
884 | |
885 | double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, double &norm) |
886 | { |
887 | long corr; |
888 | unsigned long lnorm; |
889 | int i; |
890 | |
891 | #ifdef ST_SIMD_AVOID_UNALIGNED |
892 | // in SIMD mode skip 'mixingPos' positions that aren't aligned to 16-byte boundary |
893 | if (((ulongptr)mixingPos) & 15) return -1e50; |
894 | #endif |
895 | |
896 | // hint compiler autovectorization that loop length is divisible by 8 |
897 | int ilength = (channels * overlapLength) & -8; |
898 | |
899 | corr = lnorm = 0; |
900 | // Same routine for stereo and mono |
901 | for (i = 0; i < ilength; i += 2) |
902 | { |
903 | corr += (mixingPos[i] * compare[i] + |
904 | mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; |
905 | lnorm += (mixingPos[i] * mixingPos[i] + |
906 | mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBitsNorm; |
907 | // do intermediate scalings to avoid integer overflow |
908 | } |
909 | |
910 | if (lnorm > maxnorm) |
911 | { |
912 | // modify 'maxnorm' inside critical section to avoid multi-access conflict if in OpenMP mode |
913 | #pragma omp critical |
914 | if (lnorm > maxnorm) |
915 | { |
916 | maxnorm = lnorm; |
917 | } |
918 | } |
919 | // Normalize result by dividing by sqrt(norm) - this step is easiest |
920 | // done using floating point operation |
921 | norm = (double)lnorm; |
922 | return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm); |
923 | } |
924 | |
925 | |
926 | /// Update cross-correlation by accumulating "norm" coefficient by previously calculated value |
927 | double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) |
928 | { |
929 | long corr; |
930 | long lnorm; |
931 | int i; |
932 | |
933 | // hint compiler autovectorization that loop length is divisible by 8 |
934 | int ilength = (channels * overlapLength) & -8; |
935 | |
936 | // cancel first normalizer tap from previous round |
937 | lnorm = 0; |
938 | for (i = 1; i <= channels; i ++) |
939 | { |
940 | lnorm -= (mixingPos[-i] * mixingPos[-i]) >> overlapDividerBitsNorm; |
941 | } |
942 | |
943 | corr = 0; |
944 | // Same routine for stereo and mono. |
945 | for (i = 0; i < ilength; i += 2) |
946 | { |
947 | corr += (mixingPos[i] * compare[i] + |
948 | mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; |
949 | } |
950 | |
951 | // update normalizer with last samples of this round |
952 | for (int j = 0; j < channels; j ++) |
953 | { |
954 | i --; |
955 | lnorm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBitsNorm; |
956 | } |
957 | |
958 | norm += (double)lnorm; |
959 | if (norm > maxnorm) |
960 | { |
961 | maxnorm = (unsigned long)norm; |
962 | } |
963 | |
964 | // Normalize result by dividing by sqrt(norm) - this step is easiest |
965 | // done using floating point operation |
966 | return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm); |
967 | } |
968 | |
969 | #endif // SOUNDTOUCH_INTEGER_SAMPLES |
970 | |
971 | ////////////////////////////////////////////////////////////////////////////// |
972 | // |
973 | // Floating point arithmetic specific algorithm implementations. |
974 | // |
975 | |
976 | #ifdef SOUNDTOUCH_FLOAT_SAMPLES1 |
977 | |
978 | // Overlaps samples in 'midBuffer' with the samples in 'pInput' |
979 | void TDStretch::overlapStereo(float *pOutput, const float *pInput) const |
980 | { |
981 | int i; |
982 | float fScale; |
983 | float f1; |
984 | float f2; |
985 | |
986 | fScale = 1.0f / (float)overlapLength; |
987 | |
988 | f1 = 0; |
989 | f2 = 1.0f; |
990 | |
991 | for (i = 0; i < 2 * (int)overlapLength ; i += 2) |
992 | { |
993 | pOutput[i + 0] = pInput[i + 0] * f1 + pMidBuffer[i + 0] * f2; |
994 | pOutput[i + 1] = pInput[i + 1] * f1 + pMidBuffer[i + 1] * f2; |
995 | |
996 | f1 += fScale; |
997 | f2 -= fScale; |
998 | } |
999 | } |
1000 | |
1001 | |
1002 | // Overlaps samples in 'midBuffer' with the samples in 'input'. |
1003 | void TDStretch::overlapMulti(float *pOutput, const float *pInput) const |
1004 | { |
1005 | int i; |
1006 | float fScale; |
1007 | float f1; |
1008 | float f2; |
1009 | |
1010 | fScale = 1.0f / (float)overlapLength; |
1011 | |
1012 | f1 = 0; |
1013 | f2 = 1.0f; |
1014 | |
1015 | i=0; |
1016 | for (int i2 = 0; i2 < overlapLength; i2 ++) |
1017 | { |
1018 | // note: Could optimize this slightly by taking into account that always channels > 2 |
1019 | for (int c = 0; c < channels; c ++) |
1020 | { |
1021 | pOutput[i] = pInput[i] * f1 + pMidBuffer[i] * f2; |
1022 | i++; |
1023 | } |
1024 | f1 += fScale; |
1025 | f2 -= fScale; |
1026 | } |
1027 | } |
1028 | |
1029 | |
1030 | /// Calculates overlapInMsec period length in samples. |
1031 | void TDStretch::calculateOverlapLength(int overlapInMsec) |
1032 | { |
1033 | int newOvl; |
1034 | |
1035 | assert(overlapInMsec >= 0)(static_cast <bool> (overlapInMsec >= 0) ? void (0) : __assert_fail ("overlapInMsec >= 0", __builtin_FILE (), __builtin_LINE (), __extension__ __PRETTY_FUNCTION__)); |
1036 | newOvl = (sampleRate * overlapInMsec) / 1000; |
1037 | if (newOvl < 16) newOvl = 16; |
1038 | |
1039 | // must be divisible by 8 |
1040 | newOvl -= newOvl % 8; |
1041 | |
1042 | acceptNewOverlapLength(newOvl); |
1043 | } |
1044 | |
1045 | |
1046 | /// Calculate cross-correlation |
1047 | double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &anorm) |
1048 | { |
1049 | float corr; |
1050 | float norm; |
1051 | int i; |
1052 | |
1053 | #ifdef ST_SIMD_AVOID_UNALIGNED |
1054 | // in SIMD mode skip 'mixingPos' positions that aren't aligned to 16-byte boundary |
1055 | if (((ulongptr)mixingPos) & 15) return -1e50; |
1056 | #endif |
1057 | |
1058 | // hint compiler autovectorization that loop length is divisible by 8 |
1059 | int ilength = (channels * overlapLength) & -8; |
1060 | |
1061 | corr = norm = 0; |
1062 | // Same routine for stereo and mono |
1063 | for (i = 0; i < ilength; i ++) |
1064 | { |
1065 | corr += mixingPos[i] * compare[i]; |
1066 | norm += mixingPos[i] * mixingPos[i]; |
1067 | } |
1068 | |
1069 | anorm = norm; |
1070 | return corr / sqrt((norm < 1e-9 ? 1.0 : norm)); |
1071 | } |
1072 | |
1073 | |
1074 | /// Update cross-correlation by accumulating "norm" coefficient by previously calculated value |
1075 | double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) |
1076 | { |
1077 | float corr; |
1078 | int i; |
1079 | |
1080 | corr = 0; |
1081 | |
1082 | // cancel first normalizer tap from previous round |
1083 | for (i = 1; i <= channels; i ++) |
1084 | { |
1085 | norm -= mixingPos[-i] * mixingPos[-i]; |
1086 | } |
1087 | |
1088 | // hint compiler autovectorization that loop length is divisible by 8 |
1089 | int ilength = (channels * overlapLength) & -8; |
1090 | |
1091 | // Same routine for stereo and mono |
1092 | for (i = 0; i < ilength; i ++) |
1093 | { |
1094 | corr += mixingPos[i] * compare[i]; |
1095 | } |
1096 | |
1097 | // update normalizer with last samples of this round |
1098 | for (int j = 0; j < channels; j ++) |
1099 | { |
1100 | i --; |
1101 | norm += mixingPos[i] * mixingPos[i]; |
1102 | } |
1103 | |
1104 | return corr / sqrt((norm < 1e-9 ? 1.0 : norm)); |
1105 | } |
1106 | |
1107 | |
1108 | #endif // SOUNDTOUCH_FLOAT_SAMPLES |