File: | var/lib/jenkins/workspace/firefox-scan-build/gfx/2d/SkConvolver.cpp |
Warning: | line 502, column 50 Value stored to 'filterValues' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | // Copyright (c) 2011-2016 Google Inc. |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the gfx/skia/LICENSE file. |
6 | |
7 | #include "SkConvolver.h" |
8 | |
9 | #ifdef USE_SSE21 |
10 | # include "mozilla/SSE.h" |
11 | #endif |
12 | |
13 | #ifdef USE_NEON |
14 | # include "mozilla/arm.h" |
15 | #endif |
16 | |
17 | namespace skia { |
18 | |
19 | // Converts the argument to an 8-bit unsigned value by clamping to the range |
20 | // 0-255. |
21 | static inline unsigned char ClampTo8(int a) { |
22 | if (static_cast<unsigned>(a) < 256) { |
23 | return a; // Avoid the extra check in the common case. |
24 | } |
25 | if (a < 0) { |
26 | return 0; |
27 | } |
28 | return 255; |
29 | } |
30 | |
31 | // Convolves horizontally along a single row. The row data is given in |
32 | // |srcData| and continues for the numValues() of the filter. |
33 | template <bool hasAlpha> |
34 | void ConvolveHorizontally(const unsigned char* srcData, |
35 | const SkConvolutionFilter1D& filter, |
36 | unsigned char* outRow) { |
37 | // Loop over each pixel on this row in the output image. |
38 | int numValues = filter.numValues(); |
39 | for (int outX = 0; outX < numValues; outX++) { |
40 | // Get the filter that determines the current output pixel. |
41 | int filterOffset, filterLength; |
42 | const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
43 | filter.FilterForValue(outX, &filterOffset, &filterLength); |
44 | |
45 | // Compute the first pixel in this row that the filter affects. It will |
46 | // touch |filterLength| pixels (4 bytes each) after this. |
47 | const unsigned char* rowToFilter = &srcData[filterOffset * 4]; |
48 | |
49 | // Apply the filter to the row to get the destination pixel in |accum|. |
50 | int accum[4] = {0}; |
51 | for (int filterX = 0; filterX < filterLength; filterX++) { |
52 | SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX]; |
53 | accum[0] += curFilter * rowToFilter[filterX * 4 + 0]; |
54 | accum[1] += curFilter * rowToFilter[filterX * 4 + 1]; |
55 | accum[2] += curFilter * rowToFilter[filterX * 4 + 2]; |
56 | if (hasAlpha) { |
57 | accum[3] += curFilter * rowToFilter[filterX * 4 + 3]; |
58 | } |
59 | } |
60 | |
61 | // Bring this value back in range. All of the filter scaling factors |
62 | // are in fixed point with kShiftBits bits of fractional part. |
63 | accum[0] >>= SkConvolutionFilter1D::kShiftBits; |
64 | accum[1] >>= SkConvolutionFilter1D::kShiftBits; |
65 | accum[2] >>= SkConvolutionFilter1D::kShiftBits; |
66 | |
67 | if (hasAlpha) { |
68 | accum[3] >>= SkConvolutionFilter1D::kShiftBits; |
69 | } |
70 | |
71 | // Store the new pixel. |
72 | outRow[outX * 4 + 0] = ClampTo8(accum[0]); |
73 | outRow[outX * 4 + 1] = ClampTo8(accum[1]); |
74 | outRow[outX * 4 + 2] = ClampTo8(accum[2]); |
75 | if (hasAlpha) { |
76 | outRow[outX * 4 + 3] = ClampTo8(accum[3]); |
77 | } |
78 | } |
79 | } |
80 | |
81 | // Does vertical convolution to produce one output row. The filter values and |
82 | // length are given in the first two parameters. These are applied to each |
83 | // of the rows pointed to in the |sourceDataRows| array, with each row |
84 | // being |pixelWidth| wide. |
85 | // |
86 | // The output must have room for |pixelWidth * 4| bytes. |
87 | template <bool hasAlpha> |
88 | void ConvolveVertically( |
89 | const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
90 | int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, |
91 | unsigned char* outRow) { |
92 | // We go through each column in the output and do a vertical convolution, |
93 | // generating one output pixel each time. |
94 | for (int outX = 0; outX < pixelWidth; outX++) { |
95 | // Compute the number of bytes over in each row that the current column |
96 | // we're convolving starts at. The pixel will cover the next 4 bytes. |
97 | int byteOffset = outX * 4; |
98 | |
99 | // Apply the filter to one column of pixels. |
100 | int accum[4] = {0}; |
101 | for (int filterY = 0; filterY < filterLength; filterY++) { |
102 | SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY]; |
103 | accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0]; |
104 | accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1]; |
105 | accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2]; |
106 | if (hasAlpha) { |
107 | accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3]; |
108 | } |
109 | } |
110 | |
111 | // Bring this value back in range. All of the filter scaling factors |
112 | // are in fixed point with kShiftBits bits of precision. |
113 | accum[0] >>= SkConvolutionFilter1D::kShiftBits; |
114 | accum[1] >>= SkConvolutionFilter1D::kShiftBits; |
115 | accum[2] >>= SkConvolutionFilter1D::kShiftBits; |
116 | if (hasAlpha) { |
117 | accum[3] >>= SkConvolutionFilter1D::kShiftBits; |
118 | } |
119 | |
120 | // Store the new pixel. |
121 | outRow[byteOffset + 0] = ClampTo8(accum[0]); |
122 | outRow[byteOffset + 1] = ClampTo8(accum[1]); |
123 | outRow[byteOffset + 2] = ClampTo8(accum[2]); |
124 | |
125 | if (hasAlpha) { |
126 | unsigned char alpha = ClampTo8(accum[3]); |
127 | |
128 | // Make sure the alpha channel doesn't come out smaller than any of the |
129 | // color channels. We use premultipled alpha channels, so this should |
130 | // never happen, but rounding errors will cause this from time to time. |
131 | // These "impossible" colors will cause overflows (and hence random pixel |
132 | // values) when the resulting bitmap is drawn to the screen. |
133 | // |
134 | // We only need to do this when generating the final output row (here). |
135 | int maxColorChannel = |
136 | std::max(outRow[byteOffset + 0], |
137 | std::max(outRow[byteOffset + 1], outRow[byteOffset + 2])); |
138 | if (alpha < maxColorChannel) { |
139 | outRow[byteOffset + 3] = maxColorChannel; |
140 | } else { |
141 | outRow[byteOffset + 3] = alpha; |
142 | } |
143 | } else { |
144 | // No alpha channel, the image is opaque. |
145 | outRow[byteOffset + 3] = 0xff; |
146 | } |
147 | } |
148 | } |
149 | |
150 | #ifdef USE_SSE21 |
151 | void convolve_vertically_avx2(const int16_t* filter, int filterLen, |
152 | uint8_t* const* srcRows, int width, uint8_t* out, |
153 | bool hasAlpha); |
154 | void convolve_horizontally_sse2(const unsigned char* srcData, |
155 | const SkConvolutionFilter1D& filter, |
156 | unsigned char* outRow, bool hasAlpha); |
157 | void convolve_vertically_sse2(const int16_t* filter, int filterLen, |
158 | uint8_t* const* srcRows, int width, uint8_t* out, |
159 | bool hasAlpha); |
160 | #elif defined(USE_NEON) |
161 | void convolve_horizontally_neon(const unsigned char* srcData, |
162 | const SkConvolutionFilter1D& filter, |
163 | unsigned char* outRow, bool hasAlpha); |
164 | void convolve_vertically_neon(const int16_t* filter, int filterLen, |
165 | uint8_t* const* srcRows, int width, uint8_t* out, |
166 | bool hasAlpha); |
167 | #endif |
168 | |
169 | void convolve_horizontally(const unsigned char* srcData, |
170 | const SkConvolutionFilter1D& filter, |
171 | unsigned char* outRow, bool hasAlpha) { |
172 | #ifdef USE_SSE21 |
173 | if (mozilla::supports_sse2()) { |
174 | convolve_horizontally_sse2(srcData, filter, outRow, hasAlpha); |
175 | return; |
176 | } |
177 | #elif defined(USE_NEON) |
178 | if (mozilla::supports_neon()) { |
179 | convolve_horizontally_neon(srcData, filter, outRow, hasAlpha); |
180 | return; |
181 | } |
182 | #endif |
183 | if (hasAlpha) { |
184 | ConvolveHorizontally<true>(srcData, filter, outRow); |
185 | } else { |
186 | ConvolveHorizontally<false>(srcData, filter, outRow); |
187 | } |
188 | } |
189 | |
190 | void convolve_vertically( |
191 | const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
192 | int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, |
193 | unsigned char* outRow, bool hasAlpha) { |
194 | #ifdef USE_SSE21 |
195 | if (mozilla::supports_avx2()) { |
196 | convolve_vertically_avx2(filterValues, filterLength, sourceDataRows, |
197 | pixelWidth, outRow, hasAlpha); |
198 | return; |
199 | } |
200 | if (mozilla::supports_sse2()) { |
201 | convolve_vertically_sse2(filterValues, filterLength, sourceDataRows, |
202 | pixelWidth, outRow, hasAlpha); |
203 | return; |
204 | } |
205 | #elif defined(USE_NEON) |
206 | if (mozilla::supports_neon()) { |
207 | convolve_vertically_neon(filterValues, filterLength, sourceDataRows, |
208 | pixelWidth, outRow, hasAlpha); |
209 | return; |
210 | } |
211 | #endif |
212 | if (hasAlpha) { |
213 | ConvolveVertically<true>(filterValues, filterLength, sourceDataRows, |
214 | pixelWidth, outRow); |
215 | } else { |
216 | ConvolveVertically<false>(filterValues, filterLength, sourceDataRows, |
217 | pixelWidth, outRow); |
218 | } |
219 | } |
220 | |
221 | // Stores a list of rows in a circular buffer. The usage is you write into it |
222 | // by calling AdvanceRow. It will keep track of which row in the buffer it |
223 | // should use next, and the total number of rows added. |
224 | class CircularRowBuffer { |
225 | public: |
226 | // The number of pixels in each row is given in |sourceRowPixelWidth|. |
227 | // The maximum number of rows needed in the buffer is |maxYFilterSize| |
228 | // (we only need to store enough rows for the biggest filter). |
229 | // |
230 | // We use the |firstInputRow| to compute the coordinates of all of the |
231 | // following rows returned by Advance(). |
232 | CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize, |
233 | int firstInputRow) |
234 | : fRowByteWidth(destRowPixelWidth * 4), |
235 | fNumRows(maxYFilterSize), |
236 | fNextRow(0), |
237 | fNextRowCoordinate(firstInputRow) {} |
238 | |
239 | bool AllocBuffer() { |
240 | return fBuffer.resize(fRowByteWidth * fNumRows) && |
241 | fRowAddresses.resize(fNumRows); |
242 | } |
243 | |
244 | // Moves to the next row in the buffer, returning a pointer to the beginning |
245 | // of it. |
246 | unsigned char* advanceRow() { |
247 | unsigned char* row = &fBuffer[fNextRow * fRowByteWidth]; |
248 | fNextRowCoordinate++; |
249 | |
250 | // Set the pointer to the next row to use, wrapping around if necessary. |
251 | fNextRow++; |
252 | if (fNextRow == fNumRows) { |
253 | fNextRow = 0; |
254 | } |
255 | return row; |
256 | } |
257 | |
258 | // Returns a pointer to an "unrolled" array of rows. These rows will start |
259 | // at the y coordinate placed into |*firstRowIndex| and will continue in |
260 | // order for the maximum number of rows in this circular buffer. |
261 | // |
262 | // The |firstRowIndex_| may be negative. This means the circular buffer |
263 | // starts before the top of the image (it hasn't been filled yet). |
264 | unsigned char* const* GetRowAddresses(int* firstRowIndex) { |
265 | // Example for a 4-element circular buffer holding coords 6-9. |
266 | // Row 0 Coord 8 |
267 | // Row 1 Coord 9 |
268 | // Row 2 Coord 6 <- fNextRow = 2, fNextRowCoordinate = 10. |
269 | // Row 3 Coord 7 |
270 | // |
271 | // The "next" row is also the first (lowest) coordinate. This computation |
272 | // may yield a negative value, but that's OK, the math will work out |
273 | // since the user of this buffer will compute the offset relative |
274 | // to the firstRowIndex and the negative rows will never be used. |
275 | *firstRowIndex = fNextRowCoordinate - fNumRows; |
276 | |
277 | int curRow = fNextRow; |
278 | for (int i = 0; i < fNumRows; i++) { |
279 | fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth]; |
280 | |
281 | // Advance to the next row, wrapping if necessary. |
282 | curRow++; |
283 | if (curRow == fNumRows) { |
284 | curRow = 0; |
285 | } |
286 | } |
287 | return &fRowAddresses[0]; |
288 | } |
289 | |
290 | private: |
291 | // The buffer storing the rows. They are packed, each one fRowByteWidth. |
292 | mozilla::Vector<unsigned char> fBuffer; |
293 | |
294 | // Number of bytes per row in the |buffer|. |
295 | int fRowByteWidth; |
296 | |
297 | // The number of rows available in the buffer. |
298 | int fNumRows; |
299 | |
300 | // The next row index we should write into. This wraps around as the |
301 | // circular buffer is used. |
302 | int fNextRow; |
303 | |
304 | // The y coordinate of the |fNextRow|. This is incremented each time a |
305 | // new row is appended and does not wrap. |
306 | int fNextRowCoordinate; |
307 | |
308 | // Buffer used by GetRowAddresses(). |
309 | mozilla::Vector<unsigned char*> fRowAddresses; |
310 | }; |
311 | |
312 | SkConvolutionFilter1D::SkConvolutionFilter1D() : fMaxFilter(0) {} |
313 | |
314 | SkConvolutionFilter1D::~SkConvolutionFilter1D() = default; |
315 | |
316 | bool SkConvolutionFilter1D::AddFilter(int filterOffset, |
317 | const ConvolutionFixed* filterValues, |
318 | int filterLength) { |
319 | // It is common for leading/trailing filter values to be zeros. In such |
320 | // cases it is beneficial to only store the central factors. |
321 | // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on |
322 | // a 1080p image this optimization gives a ~10% speed improvement. |
323 | int filterSize = filterLength; |
324 | int firstNonZero = 0; |
325 | while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) { |
326 | firstNonZero++; |
327 | } |
328 | |
329 | if (firstNonZero < filterLength) { |
330 | // Here we have at least one non-zero factor. |
331 | int lastNonZero = filterLength - 1; |
332 | while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) { |
333 | lastNonZero--; |
334 | } |
335 | |
336 | filterOffset += firstNonZero; |
337 | filterLength = lastNonZero + 1 - firstNonZero; |
338 | MOZ_ASSERT(filterLength > 0)do { static_assert( mozilla::detail::AssertionConditionType< decltype(filterLength > 0)>::isValid, "invalid assertion condition" ); if ((__builtin_expect(!!(!(!!(filterLength > 0))), 0))) { do { } while (false); MOZ_ReportAssertionFailure("filterLength > 0" , "/var/lib/jenkins/workspace/firefox-scan-build/gfx/2d/SkConvolver.cpp" , 338); AnnotateMozCrashReason("MOZ_ASSERT" "(" "filterLength > 0" ")"); do { *((volatile int*)__null) = 338; __attribute__((nomerge )) ::abort(); } while (false); } } while (false); |
339 | |
340 | if (!fFilterValues.append(&filterValues[firstNonZero], filterLength)) { |
341 | return false; |
342 | } |
343 | } else { |
344 | // Here all the factors were zeroes. |
345 | filterLength = 0; |
346 | } |
347 | |
348 | FilterInstance instance = { |
349 | // We pushed filterLength elements onto fFilterValues |
350 | int(fFilterValues.length()) - filterLength, filterOffset, filterLength, |
351 | filterSize}; |
352 | if (!fFilters.append(instance)) { |
353 | if (filterLength > 0) { |
354 | fFilterValues.shrinkBy(filterLength); |
355 | } |
356 | return false; |
357 | } |
358 | |
359 | fMaxFilter = std::max(fMaxFilter, filterLength); |
360 | return true; |
361 | } |
362 | |
363 | bool SkConvolutionFilter1D::ComputeFilterValues( |
364 | const SkBitmapFilter& aBitmapFilter, int32_t aSrcSize, int32_t aDstSize) { |
365 | // When we're doing a magnification, the scale will be larger than one. This |
366 | // means the destination pixels are much smaller than the source pixels, and |
367 | // that the range covered by the filter won't necessarily cover any source |
368 | // pixel boundaries. Therefore, we use these clamped values (max of 1) for |
369 | // some computations. |
370 | float scale = float(aDstSize) / float(aSrcSize); |
371 | float clampedScale = std::min(1.0f, scale); |
372 | // This is how many source pixels from the center we need to count |
373 | // to support the filtering function. |
374 | float srcSupport = aBitmapFilter.width() / clampedScale; |
375 | float invScale = 1.0f / scale; |
376 | |
377 | mozilla::Vector<float, 64> filterValues; |
378 | mozilla::Vector<ConvolutionFixed, 64> fixedFilterValues; |
379 | |
380 | // Loop over all pixels in the output range. We will generate one set of |
381 | // filter values for each one. Those values will tell us how to blend the |
382 | // source pixels to compute the destination pixel. |
383 | |
384 | // This value is computed based on how SkTDArray::resizeStorageToAtLeast works |
385 | // in order to ensure that it does not overflow or assert. That functions |
386 | // computes |
387 | // n+4 + (n+4)/4 |
388 | // and we want to to fit in a 32 bit signed int. Equating that to 2^31-1 and |
389 | // solving n gives n = (2^31-6)*4/5 = 1717986913.6 |
390 | const int32_t maxToPassToReserveAdditional = 1717986913; |
391 | |
392 | int32_t filterValueCount = int32_t(ceilf(aDstSize * srcSupport * 2)); |
393 | if (aDstSize > maxToPassToReserveAdditional || filterValueCount < 0 || |
394 | filterValueCount > maxToPassToReserveAdditional || |
395 | !reserveAdditional(aDstSize, filterValueCount)) { |
396 | return false; |
397 | } |
398 | size_t oldFiltersLength = fFilters.length(); |
399 | size_t oldFilterValuesLength = fFilterValues.length(); |
400 | int oldMaxFilter = fMaxFilter; |
401 | for (int32_t destI = 0; destI < aDstSize; destI++) { |
402 | // This is the pixel in the source directly under the pixel in the dest. |
403 | // Note that we base computations on the "center" of the pixels. To see |
404 | // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x |
405 | // downscale should "cover" the pixels around the pixel with *its center* |
406 | // at coordinates (2.5, 2.5) in the source, not those around (0, 0). |
407 | // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). |
408 | float srcPixel = (static_cast<float>(destI) + 0.5f) * invScale; |
409 | |
410 | // Compute the (inclusive) range of source pixels the filter covers. |
411 | float srcBegin = std::max(0.0f, floorf(srcPixel - srcSupport)); |
412 | float srcEnd = std::min(aSrcSize - 1.0f, ceilf(srcPixel + srcSupport)); |
413 | |
414 | // Compute the unnormalized filter value at each location of the source |
415 | // it covers. |
416 | |
417 | // Sum of the filter values for normalizing. |
418 | // Distance from the center of the filter, this is the filter coordinate |
419 | // in source space. We also need to consider the center of the pixel |
420 | // when comparing distance against 'srcPixel'. In the 5x downscale |
421 | // example used above the distance from the center of the filter to |
422 | // the pixel with coordinates (2, 2) should be 0, because its center |
423 | // is at (2.5, 2.5). |
424 | int32_t filterCount = int32_t(srcEnd - srcBegin) + 1; |
425 | if (filterCount <= 0 || !filterValues.resize(filterCount) || |
426 | !fixedFilterValues.resize(filterCount)) { |
427 | return false; |
428 | } |
429 | |
430 | float destFilterDist = (srcBegin + 0.5f - srcPixel) * clampedScale; |
431 | float filterSum = 0.0f; |
432 | for (int32_t index = 0; index < filterCount; index++) { |
433 | float filterValue = aBitmapFilter.evaluate(destFilterDist); |
434 | filterValues[index] = filterValue; |
435 | filterSum += filterValue; |
436 | destFilterDist += clampedScale; |
437 | } |
438 | |
439 | // The filter must be normalized so that we don't affect the brightness of |
440 | // the image. Convert to normalized fixed point. |
441 | ConvolutionFixed fixedSum = 0; |
442 | float invFilterSum = 1.0f / filterSum; |
443 | for (int32_t fixedI = 0; fixedI < filterCount; fixedI++) { |
444 | ConvolutionFixed curFixed = ToFixed(filterValues[fixedI] * invFilterSum); |
445 | fixedSum += curFixed; |
446 | fixedFilterValues[fixedI] = curFixed; |
447 | } |
448 | |
449 | // The conversion to fixed point will leave some rounding errors, which |
450 | // we add back in to avoid affecting the brightness of the image. We |
451 | // arbitrarily add this to the center of the filter array (this won't always |
452 | // be the center of the filter function since it could get clipped on the |
453 | // edges, but it doesn't matter enough to worry about that case). |
454 | ConvolutionFixed leftovers = ToFixed(1) - fixedSum; |
455 | fixedFilterValues[filterCount / 2] += leftovers; |
456 | |
457 | if (!AddFilter(int32_t(srcBegin), fixedFilterValues.begin(), filterCount)) { |
458 | fFilters.shrinkTo(oldFiltersLength); |
459 | fFilterValues.shrinkTo(oldFilterValuesLength); |
460 | fMaxFilter = oldMaxFilter; |
461 | return false; |
462 | } |
463 | } |
464 | |
465 | return maxFilter() > 0 && numValues() == aDstSize; |
466 | } |
467 | |
468 | // Does a two-dimensional convolution on the given source image. |
469 | // |
470 | // It is assumed the source pixel offsets referenced in the input filters |
471 | // reference only valid pixels, so the source image size is not required. Each |
472 | // row of the source image starts |sourceByteRowStride| after the previous |
473 | // one (this allows you to have rows with some padding at the end). |
474 | // |
475 | // The result will be put into the given output buffer. The destination image |
476 | // size will be xfilter.numValues() * yfilter.numValues() pixels. It will be |
477 | // in rows of exactly xfilter.numValues() * 4 bytes. |
478 | // |
479 | // |sourceHasAlpha| is a hint that allows us to avoid doing computations on |
480 | // the alpha channel if the image is opaque. If you don't know, set this to |
481 | // true and it will work properly, but setting this to false will be a few |
482 | // percent faster if you know the image is opaque. |
483 | // |
484 | // The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order |
485 | // (this is ARGB when loaded into 32-bit words on a little-endian machine). |
486 | /** |
487 | * Returns false if it was unable to perform the convolution/rescale. in which |
488 | * case the output buffer is assumed to be undefined. |
489 | */ |
490 | bool BGRAConvolve2D(const unsigned char* sourceData, int sourceByteRowStride, |
491 | bool sourceHasAlpha, const SkConvolutionFilter1D& filterX, |
492 | const SkConvolutionFilter1D& filterY, |
493 | int outputByteRowStride, unsigned char* output) { |
494 | int maxYFilterSize = filterY.maxFilter(); |
495 | |
496 | // The next row in the input that we will generate a horizontally |
497 | // convolved row for. If the filter doesn't start at the beginning of the |
498 | // image (this is the case when we are only resizing a subset), then we |
499 | // don't want to generate any output rows before that. Compute the starting |
500 | // row for convolution as the first pixel for the first vertical filter. |
501 | int filterOffset = 0, filterLength = 0; |
502 | const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
Value stored to 'filterValues' during its initialization is never read | |
503 | filterY.FilterForValue(0, &filterOffset, &filterLength); |
504 | int nextXRow = filterOffset; |
505 | |
506 | // We loop over each row in the input doing a horizontal convolution. This |
507 | // will result in a horizontally convolved image. We write the results into |
508 | // a circular buffer of convolved rows and do vertical convolution as rows |
509 | // are available. This prevents us from having to store the entire |
510 | // intermediate image and helps cache coherency. |
511 | // We will need four extra rows to allow horizontal convolution could be done |
512 | // simultaneously. We also pad each row in row buffer to be aligned-up to |
513 | // 32 bytes. |
514 | // TODO(jiesun): We do not use aligned load from row buffer in vertical |
515 | // convolution pass yet. Somehow Windows does not like it. |
516 | int rowBufferWidth = (filterX.numValues() + 31) & ~0x1F; |
517 | int rowBufferHeight = maxYFilterSize; |
518 | |
519 | // check for too-big allocation requests : crbug.com/528628 |
520 | { |
521 | int64_t size = int64_t(rowBufferWidth) * int64_t(rowBufferHeight); |
522 | // need some limit, to avoid over-committing success from malloc, but then |
523 | // crashing when we try to actually use the memory. |
524 | // 100meg seems big enough to allow "normal" zoom factors and image sizes |
525 | // through while avoiding the crash seen by the bug (crbug.com/528628) |
526 | if (size > 100 * 1024 * 1024) { |
527 | // printf_stderr("BGRAConvolve2D: tmp allocation [%lld] too |
528 | // big\n", size); |
529 | return false; |
530 | } |
531 | } |
532 | |
533 | CircularRowBuffer rowBuffer(rowBufferWidth, rowBufferHeight, filterOffset); |
534 | if (!rowBuffer.AllocBuffer()) { |
535 | return false; |
536 | } |
537 | |
538 | // Loop over every possible output row, processing just enough horizontal |
539 | // convolutions to run each subsequent vertical convolution. |
540 | MOZ_ASSERT(outputByteRowStride >= filterX.numValues() * 4)do { static_assert( mozilla::detail::AssertionConditionType< decltype(outputByteRowStride >= filterX.numValues() * 4)> ::isValid, "invalid assertion condition"); if ((__builtin_expect (!!(!(!!(outputByteRowStride >= filterX.numValues() * 4))) , 0))) { do { } while (false); MOZ_ReportAssertionFailure("outputByteRowStride >= filterX.numValues() * 4" , "/var/lib/jenkins/workspace/firefox-scan-build/gfx/2d/SkConvolver.cpp" , 540); AnnotateMozCrashReason("MOZ_ASSERT" "(" "outputByteRowStride >= filterX.numValues() * 4" ")"); do { *((volatile int*)__null) = 540; __attribute__((nomerge )) ::abort(); } while (false); } } while (false); |
541 | int numOutputRows = filterY.numValues(); |
542 | |
543 | // We need to check which is the last line to convolve before we advance 4 |
544 | // lines in one iteration. |
545 | int lastFilterOffset, lastFilterLength; |
546 | filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset, |
547 | &lastFilterLength); |
548 | |
549 | for (int outY = 0; outY < numOutputRows; outY++) { |
550 | filterValues = filterY.FilterForValue(outY, &filterOffset, &filterLength); |
551 | |
552 | // Generate output rows until we have enough to run the current filter. |
553 | while (nextXRow < filterOffset + filterLength) { |
554 | convolve_horizontally( |
555 | &sourceData[(uint64_t)nextXRow * sourceByteRowStride], filterX, |
556 | rowBuffer.advanceRow(), sourceHasAlpha); |
557 | nextXRow++; |
558 | } |
559 | |
560 | // Compute where in the output image this row of final data will go. |
561 | unsigned char* curOutputRow = &output[(uint64_t)outY * outputByteRowStride]; |
562 | |
563 | // Get the list of rows that the circular buffer has, in order. |
564 | int firstRowInCircularBuffer; |
565 | unsigned char* const* rowsToConvolve = |
566 | rowBuffer.GetRowAddresses(&firstRowInCircularBuffer); |
567 | |
568 | // Now compute the start of the subset of those rows that the filter needs. |
569 | unsigned char* const* firstRowForFilter = |
570 | &rowsToConvolve[filterOffset - firstRowInCircularBuffer]; |
571 | |
572 | convolve_vertically(filterValues, filterLength, firstRowForFilter, |
573 | filterX.numValues(), curOutputRow, sourceHasAlpha); |
574 | } |
575 | return true; |
576 | } |
577 | |
578 | } // namespace skia |