| File: | s/lib/freebl/mpi/mpmontg.c |
| Warning: | line 54, column 14 Although the value stored to 'res' is used in the enclosing expression, the value is never actually read from 'res' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
| 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| 4 | |
| 5 | /* This file implements moduluar exponentiation using Montgomery's |
| 6 | * method for modular reduction. This file implements the method |
| 7 | * described as "Improvement 2" in the paper "A Cryptogrpahic Library for |
| 8 | * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr. |
| 9 | * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90" |
| 10 | * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244, |
| 11 | * published by Springer Verlag. |
| 12 | */ |
| 13 | |
| 14 | #define MP_USING_CACHE_SAFE_MOD_EXP1 1 |
| 15 | #include <string.h> |
| 16 | #include "mpi-priv.h" |
| 17 | #include "mplogic.h" |
| 18 | #include "mpprime.h" |
| 19 | #ifdef MP_USING_MONT_MULF |
| 20 | #include "montmulf.h" |
| 21 | #endif |
| 22 | #include <stddef.h> /* ptrdiff_t */ |
| 23 | #include <assert.h> |
| 24 | |
| 25 | #define STATIC |
| 26 | |
| 27 | #define MAX_ODD_INTS32 32 /* 2 ** (WINDOW_BITS - 1) */ |
| 28 | |
| 29 | /*! computes T = REDC(T), 2^b == R |
| 30 | \param T < RN |
| 31 | */ |
| 32 | mp_err |
| 33 | s_mp_redc(mp_int *T, mp_mont_modulus *mmm) |
| 34 | { |
| 35 | mp_err res; |
| 36 | mp_size i; |
| 37 | |
| 38 | i = (MP_USED(&mmm->N)((&mmm->N)->used) << 1) + 1; |
| 39 | MP_CHECKOK(s_mp_pad(T, i))if (0 > (res = (s_mp_pad(T, i)))) goto CLEANUP; |
| 40 | for (i = 0; i < MP_USED(&mmm->N)((&mmm->N)->used); ++i) { |
| 41 | mp_digit m_i = MP_DIGIT(T, i)(T)->dp[(i)] * mmm->n0prime; |
| 42 | /* T += N * m_i * (MP_RADIX ** i); */ |
| 43 | s_mp_mul_d_add_offset(&mmm->N, m_i, T, i)s_mpv_mul_d_add_prop(((&mmm->N)->dp), ((&mmm-> N)->used), m_i, ((T)->dp) + i); |
| 44 | } |
| 45 | s_mp_clamp(T); |
| 46 | |
| 47 | /* T /= R */ |
| 48 | s_mp_rshd(T, MP_USED(&mmm->N)((&mmm->N)->used)); |
| 49 | |
| 50 | if ((res = s_mp_cmp(T, &mmm->N)) >= 0) { |
| 51 | /* T = T - N */ |
| 52 | MP_CHECKOK(s_mp_sub(T, &mmm->N))if (0 > (res = (s_mp_sub(T, &mmm->N)))) goto CLEANUP; |
| 53 | #ifdef DEBUG1 |
| 54 | if ((res = mp_cmp(T, &mmm->N)) >= 0) { |
Although the value stored to 'res' is used in the enclosing expression, the value is never actually read from 'res' | |
| 55 | res = MP_UNDEF-5; |
| 56 | goto CLEANUP; |
| 57 | } |
| 58 | #endif |
| 59 | } |
| 60 | res = MP_OKAY0; |
| 61 | CLEANUP: |
| 62 | return res; |
| 63 | } |
| 64 | |
| 65 | #if !defined(MP_MONT_USE_MP_MUL) |
| 66 | |
| 67 | /*! c <- REDC( a * b ) mod N |
| 68 | \param a < N i.e. "reduced" |
| 69 | \param b < N i.e. "reduced" |
| 70 | \param mmm modulus N and n0' of N |
| 71 | */ |
| 72 | mp_err |
| 73 | s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
| 74 | mp_mont_modulus *mmm) |
| 75 | { |
| 76 | mp_digit *pb; |
| 77 | mp_digit m_i; |
| 78 | mp_err res; |
| 79 | mp_size ib; /* "index b": index of current digit of B */ |
| 80 | mp_size useda, usedb; |
| 81 | |
| 82 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG)((a != ((void*)0) && b != ((void*)0) && c != ( (void*)0)) ? (void) (0) : __assert_fail ("a != ((void*)0) && b != ((void*)0) && c != ((void*)0)" , "mpi/mpmontg.c", 82, __extension__ __PRETTY_FUNCTION__)); |
| 83 | |
| 84 | if (MP_USED(a)((a)->used) < MP_USED(b)((b)->used)) { |
| 85 | const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
| 86 | b = a; |
| 87 | a = xch; |
| 88 | } |
| 89 | |
| 90 | MP_USED(c)((c)->used) = 1; |
| 91 | MP_DIGIT(c, 0)(c)->dp[(0)] = 0; |
| 92 | ib = (MP_USED(&mmm->N)((&mmm->N)->used) << 1) + 1; |
| 93 | if ((res = s_mp_pad(c, ib)) != MP_OKAY0) |
| 94 | goto CLEANUP; |
| 95 | |
| 96 | useda = MP_USED(a)((a)->used); |
| 97 | pb = MP_DIGITS(b)((b)->dp); |
| 98 | s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c))((mp_digit *)((c)->dp))[useda] = s_mpv_mul_set_vec64(((c)-> dp), ((a)->dp), useda, *pb++); |
| 99 | s_mp_setz(MP_DIGITS(c)((c)->dp) + useda + 1, ib - (useda + 1)); |
| 100 | m_i = MP_DIGIT(c, 0)(c)->dp[(0)] * mmm->n0prime; |
| 101 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0)s_mpv_mul_d_add_prop(((&mmm->N)->dp), ((&mmm-> N)->used), m_i, ((c)->dp) + 0); |
| 102 | |
| 103 | /* Outer loop: Digits of b */ |
| 104 | usedb = MP_USED(b)((b)->used); |
| 105 | for (ib = 1; ib < usedb; ib++) { |
| 106 | mp_digit b_i = *pb++; |
| 107 | |
| 108 | /* Inner product: Digits of a */ |
| 109 | if (b_i) |
| 110 | s_mpv_mul_d_add_prop(MP_DIGITS(a)((a)->dp), useda, b_i, MP_DIGITS(c)((c)->dp) + ib); |
| 111 | m_i = MP_DIGIT(c, ib)(c)->dp[(ib)] * mmm->n0prime; |
| 112 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib)s_mpv_mul_d_add_prop(((&mmm->N)->dp), ((&mmm-> N)->used), m_i, ((c)->dp) + ib); |
| 113 | } |
| 114 | if (usedb < MP_USED(&mmm->N)((&mmm->N)->used)) { |
| 115 | for (usedb = MP_USED(&mmm->N)((&mmm->N)->used); ib < usedb; ++ib) { |
| 116 | m_i = MP_DIGIT(c, ib)(c)->dp[(ib)] * mmm->n0prime; |
| 117 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib)s_mpv_mul_d_add_prop(((&mmm->N)->dp), ((&mmm-> N)->used), m_i, ((c)->dp) + ib); |
| 118 | } |
| 119 | } |
| 120 | s_mp_clamp(c); |
| 121 | s_mp_rshd(c, MP_USED(&mmm->N)((&mmm->N)->used)); /* c /= R */ |
| 122 | if (s_mp_cmp(c, &mmm->N) >= 0) { |
| 123 | MP_CHECKOK(s_mp_sub(c, &mmm->N))if (0 > (res = (s_mp_sub(c, &mmm->N)))) goto CLEANUP; |
| 124 | } |
| 125 | res = MP_OKAY0; |
| 126 | |
| 127 | CLEANUP: |
| 128 | return res; |
| 129 | } |
| 130 | #endif |
| 131 | |
| 132 | mp_err |
| 133 | mp_to_mont(const mp_int *x, const mp_int *N, mp_int *xMont) |
| 134 | { |
| 135 | mp_err res; |
| 136 | |
| 137 | /* xMont = x * R mod N where N is modulus */ |
| 138 | if (x != xMont) { |
| 139 | MP_CHECKOK(mp_copy(x, xMont))if (0 > (res = (mp_copy(x, xMont)))) goto CLEANUP; |
| 140 | } |
| 141 | MP_CHECKOK(s_mp_lshd(xMont, MP_USED(N)))if (0 > (res = (s_mp_lshd(xMont, ((N)->used))))) goto CLEANUP; /* xMont = x << b */ |
| 142 | MP_CHECKOK(mp_div(xMont, N, 0, xMont))if (0 > (res = (mp_div(xMont, N, 0, xMont)))) goto CLEANUP; /* mod N */ |
| 143 | CLEANUP: |
| 144 | return res; |
| 145 | } |
| 146 | |
| 147 | mp_digit |
| 148 | mp_calculate_mont_n0i(const mp_int *N) |
| 149 | { |
| 150 | return 0 - s_mp_invmod_radix(MP_DIGIT(N, 0)(N)->dp[(0)]); |
| 151 | } |
| 152 | |
| 153 | #ifdef MP_USING_MONT_MULF |
| 154 | |
| 155 | /* the floating point multiply is already cache safe, |
| 156 | * don't turn on cache safe unless we specifically |
| 157 | * force it */ |
| 158 | #ifndef MP_FORCE_CACHE_SAFE |
| 159 | #undef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 160 | #endif |
| 161 | |
| 162 | unsigned int mp_using_mont_mulf = 1; |
| 163 | |
| 164 | /* computes montgomery square of the integer in mResult */ |
| 165 | #define SQR \ |
| 166 | conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \ |
| 167 | mont_mulf_noconv(mResult, dm1, d16Tmp, \ |
| 168 | dTmp, dn, MP_DIGITS(modulus)((modulus)->dp), nLen, dn0) |
| 169 | |
| 170 | /* computes montgomery product of x and the integer in mResult */ |
| 171 | #define MUL(x) \ |
| 172 | conv_i32_to_d32(dm1, mResult, nLen); \ |
| 173 | mont_mulf_noconv(mResult, dm1, oddPowers[x], \ |
| 174 | dTmp, dn, MP_DIGITS(modulus)((modulus)->dp), nLen, dn0) |
| 175 | |
| 176 | /* Do modular exponentiation using floating point multiply code. */ |
| 177 | mp_err |
| 178 | mp_exptmod_f(const mp_int *montBase, |
| 179 | const mp_int *exponent, |
| 180 | const mp_int *modulus, |
| 181 | mp_int *result, |
| 182 | mp_mont_modulus *mmm, |
| 183 | int nLen, |
| 184 | mp_size bits_in_exponent, |
| 185 | mp_size window_bits, |
| 186 | mp_size odd_ints) |
| 187 | { |
| 188 | mp_digit *mResult; |
| 189 | double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp; |
| 190 | double dn0; |
| 191 | mp_size i; |
| 192 | mp_err res; |
| 193 | int expOff; |
| 194 | int dSize = 0, oddPowSize, dTmpSize; |
| 195 | mp_int accum1; |
| 196 | double *oddPowers[MAX_ODD_INTS32]; |
| 197 | |
| 198 | /* function for computing n0prime only works if n0 is odd */ |
| 199 | |
| 200 | MP_DIGITS(&accum1)((&accum1)->dp) = 0; |
| 201 | |
| 202 | for (i = 0; i < MAX_ODD_INTS32; ++i) |
| 203 | oddPowers[i] = 0; |
| 204 | |
| 205 | MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum1, 3 * nLen + 2)))) goto CLEANUP; |
| 206 | |
| 207 | mp_set(&accum1, 1); |
| 208 | MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1))if (0 > (res = (mp_to_mont(&accum1, &(mmm->N), & accum1)))) goto CLEANUP; |
| 209 | MP_CHECKOK(s_mp_pad(&accum1, nLen))if (0 > (res = (s_mp_pad(&accum1, nLen)))) goto CLEANUP; |
| 210 | |
| 211 | oddPowSize = 2 * nLen + 1; |
| 212 | dTmpSize = 2 * oddPowSize; |
| 213 | dSize = sizeof(double) * (nLen * 4 + 1 + |
| 214 | ((odd_ints + 1) * oddPowSize) + dTmpSize); |
| 215 | dBuf = malloc(dSize); |
| 216 | if (!dBuf) { |
| 217 | res = MP_MEM-2; |
| 218 | goto CLEANUP; |
| 219 | } |
| 220 | dm1 = dBuf; /* array of d32 */ |
| 221 | dn = dBuf + nLen; /* array of d32 */ |
| 222 | dSqr = dn + nLen; /* array of d32 */ |
| 223 | d16Tmp = dSqr + nLen; /* array of d16 */ |
| 224 | dTmp = d16Tmp + oddPowSize; |
| 225 | |
| 226 | for (i = 0; i < odd_ints; ++i) { |
| 227 | oddPowers[i] = dTmp; |
| 228 | dTmp += oddPowSize; |
| 229 | } |
| 230 | mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */ |
| 231 | |
| 232 | /* Make dn and dn0 */ |
| 233 | conv_i32_to_d32(dn, MP_DIGITS(modulus)((modulus)->dp), nLen); |
| 234 | dn0 = (double)(mmm->n0prime & 0xffff); |
| 235 | |
| 236 | /* Make dSqr */ |
| 237 | conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase)((montBase)->dp), nLen); |
| 238 | mont_mulf_noconv(mResult, dm1, oddPowers[0], |
| 239 | dTmp, dn, MP_DIGITS(modulus)((modulus)->dp), nLen, dn0); |
| 240 | conv_i32_to_d32(dSqr, mResult, nLen); |
| 241 | |
| 242 | for (i = 1; i < odd_ints; ++i) { |
| 243 | mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1], |
| 244 | dTmp, dn, MP_DIGITS(modulus)((modulus)->dp), nLen, dn0); |
| 245 | conv_i32_to_d16(oddPowers[i], mResult, nLen); |
| 246 | } |
| 247 | |
| 248 | s_mp_copy(MP_DIGITS(&accum1)((&accum1)->dp), mResult, nLen); /* from, to, len */ |
| 249 | |
| 250 | for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
| 251 | mp_size smallExp; |
| 252 | MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits))if (0 > (res = (mpl_get_bits(exponent, expOff, window_bits )))) goto CLEANUP; |
| 253 | smallExp = (mp_size)res; |
| 254 | |
| 255 | if (window_bits == 1) { |
| 256 | if (!smallExp) { |
| 257 | SQR; |
| 258 | } else if (smallExp & 1) { |
| 259 | SQR; |
| 260 | MUL(0); |
| 261 | } else { |
| 262 | abort(); |
| 263 | } |
| 264 | } else if (window_bits == 4) { |
| 265 | if (!smallExp) { |
| 266 | SQR; |
| 267 | SQR; |
| 268 | SQR; |
| 269 | SQR; |
| 270 | } else if (smallExp & 1) { |
| 271 | SQR; |
| 272 | SQR; |
| 273 | SQR; |
| 274 | SQR; |
| 275 | MUL(smallExp / 2); |
| 276 | } else if (smallExp & 2) { |
| 277 | SQR; |
| 278 | SQR; |
| 279 | SQR; |
| 280 | MUL(smallExp / 4); |
| 281 | SQR; |
| 282 | } else if (smallExp & 4) { |
| 283 | SQR; |
| 284 | SQR; |
| 285 | MUL(smallExp / 8); |
| 286 | SQR; |
| 287 | SQR; |
| 288 | } else if (smallExp & 8) { |
| 289 | SQR; |
| 290 | MUL(smallExp / 16); |
| 291 | SQR; |
| 292 | SQR; |
| 293 | SQR; |
| 294 | } else { |
| 295 | abort(); |
| 296 | } |
| 297 | } else if (window_bits == 5) { |
| 298 | if (!smallExp) { |
| 299 | SQR; |
| 300 | SQR; |
| 301 | SQR; |
| 302 | SQR; |
| 303 | SQR; |
| 304 | } else if (smallExp & 1) { |
| 305 | SQR; |
| 306 | SQR; |
| 307 | SQR; |
| 308 | SQR; |
| 309 | SQR; |
| 310 | MUL(smallExp / 2); |
| 311 | } else if (smallExp & 2) { |
| 312 | SQR; |
| 313 | SQR; |
| 314 | SQR; |
| 315 | SQR; |
| 316 | MUL(smallExp / 4); |
| 317 | SQR; |
| 318 | } else if (smallExp & 4) { |
| 319 | SQR; |
| 320 | SQR; |
| 321 | SQR; |
| 322 | MUL(smallExp / 8); |
| 323 | SQR; |
| 324 | SQR; |
| 325 | } else if (smallExp & 8) { |
| 326 | SQR; |
| 327 | SQR; |
| 328 | MUL(smallExp / 16); |
| 329 | SQR; |
| 330 | SQR; |
| 331 | SQR; |
| 332 | } else if (smallExp & 0x10) { |
| 333 | SQR; |
| 334 | MUL(smallExp / 32); |
| 335 | SQR; |
| 336 | SQR; |
| 337 | SQR; |
| 338 | SQR; |
| 339 | } else { |
| 340 | abort(); |
| 341 | } |
| 342 | } else if (window_bits == 6) { |
| 343 | if (!smallExp) { |
| 344 | SQR; |
| 345 | SQR; |
| 346 | SQR; |
| 347 | SQR; |
| 348 | SQR; |
| 349 | SQR; |
| 350 | } else if (smallExp & 1) { |
| 351 | SQR; |
| 352 | SQR; |
| 353 | SQR; |
| 354 | SQR; |
| 355 | SQR; |
| 356 | SQR; |
| 357 | MUL(smallExp / 2); |
| 358 | } else if (smallExp & 2) { |
| 359 | SQR; |
| 360 | SQR; |
| 361 | SQR; |
| 362 | SQR; |
| 363 | SQR; |
| 364 | MUL(smallExp / 4); |
| 365 | SQR; |
| 366 | } else if (smallExp & 4) { |
| 367 | SQR; |
| 368 | SQR; |
| 369 | SQR; |
| 370 | SQR; |
| 371 | MUL(smallExp / 8); |
| 372 | SQR; |
| 373 | SQR; |
| 374 | } else if (smallExp & 8) { |
| 375 | SQR; |
| 376 | SQR; |
| 377 | SQR; |
| 378 | MUL(smallExp / 16); |
| 379 | SQR; |
| 380 | SQR; |
| 381 | SQR; |
| 382 | } else if (smallExp & 0x10) { |
| 383 | SQR; |
| 384 | SQR; |
| 385 | MUL(smallExp / 32); |
| 386 | SQR; |
| 387 | SQR; |
| 388 | SQR; |
| 389 | SQR; |
| 390 | } else if (smallExp & 0x20) { |
| 391 | SQR; |
| 392 | MUL(smallExp / 64); |
| 393 | SQR; |
| 394 | SQR; |
| 395 | SQR; |
| 396 | SQR; |
| 397 | SQR; |
| 398 | } else { |
| 399 | abort(); |
| 400 | } |
| 401 | } else { |
| 402 | abort(); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | s_mp_copy(mResult, MP_DIGITS(&accum1)((&accum1)->dp), nLen); /* from, to, len */ |
| 407 | |
| 408 | res = s_mp_redc(&accum1, mmm); |
| 409 | mp_exch(&accum1, result); |
| 410 | |
| 411 | CLEANUP: |
| 412 | mp_clear(&accum1); |
| 413 | if (dBuf) { |
| 414 | if (dSize) |
| 415 | memset(dBuf, 0, dSize); |
| 416 | free(dBuf); |
| 417 | } |
| 418 | |
| 419 | return res; |
| 420 | } |
| 421 | #undef SQR |
| 422 | #undef MUL |
| 423 | #endif |
| 424 | |
| 425 | #define SQR(a, b) \ |
| 426 | MP_CHECKOK(mp_sqr(a, b))if (0 > (res = (mp_sqr(a, b)))) goto CLEANUP; \ |
| 427 | MP_CHECKOK(s_mp_redc(b, mmm))if (0 > (res = (s_mp_redc(b, mmm)))) goto CLEANUP |
| 428 | |
| 429 | #if defined(MP_MONT_USE_MP_MUL) |
| 430 | #define MUL(x, a, b) \ |
| 431 | MP_CHECKOK(mp_mul(a, oddPowers + (x), b))if (0 > (res = (mp_mul(a, oddPowers + (x), b)))) goto CLEANUP; \ |
| 432 | MP_CHECKOK(s_mp_redc(b, mmm))if (0 > (res = (s_mp_redc(b, mmm)))) goto CLEANUP |
| 433 | #else |
| 434 | #define MUL(x, a, b) \ |
| 435 | MP_CHECKOK(s_mp_mul_mont(a, oddPowers + (x), b, mmm))if (0 > (res = (s_mp_mul_mont(a, oddPowers + (x), b, mmm)) )) goto CLEANUP |
| 436 | #endif |
| 437 | |
| 438 | #define SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp \ |
| 439 | ptmp = pa1; \ |
| 440 | pa1 = pa2; \ |
| 441 | pa2 = ptmp |
| 442 | |
| 443 | /* Do modular exponentiation using integer multiply code. */ |
| 444 | mp_err |
| 445 | mp_exptmod_i(const mp_int *montBase, |
| 446 | const mp_int *exponent, |
| 447 | const mp_int *modulus, |
| 448 | mp_int *result, |
| 449 | mp_mont_modulus *mmm, |
| 450 | int nLen, |
| 451 | mp_size bits_in_exponent, |
| 452 | mp_size window_bits, |
| 453 | mp_size odd_ints) |
| 454 | { |
| 455 | mp_int *pa1, *pa2, *ptmp; |
| 456 | mp_size i; |
| 457 | mp_err res; |
| 458 | int expOff; |
| 459 | mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS32]; |
| 460 | |
| 461 | /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */ |
| 462 | /* oddPowers[i] = base ** (2*i + 1); */ |
| 463 | |
| 464 | MP_DIGITS(&accum1)((&accum1)->dp) = 0; |
| 465 | MP_DIGITS(&accum2)((&accum2)->dp) = 0; |
| 466 | MP_DIGITS(&power2)((&power2)->dp) = 0; |
| 467 | for (i = 0; i < MAX_ODD_INTS32; ++i) { |
| 468 | MP_DIGITS(oddPowers + i)((oddPowers + i)->dp) = 0; |
| 469 | } |
| 470 | |
| 471 | MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum1, 3 * nLen + 2)))) goto CLEANUP; |
| 472 | MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum2, 3 * nLen + 2)))) goto CLEANUP; |
| 473 | |
| 474 | MP_CHECKOK(mp_init_copy(&oddPowers[0], montBase))if (0 > (res = (mp_init_copy(&oddPowers[0], montBase)) )) goto CLEANUP; |
| 475 | |
| 476 | MP_CHECKOK(mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2))if (0 > (res = (mp_init_size(&power2, nLen + 2 * ((montBase )->used) + 2)))) goto CLEANUP; |
| 477 | MP_CHECKOK(mp_sqr(montBase, &power2))if (0 > (res = (mp_sqr(montBase, &power2)))) goto CLEANUP; /* power2 = montBase ** 2 */ |
| 478 | MP_CHECKOK(s_mp_redc(&power2, mmm))if (0 > (res = (s_mp_redc(&power2, mmm)))) goto CLEANUP; |
| 479 | |
| 480 | for (i = 1; i < odd_ints; ++i) { |
| 481 | MP_CHECKOK(mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2))if (0 > (res = (mp_init_size(oddPowers + i, nLen + 2 * ((& power2)->used) + 2)))) goto CLEANUP; |
| 482 | MP_CHECKOK(mp_mul(oddPowers + (i - 1), &power2, oddPowers + i))if (0 > (res = (mp_mul(oddPowers + (i - 1), &power2, oddPowers + i)))) goto CLEANUP; |
| 483 | MP_CHECKOK(s_mp_redc(oddPowers + i, mmm))if (0 > (res = (s_mp_redc(oddPowers + i, mmm)))) goto CLEANUP; |
| 484 | } |
| 485 | |
| 486 | /* set accumulator to montgomery residue of 1 */ |
| 487 | mp_set(&accum1, 1); |
| 488 | MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1))if (0 > (res = (mp_to_mont(&accum1, &(mmm->N), & accum1)))) goto CLEANUP; |
| 489 | pa1 = &accum1; |
| 490 | pa2 = &accum2; |
| 491 | |
| 492 | for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
| 493 | mp_size smallExp; |
| 494 | MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits))if (0 > (res = (mpl_get_bits(exponent, expOff, window_bits )))) goto CLEANUP; |
| 495 | smallExp = (mp_size)res; |
| 496 | |
| 497 | if (window_bits == 1) { |
| 498 | if (!smallExp) { |
| 499 | SQR(pa1, pa2); |
| 500 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 501 | } else if (smallExp & 1) { |
| 502 | SQR(pa1, pa2); |
| 503 | MUL(0, pa2, pa1); |
| 504 | } else { |
| 505 | abort(); |
| 506 | } |
| 507 | } else if (window_bits == 4) { |
| 508 | if (!smallExp) { |
| 509 | SQR(pa1, pa2); |
| 510 | SQR(pa2, pa1); |
| 511 | SQR(pa1, pa2); |
| 512 | SQR(pa2, pa1); |
| 513 | } else if (smallExp & 1) { |
| 514 | SQR(pa1, pa2); |
| 515 | SQR(pa2, pa1); |
| 516 | SQR(pa1, pa2); |
| 517 | SQR(pa2, pa1); |
| 518 | MUL(smallExp / 2, pa1, pa2); |
| 519 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 520 | } else if (smallExp & 2) { |
| 521 | SQR(pa1, pa2); |
| 522 | SQR(pa2, pa1); |
| 523 | SQR(pa1, pa2); |
| 524 | MUL(smallExp / 4, pa2, pa1); |
| 525 | SQR(pa1, pa2); |
| 526 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 527 | } else if (smallExp & 4) { |
| 528 | SQR(pa1, pa2); |
| 529 | SQR(pa2, pa1); |
| 530 | MUL(smallExp / 8, pa1, pa2); |
| 531 | SQR(pa2, pa1); |
| 532 | SQR(pa1, pa2); |
| 533 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 534 | } else if (smallExp & 8) { |
| 535 | SQR(pa1, pa2); |
| 536 | MUL(smallExp / 16, pa2, pa1); |
| 537 | SQR(pa1, pa2); |
| 538 | SQR(pa2, pa1); |
| 539 | SQR(pa1, pa2); |
| 540 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 541 | } else { |
| 542 | abort(); |
| 543 | } |
| 544 | } else if (window_bits == 5) { |
| 545 | if (!smallExp) { |
| 546 | SQR(pa1, pa2); |
| 547 | SQR(pa2, pa1); |
| 548 | SQR(pa1, pa2); |
| 549 | SQR(pa2, pa1); |
| 550 | SQR(pa1, pa2); |
| 551 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 552 | } else if (smallExp & 1) { |
| 553 | SQR(pa1, pa2); |
| 554 | SQR(pa2, pa1); |
| 555 | SQR(pa1, pa2); |
| 556 | SQR(pa2, pa1); |
| 557 | SQR(pa1, pa2); |
| 558 | MUL(smallExp / 2, pa2, pa1); |
| 559 | } else if (smallExp & 2) { |
| 560 | SQR(pa1, pa2); |
| 561 | SQR(pa2, pa1); |
| 562 | SQR(pa1, pa2); |
| 563 | SQR(pa2, pa1); |
| 564 | MUL(smallExp / 4, pa1, pa2); |
| 565 | SQR(pa2, pa1); |
| 566 | } else if (smallExp & 4) { |
| 567 | SQR(pa1, pa2); |
| 568 | SQR(pa2, pa1); |
| 569 | SQR(pa1, pa2); |
| 570 | MUL(smallExp / 8, pa2, pa1); |
| 571 | SQR(pa1, pa2); |
| 572 | SQR(pa2, pa1); |
| 573 | } else if (smallExp & 8) { |
| 574 | SQR(pa1, pa2); |
| 575 | SQR(pa2, pa1); |
| 576 | MUL(smallExp / 16, pa1, pa2); |
| 577 | SQR(pa2, pa1); |
| 578 | SQR(pa1, pa2); |
| 579 | SQR(pa2, pa1); |
| 580 | } else if (smallExp & 0x10) { |
| 581 | SQR(pa1, pa2); |
| 582 | MUL(smallExp / 32, pa2, pa1); |
| 583 | SQR(pa1, pa2); |
| 584 | SQR(pa2, pa1); |
| 585 | SQR(pa1, pa2); |
| 586 | SQR(pa2, pa1); |
| 587 | } else { |
| 588 | abort(); |
| 589 | } |
| 590 | } else if (window_bits == 6) { |
| 591 | if (!smallExp) { |
| 592 | SQR(pa1, pa2); |
| 593 | SQR(pa2, pa1); |
| 594 | SQR(pa1, pa2); |
| 595 | SQR(pa2, pa1); |
| 596 | SQR(pa1, pa2); |
| 597 | SQR(pa2, pa1); |
| 598 | } else if (smallExp & 1) { |
| 599 | SQR(pa1, pa2); |
| 600 | SQR(pa2, pa1); |
| 601 | SQR(pa1, pa2); |
| 602 | SQR(pa2, pa1); |
| 603 | SQR(pa1, pa2); |
| 604 | SQR(pa2, pa1); |
| 605 | MUL(smallExp / 2, pa1, pa2); |
| 606 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 607 | } else if (smallExp & 2) { |
| 608 | SQR(pa1, pa2); |
| 609 | SQR(pa2, pa1); |
| 610 | SQR(pa1, pa2); |
| 611 | SQR(pa2, pa1); |
| 612 | SQR(pa1, pa2); |
| 613 | MUL(smallExp / 4, pa2, pa1); |
| 614 | SQR(pa1, pa2); |
| 615 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 616 | } else if (smallExp & 4) { |
| 617 | SQR(pa1, pa2); |
| 618 | SQR(pa2, pa1); |
| 619 | SQR(pa1, pa2); |
| 620 | SQR(pa2, pa1); |
| 621 | MUL(smallExp / 8, pa1, pa2); |
| 622 | SQR(pa2, pa1); |
| 623 | SQR(pa1, pa2); |
| 624 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 625 | } else if (smallExp & 8) { |
| 626 | SQR(pa1, pa2); |
| 627 | SQR(pa2, pa1); |
| 628 | SQR(pa1, pa2); |
| 629 | MUL(smallExp / 16, pa2, pa1); |
| 630 | SQR(pa1, pa2); |
| 631 | SQR(pa2, pa1); |
| 632 | SQR(pa1, pa2); |
| 633 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 634 | } else if (smallExp & 0x10) { |
| 635 | SQR(pa1, pa2); |
| 636 | SQR(pa2, pa1); |
| 637 | MUL(smallExp / 32, pa1, pa2); |
| 638 | SQR(pa2, pa1); |
| 639 | SQR(pa1, pa2); |
| 640 | SQR(pa2, pa1); |
| 641 | SQR(pa1, pa2); |
| 642 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 643 | } else if (smallExp & 0x20) { |
| 644 | SQR(pa1, pa2); |
| 645 | MUL(smallExp / 64, pa2, pa1); |
| 646 | SQR(pa1, pa2); |
| 647 | SQR(pa2, pa1); |
| 648 | SQR(pa1, pa2); |
| 649 | SQR(pa2, pa1); |
| 650 | SQR(pa1, pa2); |
| 651 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 652 | } else { |
| 653 | abort(); |
| 654 | } |
| 655 | } else { |
| 656 | abort(); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | res = s_mp_redc(pa1, mmm); |
| 661 | mp_exch(pa1, result); |
| 662 | |
| 663 | CLEANUP: |
| 664 | mp_clear(&accum1); |
| 665 | mp_clear(&accum2); |
| 666 | mp_clear(&power2); |
| 667 | for (i = 0; i < odd_ints; ++i) { |
| 668 | mp_clear(oddPowers + i); |
| 669 | } |
| 670 | return res; |
| 671 | } |
| 672 | #undef SQR |
| 673 | #undef MUL |
| 674 | |
| 675 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 676 | unsigned int mp_using_cache_safe_exp = 1; |
| 677 | #endif |
| 678 | |
| 679 | mp_err |
| 680 | mp_set_safe_modexp(int value) |
| 681 | { |
| 682 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 683 | mp_using_cache_safe_exp = value; |
| 684 | return MP_OKAY0; |
| 685 | #else |
| 686 | if (value == 0) { |
| 687 | return MP_OKAY0; |
| 688 | } |
| 689 | return MP_BADARG-4; |
| 690 | #endif |
| 691 | } |
| 692 | |
| 693 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 694 | #define WEAVE_WORD_SIZE4 4 |
| 695 | |
| 696 | /* |
| 697 | * mpi_to_weave takes an array of bignums, a matrix in which each bignum |
| 698 | * occupies all the columns of a row, and transposes it into a matrix in |
| 699 | * which each bignum occupies a column of every row. The first row of the |
| 700 | * input matrix becomes the first column of the output matrix. The n'th |
| 701 | * row of input becomes the n'th column of output. The input data is said |
| 702 | * to be "interleaved" or "woven" into the output matrix. |
| 703 | * |
| 704 | * The array of bignums is left in this woven form. Each time a single |
| 705 | * bignum value is needed, it is recreated by fetching the n'th column, |
| 706 | * forming a single row which is the new bignum. |
| 707 | * |
| 708 | * The purpose of this interleaving is make it impossible to determine which |
| 709 | * of the bignums is being used in any one operation by examining the pattern |
| 710 | * of cache misses. |
| 711 | * |
| 712 | * The weaving function does not transpose the entire input matrix in one call. |
| 713 | * It transposes 4 rows of mp_ints into their respective columns of output. |
| 714 | * |
| 715 | * This implementation treats each mp_int bignum as an array of mp_digits, |
| 716 | * It stores those bytes as a column of mp_digits in the output matrix. It |
| 717 | * doesn't care if the machine uses big-endian or little-endian byte ordering |
| 718 | * within mp_digits. |
| 719 | * |
| 720 | * "bignums" is an array of mp_ints. |
| 721 | * It points to four rows, four mp_ints, a subset of a larger array of mp_ints. |
| 722 | * |
| 723 | * "weaved" is the weaved output matrix. |
| 724 | * The first byte of bignums[0] is stored in weaved[0]. |
| 725 | * |
| 726 | * "nBignums" is the total number of bignums in the array of which "bignums" |
| 727 | * is a part. |
| 728 | * |
| 729 | * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array. |
| 730 | * mp_ints that use less than nDigits digits are logically padded with zeros |
| 731 | * while being stored in the weaved array. |
| 732 | */ |
| 733 | mp_err |
| 734 | mpi_to_weave(const mp_int *bignums, |
| 735 | mp_digit *weaved, |
| 736 | mp_size nDigits, /* in each mp_int of input */ |
| 737 | mp_size nBignums) /* in the entire source array */ |
| 738 | { |
| 739 | mp_size i; |
| 740 | mp_digit *endDest = weaved + (nDigits * nBignums); |
| 741 | |
| 742 | for (i = 0; i < WEAVE_WORD_SIZE4; i++) { |
| 743 | mp_size used = MP_USED(&bignums[i])((&bignums[i])->used); |
| 744 | mp_digit *pSrc = MP_DIGITS(&bignums[i])((&bignums[i])->dp); |
| 745 | mp_digit *endSrc = pSrc + used; |
| 746 | mp_digit *pDest = weaved + i; |
| 747 | |
| 748 | ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG)((((&bignums[i])->sign) == 0) ? (void) (0) : __assert_fail ("((&bignums[i])->sign) == 0", "mpi/mpmontg.c", 748, __extension__ __PRETTY_FUNCTION__)); |
| 749 | ARGCHK(used <= nDigits, MP_BADARG)((used <= nDigits) ? (void) (0) : __assert_fail ("used <= nDigits" , "mpi/mpmontg.c", 749, __extension__ __PRETTY_FUNCTION__)); |
| 750 | |
| 751 | for (; pSrc < endSrc; pSrc++) { |
| 752 | *pDest = *pSrc; |
| 753 | pDest += nBignums; |
| 754 | } |
| 755 | while (pDest < endDest) { |
| 756 | *pDest = 0; |
| 757 | pDest += nBignums; |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | return MP_OKAY0; |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * These functions return 0xffffffff if the output is true, and 0 otherwise. |
| 766 | */ |
| 767 | #define CONST_TIME_MSB(x)(0L - ((x) >> (8 * sizeof(x) - 1))) (0L - ((x) >> (8 * sizeof(x) - 1))) |
| 768 | #define CONST_TIME_EQ_Z(x)(0L - ((~(x) & ((x)-1)) >> (8 * sizeof(~(x) & ( (x)-1)) - 1))) CONST_TIME_MSB(~(x) & ((x)-1))(0L - ((~(x) & ((x)-1)) >> (8 * sizeof(~(x) & ( (x)-1)) - 1))) |
| 769 | #define CONST_TIME_EQ(a, b)(0L - ((~((a) ^ (b)) & (((a) ^ (b))-1)) >> (8 * sizeof (~((a) ^ (b)) & (((a) ^ (b))-1)) - 1))) CONST_TIME_EQ_Z((a) ^ (b))(0L - ((~((a) ^ (b)) & (((a) ^ (b))-1)) >> (8 * sizeof (~((a) ^ (b)) & (((a) ^ (b))-1)) - 1))) |
| 770 | |
| 771 | /* Reverse the operation above for one mp_int. |
| 772 | * Reconstruct one mp_int from its column in the weaved array. |
| 773 | * Every read accesses every element of the weaved array, in order to |
| 774 | * avoid timing attacks based on patterns of memory accesses. |
| 775 | */ |
| 776 | mp_err |
| 777 | weave_to_mpi(mp_int *a, /* out, result */ |
| 778 | const mp_digit *weaved, /* in, byte matrix */ |
| 779 | mp_size index, /* which column to read */ |
| 780 | mp_size nDigits, /* number of mp_digits in each bignum */ |
| 781 | mp_size nBignums) /* width of the matrix */ |
| 782 | { |
| 783 | /* these are indices, but need to be the same size as mp_digit |
| 784 | * because of the CONST_TIME operations */ |
| 785 | mp_digit i, j; |
| 786 | mp_digit d; |
| 787 | mp_digit *pDest = MP_DIGITS(a)((a)->dp); |
| 788 | |
| 789 | MP_SIGN(a)((a)->sign) = MP_ZPOS0; |
| 790 | MP_USED(a)((a)->used) = nDigits; |
| 791 | |
| 792 | assert(weaved != NULL)((weaved != ((void*)0)) ? (void) (0) : __assert_fail ("weaved != NULL" , "mpi/mpmontg.c", 792, __extension__ __PRETTY_FUNCTION__)); |
| 793 | |
| 794 | /* Fetch the proper column in constant time, indexing over the whole array */ |
| 795 | for (i = 0; i < nDigits; ++i) { |
| 796 | d = 0; |
| 797 | for (j = 0; j < nBignums; ++j) { |
| 798 | d |= weaved[i * nBignums + j] & CONST_TIME_EQ(j, index)(0L - ((~((j) ^ (index)) & (((j) ^ (index))-1)) >> ( 8 * sizeof(~((j) ^ (index)) & (((j) ^ (index))-1)) - 1))); |
| 799 | } |
| 800 | pDest[i] = d; |
| 801 | } |
| 802 | |
| 803 | s_mp_clamp(a); |
| 804 | return MP_OKAY0; |
| 805 | } |
| 806 | |
| 807 | #define SQR(a, b) \ |
| 808 | MP_CHECKOK(mp_sqr(a, b))if (0 > (res = (mp_sqr(a, b)))) goto CLEANUP; \ |
| 809 | MP_CHECKOK(s_mp_redc(b, mmm))if (0 > (res = (s_mp_redc(b, mmm)))) goto CLEANUP |
| 810 | |
| 811 | #if defined(MP_MONT_USE_MP_MUL) |
| 812 | #define MUL_NOWEAVE(x, a, b)if (0 > (res = (s_mp_mul_mont(a, x, b, mmm)))) goto CLEANUP \ |
| 813 | MP_CHECKOK(mp_mul(a, x, b))if (0 > (res = (mp_mul(a, x, b)))) goto CLEANUP; \ |
| 814 | MP_CHECKOK(s_mp_redc(b, mmm))if (0 > (res = (s_mp_redc(b, mmm)))) goto CLEANUP |
| 815 | #else |
| 816 | #define MUL_NOWEAVE(x, a, b)if (0 > (res = (s_mp_mul_mont(a, x, b, mmm)))) goto CLEANUP \ |
| 817 | MP_CHECKOK(s_mp_mul_mont(a, x, b, mmm))if (0 > (res = (s_mp_mul_mont(a, x, b, mmm)))) goto CLEANUP |
| 818 | #endif |
| 819 | |
| 820 | #define MUL(x, a, b) \ |
| 821 | MP_CHECKOK(weave_to_mpi(&tmp, powers, (x), nLen, num_powers))if (0 > (res = (weave_to_mpi(&tmp, powers, (x), nLen, num_powers )))) goto CLEANUP; \ |
| 822 | MUL_NOWEAVE(&tmp, a, b)if (0 > (res = (s_mp_mul_mont(a, &tmp, b, mmm)))) goto CLEANUP |
| 823 | |
| 824 | #define SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp \ |
| 825 | ptmp = pa1; \ |
| 826 | pa1 = pa2; \ |
| 827 | pa2 = ptmp |
| 828 | #define MP_ALIGN(x, y)((((ptrdiff_t)(x)) + ((y)-1)) & (((ptrdiff_t)0) - (y))) ((((ptrdiff_t)(x)) + ((y)-1)) & (((ptrdiff_t)0) - (y))) |
| 829 | |
| 830 | /* Do modular exponentiation using integer multiply code. */ |
| 831 | mp_err |
| 832 | mp_exptmod_safe_i(const mp_int *montBase, |
| 833 | const mp_int *exponent, |
| 834 | const mp_int *modulus, |
| 835 | mp_int *result, |
| 836 | mp_mont_modulus *mmm, |
| 837 | int nLen, |
| 838 | mp_size bits_in_exponent, |
| 839 | mp_size window_bits, |
| 840 | mp_size num_powers) |
| 841 | { |
| 842 | mp_int *pa1, *pa2, *ptmp; |
| 843 | mp_size i; |
| 844 | mp_size first_window; |
| 845 | mp_err res; |
| 846 | int expOff; |
| 847 | mp_int accum1, accum2, accum[WEAVE_WORD_SIZE4]; |
| 848 | mp_int tmp; |
| 849 | mp_digit *powersArray = NULL((void*)0); |
| 850 | mp_digit *powers = NULL((void*)0); |
| 851 | |
| 852 | MP_DIGITS(&accum1)((&accum1)->dp) = 0; |
| 853 | MP_DIGITS(&accum2)((&accum2)->dp) = 0; |
| 854 | MP_DIGITS(&accum[0])((&accum[0])->dp) = 0; |
| 855 | MP_DIGITS(&accum[1])((&accum[1])->dp) = 0; |
| 856 | MP_DIGITS(&accum[2])((&accum[2])->dp) = 0; |
| 857 | MP_DIGITS(&accum[3])((&accum[3])->dp) = 0; |
| 858 | MP_DIGITS(&tmp)((&tmp)->dp) = 0; |
| 859 | |
| 860 | /* grab the first window value. This allows us to preload accumulator1 |
| 861 | * and save a conversion, some squares and a multiple*/ |
| 862 | MP_CHECKOK(mpl_get_bits(exponent,if (0 > (res = (mpl_get_bits(exponent, bits_in_exponent - window_bits , window_bits)))) goto CLEANUP |
| 863 | bits_in_exponent - window_bits, window_bits))if (0 > (res = (mpl_get_bits(exponent, bits_in_exponent - window_bits , window_bits)))) goto CLEANUP; |
| 864 | first_window = (mp_size)res; |
| 865 | |
| 866 | MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum1, 3 * nLen + 2)))) goto CLEANUP; |
| 867 | MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum2, 3 * nLen + 2)))) goto CLEANUP; |
| 868 | |
| 869 | /* build the first WEAVE_WORD powers inline */ |
| 870 | /* if WEAVE_WORD_SIZE is not 4, this code will have to change */ |
| 871 | if (num_powers > 2) { |
| 872 | MP_CHECKOK(mp_init_size(&accum[0], 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum[0], 3 * nLen + 2)) )) goto CLEANUP; |
| 873 | MP_CHECKOK(mp_init_size(&accum[1], 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum[1], 3 * nLen + 2)) )) goto CLEANUP; |
| 874 | MP_CHECKOK(mp_init_size(&accum[2], 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum[2], 3 * nLen + 2)) )) goto CLEANUP; |
| 875 | MP_CHECKOK(mp_init_size(&accum[3], 3 * nLen + 2))if (0 > (res = (mp_init_size(&accum[3], 3 * nLen + 2)) )) goto CLEANUP; |
| 876 | mp_set(&accum[0], 1); |
| 877 | MP_CHECKOK(mp_to_mont(&accum[0], &(mmm->N), &accum[0]))if (0 > (res = (mp_to_mont(&accum[0], &(mmm->N) , &accum[0])))) goto CLEANUP; |
| 878 | MP_CHECKOK(mp_copy(montBase, &accum[1]))if (0 > (res = (mp_copy(montBase, &accum[1])))) goto CLEANUP; |
| 879 | SQR(montBase, &accum[2]); |
| 880 | MUL_NOWEAVE(montBase, &accum[2], &accum[3])if (0 > (res = (s_mp_mul_mont(&accum[2], montBase, & accum[3], mmm)))) goto CLEANUP; |
| 881 | powersArray = (mp_digit *)malloc(num_powers * (nLen * sizeof(mp_digit) + 1)); |
| 882 | if (!powersArray) { |
| 883 | res = MP_MEM-2; |
| 884 | goto CLEANUP; |
| 885 | } |
| 886 | /* powers[i] = base ** (i); */ |
| 887 | powers = (mp_digit *)MP_ALIGN(powersArray, num_powers)((((ptrdiff_t)(powersArray)) + ((num_powers)-1)) & (((ptrdiff_t )0) - (num_powers))); |
| 888 | MP_CHECKOK(mpi_to_weave(accum, powers, nLen, num_powers))if (0 > (res = (mpi_to_weave(accum, powers, nLen, num_powers )))) goto CLEANUP; |
| 889 | if (first_window < 4) { |
| 890 | MP_CHECKOK(mp_copy(&accum[first_window], &accum1))if (0 > (res = (mp_copy(&accum[first_window], &accum1 )))) goto CLEANUP; |
| 891 | first_window = num_powers; |
| 892 | } |
| 893 | } else { |
| 894 | if (first_window == 0) { |
| 895 | mp_set(&accum1, 1); |
| 896 | MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1))if (0 > (res = (mp_to_mont(&accum1, &(mmm->N), & accum1)))) goto CLEANUP; |
| 897 | } else { |
| 898 | /* assert first_window == 1? */ |
| 899 | MP_CHECKOK(mp_copy(montBase, &accum1))if (0 > (res = (mp_copy(montBase, &accum1)))) goto CLEANUP; |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * calculate all the powers in the powers array. |
| 905 | * this adds 2**(k-1)-2 square operations over just calculating the |
| 906 | * odd powers where k is the window size in the two other mp_modexpt |
| 907 | * implementations in this file. We will get some of that |
| 908 | * back by not needing the first 'k' squares and one multiply for the |
| 909 | * first window. |
| 910 | * Given the value of 4 for WEAVE_WORD_SIZE, this loop will only execute if |
| 911 | * num_powers > 2, in which case powers will have been allocated. |
| 912 | */ |
| 913 | for (i = WEAVE_WORD_SIZE4; i < num_powers; i++) { |
| 914 | int acc_index = i & (WEAVE_WORD_SIZE4 - 1); /* i % WEAVE_WORD_SIZE */ |
| 915 | if (i & 1) { |
| 916 | MUL_NOWEAVE(montBase, &accum[acc_index - 1], &accum[acc_index])if (0 > (res = (s_mp_mul_mont(&accum[acc_index - 1], montBase , &accum[acc_index], mmm)))) goto CLEANUP; |
| 917 | /* we've filled the array do our 'per array' processing */ |
| 918 | if (acc_index == (WEAVE_WORD_SIZE4 - 1)) { |
| 919 | MP_CHECKOK(mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE - 1),if (0 > (res = (mpi_to_weave(accum, powers + i - (4 - 1), nLen , num_powers)))) goto CLEANUP |
| 920 | nLen, num_powers))if (0 > (res = (mpi_to_weave(accum, powers + i - (4 - 1), nLen , num_powers)))) goto CLEANUP; |
| 921 | |
| 922 | if (first_window <= i) { |
| 923 | MP_CHECKOK(mp_copy(&accum[first_window & (WEAVE_WORD_SIZE - 1)],if (0 > (res = (mp_copy(&accum[first_window & (4 - 1)], &accum1)))) goto CLEANUP |
| 924 | &accum1))if (0 > (res = (mp_copy(&accum[first_window & (4 - 1)], &accum1)))) goto CLEANUP; |
| 925 | first_window = num_powers; |
| 926 | } |
| 927 | } |
| 928 | } else { |
| 929 | /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source |
| 930 | * and target are the same so we need to copy.. After that, the |
| 931 | * value is overwritten, so we need to fetch it from the stored |
| 932 | * weave array */ |
| 933 | if (i > 2 * WEAVE_WORD_SIZE4) { |
| 934 | MP_CHECKOK(weave_to_mpi(&accum2, powers, i / 2, nLen, num_powers))if (0 > (res = (weave_to_mpi(&accum2, powers, i / 2, nLen , num_powers)))) goto CLEANUP; |
| 935 | SQR(&accum2, &accum[acc_index]); |
| 936 | } else { |
| 937 | int half_power_index = (i / 2) & (WEAVE_WORD_SIZE4 - 1); |
| 938 | if (half_power_index == acc_index) { |
| 939 | /* copy is cheaper than weave_to_mpi */ |
| 940 | MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2))if (0 > (res = (mp_copy(&accum[half_power_index], & accum2)))) goto CLEANUP; |
| 941 | SQR(&accum2, &accum[acc_index]); |
| 942 | } else { |
| 943 | SQR(&accum[half_power_index], &accum[acc_index]); |
| 944 | } |
| 945 | } |
| 946 | } |
| 947 | } |
| 948 | /* if the accum1 isn't set, Then there is something wrong with our logic |
| 949 | * above and is an internal programming error. |
| 950 | */ |
| 951 | #if MP_ARGCHK2 == 2 |
| 952 | assert(MP_USED(&accum1) != 0)((((&accum1)->used) != 0) ? (void) (0) : __assert_fail ("MP_USED(&accum1) != 0", "mpi/mpmontg.c", 952, __extension__ __PRETTY_FUNCTION__)); |
| 953 | #endif |
| 954 | |
| 955 | /* set accumulator to montgomery residue of 1 */ |
| 956 | pa1 = &accum1; |
| 957 | pa2 = &accum2; |
| 958 | |
| 959 | /* tmp is not used if window_bits == 1. */ |
| 960 | if (window_bits != 1) { |
| 961 | MP_CHECKOK(mp_init_size(&tmp, 3 * nLen + 2))if (0 > (res = (mp_init_size(&tmp, 3 * nLen + 2)))) goto CLEANUP; |
| 962 | } |
| 963 | |
| 964 | for (expOff = bits_in_exponent - window_bits * 2; expOff >= 0; expOff -= window_bits) { |
| 965 | mp_size smallExp; |
| 966 | MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits))if (0 > (res = (mpl_get_bits(exponent, expOff, window_bits )))) goto CLEANUP; |
| 967 | smallExp = (mp_size)res; |
| 968 | |
| 969 | /* handle unroll the loops */ |
| 970 | switch (window_bits) { |
| 971 | case 1: |
| 972 | if (!smallExp) { |
| 973 | SQR(pa1, pa2); |
| 974 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 975 | } else if (smallExp & 1) { |
| 976 | SQR(pa1, pa2); |
| 977 | MUL_NOWEAVE(montBase, pa2, pa1)if (0 > (res = (s_mp_mul_mont(pa2, montBase, pa1, mmm)))) goto CLEANUP; |
| 978 | } else { |
| 979 | abort(); |
| 980 | } |
| 981 | break; |
| 982 | case 6: |
| 983 | SQR(pa1, pa2); |
| 984 | SQR(pa2, pa1); |
| 985 | /* fall through */ |
| 986 | case 4: |
| 987 | SQR(pa1, pa2); |
| 988 | SQR(pa2, pa1); |
| 989 | SQR(pa1, pa2); |
| 990 | SQR(pa2, pa1); |
| 991 | MUL(smallExp, pa1, pa2); |
| 992 | SWAPPAptmp = pa1; pa1 = pa2; pa2 = ptmp; |
| 993 | break; |
| 994 | case 5: |
| 995 | SQR(pa1, pa2); |
| 996 | SQR(pa2, pa1); |
| 997 | SQR(pa1, pa2); |
| 998 | SQR(pa2, pa1); |
| 999 | SQR(pa1, pa2); |
| 1000 | MUL(smallExp, pa2, pa1); |
| 1001 | break; |
| 1002 | default: |
| 1003 | abort(); /* could do a loop? */ |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | res = s_mp_redc(pa1, mmm); |
| 1008 | mp_exch(pa1, result); |
| 1009 | |
| 1010 | CLEANUP: |
| 1011 | mp_clear(&accum1); |
| 1012 | mp_clear(&accum2); |
| 1013 | mp_clear(&accum[0]); |
| 1014 | mp_clear(&accum[1]); |
| 1015 | mp_clear(&accum[2]); |
| 1016 | mp_clear(&accum[3]); |
| 1017 | mp_clear(&tmp); |
| 1018 | /* zero required by FIPS here, can't use PORT_ZFree |
| 1019 | * because mpi doesn't link with util */ |
| 1020 | if (powers) { |
| 1021 | PORT_Memsetmemset(powers, 0, num_powers * sizeof(mp_digit)); |
| 1022 | } |
| 1023 | free(powersArray); |
| 1024 | return res; |
| 1025 | } |
| 1026 | #undef SQR |
| 1027 | #undef MUL |
| 1028 | #endif |
| 1029 | |
| 1030 | mp_err |
| 1031 | mp_exptmod(const mp_int *inBase, const mp_int *exponent, |
| 1032 | const mp_int *modulus, mp_int *result) |
| 1033 | { |
| 1034 | const mp_int *base; |
| 1035 | mp_size bits_in_exponent, i, window_bits, odd_ints; |
| 1036 | mp_err res; |
| 1037 | int nLen; |
| 1038 | mp_int montBase, goodBase; |
| 1039 | mp_mont_modulus mmm; |
| 1040 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 1041 | static unsigned int max_window_bits; |
| 1042 | #endif |
| 1043 | |
| 1044 | /* function for computing n0prime only works if n0 is odd */ |
| 1045 | if (!mp_isodd(modulus)) |
| 1046 | return s_mp_exptmod(inBase, exponent, modulus, result); |
| 1047 | |
| 1048 | if (mp_cmp_z(inBase) == MP_LT-1) |
| 1049 | return MP_RANGE-3; |
| 1050 | MP_DIGITS(&montBase)((&montBase)->dp) = 0; |
| 1051 | MP_DIGITS(&goodBase)((&goodBase)->dp) = 0; |
| 1052 | |
| 1053 | if (mp_cmp(inBase, modulus) < 0) { |
| 1054 | base = inBase; |
| 1055 | } else { |
| 1056 | MP_CHECKOK(mp_init(&goodBase))if (0 > (res = (mp_init(&goodBase)))) goto CLEANUP; |
| 1057 | base = &goodBase; |
| 1058 | MP_CHECKOK(mp_mod(inBase, modulus, &goodBase))if (0 > (res = (mp_mod(inBase, modulus, &goodBase)))) goto CLEANUP; |
| 1059 | } |
| 1060 | |
| 1061 | nLen = MP_USED(modulus)((modulus)->used); |
| 1062 | MP_CHECKOK(mp_init_size(&montBase, 2 * nLen + 2))if (0 > (res = (mp_init_size(&montBase, 2 * nLen + 2)) )) goto CLEANUP; |
| 1063 | |
| 1064 | mmm.N = *modulus; /* a copy of the mp_int struct */ |
| 1065 | |
| 1066 | /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX |
| 1067 | ** where n0 = least significant mp_digit of N, the modulus. |
| 1068 | */ |
| 1069 | mmm.n0prime = mp_calculate_mont_n0i(modulus); |
| 1070 | |
| 1071 | MP_CHECKOK(mp_to_mont(base, modulus, &montBase))if (0 > (res = (mp_to_mont(base, modulus, &montBase))) ) goto CLEANUP; |
| 1072 | |
| 1073 | bits_in_exponent = mpl_significant_bits(exponent); |
| 1074 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 1075 | if (mp_using_cache_safe_exp) { |
| 1076 | if (bits_in_exponent > 780) |
| 1077 | window_bits = 6; |
| 1078 | else if (bits_in_exponent > 256) |
| 1079 | window_bits = 5; |
| 1080 | else if (bits_in_exponent > 20) |
| 1081 | window_bits = 4; |
| 1082 | /* RSA public key exponents are typically under 20 bits (common values |
| 1083 | * are: 3, 17, 65537) and a 4-bit window is inefficient |
| 1084 | */ |
| 1085 | else |
| 1086 | window_bits = 1; |
| 1087 | } else |
| 1088 | #endif |
| 1089 | if (bits_in_exponent > 480) |
| 1090 | window_bits = 6; |
| 1091 | else if (bits_in_exponent > 160) |
| 1092 | window_bits = 5; |
| 1093 | else if (bits_in_exponent > 20) |
| 1094 | window_bits = 4; |
| 1095 | /* RSA public key exponents are typically under 20 bits (common values |
| 1096 | * are: 3, 17, 65537) and a 4-bit window is inefficient |
| 1097 | */ |
| 1098 | else |
| 1099 | window_bits = 1; |
| 1100 | |
| 1101 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 1102 | /* |
| 1103 | * clamp the window size based on |
| 1104 | * the cache line size. |
| 1105 | */ |
| 1106 | if (!max_window_bits) { |
| 1107 | unsigned long cache_size = s_mpi_getProcessorLineSize(); |
| 1108 | /* processor has no cache, use 'fast' code always */ |
| 1109 | if (cache_size == 0) { |
| 1110 | mp_using_cache_safe_exp = 0; |
| 1111 | } |
| 1112 | if ((cache_size == 0) || (cache_size >= 64)) { |
| 1113 | max_window_bits = 6; |
| 1114 | } else if (cache_size >= 32) { |
| 1115 | max_window_bits = 5; |
| 1116 | } else if (cache_size >= 16) { |
| 1117 | max_window_bits = 4; |
| 1118 | } else |
| 1119 | max_window_bits = 1; /* should this be an assert? */ |
| 1120 | } |
| 1121 | |
| 1122 | /* clamp the window size down before we caclulate bits_in_exponent */ |
| 1123 | if (mp_using_cache_safe_exp) { |
| 1124 | if (window_bits > max_window_bits) { |
| 1125 | window_bits = max_window_bits; |
| 1126 | } |
| 1127 | } |
| 1128 | #endif |
| 1129 | |
| 1130 | odd_ints = 1 << (window_bits - 1); |
| 1131 | i = bits_in_exponent % window_bits; |
| 1132 | if (i != 0) { |
| 1133 | bits_in_exponent += window_bits - i; |
| 1134 | } |
| 1135 | |
| 1136 | #ifdef MP_USING_MONT_MULF |
| 1137 | if (mp_using_mont_mulf) { |
| 1138 | MP_CHECKOK(s_mp_pad(&montBase, nLen))if (0 > (res = (s_mp_pad(&montBase, nLen)))) goto CLEANUP; |
| 1139 | res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, |
| 1140 | bits_in_exponent, window_bits, odd_ints); |
| 1141 | } else |
| 1142 | #endif |
| 1143 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP1 |
| 1144 | if (mp_using_cache_safe_exp) { |
| 1145 | res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, |
| 1146 | bits_in_exponent, window_bits, 1 << window_bits); |
| 1147 | } else |
| 1148 | #endif |
| 1149 | res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, |
| 1150 | bits_in_exponent, window_bits, odd_ints); |
| 1151 | |
| 1152 | CLEANUP: |
| 1153 | mp_clear(&montBase); |
| 1154 | mp_clear(&goodBase); |
| 1155 | /* Don't mp_clear mmm.N because it is merely a copy of modulus. |
| 1156 | ** Just zap it. |
| 1157 | */ |
| 1158 | memset(&mmm, 0, sizeof mmm); |
| 1159 | return res; |
| 1160 | } |